
Complexity Measures for Directed Graphs

Roman Rabinovich

Matrikelnummer 248505

Diplomarbeit

vorgelegt der Fakultät

für Mathematik, Informatik und Naturwissenschaften

der Rheinisch-Westfälischen Technischen Hochschule Aachen

im August 2008 (letzte Version: 31.07.2009)

angefertigt am

Lehr- und Forschungsgebiet

Mathematische Grundlagen der Informatik

Prof. Dr. Erich Grädel

Hiermit versichere ich, dass ich die Arbeit selbstständig verfasst und keine anderen als

die angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Aachen, den 08. August 2008

(Roman Rabinovich)

III

IV

Contents

List of Figures VII

1 Measures of Graph Complexity 5

1.1 Preliminaries . 6

1.2 A framework to describe games . 8

1.3 Treewidth . 11

1.4 Pathwidth . 19

1.5 Directed treewidth . 22

1.6 DAG-width . 26

1.7 Directed pathwidth . 31

1.8 Kelly-width . 34

1.9 Other measures for directed graphs . 38

2 Properties of Measures 41

2.1 Monotonicity . 41

2.2 Havens and brambles . 45

2.3 Complexity of computing measures . 50

2.4 Solving difficult problems for bounded measure 52

3 Entanglement 59

3.1 Entanglement of special graph classes . 62

3.2 Modular entanglement . 73

3.3 Directed graphs of entanglement 2 . 80

3.4 Towards decomposing graphs of entanglement k 92

4 Comparing Measures 97

V

Contents

Bibliography IX

A Relations between complexity measures of graphs XV

VI

List of Figures

3.1 The 2× n-grid. Cop’s strategy, part 1. 65

3.2 The 2× n-grid. Cop’s strategy, part 2. 66

3.3 The 2× 8-grid. 68

3.4 Entanglement of tournaments. 69

3.5 Typical graph of entanglement two. 71

3.6 A graph and its components. 75

3.7 Mutual inclusion. 77

3.8 Proving main result. Case 1. 78

3.9 Importance of maximality of SCCs. 79

3.10 Triangle scheme. 81

3.11 Typical graph of entanglement two. 86

3.12 Graph of entanglement 2 and DAG-width and Kelly-width 3. 93

3.13 New cops come consequently in the strongly connected component 94

3.14 Start vertex is important. 95

A.1 Relations between graph complexity measures of graphs. XVII

VII

List of Figures

VIII

Introduction

Graphs are a powerful instrument for modelling in computer science. Many problems

of practical and theoretical nature are expressed in terms of graphs. It is a computer

scientist’s task to develop algorithms that solve these problems. Unfortunately, there

are some problems, also on graphs, that often appear in the everyday work, for which we

do not know efficient algorithms. We have rather convincing arguments that solutions

that would be efficient for all inputs cannot be constructed. Generations of scientists

and programmers have tried to find them, but despite substantial effort no such solution

was found. These difficult problems (such as NP-hard or Pspace-hard) can, however be

partially solved in practice. If there is – probably – no way to solve the whole problem

then, may be, we are able to create an algorithm that would surely solve a problem on

a certain subclass of “simple” graphs. We hope or can prove, that the graphs we have

to deal in practice are “simple”.

To guarantee this property, we need a measure for complexity of graphs. Many diffi-

cult problems become easy if considered on undirected trees, connected graphs without

cycles. The idea to measure, how similar to a tree a given graph is, led, on undirected

graphs, to the introduction of treewidth [49]. It can be proved for multiple problems that

fast algorithms exist, if we restrict the input to graphs with bounded treewidth [15]. It

is worth mentioning that there exist problems whose solving eludes such approach [39].

However, on problems where the idea works, a related notion of tree decomposition

allows constructive proofs of existence of efficient algorithms. The construction for tree-

width and most other measures relies on a decomposition of the given graph into parts

connected in a tree-like manner. Exact decomposition type defines the measure as fol-

lows. The tree structure restricts connections in the graph in the sense that each such

connection (any path in the graph) between elements of two parts A and B goes only

through elements of parts C that lie on the way in the tree. This separation property

1

builds the base for efficiency of algorithms. About the structure within the parts nothing

is said, they can be arbitrary complex. The only trivial bound is the size of the largest

part. We, therefore, try to find such a decomposition that the largest part is possibly

small. This minimal size defines the measure we want to define.

