
Logic and Games
SS 2009

Prof. Dr. Erich Grädel
Łukasz Kaiser, Tobias Ganzow

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizensiert uter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2009 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 Finite Games and First-Order Logic 1
1.1 Model Checking Games for Modal Logic 1
1.2 Finite Games . 4
1.3 Alternating Algorithms . 8
1.4 Model Checking Games for First-Order Logic 18

2 Parity Games and Fixed-Point Logics 21
2.1 Parity Games . 21
2.2 Fixed-Point Logics . 31
2.3 Model Checking Games for Fixed-Point Logics 34

3 Infinite Games 41
3.1 Topology . 42
3.2 Gale-Stewart Games . 49
3.3 Muller Games and Game Reductions 58
3.4 Complexity . 72

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . 79
4.2 Iterated Elimination of Dominated Strategies 87
4.3 Beliefs and Rationalisability . 93
4.4 Games in Extensive Form . 96

2 Parity Games and Fixed-Point Logics

2.1 Parity Games

In the previous section we presented model checking games for first-
order logic and modal logic. These games admit only finite plays and
their winning conditions are specified just by sets of positions. Winning
regions in these games can be computed in linear time with respect to
the size of the game graph.

However, in many computer science applications, more expressive
logics like temporal logics, dynamic logics, fixed-point logics and others
are needed. Model checking games for these logics admit infinite plays
and their winning conditions must be specified in a more elaborate way.
As a consequence, we have to consider the theory of infinite games.

For fixed-point logics, such as LFP or the modal µ-calculus, the
appropriate evaluation games are parity games. These are games of
possibly infinite duration where to each position a natural number is
assigned. This number is called the priority of the position, and the
winner of an infinite play is determined according to whether the least
priority seen infinitely often during the play is even or odd.

Definition 2.1. We describe a parity game by a labelled graph G =
(V, V0, V1, E, Ω) where (V, V0, V1, E) is a game graph and Ω : V → N,
with |Ω(V)| finite, assigns a priority to each position. The set V of
positions may be finite or infinite, but the number of different priorities,
called the index of G, must be finite. Recall that a finite play of a game
is lost by the player who gets stuck, i.e. cannot move. For infinite plays
v0v1v2 . . ., we have a special winning condition: If the least number
appearing infinitely often in the sequence Ω(v0)Ω(v1) . . . of priorities
is even, then Player 0 wins the play, otherwise Player 1 wins.

21

2.1 Parity Games

Definition 2.2. A strategy (for Player σ) is a function

f : V∗Vσ → V

such that f (v0v1 . . . vn) ∈ vnE.

We say that a play π = v0v1 . . . is consistent with the strategy f of
Player σ if for each vi ∈ Vσ it holds that vi+1 = f (vi). The strategy f is
winning for Player σ from (or on) a set W ⊆ V if each play starting in
W that is consistent with f is winning for Player σ.

In general, a strategy depends on the whole history of the game.
However, in this chapter, we are interested in simple strategies that
depend only on the current position.

Definition 2.3. A strategy (of Player σ) is called positional (or memoryless)
if it only depends on the current position, but not on the history of
the game, i.e. f (hv) = f (h′v) for all h, h′ ∈ V∗, v ∈ V. We often view
positional strategies simply as functions f : V → V.

We will see that such positional strategies suffice to solve parity
games by proving the following theorem.

Theorem 2.4 (Forgetful Determinacy). In any parity game, the set of
positions can be partitioned into two sets W0 and W1 such that Player 0
has a positional strategy that is winning on W0 and Player 1 has a
positional strategy that is winning on W1.

Before proving the theorem, we give two general examples of
positional strategies, namely attractor and trap strategies, and show
how positional winning strategies on parts of the game graph may be
combined to positional winning strategies on larger regions.

Remark 2.5. Let f and f ′ be positional strategies for Player σ that are
winning on the sets W, W ′, respectively. Let f + f ′ be the positional
strategy defined by

(f + f ′)(x) :=

 f (x) if x ∈ W

f ′(x) otherwise.

Then f + f ′ is a winning strategy on W ∪W ′.

22

2 Parity Games and Fixed-Point Logics

Definition 2.6. Let G = (V, V0, V1, E) be a game and X ⊆ V. We define
the attractor of X for Player σ as

Attrσ(X) = {v ∈ V : Player σ has a (w.l.o.g. positional) strategy

to reach some position x ∈ X ∪ Tσ

in finitely many steps}

where Tσ = {v ∈ V1−σ : vE = ∅} denotes the set of terminal positions
in which Player σ has won.

A set X ⊆ V is called a trap for Player σ if Player 1− σ has a (w.l.o.g.
positional) strategy that avoids leaving X from every x ∈ X.

We can now turn to the proof of the Forgetful Determinacy Theo-
rem.

