Mathematical Logic

SS 2011

Information

  • Note that the toturial group B (Fri 10:30 - 11:30) will be given in english.
  • Please visit the german version of this page to register for the exercises and to view current announcements.

Schedule

Type Date Location   Organizer
V3 Tue 12:00 13:15 1420|001 (Gr) Start April 5th E. Grädel
Thu 12:00 13:10 1420|001 (Gr) Start April 7th E. Grädel
Ü2 Thu 15:45 17:15 1580|001 (SE 001) Gruppe A M. Ganardi
Fri 10:00 11:30 2356|051 (AH VI) Gruppe B F. M. Ferreira
Fri 13:30 15:00 1010|141 (IV) Gruppe C F. Abu Zaid
Mon 11:45 13:15 1580|001 (SE 001) Gruppe D M. Milatz
Mon 11:45 13:15 2350|009 (AH I) Gruppe E B. Puchala
Tue 08:15 09:45 1580|002 (SE 002) Gruppe F N. Breuckmann
Tue 15:45 17:15 2356|055 (5055) Gruppe G R. Rabinovich

Lecture Notes

  • Chapter 1: Aussagenlogik [pdf] [pdf-2up]
  • Chapter 2: Syntax und Semantik der Prädikatenlogik [pdf] [pdf-2up]
  • Chapter 3: Definierbarkeit in der Prädikatenlogik [pdf] [pdf-2up]
  • Chapter 4: Vollständigkeitssatz, Kompaktheitssatz und Unentscheidbarkeit der Prädikatenlogik [pdf] [pdf-2up]

Coursework

Content

  • Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
  • Structures, syntax und semantic of the Predicate logic
  • Introduction into other logics (modal and temporal Logics, higher order logics)
  • Evaluation games, model comparison games
  • proof calculi, term structures, completeness theorem
  • Compactness theorem and applications
  • Decidability, undecidability and complexity of logical specifications

Literature

[1] S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998.
[2] R. Cori and D. Lascar. Logique mathématique. Masson, 1993.
[3] H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986.
[4] M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000.
[5] B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992.
[6] H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994.
[7] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.
[8] W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996.
[9] U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995.
[10] D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983.

Classification

  • Informatik (B.Sc.)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
  • Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
  • Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
  • Mathematik (D)/Hauptstudium/Reine Mathematik
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik

Prerequisites

  • Basic mathematical knowledge from the lecutres Discrete Structures and Linear Algebra
  • Basic knowledge about recursion theory and complexity theory

Successive Courses

  • Algorithmic Model Theory
  • Mathematical Logic II
  • Complexity Theory und Quantum Computing
  • Logic and Games
  • Other specialized lectures around the topic of Mathematical Logic

Recurrence

Every year in the summer term

Contact

Erich Grädel, Faried Abu Zaid