Besides its practical use in constructing algorithms, treewidth proved that it has nice

theoretical aspects. A large number of various characterisations of treewidth is an evi-

dence that the notion is essential. Treewidth also plays an important role in the theory

of minors by Robertson and Seymour [47].

We shall focus on the notion of cyclicity and consider graph complexity measures for

directed graphs. Several attempts were made in the last two decades to generalise tree-

width. The first one, directed treewidth, was by Johnson et al. in [35]. The measure

proposed by the authors, even though it covers a whole class of directed graphs that

are “simple” inputs for algorithms has some theoretical disadvantages, as discussed in

Section 1.5. Other attempts were made (see Chapter 1), but a measure with as good

properties as treewidth has, were not found yet. Reed argues in [44] that this situation

roots at directed graphs themselves, which have features making a development of a

appropriate measure difficult.

An intuitive concept for studying graph complexity measures are searching games.

There are two players, the Robber player controlling a robber who runs across the

graph, and the Cop player operating a certain number of cops. In general, the moves of

the robber are bounded by the graph structure. Cops often (depending on the particular

game) are free in there moves. When the robber and a cop find themselves on the same

place, the robber is captured. Precise rules vary with the measure under consideration.

The minimal number of cops needed to capture the escaping robber in a particular

searching game corresponds to a measure.

A measure we pay most attention is entanglement. It was introduced by Berwanger

and Grädel in [10]. Entanglement was used in [12] to prove the strictness of the variable

hierarchy of the µ-calculus, a logic of “prominent position” [12] in computer science. We,

however, study entanglement analogously to other measures, as an instrument for con-

struction efficient algorithms for problems on graphs where the entanglement is bounded.

Here, several aspects are important.

2

INTRODUCTION

The first one is that, unlike other measures, entanglement is defined in terms of a

game rather than via a decomposition. This is a reason why it is difficult to determine,

for a class of graphs, whether its members are of bounded entanglement. On the other

hand, a decomposition characterisation would lead to a non-deterministic algorithm to

compute the entanglement on a given graph. Until now we know only a rather trivial

algorithm that is based on a simulation of all possible plays.

Outline

In Chapter 1 we introduce measures we want to study. First we describe two mea-

sures, thetreewidth and the pathwidth on undirected graph as a source of motivation

for the directed measures and then switch over to directed ones. We describe possible

generalisations of treewidth and the pathwidth.

Chapter 2 is devoted to some important common properties of measures. We discuss

complexities of computing measures and which problems become easy if the measure is

bounded.

Chapter 3 deal with the entanglement. First, we give a characterisation of the measure

and describe graph classes of known or estimated entanglement. In the second part of the

chapter we prove a structural characterisation of the class of graph having entanglement

two.

In Chapter 4 we compare different measures with each other and give some bounds of

one measure in terms of another.

Acknowledgements

I would like to thank Prof. Grädel for giving me a topic for my diploma thesis and for

his advice during the time I worked on it.

I am also very grateful to Prof. Thomas for his willingness to co-examine my thesis.

I thank also all assistants of the research group Computer Science 7 for a pleasant

atmosphere that favoured my work a lot. Special thanks go to Dietmar Berwanger for

inspiring conversations, his ability to make me self-confident in writing the thesis and

for checking it for errors and bugs. A special thank goes to Lukasz Kaiser for fruitful

3

discussions, a thorough reading of draft versions of the thesis and a final argument in

the main result.

I would like to thank my student colleagues Bernd Puchala, Jörg Olschewski and Nils

Jansen who have never been tired to listen to my explanations, at which stage of my

work I was being.

A special thank goes to Walid Belkhir for pointing out an error in a result that is

excluded in the current version of the thesis.

At last, but not least, I thank my parents and my brother Boris for their love and for

their patience with me while I was studying.

4

Chapter 1

Measures of Graph Complexity

In this section we introduce several measures of graph complexity. There are two aspects

we consider: the structural and the computational (algorithmic) complexity.

Structural Aspects. One property of a measure is the existence of a relatively simple

structure , for every graph (such as an undirected tree or a DAG) that describes, into

which simpler parts the graph can be decomposed and what the connection between the

parts is. Hereby, elements of the structure are assigned to subsets of graph vertices. The

graph is simple with respect to a measure if and only if the largest such subset is small.

