Seminar Logic, Complexity, Games: Automatic Structures

WS 2020/21



  • Die Ausarbeitungen sollen 5 bis 6 Seiten umfassen und dürfen auf deutsch oder englisch verfasst werden.
  • Die Vorträge sind jeweils 25 Minuten lang und dürfen auch wahlweise auf deutsch oder englisch gehalten werden.


02.11. Gliederung
14.12. Erste Version der Ausarbeitung
25.01. Endgültige Fassung
08.02. Folien
vorraussichtlich dritte Februarwoche Vorträge


Automatic structures are first-order structures, whose elements are identified with the words of a regular language, and whose functions and relations are representable by synchronous finite automata. Finite structures, for instance, are trivially automatic, but the really interesting examples of automatic structures are infinite ones, such as Presburger arithmetic and the infinite binary tree with prefix order and equal length predicate.

Automatic structures are interesting because they provide a natural family of infinite structures that are finitely presentable (by the automata that describe their functions and relations) in such a way that important computational problems, such as first-order model checking or query evaluation, can be handled effectively. Automatic structures thus provide a domain of structures that is relevant for the programme of computational model theory, i.e. the study of logical definability and computational complexity of finitely presentable structures. Computational model theory builds on, and extends finite model theory; it translates computational problems to logical ones and tackles them using tools of logic. This approach has been quite successful for finite structures where we have numerous characterisation theorems relating machine models and computational complexity classes with various logics and definability within these logics. The traditional limitation to finite structures is, however, unnecessarily restrictive, as there are many applications, e.g., in the fields of databases or automated verification, which naturally call for infinite models. This motivates the extension of methods of finite model theory to relevant domains of infinite structures. Of course, infinite objects handled by computers must be finitely representable in some way, and given a finite representation of a structure, the relevant computational problems concerning the structure should be effectively solvable. Automatic structures provide one such framework based on a robust and sufficiently simple, and very well-studied model of computation.

Automatic structures are also relevant in certain branches of mathematics, such as computational group theory. Indeed, the best studied examples of automatic structures are automatic groups, i.e. finitely generated groups with an automatic Cayley graph. The importance of this notion in computational group theory comes from the fact that an automatic presentation of a group yields (efficient) algorithmic solutions for computational problems (e.g. the word problem) that are undecidable in the general case. There are further interesting connections to the theories of automatic sequences and decidable subsystems of arithmetic. The notion of an automatic structure can be modified and generalised in many directions. By using automata over infinite words, we obtain the notion of omega-automatic structures which, contrary to automatic structures, may have uncountable cardinality. Examples of omega-automatic structures include the additive group of the real numbers, and the tree of finite and infinite binary sequences. Similarly one can use tree-automata to define term-automatic structures.


Thema Vortragende(r) Betreuer(in) Literatur
Characterising Automatic Structures via Interpretations Svenja Stein Matthias Naaf [BlGr04, Bl99]
Set Interpretations Moritz Köhl Lovro Mrkonjić [CoLo07]
Structures that are not automatic Johannes Thelen Benedikt Pago [KuNiRuSt07]
The Isomorphism Problem Julian Brinkmann Lovro Mrkonjić [KuLiLo10]
ω-Automatic Structures are not always injectively presentable Peter Reithofer Richard Wilke [HjKhMoNi08]
Countable ω-Automatic Structures are word-automatic Simona Ivanova Matthias Naaf [KaiRubBar08]
Model-Theoretic Properties of ω-Automatic Structures Philipp Selz Benedikt Pago [AbGrKaPa13]
Automatic Groups and the k-fellow traveller property Jordan Rosenstein Matthias Naaf [Fa92, Ep92]
Advice Automatic Structures David Ehrenberg Richard Wilke [AbuGraRei17]


