Seminar Logic, Complexity, Games: Algorithmic Meta-Theorems in Logic

WS 2016

News

Das Seminar wird als Blockseminar angeboten. Die Vorträge finden im Seminarraum des Lehrstuhl statt (Raum 4116, E1, Ahornstr. 55) und können wahlweise auf Deutsch oder Englisch gehalten werden.

Deadlines

07.11. Gliederung
05.12. 1. Version Ausarbeitung
02.01. finale Version Ausarbeitung
09.01. Folien
23.01. und 24.01. Vorträge

Schedule

Montag, 23. Januar
10:00 10:30 Marko van Treeck Fixed-parameter tractability
10:35 11:05 Oliver Feith Hierarchies in parameterised complexity theory
11:10 11:40 Lukas Rodenbüsch Variants of monadic second order logic
13:00 13:30 Valentin Seiler Tree width
13:35 14:05 Dimitri Rusin Courcelle's Theorem
14:10 14:40 Johannes Rueben Clique width
14:45 15:15 Jan-Frederik Konopka Locality of first-order logic and Seese's Theorem
Dienstag, 24. Januar
11:00 11:30 Robert Lipp FO properties of locally tree-decomposable structures
13:00 13:30 Daniel Steenebrügge FO properties of nowhere dense graphs (1)
13:35 14:05 Nikolai von der Burg FO properties of nowhere dense graphs (2)
14:10 14:40 Katrin Dannert FO properties of nowhere dense graphs (3)
14:45 15:15 Yannic Rohde Deciding FO properties of finite Abelian groups

Topics

Thema Vortragende(r) Betreuer(in) Literatur
Fixed-parameter tractability Marko van Treeck Matthias Hoelzel [FG06]
Hierarchies in parameterised complexity theory Oliver Feith Svenja Schalthöfer [FG06]
Variants of monadic second order logic Lukas Rodenbüsch Svenja Schalthöfer [GHO00, C96, C03]
Tree width Valentin Seiler Svenja Schalthöfer [B96, FG06]
Courcelle's Theorem Dimitri Rusin Matthias Hoelzel [K09, G08]
Clique width Johannes Rueben Matthias Hoelzel [K09, G08]
Locality of first-order logic and Seese's Theorem Jan-Frederik Konopka Wied Pakusa [EF95, S95, K09]
FO properties of locally tree-decomposable structures Robert Lipp Frederic Reinhardt [FG01]
FO properties of nowhere dense graphs (1) Daniel Steenebrügge Wied Pakusa [S16, GKS14]
FO properties of nowhere dense graphs (2) Nikolai von der Burg Wied Pakusa [S16, GKS14]
FO properties of nowhere dense graphs (3) Katrin Dannert Wied Pakusa [S16, GKS14]
Deciding FO properties of finite Abelian groups Yannic Rohde Frederic Reinhardt [Z16]
The complexity of FO and MSO revisited Lisa Mannel Frederic Reinhardt [FG04]

Literature

[B96] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM Journal on computing, vol. 25(6), pp. 1305–1317, 1996.
[C03] B. Courcelle. The monadic second-order logic of graphs XIV: Uniformly sparse graphs and edge set quantifications. Theoretical Computer Science, vol. 299(1), pp. 1–36, 2003.
[C96] B. Courcelle. On the Expression of Graph Properties in some Fragments of Monadic Second-Order Logic. Descriptive complexity and finite models, vol. 31, pp. 33–62, 1996.
[EF95] H. Ebbinghaus and J. Flum. Finite model theory. Springer, 1995.
[FG01] M. Frick and M. Grohe. Deciding First-order Properties of Locally Tree-decomposable Structures. J. ACM, vol. 48(6), pp. 1184–1206, 2001.
[FG04] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic, vol. 130(1-3), pp. 3–31, 2004.
[FG06] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
[G08] M. Grohe. Logic, graphs, and algorithms. In Logic and Automata, vol. 2 of Texts in Logic and Games, pp. 357–422. Amsterdam University Press, 2008.
[GHO00] E. Grädel, C. Hirsch, and M. Otto. Back and Forth Between Guarded and Modal Logics. ACM Transactions on Computational Logics, vol. 3(3), pp. 418 – 463, 2002.
[GK11] M. Grohe and S. Kreutzer. Methods for algorithmic meta theorems. Model Theoretic Methods in Finite Combinatorics, vol. 558, pp. 181–206, 2011.
[GKS14] M. Grohe, S. Kreutzer, and S. Siebertz. Deciding first-order properties of nowhere dense graphs. In STOC, pp. 89–98. ACM, 2014.
[K09] S. Kreutzer. Algorithmic Meta-Theorems. Electronic Colloquium on Computational Complexity (ECCC), vol. 16, pp. 147, 2009.
[S16] S. Siebertz. Nowhere dense classes of graphs. PhD thesis, 2016.
[S95] D. Seese. Linear time computable problems and logical descriptions. Electr. Notes Theor. Comput. Sci., vol. 2, pp. 246–259, 1995.
[Z16] F. A. Zaid. Algorithmic Solutions via Model Theoretic Interpretations. PhD thesis, 2016.

Classification

  • Informatik (B.Sc.)/Seminar Informatik
  • Mathematik (B.Sc.)/Seminar: Logik, Komplexität, Spiele
  • Informatik (M.Sc.)/Seminar Theoretische Informatik
  • Mathematik (M.Sc.)/Seminar: Logik, Komplexität, Spiele (Reine Mathematik)
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/Modul Algebra
  • Mathematik (S II)/Hauptstudium/Modul Angewandte Mathematik

Prerequisites

  • Module Mathematical Logic
  • for B.Sc. Computer Science: Module "Einführung in das wissenschaftliche Arbeiten (Proseminar)"

Contact

Erich Grädel, Svenja Schalthöfer, Matthias Hoelzel, Frederic Reinhardt, Wied Pakusa