Mathematical Logic

SS 2012

Information

  • Please visit the german version of this page to register for the exercise classes and to view current announcements.

Schedule

Type Date Location   Organizer
V3 Tue 11:45 12:30 1420|001 (Gr) Lecture C. Löding, E. Grädel
Thu 11:45 13:15 1420|001 (Gr) Lecture C. Löding, E. Grädel
Tue 12:30 13:15 1420|001 (Gr) Discussion C. Löding, E. Grädel
Ü2 Thu 16:00 17:30 2356|051 (AH VI) Gruppe A Bernd Puchala
Fri 08:15 09:45 1580|001 (SE 001) Gruppe B Svenja Schalthöfer
Fri 10:00 11:30 2350|009 (AH I) Gruppe C Wied Pakusa
Fri 11:45 13:15 2356|054 (5054) Gruppe D Simon Lessenich
Fri 13:30 15:00 1010|141 (IV) Gruppe E Faried Abu Zaid
Mon 11:45 13:15 1580|001 (SE 001) Gruppe F Jonathan Schmidt-Dominé
Mon 16:45 18:15 2356|051 (AH VI) Gruppe G Felix Canavoi
Tue 08:15 09:45 1010|141 (IV) Gruppe H Roman Rabinovich
Tue 14:00 15:30 2356|055 (5055) Gruppe I Nikolas Breuckmann

Lecture Notes

Coursework

Content

  • Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
  • Structures, syntax und semantic of the Predicate logic
  • Introduction into other logics (modal and temporal Logics, higher order logics)
  • Evaluation games, model comparison games
  • proof calculi, term structures, completeness theorem
  • Compactness theorem and applications
  • Decidability, undecidability and complexity of logical specifications

Literature

[1] S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2] R. Cori and D. Lascar. Logique mathématique. Masson, 1993.
[3] H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
[4] M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000.
[5] B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992.
[6] H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994.
[7] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[8] W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996.
[9] U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995.
[10] D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983.

Classification

  • Informatik (B.Sc.)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
  • Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
  • Mathematik (D)/Hauptstudium/Reine Mathematik
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik

Prerequisites

  • Basic mathematical knowledge from the lecutres Discrete Structures and Linear Algebra
  • Basic knowledge about recursion theory and complexity theory

Successive Courses

  • Algorithmic Model Theory
  • Mathematical Logic II
  • Complexity Theory und Quantum Computing
  • Logic and Games
  • Other specialized lectures around the topic of Mathematical Logic

Recurrence

Every year in the summer term

Contact

Wied Pakusa, Christof Löding (Vorlesung)