For many of measures that we will discuss such decompositions are known, as, e.g., tree

decompositions for the treewidth and the DAG-decompositions for the DAG-width. For

entanglement, a measure introduced in [10], no such decomposition is known. We give

a decomposition of a graphs for a special case in Chapter 3. It is an advantage if a

decomposition is small, i.e., its size is polynomially bounded in the size of the graph.

Such decompositions can serve as a polynomial witness in nondeterministic algorithms.

Their construction is often base on dynamic programming and use distinguished parts

of a graph as a ground level for their computation, see Section 2.4. We shall discuss

sizes of decompositions in Chapter 2.

Another way to characterise the complexity of a graph is to describe it by an algebraic

expression that is built of vertices and/or edges connected by some operations on graphs

such as disjoint union or adding edges. In this way, treewidth and Kelly-width can

be described. Algebraic expressions also characterise a class of graphs with bounded

entanglement, see Section 3.

5

Chapter 1 Measures of Graph Complexity

Algorithmic Aspects. A illustrative and intuitive way to work with graph complexity

measures is to express the measure in terms of a game played according to certain

rules by a fugitive who runs between vertices of the graph and searchers who try to

locate the fugitive. A function, which maps the number of searchers needed to capture

the fugitive on a graph is the measure of its complexity. Different rules define hereby

different measures. In this way, entanglement is defined and there are game-theoretic

characterisations of most of the discussed measures.

To compute the complexity of a graph via the corresponding game, one should de-

termine which of the players has a winning strategy. Properties of strategies will be

discussed in Section 2.

First, we introduce some basic definitions and notations used in this thesis.

1.1 Preliminaries

Throughout the thesis we shall use the following definitions and notations. The set of

natural numbers is denoted by ω, the set of real numbers by R. An undirected graph is

a structure G = (V,E) with a vertex set V and a set of edges E ⊆ {{u, v} | u, v ∈ V }. A

directed graph is a structure G = (V,E) with a vertex set V and a set of edges E ⊆ V 2.

Undirected graphs can be viewed as directed ones with a symmetrical edge relation E,

but we shall formally distingish between the classes. For directed graphs, if v is a vertex

we denote by vE, or Nout(v,G), or simply Nout(v) the set {w ∈ V | (v,w) ∈ E}. By

N in(v,G), or simply N in(v) we denote the set {w ∈ V | (w, v) ∈ E}. If G is undirected vE

denotes the set {w ∈ V | {v,w} ∈ E} of neighbours of v. The degree of v is d(v) = |vE|,

if the graph is undirected. For directed graphs, we write din(v) for {w ∈ V | (w, v) ∈ E}.

Analogously, dout(v) for {w ∈ V | (v,w) ∈ E}.

A graph G′ = (V ′, E′) is a subgraph of G, if V ′ ⊆ V and E′ ⊆ E. It is an induced

subgraph, if V ′ ⊆ V and E′ = {{v,w} ∈ E | v ∈ V ′ and w ∈ V ′} for undirected graphs,

or E′ = {(v,w) ∈ E | v ∈ V ′ and w ∈ V ′}, for directed graphs. In these cases we write

G[V ′] for G′. If X is a set of vertices X ⊆ V then we write G X for G[V \X]. If X = {v}

is a singleton we write G\v instead of G\X. An undirected path P = (P,EP) of length

n ≤ 0 from v0 to vn−1 is an undirected graph with P = {v0, . . . , vn−1} (note that all vi are

6

1.1 Preliminaries

distinct) and EP = {{vi, vi+1} | 0 ≤ i ≤ n− 2}. For a directed path we replace {vi, vi+1}

by (vi, vi+1) in the definition of EP . For vertices v and w, we write v ≤ w when there is a

directed path in G from v to w. Then v is the predecessor and w the ancestor. This order

is a topological order on G. If v and w are distinct, we also write v < w. If e is an edge,

we write v < e, if there is a vertex w with e = (v,w). In undirected graphs, we say that

e is incident with v and write e ∼ v if v ∈ e. A directed cycle of length n ≤ 0 is a graph

C = (C,EC) with C = {v0, . . . , vn−1} and EC = {(vi, vi+1) | 0 ≤ i ≤ n−2}∪{(vn−1, v0)}.