Proof. Let G = (V, V0, V1, E, Ω) be a parity game with |Ω(V)| = m.
Without loss of generality we can assume that Ω(V) = {0, . . . , m− 1}
or Ω(V) = {1, . . . , m}. We prove the statement by induction over
|Ω(V)|.

In the case of |Ω(V)| = 1, i.e., Ω(V) = {0} or Ω(V) = {1}, the
theorem clearly holds as either Player 0 or Player 1 wins every infinite
play. Her opponent can only win by reaching a terminal position that
does not belong to him. So we have, for Ω(V) = {σ},

W1−σ = Attr1−σ(T1−σ) and

Wσ = V \W1−σ.

Computing W1−σ as the attractor of T1−σ is a simple reachability prob-
lem, and thus it can be solved with a positional strategy. Concerning
Wσ, it can be seen that there is a positional strategy that avoids leaving
this (1− σ)-trap.

Let |Ω(v)| = m > 1. We only consider the case 0 ∈ Ω(V), i.e.,
Ω(V) = {0, . . . , m− 1} since otherwise we can use the same argumen-
tation with switched roles of the players. We define

X1 := {v ∈ V : Player 1 has positional winning strategy from v},

23

2.1 Parity Games

and let g be a positional winning strategy for Player 1 on X1.

Our goal is to provide a positional winning strategy f ∗ for Player 0
on V \ X1, so in particular we have W1 = X1 and W0 = V \ X1.

First of all, observe that V \ X1 is a trap for Player 1. Indeed, if
Player 1 could move to X1 from a v ∈ V1 \ X1, then v would also be
in X1. Thus, there exists a positional trap strategy f for Player 0 that
guarantees to stay in V \ X1.

Let Y = Ω−1(0) \X1, Z = Attr0(Y) and let a be an attractor strategy
for Player 0 which guarantees that Y (or a terminal winning position
y ∈ T0) can be reached from every z ∈ Z \ Y. Moreover, let V′ =
V \ (X1 ∪ Z).

The restricted game G ′ = G|V ′ has less priorities than G (since
at least all positions with priority 0 have been removed). Thus, by
induction hypothesis, the Forgetful Determinacy Theorem holds for
G ′: V′ = W ′

0 ∪W ′
1 and there exist positional winning strategies f ′ for

Player 0 on W ′
0 and g′ for Player 1 on W ′

1 in G ′.
We have that W ′

1 = ∅, as the strategy

g + g′ : x 7→
g(x) x ∈ X1

g′(x) x ∈ W ′
1

is a positional winning strategy for Player 1 on X1 ∪W ′
1. Indeed, every

play consistent with g + g′ either stays in W ′
1 and is consistent with g′

or reaches X′1 and is from this point on consistent with g. But X1, by
definition, already contains all positions from which Player 1 can win
with a positional strategy, so W ′

1 = ∅.

Knowing that W ′
1 = ∅, let f ∗ = f ′ + a + f , i.e.

f ∗(x) =


f ′(x) if x ∈ W ′

0

a(x) if x ∈ Z \Y

f (x) if x ∈ Y

We claim that f ∗ is a positional winning strategy for Player 0 from
V \ X1. If π is a play consistent with f ∗, then π stays in V \ X1.

24

2 Parity Games and Fixed-Point Logics

X1

YV′ Z

Ω−1(0)

Figure 2.1. Construction of a winning strategy

Case (a): π hits Z only finitely often. Then π eventually stays in W ′
0 and

is consistent with f ′ from this point, so Player 0 wins π.
Case (b): π hits Z infinitely often. Then π also hits Y infinitely often,
which implies that priority 0 is seen infinitely often. Thus, Player 0
wins π. q.e.d.

The following theorem is a consequence of positional determinacy.

Theorem 2.7. It can be decided in NP∩ coNP whether a given position
in a parity game is a winning position for Player 0.

Proof. A node v in a parity game G = (V, V0, V1, E, Ω) is a winning
position for Player σ if there exists a positional strategy f : Vσ → V
which is winning from position v. It therefore suffices to show that the
question whether a given strategy f : Vσ → V is a winning strategy for
Player σ from position v can be decided in polynomial time. We prove
this for Player 0; the argument for Player 1 is analogous.

Given G and f : V0 → V, we obtain a reduced game graph G f =
(W, F) by retaining only those moves that are consistent with f , i.e.,

F = {(v, w) : (v ∈ W ∩Vσ ∧ w = f (v)) ∨
(v ∈ W ∩V1−σ ∧ (v, w) ∈ E)}.

In this reduced game, only the opponent, Player 1, makes non-
trivial moves. We call a cycle in (W, F) odd if the least priority of its

25

2.1 Parity Games

nodes is odd. Clearly, Player 0 wins G from position v via strategy f if,
and only if, in G f no odd cycle and no terminal position w ∈ V0 is reach-
able from v. Since the reachability problem is solvable in polynomial
time, the claim follows. q.e.d.

