Mathematische Logik

SS 2012

Aktuelles

  • Studierende, die eine schriftliche Bescheinigung über die erfolgreiche Teilnahme an der Veranstaltung (incl. Wiederholungsklausur) erhalten (Lehramt und Master Informatik Auflage), können diese ab sofort im Sekretariat des Lehrstuhls für Informatik 7 abholen.
  • Anmeldung zur Vorlesung/Übung:
    • Eine Anmeldung über CampusOffice zur Vorlesung/Übung ist nicht erforderlich!
    • Alle Studierenden melden sich bitte zur Punkteerfassung im m(a)lo-Portal an (siehe unten). Eine Anmeldung zu den einzelnen Tutorien ist nicht erforderlich.
  • Anmeldung zur Klausur:
    • Studierende in Bachelor-/Masterstudiengängen (in denen Mathematische Logik regulärer Bestandteil des Studienplans ist), melden sich bitte wie gewohnt über das (virtuelle) Prüfungsamt an.
    • Studierende im Master Informatik (Auflage) und Lehramt beachten bitte Folgendes: Um an der Klausur teilzunehmen, ist eine Anmeldung im m(a)lo-Portal (und das Erreichen der notwendigen Übungspunkte) ausreichend. Damit wir in der Klausur überprüfen können, ob Sie in dem angegebenen Studiengang eingeschrieben sind, bringen Sie für die Klausur eine entsprechende Bescheinigung mit (Studienbescheinigung o.ä.).

m(a)lo-Portal

Über diese Schnittstelle können Sie Ihre Übungs- und Klausurergebnisse abfragen. [ »  Registrierung ]

Matrikelnummer:
Passwort:

Passwort vergessen?

Termine

ArtTerminOrt Veranstalter
V3Di11:4512:301420|001 (Gr)VorlesungC. Löding, E. Grädel
Do11:4513:151420|001 (Gr)VorlesungC. Löding, E. Grädel
Di12:3013:151420|001 (Gr)DiskussionC. Löding, E. Grädel
Ü2Do16:0017:302356|051 (AH VI)Gruppe ABernd Puchala
Fr08:1509:451580|001 (SE 001)Gruppe BSvenja Schalthöfer
Fr10:0011:302350|009 (AH I)Gruppe CWied Pakusa
Fr11:4513:152356|054 (5054)Gruppe DSimon Lessenich
Fr13:3015:001010|141 (IV)Gruppe EFaried Abu Zaid
Mo11:4513:151580|001 (SE 001)Gruppe FJonathan Schmidt-Dominé
Mo16:4518:152356|051 (AH VI)Gruppe GFelix Canavoi
Di08:1509:451010|141 (IV)Gruppe HRoman Rabinovich
Di14:0015:302356|055 (5055)Gruppe INikolas Breuckmann

Übungsbetrieb

Die Übungsblätter stehen jeweils mittwochnachmittags auf dieser Webseite zum Download bereit. Sie können Ihre Lösungen bis zum darauffolgenden Mittwoch um 13:00 am Lehrstuhl in den dafür vorgesehenen Kasten einwerfen. Die Rückgabe der Abgaben erfolgt (in der Regel) im nachfolgenden Tutorium, die erzielten Punkte können Sie auch über das m(a)lo-Portal abrufen.

Geben Sie Ihre Lösungen in Gruppen von zwei oder (bevorzugt) drei Studierenden ab und beschriften Sie Ihre Abgabe mit der Nummer des Übungsblattes, dem Kennbuchstaben Ihrer Übungsgruppe (A-I) sowie Namen und Matrikelnummern aller beteiligten Studierenden. Die Abgaben werden bevorzugt von Ihrem Tutor korrigiert.