The undirected cycle is defined accordingly with n ≤ 3. A forest is an undirected acyclic

graph. An undirected graph is connected, if there is a path from every vertex to every

vertex. A directed graph is weakly connected, if, for every pair of vertices v,w, we have

v < w or w < v. It is strongly connected, if there is a non-trivial (i.e., with at least

an edge) path from every vertex to every vertex. A directed tree, or an arborescence is

a (weakly connected) directed graph with exactly one path from every vertex to every

vertex (in particular, there are no cycles: consider also paths of length 0). A strongly

connected component of G is a maximal strongly connected induced subgraph, where

G is directed. For undirected graphs, a connected component is a maximal connected

subgraph. A undirected connected graph is biconnected, if a deletion of any vertex does

not make it unconnected. A vertex w is called a child, or a direct successor of a vertex v

in directed tree, if (v,w) ∈ ET ; v is then a parent, or a directed predecessor of w. If two

vertices are children of the same vertex they are siblings. A DAG is a directed acyclic

graph. The set of vertices reachable from a set of vertices X in G is

ReachG(X) = {v ∈ V | there is a vertex w ∈ X and a path in G from w to v}.

A (rooted) full binary tree of length k is a directed tree (with a distinguished root, i.e.,

the vertex from that there is a path to every other vertex) such that every vertex except

the root has exactly two children and all maximal paths from the root have the same

length k + 1 (and k edges in these paths).

The directed graph with reversed edges (with respect to G) is the graph Gop = (V,E′)

with E′ = {(w, v) | (v,w) ∈ E}. A complete graph or a clique on n ≥ 1 vertices is

Kn = (VK , EK) with |VK | = n, and EK = V 2\{(v, v) | v ∈ V } in the directed case, or

EK = {{u, v} | u, v ∈ VK , u 6= v} in the undirected case.

7

Chapter 1 Measures of Graph Complexity

Let V1, V2 ⊆ V be disjoint non-empty sets of vertices. We say that V1 guards V2 if, for

all edges (v,w) ∈ E, if v ∈ V2 and w 6∈ V2 then w ∈ V1.

For n ∈ ω, we denote by [n] the set {0, 1, . . . , n− 1}. For a set S, [S]≤k ([S]<k) is the

set of all subsets of S of size at most k (less than k). The power set of a set S is denoted

by 2S .

Given directed graphs G1 = (V1, E1) and G2 = (V2, E2), the directed union of G1 and

G2 is the directed graph G = (V,E) with V = V1 ∪ V2 and E ⊆ E1 ∪ E2 ∪ (V1 × V2).

1.2 A framework to describe games

Hunter gives in [33] a method to describe search games in a precise and consistent man-

ner. We shall adapt this framework to define games we want to discuss. In explanations

and proofs (especially when speaking about strategies) we use more intuitive informal

descriptions. We also use the names of games given in [33].

Definition 1.2.1. An arena is a tuple A = (V, V0, V1, E, vI) where

• (V,E) is a directed graph,

• V0, the set of Player 0 positions, and V1, the set of Player 1 positions, form a

partition of V , and

• vI ∈ V is the initial position.

Definition 1.2.2. A (two-player perfect information) game is a tuple (A, Win) where A

is an arena and Win ⊆ vI ·V
ω is a winning condition for Player 0. A sequence of vertices

vI , v1, v2, . . . with (vI , v1) ∈ E and (vi, vi+1) ∈ E, for all i ≥ 1, is play in A. Player 0

wins an infinite play π if π is infinite and in Win or if it is finite, π = vI , v1, . . . , vm, and

vmE is empty and vm ∈ V1. Otherwise Player 1 wins.

A game is played by Player 0 and Player 1 on the game graph (V,E). The players

move a pebble from a vertex to a vertex along (directed) edges. At the beginning of a

play, the pebble is on the vertex vI . If the vertex where the pebble currently is, is in V0,

Player 0 moves it, otherwise, it is Player 1’s turn. If a Player has to move, but there is

8

1.2 A framework to describe games

no successor of the current vertex, he loses. An infinite play is won by Player 0 if and

only if it is in the winning condition Win.

In a game, we are more interested in the question who can win the game than who wins

a particular play. The players should stick to a plan to play well. The next definition

makes the sense of notion of precise.

Definition 1.2.3. Let (A, Win) be a game with A = (V, V0, V1, E, vI) and let i be in

{0, 1}. A partial function σ : vIV
∗
i → V is a strategy of Player i for the game (A, Win).