2.1.1 Algorithms for parity games

It is an open question whether winning sets and winning strategies for
parity games can be computed in polynomial time. The best algorithms
known today are polynomial in the size of the game, but exponential
with respect to the number of priorities. Such algorithms run in poly-
nomial time when the number of priorities in the input parity game is
bounded.

One way to intuitively understand an algorithm solving a parity
game is to imagine a judge who watches the players playing the game.
At some point, the judge is supposed to say “Player 0 wins”, and indeed,
whenever the judge does so, there should be no question that Player 0
wins. Note that we have no condition in case that Player 1 wins. We will
first give a formal definition of a certain kind of judge with bounded
memory, and later use this notion to construct algorithms for parity
games.

Definition 2.8. A judge M = (M, m0, δ, F) for a parity game G =
(V, V0, V1, E, Ω) consists of a set of states M with a distinguished initial
state m0 ∈ M, a set of final states F ⊆ M, and a transition function
δ : V × M → M. Note that a judge is thus formally the same as an
automaton reading words over the alphabet V. But to be called a judge,
two special properties must be fulfilled. Let v0v1 . . . be a play of G
and m0m1 . . . the corresponding sequence of states of M, i.e., m0 is the
initial state of M and mi+1 = δ(vi, mi). Then the following holds:

(1) if v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,
(2) if, for some k, mk ∈ F, then there exist i < j ≤ k such that vi = vj

and min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To illustrate the second condition in the above definition, note that
in the play v0v1 . . . the sequence vivi+1 . . . vj forms a cycle. The judge is

26

2 Parity Games and Fixed-Point Logics

indeed truthful, because both players can use a positional strategy in a
parity game, so if a cycle with even priority appears, then Player 0 can
be declared as the winner. To capture this intuition formally, we define
the following reachability game, which emerges as the product of the
original game G and the judge M.

Definition 2.9. Let G = (V, V0, V1, E, Ω) be a parity game and M =
(M, m0, δ, F) an automaton reading words over V. The reachability
game G ×M is defined as follows:

G ×M = (V × M, V0 × M, V1 × M, E′, V × F),

where ((v, m), (v′, m′)) ∈ E′ iff (v, v′) ∈ E and m′ = δ(v, m), and the
last component V× F denotes positions which are immediately winning
for Player 0 (the goal of Player 0 is to reach such a position).

Note that M in the definition above is a deterministic automaton,
i.e., δ is a function. Therefore, in G and in G ×M the players have the
same choices, and thus it is possible to translate strategies between G
and G ×M. Formally, for a strategy σ in G we define the strategy σ in
G ×M as

σ((v0, m0)(v1, m1) . . . (vn, mn)) = (σ(v0v1 . . . vn), δ(vn, mn)).

Conversely, given a strategy σ in G ×M we define the strategy σ in G
such that σ(v0v1 . . . vn) = vn+1 if and only if

σ((v0, m0)(v1, m1) . . . (vn, mn)) = (vn+1, mn+1),

where m0m1 . . . is the unique sequence corresponding to v0v1
Having defined G ×M, we are ready to formally prove that the

above definition of a judge indeed makes sense for parity games.

Theorem 2.10. Let G be a parity game and M a judge for G. Then
Player 0 wins G from v0 if and only if he wins G ×M from (v0, m0).

Proof. (⇒) By contradiction, let σ be the winning strategy for Player 0
in G from v0, and assume that there exists a winning strategy ρ for

27

2.1 Parity Games

Player 1 in G ×M from (v0, m0). (Note that we just used determinacy
of reachability games.) Consider the unique plays

πG = v0v1 . . . and πG×M = (v0, m0)(v1, m1) . . .

in G and G ×M, respectively, which are consistent with both σ and ρ

(the play πG) and with σ and ρ (πG×M). Observe that the positions of
G appearing in both plays are indeed the same due to the way σ and ρ

are defined. Since Player 0 wins πG , by Property (1) in the definition
of a judge there must be an mk ∈ F. But this contradicts the fact that
Player 1 wins πG×M.

(⇐) Let σ be a winning strategy for Player 0 in G ×M, and let ρ

be a positional winning strategy for Player 1 in G. Again, we consider
the unique plays

πG = v0v1 . . . πG×M = (v0, m0)(v1, m1) . . .

such that πG is consistent with σ and ρ, and πG×M is consistent with σ

and ρ. Since πG×M is won by Player 0, there is an mk ∈ F appearing in
this play.

By Property (2) in the definition of a judge, there exist two indices
i < j such that vi = vj and the minimum priority appearing between
vi and vj is even. Let us now consider the following strategy σ′ for
Player 0 in G:

σ′(w0w1 . . . wn) =

σ(w0w1 . . . wn) if n < j,

σ(w0w1 . . . wm) otherwise,

where m = i + [(n− i) mod (j− i)]. Intuitively, the strategy σ′ makes
the same choices as σ up to the (j − 1)st step, and then repeats the
choices of σ from steps i, i + 1, . . . , j− 1.

