Mathematical Logic
SS 2021
Note: This course was held in German.
Information
-
All exam results have been published via RWTHonline.
-
The complete course materials are only available on our Moodle course room.
Course Materials
-
The lecture recordings from 2017 are relevant for this course.
Coursework
- Homework 0 [pdf], Tutorial 0 [pdf]
- Homework 1 [pdf], Tutorial 1 [pdf]
- Homework 2 [pdf], Tutorial 2 [pdf]
- Homework 3 [pdf], Tutorial 3 [pdf]
- Homework 4 [pdf], Tutorial 4 [pdf]
- Homework 5 [pdf], Tutorial 5 [pdf]
- Homework 6 [pdf], Tutorial 6 [pdf]
- Homework 7 [pdf], Tutorial 7 [pdf]
- Homework 8 [pdf], Tutorial 8 [pdf]
- Homework 9 [pdf], Tutorial 9 [pdf]
- Homework 10 [pdf], Tutorial 10 [pdf]
- Homework 11 [pdf], Tutorial 11 [pdf]
- Homework 12 [pdf], Tutorial 12 [pdf]
Exam
The course Mathematical Logic is completed by passing a written exam lasting 120 minutes.
For the exam admission, it suffices to obtain 50% of all exercise and eTest points.
Content
- Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
- Structures, syntax and semantic of first-order logic
- Introduction into other logics (modal and temporal logics, higher order logics)
- Evaluation games, model comparison games
- Proof calculi, term structures, completeness theorem
- Compactness theorem and applications
- Decidability, undecidability and complexity of logical specifications
Literature
[1] | S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998. |
[2] | R. Cori and D. Lascar. Logique mathématique. Masson, 1993. |
[3] | H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986. |
[4] | M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000. |
[5] | B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992. |
[6] | H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994. |
[7] | S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994. |
[8] | W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996. |
[9] | U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995. |
[10] | D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983. |
Classification
- Grundlagen der Informatik (B.Sc.) / Themenmodule / Themenmodul Wahlpflicht Mathematik
- Informatik (B.Sc.) / Modulbereich Theoretische Informatik
- Mathematik (B.Sc.) / Wahlpflichtbereich
Prerequisites
- basic mathematical knowledge from the lectures Discrete Structures and Linear Algebra
- basic knowledge about recursion theory and complexity theory
Successive Courses
- Mathematical Logic II
- Logic and Games
- Algorithmic Model Theory
- other specialized lectures around the topic of Mathematical Logic
Recurrence
every year in the summer term
Contact
Erich Grädel, Lovro Mrkonjić