Mathematical Logic

SS 2021

Moodle-Störung am 14.06.

  • Wegen der Störung in Moodle wird die Abgabefrist des aktuellen Übungsblatts 7 und des eTests 7 mindestens bis morgen (Dienstag, 15.06.) um 12 Uhr verlängert.

  • Wir bitten alle, die ihre Abgaben per E-Mail eingeschickt haben, sie unbedingt bis morgen noch in Moodle hochzuladen.

  • Sollte die Störung noch länger andauern, folgen hier weiter Ankündigungen. Sie brauchen diesbezüglich keine E-Mails zu schreiben.

The lecture will be held in German. You may write your answers to the exercises and the exam in English. Please note that the German version of this page takes precedence over the information on this page.

Information

→ MaLo-Portal ←

The MaLo-Portal displays your current points and preliminary exam results, if available.

Tutorials

The current schedule can be found on the Moodle course page. The Zoom links are listed below.

Course Material

The current course material is available on the Moodle course page. Note that the preliminary material on this page will not be updated during the semester.

Exam

Please refer to the Moodle course page or RWTHonline for current information about the exam and dates or visit the German version of this page.

Content

  • Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
  • Structures, syntax und semantic of the Predicate logic
  • Introduction into other logics (modal and temporal Logics, higher order logics)
  • Evaluation games, model comparison games
  • Proof calculi, term structures, completeness theorem
  • Compactness theorem and applications
  • Decidability, undecidability and complexity of logical specifications

Literature

[1] S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2] R. Cori and D. Lascar. Logique mathématique. Masson, 1993.
[3] H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
[4] M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000.
[5] B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992.
[6] H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994.
[7] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[8] W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996.
[9] U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995.
[10] D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983.

Classification

  • Informatik (B.Sc.)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
  • Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik

Prerequisites

  • Basic mathematical knowledge from the lectures Discrete Structures and Linear Algebra
  • Basic knowledge about recursion theory and complexity theory

Successive Courses

  • Algorithmic Model Theory
  • Mathematical Logic II
  • Complexity Theory und Quantum Computing
  • Logic and Games
  • Other specialized lectures around the topic of Mathematical Logic

Recurrence

Every year in the summer term

Contact

Lovro Mrkonjić, Erich Grädel