Mathematical Logic
SS 2023
Note: This course will be held in German (except for tutorial 13).
Information
-
Lecture recordings by the Video AG are available at https://rwth.video/23ss-malo.
-
The complete course materials are only available on our Moodle course page.
-
All exam results have been published via RWTHonline.
Schedule
Type | Date | Location | Organizer | ||||
---|---|---|---|---|---|---|---|
V3 | Wed | 09:00 | – | 10:00 | 1420|002 (Roter Hörsaal) | Lecture (Start 5th April) | E. Grädel |
Thu | 14:30 | – | 15:45 | 1420|002 (Roter Hörsaal) | Lecture (Start 6th April) | E. Grädel | |
Ü2 | Mon | 10:30 | – | 12:00 | 1385|218 (H11) | Tutorial 12 (Start 17th April) | E. Zimmer |
Mon | 12:30 | – | 14:00 | 2356|056 (5056) | Tutorial 13 (Start 17th April), in English | T. Novotný | |
Wed | 10:30 | – | 12:00 | 1385|004 (amazon-Hörsaal (H06)) | Tutorial 01 (Start 12th April) | R. Meffert | |
Wed | 12:30 | – | 14:00 | 2350|028 (AH I) | Tutorial 02 (Start 12th April) | B. Pago | |
Wed | 14:30 | – | 16:00 | 1385|104 (H07) and online (link) | Tutorial 03 (Start 12th April) | J. Arpasi | |
Wed | 16:30 | – | 18:00 | 2350|028 (AH I) | Tutorial 04 (Start 12th April) | M. Naaf | |
Thu | 10:30 | – | 12:00 | 1385|219 (H08) | Tutorial 05 (Start 13th April) | I. Hergeth | |
Thu | 12:30 | – | 14:00 | 1010|141 (IV) | Tutorial 06 (Start 13th April) | E. Lüpfert | |
Thu | 16:30 | – | 18:00 | 2356|056 (5056) | Tutorial 07 (Start 13th April) | D. Zilken | |
Thu | 18:30 | – | 20:00 | online (Zoom) | Tutorial 08 (Start 13th April) | L. Mrkonjić | |
Fri | 10:30 | – | 12:00 | 2356|050 (AH V) | Tutorial 09 (Start 14th April) | A. von Trotha | |
Fri | 12:30 | – | 14:00 | 2350|028 (AH I) | Tutorial 10 (Start 14th April) | T. Becker | |
Fri | 16:30 | – | 18:00 | 1010|141 (IV) | Tutorial 11 (Start 14th April) | D. Vitorino |
Course Materials
Coursework
- Homework 1 [pdf], Tutorial 1 [pdf]
- Homework 2 [pdf], Tutorial 2 [pdf]
- Homework 3 [pdf], Tutorial 3 [pdf]
- Homework 4 [pdf], Tutorial 4 [pdf]
- Homework 5 [pdf], Tutorial 5 [pdf]
- Homework 6 [pdf], Tutorial 6 [pdf]
- Homework 7 [pdf], Tutorial 7 [pdf]
- Homework 8 [pdf], Tutorial 8 [pdf]
- Homework 9 [pdf], Tutorial 9 [pdf]
- Homework 10 [pdf], Tutorial 10 [pdf]
- Homework 11 [pdf], Tutorial 11 [pdf]
- Homework 12 [pdf], Tutorial 12 [pdf]
Exam
The course Mathematical Logic is completed by passing a written exam lasting 120 minutes.
You are admitted to the exam if you obtain both 50% of all homework points and 50% of all eTest points.
Content
- Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
- Structures, syntax and semantic of first-order logic
- Introduction into other logics (modal and temporal logics, higher order logics)
- Evaluation games, model comparison games
- Proof calculi, term structures, completeness theorem
- Compactness theorem and applications
- Decidability, undecidability and complexity of logical specifications
Literature
[1] | S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998. |
[2] | R. Cori and D. Lascar. Logique mathématique. Masson, 1993. |
[3] | H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986. |
[4] | M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000. |
[5] | B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992. |
[6] | H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994. |
[7] | S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994. |
[8] | W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996. |
[9] | U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995. |
[10] | D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983. |
Classification
- Grundlagen der Informatik (B.Sc.) / Themenmodule / Themenmodul Wahlpflicht Mathematik
- Informatik (B.Sc.) / Modulbereich Theoretische Informatik
- Mathematik (B.Sc.) / Wahlpflichtbereich
Prerequisites
- basic mathematical knowledge from the lectures Discrete Structures and Linear Algebra
- basic knowledge about recursion theory and complexity theory
Successive Courses
- Mathematical Logic II
- Logic and Games
- Algorithmic Model Theory
- other specialized lectures around the topic of Mathematical Logic
Recurrence
every year in the summer term
Contact
Erich Grädel, Lovro Mrkonjić