Mathematical Logic
SS 2017
News
- Die Vorlesung wird von der Video AG aufgezeichnet. Die Videos stehen unter https://video.fsmpi.rwth-aachen.de/17ss-malo zur Verfügung.
Information
- Please visit the German version of this page to view current announcements.
Schedule
Type | Date | Location | Organizer | ||||
---|---|---|---|---|---|---|---|
V3 | We | 10:15 | – | 11:30 | 1420|001 (Grüner Hörsaal) | Lecture (Start 26th April) | E. Grädel |
Th | 14:15 | – | 15:15 | 1420|002 (Roter Hörsaal) | Lecture (Start 20th April) | E. Grädel | |
Th | 15:15 | – | 15:45 | 1420|002 (Roter Hörsaal) | Discussion | E. Grädel | |
Ü2 | Fr | 10:15 | – | 11:45 | 2350|009 (AH I) | Group A | L. Bohn |
Fr | 12:15 | – | 13:45 | 2356|056 (5056) | Group B | M. Hoelzel | |
Fr | 12:15 | – | 13:45 | 1010|213 (V) | Group C | R. Lipp | |
Fr | 13:15 | – | 14:45 | Seminarraum i7 | Group D | S. Schalthöfer | |
Fr | 14:15 | – | 15:45 | 1010|213 (V) | Group E | F. Reinhardt | |
Mo | 08:30 | – | 10:00 | 2356|051 (AH VI) | Group F | C. Welzel | |
Mo | 10:15 | – | 11:45 | 2356|051 (AH VI) | Group G | E. Hüsgen | |
Mo | 12:15 | – | 13:45 | 1010|213 (V) | Group H | T. Görtzen | |
Mo | 14:15 | – | 15:45 | 2356|051 (AH VI) | Group I | R. Wilke | |
Mo | 16:15 | – | 17:45 | 2356|051 (AH VI) | Group K (in English) | G. Douéneau | |
Di | 10:15 | – | 11:45 | 2356|051 (AH VI) | Group L | T. Schumm | |
Di | 14:15 | – | 15:45 | 2356|055 (5055) | Group M | D. Rusin |
Lecture Notes
- Alle Kapitel [pdf] [pdf-2up]
- Chapter 0: Notation [pdf]
- Chapter 1: Aussagenlogik [pdf] [pdf-2up]
- Chapter 2: Syntax und Semantik der Prädikatenlogik [pdf] [pdf-2up]
- Chapter 3: Definierbarkeit in der Prädikatenlogik [pdf] [pdf-2up]
- Chapter 4: Vollständigkeitssatz, Kompaktheitssatz und Unentscheidbarkeit der Prädikatenlogik [pdf] [pdf-2up]
- Chapter 5: Modallogik, temporale Logiken und monadische Logik [pdf] [pdf-2up]
Coursework
- Homework 1 [pdf]
- Homework 2 [pdf], Tutorial 2 [pdf]
- Homework 3 [pdf], Tutorial 3 [pdf]
- Homework 4 [pdf], Tutorial 4 [pdf]
- Homework 5 [pdf], Tutorial 5 [pdf]
- Homework 6 [pdf], Tutorial 6 [pdf]
- Homework 7 [pdf], Tutorial 7 [pdf]
- Homework 8 [pdf], Tutorial 8 [pdf]
- Homework 9 [pdf], Tutorial 9 [pdf]
- Homework 10 [pdf], Tutorial 10 [pdf]
- Homework 11 [pdf], Tutorial 11 [pdf]
- Homework 12 [pdf], Tutorial 12 [pdf]
- Homework 13 [pdf], Tutorial 13 [pdf]
- (Lernziele) [pdf]
- Sample Exam (2017) [pdf]
- Sample Exam (2014) [pdf]
- Sample Exam (2013) [pdf]
Content
- Propositional logic (foundations, algorithmical questions, compactness, resolution, sequent calculus)
- Structures, syntax und semantic of the Predicate logic
- Introduction into other logics (modal and temporal Logics, higher order logics)
- Evaluation games, model comparison games
- Proof calculi, term structures, completeness theorem
- Compactness theorem and applications
- Decidability, undecidability and complexity of logical specifications
Literature
[1] | S. Burris. Logic for Mathematics and Computer Science. Prentice Hall, 1998. |
[2] | R. Cori and D. Lascar. Logique mathématique. Masson, 1993. |
[3] | H. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, 1986. |
[4] | M. Huth and M. Ryan. Logic in Computer Science. Modelling and reasoning about systems. Cambridge University Press, 2000. |
[5] | B. Heinemann and K. Weihrauch. Logik für Informatiker. Teubner, 1992. |
[6] | H. K. Büning and T. Lettman. Aussagenlogik: Deduktion und Algorithmen. Teubner, 1994. |
[7] | S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994. |
[8] | W. Rautenberg. Einführung in die Mathematische Logik. Vieweg, 1996. |
[9] | U. Schöning. Logik für Informatiker. Spektrum Verlag, 1995. |
[10] | D. van Dalen. Logic and Structure. Springer, Berlin, Heidelberg, 1983. |
Classification
- Informatik (B.Sc.)/4. Semester
- Mathematik (B.Sc.)/Mathematik (WS)/4. Semester
- Mathematik (B.Sc.)/Mathematik (WS)/6. Semester
- Mathematik (B.Sc.)/Mathematik (SS)/5. Semester
- Informatik (S II)
- Mathematik (S II)/Hauptstudium/B: Algebra und Grundlagen der Mathematik
Prerequisites
- Basic mathematical knowledge from the lectures Discrete Structures and Linear Algebra
- Basic knowledge about recursion theory and complexity theory
Successive Courses
- Algorithmic Model Theory
- Mathematical Logic II
- Complexity Theory und Quantum Computing
- Logic and Games
- Other specialized lectures around the topic of Mathematical Logic
Recurrence
Every year in the summer term
Contact
Svenja Schalthöfer, Erich Grädel