A play v0, v1 . . . in (A, Win) is consistent with a strategy σ of Player i if, for all j ≥ 0,

if vj is in Vi then σ(vj) = vj+1. A strategy of Player i is winning if Player i wins every

play that is consistent with it.

In general, a Player knows the whole history of the play until the current position,

i.e., he remembers all game positions that appeared in the play. His strategy tells him,

which move he has to make, based on the knowledge of the history. Winning strategies

(if they exist) guarantee him a win. In the games that we shall meet in this thesis, all

players will have memoryless strategies, i.e., to determine what to do in the next move,

they will not need to remember all positions they have seen in the play, but rather just

to know the current position.

Definition 1.2.4. Let (A, Win) be a game with A = (V, V0, V1, E, vI) and let i be in

{0, 1}. A memoryless strategy of Player i is a partial function σ : Vi → V .

The definitions of a consistent play and of a winning memoryless strategy are analogous

to those given in Definition 1.2.3.

Intuitively, the game on an graph G is the following. Consider the cops and the robber

as persons who can stay on vertices of the graph and move from one vertex to another.

At the beginning, all cops are outside the graph and the robber chooses an arbitrary

vertex in a connected component R0 where she1 places herself. The first game position

is (∅, R0). A game position (X,R) means that the robber is on a vertex r in a (weakly)

connected component R of G and the cops occupy all vertices in a subset X of V . The

cops move to a position (X,X ′, R), i.e., they announce a subset X ′ where they will

1For convenience, we shall assume that the cops are male and the robber is female.

9

Chapter 1 Measures of Graph Complexity

be in the next step, and those of them who are not in X ∩ X ′ (i.e., who are going to

move) get in a helicopter and start moving towards X ′\X. Now the robber moves to

a position (X ′, R′), which means that she moves at a great speed to a (not necessarily

direct) successor r′ ∈ R′ of r before the cops land on X ′. On this way she is, though,

not permitted to pass through vertices where the idle cops from X ∩X ′ are. Now the

flying cops land on the announced vertices of X ′\X.

Definition 1.2.5. A graph searching game type is a function Γ which maps a graph

G = (V,E) to a triple (Ls,Lr,A) where Lc and Lr are sets of subsets of V and A =

(VA, V0, V1, EA, vI) is an arena satisfying

• ∅ ∈ Lc,

• ∅ 6∈ Lr, and Lr has a unique ⊆-maximal element Rmax,

• V0 ⊆ Lc × Lr consists of pairs (X,R) where X ∩R = ∅,

• V1 ⊆ Lc × Lc × Lr consists of triples of the form (X,X ′, R) where X ∩R = ∅,

• vI = (∅, Rmax),

• If
(

(X,R), (X ′,X ′′, R′)
)

∈ EA then X = X ′ and R = R′,

• If
(

(X,X ′, R), (X ′′, R′)
)

∈ EA then X ′ = X ′′ and, for all r′ ∈ R′, there is r ∈ R

such that r and r′ are in the same (weakly) connected component of G\(X ∩X ′),

and

• If S ⊆ R then, for all S′ such that
(

(X,X ′, S), (X ′, S′)
)

∈ EA, there exists R′ ⊇ S′

such that
(

(X,X ′, R), (X ′, R′)
)

∈ EA.

Given a graph searching type Γ, and a graph G with Γ(G) = (Lc,Lr,A), the graph

searching game on G (defined by Γ(G)) is the game A, ∅, so Player 1 wins all infinite

plays. We call Player 0 the Cop player and Player 1 the Robber player.

To avoid the trivial strategy of the cops that consists in placing a cop on every graph

vertex we make an additional restriction.

10

1.3 Treewidth

Definition 1.2.6. Let k be a natural number. A graph searching Game with k cops is

a graph searching Game where, for every X ∈ Lc, we have |X| ≤ k.

As a next step we prove that, without loss of generality, we can restrict ourselves to

considering memoryless strategies for graph searching Games with k cops. For this, we

need the notion of parity games. We give only an informal description. A parity game is

played by two players on a weighted graph G with a function c that colours all vertices

of the arena with natural numbers taken from a finite subset of ω. The players (Player

0 and Player 1) push a token from a fixed initial position in turn until a player is unable

to move (he loses then) or infinitely long. In the latter case Player 0 wins if and only if

the minimal infinitely often seen colour is even. The players see a colour m if the token

is on a vertex v with c(v) = m.