We will now show that the unique play π′ in G that is consistent
with both σ′ and ρ is won by Player 0. Since in the first j steps σ′ is
the same as σ, we have that π[n] = vn for all n ≤ j. Now observe that
π[j + 1] = vi+1. Since ρ is positional, if vj is a position of Player 1, then
π[j + 1] = vi+1, and if vj is a position of Player 0, then π[j + 1] = vi+1

28

2 Parity Games and Fixed-Point Logics

because we defined σ′(v0 . . . vj) = σ(v0 . . . vi). Inductively repeating
this reasoning, we get that the play π repeats the cycle vivi+1 . . . vj

infinitely often, i.e.

π = v0 . . . vi−1(vivi+1 . . . vj−1)ω .

Thus, the minimal priority occurring infinitely often in π is the same as
min{Ω(vi), Ω(vi+1), . . . Ω(vj−1)}, and thus is even. Therefore Player 0
wins π, which contradicts the fact that ρ was a winning strategy for
Player 1. q.e.d.

The above theorem allows us, if only a judge is known, to reduce
the problem of solving a parity game to the problem of solving a
reachability game, which we already tackled with the Game algorithm.
But to make use of it, we first need to construct a judge for an input
parity game.

The most naïve way to build a judge for a finite parity game G is
to just remember, for each position v visited during the play, what is
the minimal priority seen in the play since the last occurrence of v. If it
happens that a position v is repeated and the minimal priority since v
last occurred is even, then the judge decides that Player 0 won the play.

It is easy to check that an automaton defined in this way indeed
is a judge for any finite parity game G, but such judge can be very
big. Since for each of the |V| = n positions we need to store one of
|Ω(V)| = d colours, the size of the judge is in the order of O(dn). We
will present a judge that is much better for small d.

Definition 2.11. A progress-measuring judge MP = (MP, m0, δP, FP) for
a parity game G = (V, V0, V1, E, Ω) is constructed as follows. If ni =
|Ω−1(i)| is the number of positions with priority i, then

MP = {0, 1, . . . , n0 + 1} × {0} × {0, 1, . . . , n2 + 1} × {0} × . . .

and this product ends in · · · × {0, 1, . . . , nm + 1} if the maximal priority
m is even, or in · · · × {0} if it is odd. The initial state is m0 = (0, . . . , 0),
and the transition function δ(v, c) with c = (c0, 0, c2, 0, . . . , cm) is given

29

2.1 Parity Games

by

δ(v, c) =

(c0, 0, c2, 0, . . . , cΩ(v) + 1, 0, . . . , 0) if Ω(v) is even,

(c0, 0, c2, 0, . . . , cΩ(v)−1, 0, 0, . . . , 0) otherwise.

The set FP contains all tuples (c0, 0, c2, . . . , cm) in which some counter
cj = nj + 1 reached the maximum possible value.

The intuition behind MP is that it counts, for each even priority p,
how many positions with priority p were seen without any lower
priority in between. If more than np such positions are seen, then at
least one must have been repeated, which guarantees that MP is a
judge.

Lemma 2.12. For each finite parity game G the automaton MP con-
structed above is a judge for G.

Proof. We need to show that MP exhibits the two properties character-
ising a judge:

(1) if v0 . . . is winning for Player 0, then there is a k such that mk ∈ F,
(2) if, for some k, mk ∈ F, then there exist i < j ≤ k such that vi = vj

and min{Ω(vi+1), Ω(vi+2), . . . , Ω(vj)} is even.

To see (1), assume that v0v1 . . . is a play winning for Player 0. Let
k be such an index that Ω(vk) is even, appears infinitely often in
Ω(vk)Ω(vk+1) . . ., and no priority higher than Ω(vk) appears in this
play suffix. Then, starting from vk, the counter cΩ(vk) will never be
decremented, but it will be incremented infinitely often. Thus, for a
finite game G, it will reach nΩ(vk) + 1 at some point, i.e. a state in FP.

To prove (2), let v0v1 . . . vk be such a prefix of a play that after vk

some counter cp is set to np + 1 for an even priority p. Let vi0 be the last
position at which this counter was 0, and vim the subsequent positions
at which it was incremented, up to inp = k. All positions vi0 , vi1 , . . . , vinp

have priority p, but since there are only np different positions with
priority p, we get that, for some k < l, vik

= vil
. Now ik and il are the

positions required to witness (2), because indeed the minimum priority
between ik and il is p since cp was not reset in between. q.e.d.

30

2 Parity Games and Fixed-Point Logics

For a parity game G with an even number of priorities d, the above
presented judge has size n0 · n2 · · · nd, which is at most (n

d/2)d/2. We
get the following corollary.

Corollary 2.13. Parity games can be solved in time O((n
d/2)d/2).

