Mathematische Logik

SS 2009

Aktuelles

  • Die Leistungsnachweise können am Lehrstuhl abgeholt werden.
  • Bitte registrieren Sie sich im m(a)lo-Portal, damit Sie Ihre in den Übungen erreichten Punkte und Ihre Klausurergebnisse sehen können.

Termine

ArtTerminOrt Veranstalter
V3Di11:4512:501420|001 (Gr)Beginn 21. AprilE. Grädel
Do11:4512:551420|001 (Gr)Beginn 23. AprilE. Grädel
Ü2Do15:4517:151580|001 (SE 001)Gruppe AF. Abu Zaid
Fr10:0011:302350|009 (AH I)Gruppe BM. Ummels
Fr11:4513:152356|054 (5054)Gruppe CS. Leßenich
Mo11:4513:152350|009 (AH I)Gruppe DR. Rabinovich
Di8:159:452356|055 (5055)Gruppe ED. Fischer
Di14:0015:301010|141 (IV)Gruppe FW. Pakusa
Di15:4517:152356|055 (5055)Gruppe GB. Puchala
Mi13:3015:002356|054 (5054)Gruppe HŁ. Kaiser

Skript

Übungen

Inhalt

  • Aussagenlogik (Grundlagen, algorithmische Fragen, Kompaktheit, Resolution, Sequenzenkalkül)
  • Strukturen, Syntax und Semantik der Prädikatenlogik
  • Einführung in weitere Logiken (modale und temporale Logiken, Logiken höherer Stufe)
  • Auswertungsspiele, Modellvergleichsspiele
  • Beweiskalküle, Termstrukturen, Vollständigkeitssatz
  • Kompaktheitssatz und Anwendungen
  • Entscheidbarkeit, Unentscheidbarkeit und Komplexität von logischen Spezifikationen

Lernziele

Die Studierenden sollen Sachverhalte in geeigneten logischen Systemen formalisieren und mit diesen Formalisierungen umgehen, Grundlegende Begriffe und Methoden der mathematischen Logik verstehen (Syntax und Semantik logischer Systeme, Folgerungsbeziehung, Erfüllbarkeit, Beweiskalküle, Definierbarkeit, etc.), die Ausdrucksstärke und Grenzen logischer Systeme beurteilen können sowie einige der fundamentalen Resultate der mathematischen Logik des 20. Jahrhunderts (z.B. Vollständigkeitssatz, Kompaktheitssatz, Unentscheidbarkeit der Prädikatenlogik) kennenlernen und ihre Bedeutung für Mathematik und Informatik verstehen.

Prüfungsleistung

Die Klausuren zum Erwerb des Leistungsnachweises für Diplom- und Lehramtsstudenten finden an den gleichen Terminen wie die Bachelorprüfungen statt. Für diese Studenten ist keine Anmeldung erforderlich.

In der Klausur darf jeder Teilnehmer ein (beidseitig beschriebenes) DIN-A4-Blatt mit eigenen Notizen benutzen. Darüber hinaus sind keine weiteren Hilfsmittel (Skripte, Bücher, Mitschriften etc.) zugelassen.

Literatur

[1]S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2]R. Cori and D. Lascar. Logique mathématique. Masson, 1993.
[3]H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
[4]M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000.
[5]B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992.
[6]H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994.
[7]S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[8]W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996.
[9]U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995.
[10]D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983.

Zuordnung

  • Informatik (B.Sc.)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
  • Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
  • Informatik (D)/Grundstudium
  • Mathematik (D)/Hauptstudium/Reine Mathematik
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik

Voraussetzungen

  • Mathematische Grundkenntnisse aus den Vorlesungen Diskrete Strukturen und Lineare Algebra
  • Grundkenntnisse über Berechenbarkeit und Komplexität

Nachfolgeveranstaltungen

  • Algorithmische Modelltheorie
  • Mathematische Logik II
  • Komplexitätstheorie und Quantum Computing
  • Logik und Spiele
  • weitere Spezialvorlesungen zur Mathematischen Logik

Wiederholung

Jedes Jahr im Sommersemester

Rückfragen

Erich Grädel, Roman Rabinovich