Observe that seaching games are safety games for the Robber player and reachability

games for the Cop player, so we so get the next lemma.

Lemma 1.2.7. Every graph searching game is positionally determined, i.e., one of the

Players has a memoryless winning strategy.

1.3 Treewidth

Treewidth was introduced in [49] , a historical overview can be found in [17]. Although

we are going to concentrate on directed graphs, we describe first the treewidth and its

variant pathwidth – a measure for undirected graphs that has proven its importance in

constructing algorithms and in understanding the structure of the graph. Its properties

serve as a model for complexity measures of directed graphs. We shall discuss them in

this chapter.

Today we have a variety of characterisations of the treewidth we discuss in this thesis.

Although it was not chronologically the first definition (see [32], [35]), we start with a

description of treewidth in terms of a searching game first given in [53] following [33]

– an approach that we use also for other measures for that we know game-theoretic

definitions.

Definition 1.3.1. Let G = (V,E) be an undirected graph. The cops and visible robber

11

Chapter 1 Measures of Graph Complexity

game, or the Treewidth Game TwG(G), on G is a graph searching game on G defined by

the triple (Lc,Lr,A) with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = {R ⊆ V | R is not empty and connected} ∪ {V },

• (X,R) ∈ V0 if R is a connected component of G\X,

• (X,X ′, R) ∈ V1 if (X,R) ∈ V0 and X ′ ∈ Lc,

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if R ∪ R′ is contained in a connected component of

G\(X ∩X ′).

We call the Searchers the Cop and the Fugitive the Robber players in this game. The

Cop player controls an unlimited number of cops (we can assume that he has |V | cops)

and the Robber player controls a robber. At the beginning of a play, all cops are outside

the graph and the robber chooses a vertex in a connected component to place herself.

In a game position (X,R), the robber is on a vertex r ∈ R and the cops occupy all

vertices v1, . . . , vk of X that are all different from r. The Cop player makes a move as in

the general graph searching Game, i.e., he announces a set X ′ where some of the cops

from X and, possibly, some from outside are going to move to. The new position is

(X,X ′, R). The robber does nothing or runs at great speed to a vertex r′ reachable from

r whereby she is not allowed to visit vertices that are occupied by cops who remained

on their places. The cops land on the announced vertices. If R′ is the component where

the robber is, which is limited by the cops, the new position is (X ′, R′). The play ends

when the robber is captured, i.e., cannot move or moves to a vertex that is about to be

occupied by a cop. Infinite plays are won by the Robber player.

It is clear that a trivial strategy of the Cop player is to place a cop on every vertex. To

avoid this, the number of cops available for him is limited. We are primarily interested

in the minimal number of cops needed to capture the robber. The key task is to find

strategies that allow the Cop player to win with a minimal number of cops and the

Robber player to escape from fewer cops.

Definition 1.3.2. Let k > 0 be a natural number. The k cops and visible robber game

TwGk(G) on an undirected graph G is the Cop and visible robber game on G with the

12

1.3 Treewidth

additional condition that the Cop player has only k cops, i.e., for every X ∈ Lc, we have

|X| ≤ k.

Definition 1.3.3. Let G be an undirected graph. If k is the minimal number of cops

such that the Cop player wins the Treewidth Game TwGk(G) on G, then the treewidth

of G is k − 1.

It is clear that if the Cop player has a winning strategy in the Treewidth Game then he

also has a positional winning strategy. It follows from the definition that if a graph has

treewidth k, then all its subgraphs have treewidths at most k. Indeed, the restriction

of a positional winning strategy to the Treewidth Game on a subgraph is a winning

strategy.

A useful characterisation (which is often used as a definition) is one via decompositions

of the graph. It not only leads to a understanding of the graph structure, but also helps

to construct faster algorithms on the graphs with bounded treewidth for problems for

which we do not know efficient algorithms otherwise. We shall discuss this issue in

Section 2.4.