[AbGrKaPa13] F. Zaid, E. Grädel, Ł. Kaiser, and W. Pakusa. Model-Theoretic Properties of \omega-Automatic Structures. Theory of Computing Systems, vol. 55, pp. , 2013.
[AbuGraRei17] F. Abu Zaid, E. Grädel, and F. Reinhardt. Advice Automatic Structures and Uniformly Automatic Classes. In 26th EACSL Annual Conference on Computer Science Logic (CSL 2017), 2017.
[BGR10] V. Bárány, E. Grädel, and S. Rubin. Automata-Based Presentations of Infinite Structures. In Finite and Algorithmic Model Theory (J. Esparza, C. Michaux, and C. Steinhorn, Eds.), pp. 1–76, 2011.
[Bar06] V. Bárány. Invariants of Automatic Presentations and Semi-Synchronous Transductions. In Proceedings of the 23rd Annual Symposium on Theoretical Aspects of Computer Science, STACS 2006 (B. Durand and W. Thomas, Eds.), vol. 3884 of LNCS, pp. 289–300. Springer, 2006.
[Bar07] V. Bárány. Automatic Presentations of Infinite Structures. PhD thesis, RWTH Aachen, 2007.
[Bl99] A. Blumensath. Automatic Structures. Diploma thesis, RWTH-Aachen, 1999.
[BlGr04] A. Blumensath and E. Grädel. Finite presentations of infinite structures: Automata and interpretations. Theory of Computing Systems, vol. 37(6), pp. 641–674, 2004.
[CoLo07] T. Colcombet and C. Löding. Transforming structures by set interpretations. Logical Methods in Computer Science, vol. 3(2), 2007.
[Ep92] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, and W. Thurston. Word processing in groups. , 1992.
[Fa92] B. Farb. Automatic groups: a guided tour. Enseign. Math.(2), vol. 38(3-4), pp. 291–313, 1992.
[Graedel20] E. Grädel. Automatic Structures: Twenty Years Later. In LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pp. 21–34. ACM, 2020.
[HjKhMoNi08] G. Hjorth, B. Khoussainov, A. Montalbán, and A. Nies. From automatic structures to Borel structures. In Logic in Computer Science, 2008. LICS'08. 23rd Annual IEEE Symposium on, pp. 431–441, 2008.
[Hod93] W. Hodges. Model theory. Cambridge University Press, 1993.
[Kai08] Ł. Kaiser. Logic and Games on Automatic Structures. PhD thesis, RWTH Aachen, 2008.
[KaiRubBar08] Ł. Kaiser, S. Rubin, and V. Bárány. Cardinality and counting quantifiers on \omega-automatic structures. In the International Symposium on Theoretical Aspects of Computer Science, STACS, pp. 385–396. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2008.
[KhMi07] B. Khoussainov and M. Minnes. Three lectures on automatic structures. In Proceedings of Logic Colloquium, pp. 132–176, 2007.
[KhRuSt03] B. Khoussainov, S. Rubin, and F. Stephan. On Automatic Partial Orders. In LICS, pp. 168–177. IEEE Computer Society, 2003.
[Ku03] D. Kuske. Is Cantor's Theorem Automatic? In Logic for Programming, Artificial Intelligence, and Reasoning, pp. 332–345, 2003.
[KuLiLo10] D. Kuske, J. Liu, and M. Lohrey. The isomorphism problem on classes of automatic structures. In Logic in Computer Science (LICS), 2010 25th Annual IEEE Symposium on, pp. 160–169, 2010.
[KuLo09] D. Kuske and M. Lohrey. Automatic structures of bounded degree revisited. In Computer Science Logic, pp. 364–378, 2009.
[KuNiRuSt07] B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic Structures: Richness and Limitations. Logical Methods in Computer Science, vol. 3(2), 2007.
[OlTh05] G. P. Oliver and R. M. Thomas. Automatic Presentations for Finitely Generated Groups. In STACS (V. Diekert and B. Durand, Eds.), vol. 3404 of Lecture Notes in Computer Science, pp. 693–704. Springer, 2005.
[Tsankov11] T. Tsankov. The additive group of the rationals does not have an automatic presentation. Journal for Symbolic Logic (to appear).


  • Informatik (B.Sc.)/Seminar Informatik
  • Mathematik (B.Sc.)/Seminar: Logik, Komplexität, Spiele
  • Informatik (M.Sc.)/Seminar Theoretische Informatik
  • Mathematik (M.Sc.)/Seminar: Logik, Komplexität, Spiele (Reine Mathematik)
  • Informatik (D)/Hauptstudium/Theoretische Informatik
  • Mathematik (D)/Hauptstudium/Reine Mathematik
  • Informatik (S II)
  • Mathematik (S II)/Hauptstudium/Modul Algebra
  • Mathematik (S II)/Hauptstudium/Modul Angewandte Mathematik


  • Module Mathematical Logic
  • for B.Sc. Computer Science: Module "Einführung in das wissenschaftliche Arbeiten (Proseminar)"


Erich Grädel, Matthias Naaf, Benedikt Pago, Richard Wilke, Lovro Mrkonjić