Notice that the algorithm using a judge has high space demand:
Since the product game G ×MP must be explicitly constructed, the
space complexity of this algorithm is the same as its time complexity.
There is a method to improve the space complexity by storing the
maximal counters the judge MP uses in each position and lifting such
annotations. This method is called game progress measures for parity
games. We will not define it here, but the equivalence to modal µ-
calculus proven in the next chapter will provide another algorithm for
solving parity games with polynomial space complexity.

2.2 Fixed-Point Logics

We will define two fixed-point logics, the modal µ-calculus, Lµ, and the
first-order least fixed-point logic, LFP, which extend modal logic and
first-order logic, respectively, with the operators for least and greatest
fixed-points.

The syntax of Lµ is analogous to modal logic, with two additional
rules for building least and greatest fixed-point formulas:

µX.ϕ(X) and νX.ϕ(X)

are Lµ formulas if ϕ(X) is, where X is a variable that can be used in ϕ

the same way as predicates are used, but must occur positively in ϕ, i.e.
under an even number of negations (or, if ϕ is in negation normal form,
simply non-negated).

The syntax of LFP is analogous to first-order logic, again with two
additional rules for building fixed-points, which are now syntactically
more elaborate. Let ϕ(T, x1, x2, . . . xn) be a LFP formula where T stands
for an n-ary relation and occurs only positively in ϕ. Then both

[lfp Tx̄.ϕ(T, x̄)](ā) and [gfp Tx̄.ϕ(T, x̄)](ā)

31

2.2 Fixed-Point Logics

are LFP formulas, where a = a1 . . . an.
To define the semantics of Lµ and LFP, observe that each formula

ϕ(X) of Lµ or ϕ(T, x̄) of LFP defines an operator Jϕ(X)K : P(V) →
P(V) on states V of a Kripke structure K and Jϕ(T, x̄)K : P(An) →
P(An) on tuples from the universe of a structure A. The operators
are defined in the natural way, mapping a set (or relation) to a set or
relation of all these elements, which satisfy ϕ with the former set taken
as argument:

Jϕ(X)K(B) = {v ∈ K : K, v |= ϕ(B)}, and

Jϕ(T, x̄)K(R) = {ā ∈ A : A |= ϕ(R, ā)}.

An argument B is a fixed-point of an operator f if f (X) = X, and to
complete the definition of the semantics, we say that µX.ϕ(X) defines
the smallest set B that is a fixed-point of Jϕ(X)K, and νX.ϕ(X) defines the
largest such set. Analogously, [lfp Tx̄.ϕ(T, x̄)](x̄) and [gfp Tx̄.ϕ(T, x̄)](x̄)
define the smallest and largest relations being a fixed-point of Jϕ(T, x̄)K,
respectively. In a few paragraphs, we will give an alternative characteri-
sation of least and greatest fixed-points, which is better tailored towards
an algorithmic computation.

To justify this definition, we have to assure that all notions are well-
defined, i.e., in particular, we have to show that the operators actually
have fixed-points, and that least and greatest fixed-points always exist.
In fact, this relies on the monotonicity of the operators used.

Definition 2.14. An operator F is monotone if

X ⊆ Y =⇒ F(X) ⊆ F(Y).

The operators Jϕ(X)K and Jϕ(T, x̄)K are monotone because we
assumed that X (or T) occurs only positively in ϕ, and, except for
negation, all other logical operators are monotone (the fixed-point
operators as well, as we will see). Each monotone operator not only
has unique least and greatest fixed-points, but these can be calculated
iteratively, as stated in the following theorem.

Definition 2.15. Let A be a set, and F : P(Ak) → P(Ak) be a monotone

32

2 Parity Games and Fixed-Point Logics

operator. We define the stages Xα of an inductive fixed-point process:

X0 := ∅

Xα+1 := f (Xα)

Xλ :=
⋃

α<λ

Xα for limit ordinals λ.

Due to the monotonicity of F, the sequence of stages is increasing, i.e.
Xα ⊆ Xβ for α < β, and hence for some γ, called the closure ordinal,
we have Xγ = Xγ+1 = F(Xγ). This fixed-point is called the inductive
fixed-point and denoted by X∞.

Analogously, we can define the stages of a similar process:

X0 := Ak

Xα+1 := F(Xα)

Xλ :=
⋂

α<λ

Xα for limit ordinals λ.

which yields a decreasing sequence of stages Xα that leads to the
inductive fixed-point X∞ := Xγ for the smallest γ such that Xγ = Xγ+1.

Theorem 2.16 (Knaster, Tarski). Let F be a monotone operator. Then
the least fixed-point lfp(F) and the greatest fixed-point gfp(F) of F
exist, they are unique and correspond to the inductive fixed-points, i.e.
lfp(F) = X∞, and gfp(F) = X∞.

To understand the inductive evaluation let us consider an example.
We will evaluate the formula µX.(P ∨ ♦X) on the following Kripke
structure:

K = ({0, . . . , n}, {(i, i + 1) | i < n}, {n}).