Das erste Übungsblatt erscheint am Mittwoch, den 04.04., die Tutorien beginnen ab Donnerstag, 12.04.. In den Tutorien wird ein Teil der Übungsaufgaben der vergangenen Woche vorgerechnet, sowie zusätzliche Aufgaben (einer Präsenzübung), die als Hilfestellung für die aktuellen Übungsaufgaben dienen.

Ergänzend zu den Tutorien wird in der Diskussionsstunde am Dienstag der verbleibende Teil der Übungsaufgaben der vergangenen Woche besprochen. Es besteht hier außerdem die Möglichkeit offene Fragen zum Vorlesungsstoff zu diskutieren.

Die Diskussionsstunde findet erstmalig am Dienstag, 10.04., statt. An diesem Termin wird die erste Präsenzübung besprochen.

Für die Zulassung zur Klausur sind 50% der Punkte in den Übungen notwendig. Studierende, die im Sommersemester 2011 die Zulassung zur Prüfung durch erfolgreiche Teilnahme an den Übungen erworben haben, sind auch im Sommersemester 2012 zur Prüfung zugelassen.

Skript

Übungen

Inhalt

  • Aussagenlogik (Grundlagen, algorithmische Fragen, Kompaktheit, Resolution, Sequenzenkalkül)
  • Strukturen, Syntax und Semantik der Prädikatenlogik
  • Einführung in weitere Logiken (modale und temporale Logiken, Logiken höherer Stufe)
  • Auswertungsspiele, Modellvergleichsspiele
  • Beweiskalküle, Termstrukturen, Vollständigkeitssatz
  • Kompaktheitssatz und Anwendungen
  • Entscheidbarkeit, Unentscheidbarkeit und Komplexität von logischen Spezifikationen

Lernziele

Die Studierenden sollen Sachverhalte in geeigneten logischen Systemen formalisieren und mit diesen Formalisierungen umgehen, Grundlegende Begriffe und Methoden der mathematischen Logik verstehen (Syntax und Semantik logischer Systeme, Folgerungsbeziehung, Erfüllbarkeit, Beweiskalküle, Definierbarkeit, etc.), die Ausdrucksstärke und Grenzen logischer Systeme beurteilen können sowie einige der fundamentalen Resultate der mathematischen Logik des 20. Jahrhunderts (z.B. Vollständigkeitssatz, Kompaktheitssatz, Unentscheidbarkeit der Prädikatenlogik) kennenlernen und ihre Bedeutung für Mathematik und Informatik verstehen.

Prüfungsleistung

Die Klausuren zum Erwerb des Leistungsnachweises für Diplom- und Lehramtsstudenten finden an den gleichen Terminen wie die Bachelorprüfungen statt. Für diese Studenten ist keine Anmeldung erforderlich.

In der Klausur darf jeder Teilnehmer ein (beidseitig beschriebenes) DIN-A4-Blatt mit eigenen Notizen benutzen. Darüber hinaus sind keine weiteren Hilfsmittel (Skripte, Bücher, Mitschriften etc.) zugelassen.

Literatur

[1]S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2]R. Cori and D. Lascar. Logique mathématique. Masson, 1993.
[3]H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
[4]M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000.
[5]B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992.
[6]H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994.
[7]S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[8]W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996.
[9]U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995.
[10]D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983.

Zuordnung

  • Informatik (B.Sc.)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
  • Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
  • Mathematik (D)/Hauptstudium/Reine Mathematik
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik

Voraussetzungen

  • Mathematische Grundkenntnisse aus den Vorlesungen Diskrete Strukturen und Lineare Algebra
  • Grundkenntnisse über Berechenbarkeit und Komplexität

Nachfolgeveranstaltungen

  • Algorithmische Modelltheorie
  • Mathematische Logik II
  • Komplexitätstheorie und Quantum Computing
  • Logik und Spiele
  • weitere Spezialvorlesungen zur Mathematischen Logik

Wiederholung

Jedes Jahr im Sommersemester

Rückfragen

Wied Pakusa, Christof Löding (Vorlesung)