Mathematical Logic
SS 2011
Information
- Note that the toturial group B (Fri 10:30 - 11:30) will be given in english.
- Please visit the german version of this page to register for the exercises and to view current announcements.
Schedule
Type | Date | Location | Organizer | ||||
---|---|---|---|---|---|---|---|
V3 | Tue | 12:00 | – | 13:15 | 1420|001 (Gr) | Start April 5th | E. Grädel |
Thu | 12:00 | – | 13:10 | 1420|001 (Gr) | Start April 7th | E. Grädel | |
Ü2 | Thu | 15:45 | – | 17:15 | 1580|001 (SE 001) | Gruppe A | M. Ganardi |
Fri | 10:00 | – | 11:30 | 2356|051 (AH VI) | Gruppe B | F. M. Ferreira | |
Fri | 13:30 | – | 15:00 | 1010|141 (IV) | Gruppe C | F. Abu Zaid | |
Mon | 11:45 | – | 13:15 | 1580|001 (SE 001) | Gruppe D | M. Milatz | |
Mon | 11:45 | – | 13:15 | 2350|009 (AH I) | Gruppe E | B. Puchala | |
Tue | 08:15 | – | 09:45 | 1580|002 (SE 002) | Gruppe F | N. Breuckmann | |
Tue | 15:45 | – | 17:15 | 2356|055 (5055) | Gruppe G | R. Rabinovich |
Lecture Notes
- Chapter 1: Aussagenlogik [pdf] [pdf-2up]
- Chapter 2: Syntax und Semantik der Prädikatenlogik [pdf] [pdf-2up]
- Chapter 3: Definierbarkeit in der Prädikatenlogik [pdf] [pdf-2up]
- Chapter 4: Vollständigkeitssatz, Kompaktheitssatz und Unentscheidbarkeit der Prädikatenlogik [pdf] [pdf-2up]
Coursework
- Homework 1 [pdf], Tutorial 1 [pdf]
- Homework 2 [pdf], Tutorial 2 [pdf]
- Homework 3 [pdf], Tutorial 3 [pdf]
- Homework 4 [pdf], Tutorial 4 [pdf]
- Homework 5 [pdf], Tutorial 5 [pdf]
- Homework 6 [pdf], Tutorial 6 [pdf]
- Homework 7 [pdf], Tutorial 7 [pdf]
- Homework 8 [pdf], Tutorial 8 [pdf]
- Homework 9 [pdf], Tutorial 9 [pdf]
- Homework 10 [pdf], Tutorial 10 [pdf]
- Homework 11 [pdf], Tutorial 11 [pdf]
- Homework 12 [pdf], Tutorial 12 [pdf]
- Sample Exam [pdf]
Content
- Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
- Structures, syntax und semantic of the Predicate logic
- Introduction into other logics (modal and temporal Logics, higher order logics)
- Evaluation games, model comparison games
- proof calculi, term structures, completeness theorem
- Compactness theorem and applications
- Decidability, undecidability and complexity of logical specifications
Literature
[1] | S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998. |
[2] | R. Cori and D. Lascar. Logique mathématique. Masson, 1993. |
[3] | H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986. |
[4] | M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000. |
[5] | B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992. |
[6] | H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994. |
[7] | S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994. |
[8] | W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996. |
[9] | U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995. |
[10] | D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983. |
Classification
- Informatik (B.Sc.)/4. Semester
- Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
- Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
- Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
- Mathematik (D)/Hauptstudium/Reine Mathematik
- Informatik (S II)
- Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik
Prerequisites
- Basic mathematical knowledge from the lecutres Discrete Structures and Linear Algebra
- Basic knowledge about recursion theory and complexity theory
Successive Courses
- Algorithmic Model Theory
- Mathematical Logic II
- Complexity Theory und Quantum Computing
- Logic and Games
- Other specialized lectures around the topic of Mathematical Logic
Recurrence
Every year in the summer term
Contact
Erich Grädel, Faried Abu Zaid