The structure K represents a path of length n + 1 ending in a position
marked by the predicate P. The evaluation of this least fixed-point
formula starts with X0 = ∅ and X1 = P = {n}, and in step i + 1 all
nodes having a successor in Xi are added. Therefore, X2 = {n− 1, n},
X3 = {n− 2, n− 1, n}, and in general Xk = {n− k + 1, . . . , n}. Finally,
Xn+1 = Xn+2 = {0, . . . , n}. As you can see, the formula µX.(P ∨ ♦X)

33

2.3 Model Checking Games for Fixed-Point Logics

describes the set of nodes from which P is reachable. This example
shows one motivation for the study of fixed-point logics: It is possible
to express transitive closures of various relations in such logics.

2.3 Model Checking Games for Fixed-Point Logics

In this section we will see that parity games are the model checking
games for LFP and Lµ.

We will construct a parity game G(A, Ψ(ā)) from a formula Ψ(x̄) ∈
LFP, a structure A and a tuple ā by extending the FO game with the
moves

[fp Tx̄.ϕ(T, x̄)](ā) → ϕ(T, ā)

and

Tb̄ → ϕ(T, b̄).

We assign priorities Ω(ϕ(ā)) ∈ N to every instantiation of a subformula
ϕ(x̄). Therefore, we need to make some assumptions on Ψ:

• Ψ is given in negation normal form, i.e. negations occur only in
front of atoms.

• Every fixed-point variable T is bound only once in a formula
[fp Tx̄.ϕ(T, x̄)].

• In a formula [fp Tx̄.ϕ(T, x̄)] there are no other free variables besides
x̄ in ϕ.

Then we can assign the priorities using the following schema:

• Ω(Tā) is even if T is a gfp-variable, and Ω(Tā) is odd if T is an
lfp-variable.

• If T′ depends on T (i.e. T occurs freely in [fp T′ x̄.ϕ(T, T′, x̄)]), then
Ω(Tā) ≤ Ω(T′ b̄) for all ā, b̄.

• Ω(ϕ(ā)) is maximal if ϕ(ā) is not of the form Tā.

Remark 2.17. The minimal number of different priorities in the game
G(A, Ψ(ā)) corresponds to the alternation depth of Ψ.

Before we provide the proof that parity games are in fact the
appropriate model checking games for LFP and Lµ, we introduce the
notion of an unfolding of a parity game.

34

2 Parity Games and Fixed-Point Logics

Let G = (V, V0, V1, E, Ω) be a parity game. We assume that the
lowest priority m = minv∈V Ω(v) is even and that for all positions
v ∈ V with minimal priority Ω(v) = m we have a unique successor
vE = {s(v)}. This assumption can be easily satisfied by changing the
game slightly.

We define the set

T = {v ∈ V : Ω(v) = m}

of positions with minimal priority. For any such set T we get a modified
game G− = (V, V0, V1, E−, Ω) with E− = E \ (T ×V), i.e., positions in
T are rendered terminal positions.

Additionally, we define a sequence of games Gα = (V, Vα
0 , Vα

1 , E−, Ω)
that only differ in the assignment of the terminal positions in T to
the players. For this purpose, we use a sequence of disjoint pairs
of sets Tα

0 and Tα
1 such that each pair partitions the set T, and let

Vα
σ = (Vσ \ T) ∪ Tα

1−σ, i.e., Player σ wins at final positions v ∈ Tα
σ . The

sequence of partitions is inductively defined depending on the winning
regions of the players in the games Gα as follows:

• T0
0 := T,

• Tα+1
0 := {v ∈ T : s(v) ∈ Wα

0 } for any ordinal α,

• Tλ
0 :=

⋃
α<λ Tα

0 if λ is a limit ordinal,

• Tα
1 = T \ Tα

0 for any ordinal α.

We have

• W0
0 ⊇ W1

0 ⊇ W2
0 ⊇ . . . ⊇ Wα

0 ⊇ Wα+1
0 . . .

• W0
1 ⊆ W1

1 ⊆ W2
1 ⊆ . . . ⊆ Wα

1 ⊆ Wα+1
1 . . .

So there exists an ordinal α ≤ |V| such that Wα
0 = Wα+1

0 = W∞
0 and

Wα
1 = Wα+1

1 = W∞
1 .

Lemma 2.18 (Unfolding Lemma).

W0 = W∞
0 and W1 = W∞

1 .

Proof. Let α be such that W∞
0 = Wα

0 and let f α be a positional winning

35

2.3 Model Checking Games for Fixed-Point Logics

strategy for Player 0 from Wα
0 in G. Define:

f : V0 → V : v 7→
 f α(v) if v ∈ V0 \ T,

s(v) if v ∈ V0 ∩ T.

