Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, L. Mrkonjić

9. Übung Mathematische Logik

Abgabe: bis Montag, den 28.06., um 12:00 Uhr, online im Moodle-Lernraum.

Übungen und Teilaufgaben, die mit ● markiert sind, sind freiwillig und geben keine Punkte. Übungen, die mit * markiert sind, sind Bonusaufgaben. Der Inhalt aller Aufgaben ist für die Klausur relevant.

Aufgabe 1 10 Punkte

Diese Aufgabe ist online im Moodle-Lernraum der Veranstaltung unter "eTest 9" zu absolvieren.

Aufgabe 2 5 Punkte

Sei K die Klasse aller ungerichteten Graphen G=(V,E), in denen es für jedes $n\in\mathbb{N}$ höchstens eine Zusammenhangskomponente mit genau n Knoten gibt.

Zeigen Sie, dass K nicht endlich axiomatisierbar ist, indem Sie eine Gewinnstrategie für die Duplikatorin in einem geeigneten Ehrenfeucht-Fraïssé-Spiel finden.

Aufgabe 3 6 Punkte

Sei $\tau := \{<\}$, wobei < ein zweistelliges Relationssymbol ist. Beweisen Sie mithilfe des Sequenzenkalküls der Prädikatenlogik, dass die Sequenz

$$\forall x (\neg x < x), \forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z) \Rightarrow \forall x \forall y \neg (x < y \land y < x)$$

gültig ist. Verwenden Sie nur den Sequenzenkalkül und keine semantischen Argumente oder Umformungen.

Aufgabe 4 9 Punkte

In dieser Aufgabe betrachten wir Schlussregeln des Sequenzenkalküls der Prädikatenlogik. Dabei ist f ein zweistelliges Funktionssymbol und g ein einstelliges Funktionssymbol.

- (a) Zeigen oder widerlegen Sie die Korrektheit der folgenden Schlussregeln. Argumentieren Sie dabei *semantisch*, also insbesondere *nicht* durch Ableitungen im Sequenzenkalkül.
 - (i) $\frac{\Gamma \Rightarrow \Delta, \forall x \forall y \vartheta(fxy)}{\Gamma \Rightarrow \Delta, \exists x \vartheta(x)}$
 - $\begin{array}{c} \mathbf{1} \ \Rightarrow \Delta, \exists x v(x) \\ \text{(ii)} \ \frac{\Gamma, \forall x \varphi(x, gx) \Rightarrow \Delta}{\Gamma, \forall x \exists y \varphi(x, y) \Rightarrow \Delta} \end{array} \qquad \text{wobei g $nicht$ in $\Gamma \cup \Delta \cup \{\varphi\}$ vorkommen darf}$
- (b) Betrachten Sie die beiden Schlussregeln $(\exists \Rightarrow)$ und $(\Rightarrow \forall)$ aus der Vorlesung.

$$(\exists \Rightarrow) \colon \frac{\Gamma, \psi(c) \Rightarrow \Delta}{\Gamma, \exists x \psi(x) \Rightarrow \Delta} \quad \text{und} \quad (\Rightarrow \forall) \colon \frac{\Gamma \Rightarrow \Delta, \psi(c)}{\Gamma \Rightarrow \Delta, \forall x \psi(x)}$$

Dabei darf c jeweils nicht in Γ , Δ und ψ vorkommen.

- (i) Zeigen oder widerlegen Sie, dass $(\exists \Rightarrow)$ korrekt ist, wenn man zulässt, dass c in Δ vorkommt, aber c weiterhin *nicht* in Γ und ψ vorkommen darf.
- (ii) Zeigen oder widerlegen Sie, dass $(\Rightarrow \forall)$ korrekt ist, wenn man zulässt, dass c in Δ vorkommt, aber c weiterhin *nicht* in Γ und ψ vorkommen darf.

Aufgabe 5 10 Punkte

Wir betrachten die Struktur $\mathfrak{A} := (\mathcal{P}(\mathbb{N}), \cup, \cap)$, wobei $\mathcal{P}(\mathbb{N})$ die *Potenzmenge* der natürlichen Zahlen ist und \cup , \cap die üblichen Mengenoperationen (Vereinigung und Schnitt).

Für eine Menge $A \in \mathcal{P}(\mathbb{N})$ ist die *Kardinalität* |A| die Anzahl der Elemente von A, falls A endlich ist, oder ∞ , falls A unendlich ist.

(a) Wir definieren die Relation $\sim \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ mit

$$A \sim B$$
 gdw. $|A| = |B|$.

- (i) Zeigen Sie, dass \sim eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$ ist.
- (ii) Zeigen oder widerlegen Sie, dass \sim eine Kongruenzrelation auf $\mathfrak A$ ist.
- (b) Nun definieren wir die Relation $\sim_2 \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ mit

$$A \sim_2 B$$
 gdw. $(A \cap 2\mathbb{N}) = (B \cap 2\mathbb{N})$, wobei $2\mathbb{N}$ die Menge der geraden Zahlen ist.

Sie dürfen ohne Beweis verwenden, dass \sim_2 eine Äquivalenzrelation auf $\mathcal{P}(\mathbb{N})$ ist.

- (i) Zeigen Sie, dass \sim_2 eine Kongruenzrelation auf $\mathfrak A$ ist.
- (ii) Zeigen Sie, dass die Faktorstruktur \mathfrak{A}/\sim_2 wieder zu \mathfrak{A} selbst isomorph ist, indem Sie einen Isomorphismus $\pi\colon \mathfrak{A} \to \mathfrak{A}/\sim_2$ angeben und beweisen Sie, dass π tatsächlich ein Isomorphismus ist.