Logik und Spiele

SS 2013

Aktuelles

  • Neue Übungsblätter werden jeweils Montags auf dieser Webseite zur Verfügung gestellt. Die Bearbeitung kann in Gruppen von bis zu drei Studierenden erfolgen. Sie können ihre Lösungen bis zum darauf folgenden Montag entweder nach der Vorlesung einreichen oder bis spätestens 13.30h in den Übungskasten einwerfen (Flur E1, 1. Etage).

Termine

Art Termin Ort   Veranstalter
V4 Mo 11:45 13:15 AH I Beginn 15. April E. Grädel
Fr 10:00 11:30 AH I Beginn 12. April E. Grädel
Ü2 Mi 14:15 15:45 AH I Beginn 24. April F. Abu Zaid, W. Pakusa

Übungen

Skript

Inhalt

Lernziele

Verständnis der grundlegenden Begriffe und Probleme der algorithmischen Spieltheorie und der Zusammenhänge von Logik und Spieltheorie. Kenntnis der logischen und algorithmischen Methoden zur Behandlung unendlicher Spiele. Verständnis der Anwendungen unendlicher Spiele als Modell reaktiver Systeme und zur Auswertung logischer Formeln.

Themen

Fundamentale Modelle und Begriffe der Spieltheorie. Endliche und unendliche Spiele. Model-Checking-Spiele. Determinierte und nichtdeterminierte Spiele. Borel-Spiele, Muller-Spiele und Paritätsspiele. Komplexität und Definierbarkeit von Gewinnregionen. Algorithmische Synthese und Optimierung von Gewinnstrategien. Mehrpersonenspiele.

Literatur

Voraussetzungen

  • Mathematische Logik

Zuordnung

  • Mathematik (B.Sc.)
  • Mathematik (M.Sc.): Reine Mathematik
  • Informatik (M.Sc.): Theoretische Informatik
  • Lehramtskandidaten Informatik: Mathematische Methoden der Informatik (C)
  • Software Systems Engineering (M.Sc.): Theoretical Computer Science
  • Computermathematik (D)

Leistungsnachweis

  • Bachelor- und Masterstudiengänge: Lösen von 50% der Übungsaufgaben und Bestehen einer mündlichen Prüfung im Umfang von 30 Minuten

Rückfragen

Erich Grädel, Faried Abu Zaid, Wied Pakusa