A play π consistent with f that starts in W∞
0 never leaves W∞

0 :

• If π(i) ∈ W∞
0 \ T, then π(i + 1) = f α(π(i)) ∈ Wα

0 = W∞
0 (fα is a

winning strategy in Gα).

• If π(i) ∈ W∞
0 ∩ T = Wα

0 ∩ T = Wα+1
0 ∩ T, then π(i) ∈ Tα+1

0 , i.e.
π(i) is a terminal position in Gα from which Player 0 wins, so by
the definition of Tα+1

0 we have π(i + 1) = s(v) ∈ Wα
0 = W∞

0 .

Thus, we can conclude that Player 0 wins π:

• If π hits T only finitely often, then from some point onwards π is
consistent with f α and stays in Wα

0 which results in a winning play
for Player 0.

• Otherwise, π(i) ∈ T for infinitely many i. Since we had Ω(t) =
m ≤ Ω(v) for all v ∈ V, t ∈ T, the lowest priority seen infinitely
often is m, which we have assumed to be even, so Player 0 wins π.

For v ∈ W∞
1 , we define ρ(v) = min{β : v ∈ Wβ

1 } and let gβ be

a positional winning strategy for Player 1 on Wβ
1 in Gβ. We define a

positional strategy g of Player 1 in G∞ by:

g : V1 → V, v 7→


gρ(v)(v) if v ∈ W∞

1 \ T ∩V1

s(v) if v ∈ T ∩V1

arbitrary otherwise

Let π = π(0)π(1) . . . be a play consistent with g and π(0) ∈ W∞
1 .

Claim 2.19. Let π(i) ∈ W∞
1 . Then

(1) π(i + 1) ∈ W∞
1 ,

(2) ρ(π(i + 1)) ≤ ρ(π(i))

(3) π(i) ∈ T ⇒ ρ(π(i + 1)) < ρ(π(i)).

36

2 Parity Games and Fixed-Point Logics

Proof. Case (1): π(i) ∈ W∞
1 \ T, ρ(π(i)) = β (so π(i) ∈ Wβ

1). We

have π(i + 1) = g(π(i)) = gβ(π(i)), so π(i + 1) ∈ Wβ
1 ⊆ W∞

1 and
ρ(π(i + 1)) ≤ β = ρ(π(i)).
Case (2): π(i) ∈ W∞

1 ∩ T, ρ(π(i)) = β. Then we have π(i) ∈ W∞
1 ,

β = γ + 1 for some ordinal γ, and π(i + 1) = s(π(i)) ∈ Wγ
1 , so

π(i + 1) ∈ W∞
1 and ρ(π(i + 1)) ≤ γ < β = ρ(π(i)). q.e.d.

As there is no infinite descending chain of ordinals, there exists an
ordinal β such that ρ(π(i)) = ρ(π(k)) = β for all i ≥ k, which means
that π(i) ̸∈ T for all i ≥ k. As π(k)π(k + 1) . . . is consistent with gβ

and π(k) ∈ Wβ
1 , so π is won by Player 1.

Therefore we have shown that Player 0 has a winning strategy
from all vertices in W∞

0 and Player 1 has a winning strategy from all
vertices in W∞

1 . As V = W∞
0 ∪W∞

1 , this shows that W0 = W∞
0 and

W1 = W∞
1 . q.e.d.

We can now give the proof that parity games are indeed appropriate
model checking games for LFP and Lµ.

Theorem 2.20. If A |= Ψ(ā), then Player 0 has a winning strategy in the
game G(A, Ψ(ā)) starting at position Ψ(ā).

Proof. By structural induction over Ψ(ā). We will only consider the inter-
esting cases Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā) and Ψ(ā) = [lfp Tx̄.ϕ(T, x̄)](ā).

Let Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā). In the game G(A, Ψ(ā)), the posi-
tions Tb̄ have priority 0. Every such position has a unique successor
ϕ(T, b̄), so the unfoldings Gα(A, Ψ(ā)) are well defined.

Let us take the chain of steps of the gfp-induction of ϕ(x̄) on A.

X0 ⊇ X1 ⊇ . . . ⊇ Xα ⊇ Xα+1 ⊇ . . .

We have

A |= Ψ(ā) ⇔ ā ∈ gfp(ϕA)

⇔ ā ∈ Xα for all ordinals α

⇔ ā ∈ Xα+1 for all ordinals α

⇔ (A, Xα) |= ϕ(ā) for all ordinals α.

37

2.3 Model Checking Games for Fixed-Point Logics

Induction hypothesis: For every X ⊂ Ak

(A, X) |= ϕ(b̄) iff Player 0 has a winning strategy in

G((A, xα), ϕ(ā)) from ϕ(ā).

We show: If Player 0 has a winning strategy in G((A, xα), ϕ(ā)) starting
at position ϕ(ā), then Player 0 has a winning strategy in Gα(A, Ψ(ā))
starting at position ϕ(ā).

By the unfolding lemma, the second statement is true for all or-
dinals α if and only if Player 0 has a winning strategy in G(A, Ψ(ā)
starting at ϕ(ā).

As ϕ(ā) is the only successor of Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā), this
holds exactly if Player 0 has a winning strategy in G(A, Ψ(ā)) starting
at Ψ(ā).

It remains to show that Player 0 has indeed a winning strategy in
the game G((A, xα), ϕ(ā)) starting at the position ϕ(ā).

There are few differences between G((A, xα), ϕ(ā)) and the unfold-
ing Gα(A, Ψ(ā)):

• In Gα(A, Ψ(ā)), there is an additional position Ψ(ā), but this posi-
tion is not reachable.

• The assignment of the atomic propositions Tb̄:

– Player 0 wins at position Tb̄ in G((A, xα), ϕ(ā)) if and only if
b̄ ∈ Xα.

– Player 0 wins at position Tb̄ in Gα(A, Ψ(ā)) if and only if
Tb̄ ∈ Tα

0 .

So we need to show using an induction over α that

b̄ ∈ Xα iff Tb̄ ∈ Tα
0 .

Base case α = 0: X0 = Ak and T0
α = T = {Tb̄ : b̄ ∈ Ak}.

Induction step α = γ + 1: Then b̄ ∈ Xα = Xα+1 if and only if (A, Xγ) |=
ϕ(b̄), which in turn holds if Player 0 wins G((A, Xγ), ϕ(b̄)) starting
at ϕ(b̄). By induction hypothesis, this holds if and only if Player 0
wins the unfolding Gγ(A, Ψ(ā)) starting at ϕ(b̄) = s(Tb̄) if and only if
Tb̄ ∈ Tγ+1

0 = Tα
0 .

38

2 Parity Games and Fixed-Point Logics

Induction step with α being a limit ordinal: We have that b̄ ∈ Xα if b̄ ∈ Xγ

for all ordinals γ < α, which holds, by induction hypothesis, if and only
if Tb̄ ∈ Tγ

0 for all γ < α, which is equivalent to Tb̄ ∈ Tα
0 .

The proof for Ψ(ā) = [gfp Tx̄.ϕ(T, x̄)](ā) is analogous. q.e.d.

2.3.1 Defining Winning Regions in Parity Games

To conclude, we consider the converse question—whether winning
regions in a parity game can be defined in fixed-point logic—and show
that, given an appropriate representation of parity games as structures,
winning regions are definable in the µ-calculus.

To represent a parity game G = (V, V0, V1, E, Ω) with priori-
ties Ω(V) = {0, 1, . . . , d − 1}, we use the Kripke structure KG =
(V, V0, V1, E, P0, . . . , Pd−1). The universe and edge relation of this Kripke
structure are the same as in the parity game, and so are the predicates
V0 and V1 assigning positions to players. The only difference is in
the predicates Pj, which are used to explicitly represent positions with
priority j, i.e. we define Pj = {v ∈ V : Ω(v) = j}.

Given the above representation, the µ-calculus formula

ϕWin
d = νX0.µX1.νX2. . . . λXd−1

d−1∨
j=0

(
(V0 ∧ Pj ∧♦Xj)∨

(V1 ∧ Pj ∧�Xj)
)
,

where λ = ν if d is odd, and λ = µ otherwise, defines the winning
region of Player 0 in the sense of the following theorem.

Theorem 2.21. KG , v |= ϕWin
d if and only if Player 0 has a winning

strategy from v0 in G.

Proof (Idea). The model checking game for ϕWin
d on KG is essentially the

same as the game G itself, up to some negligible modifications:

• eliminate moves after which the opponent wins in at most two
steps (e.g. Verifier would never move to a position (V0 ∧ Pj ∧♦Xj, v)
if v was not a vertex of Player 0 or did not have priority j),

• contract sequences of trivial moves and remove the intermediate
positions.

A schematic view of a model checking game for ϕWin
d is sketched in

Figure 2.2. q.e.d.

39

2.3 Model Checking Games for Fixed-Point Logics

µX
0

...
νX

1
...

µX
2

...
...

µ
X

k
...

...

λ
X

d−
1 ∨

...

∨
d−

1
j=

0
((V

0 ∧
Pj ∧

♦
X

j)∨
(V

1 ∧
Pj ∧

�
X

j))∨
Λ

V
0 ∧

P0 ∧
♦

X
0

V
1 ∧

P0 ∧
�

X
0

...
V

0 ∧
Pk ∧

♦
X

k
V

1 ∧
Pk ∧

�
X

k
...

V
0 ∧

Pd−
1 ∧

♦
X

d−
1

V
1 ∧

Pd−
1 ∧

�
X

d−
1

V
0

♦
X

k
Pk

V
1

�
X

k

X
k

...

...

...

Figure
2.2.Part

of
a

m
odelchecking

gam
e

for
ϕ

W
in

d
.

40