Definition 1.3.4. Let G = (V,G) be an undirected graph. A tree decomposition of G is

a tuple (T ,X , f) where T = (T,ET) is an undirected tree with vertices called bags, X is

a subset of 2V , and f : T → X is a bijection such that

(1)
⋃

X = V ,

(2) for all graph edges {u, v} ∈ E, there exists a bag X with {u, v} ⊆ X,

(3) for all bags t1, t2, t3, if there is a path from t1 to t3 in T , then f(t1)∩f(t3) ⊆ f(t2).

We call the images of the function f also bags and say that a graph vertex v is in a bag

t if f(t) contains v. The width of a tree decomposition is maxt∈T |f(t)| − 1, i.e., the size

of a maximal bag.

The third condition means that, for a graph vertex v, the set of all bags containing v

induces a connected subtree of T .

Note that even if a graph has more than one connected component, its tree decompo-

sition is a (connected) tree. It suffices to construct tree decompositions (Ti)i∈I for each

13

Chapter 1 Measures of Graph Complexity

component i from an index set I ⊂ ω, and then to connect the resulting trees in a tree

manner, i.e., we take T0 as the root and, for each i ∈ I\{0}, connect an arbitrary bag of

Ti with an arbitrary set of Ti−1. Then the width of the decomposition obtained in this

way is the maximum of the decompositions of the connected components.

Proposition 1.3.5. [53] Let G be a graph. There is a tree decomposition of G of width

at most k if and only if the treewidth of G is at most k − 1.

A particular type of tree decomposition is the nice tree decomposition with special

properties that are mainly used in constructing algorithms [17], see also Section 2.4.

Definition 1.3.6. A nice tree decomposition is a tree decomposition where each bag t

is of one of four types:

• leaf: t is a leaf of T and |f(t)| = 1,

• join: t has two children t1 and t2 with f(t) = f(t1) = f(t2),

• introduce: t has one child t′ such that there is a graph vertex v with f(t) =

f(t′) ∪ {v},

• forget: t has one child t′ such that there is a graph vertex v with f(t′) = f(t)∪{v}.

Nice tree decomposition can be used as a normal form: for a tree decomposition, we

can always find a equivalent nice tree decomposition of roughly the same size, in the

following sense.

Proposition 1.3.7.

1. A graph G has a tree decomposition of width at most k if and only if it has a nice

tree decomposition of width at most k [38].

2. A nice tree decomposition can be computed from a given tree decomposition in

linear time [17] .

It follows that a nice tree decomposition has size linear in the size of a given tree

decomposition.

14

1.3 Treewidth

We now consider some examples of graph classes with known treewidth. The next

example shows that, informally, the treewidth measures how “tree-like” a graph is. The

higher the treewidth of the graph, the more difficult it is to press it into a shape of a

tree. Trees and forests are the simplest graphs in this sense.

Example 1.3.8. Undirected trees with at least two vertices have treewidth 1. Let r0

be a vertex of the tree. For convenience, construct a directed tree (an arborescence)

with r0 as its root by directing all edges away from r0. Let the resulting directed tree

be T = (V,E). The winning strategy for two cops is to set one cop on r0. The robber

goes to a subtree of T with root r1 where (r0, r1) is an edge of T . Place the first cop on

r1. By induction, the robber is finally captured in a subtree with only two vertices and

both cops on them.

It is clear that the robber escapes from one cop. More general, the treewidth of a

clique Kn with n vertices is n− 1. Note that the robber can remain on her vertex when

no cop occupies it. It follows that the treewidth is not bounded on the class of graphs,

and moreover, for every n > 0, there is a graph with treewidth n.

If a graph G consists of several connected components C0, C1, . . . , Cm then the tree-

width of the graph is the maximum of the treewidths of the components: tw(G) =

max{tw(C0), tw(C1), . . . , tw(Cm)}: in the Treewidth Game, the robber chooses a vertex

in a component in the first move and the Cop player uses the number of cops needed for

this component. It follows that a graph has treewidth one if and only if it is a forest.

If we are interested in the exact treewidth of a graph or of a graph class we need

a method to establish a lower bound for the treewidth. In Example 1.3.11 we use a

characterisation via screens or, in different terminology, brambles.

Definition 1.3.9. (see [53], [45], [18]) Let G = (V,E) be an undirected graph and k ≥ 1

a natural number. Let X and Y be sets of vertices of G. The sets X and Y touch if

either X ∩ Y 6= ∅ or some vertex in X has a neighbour in Y . A screen or a bramble S

in G is a set of mutually touching connected subsets of V . A screen (a bramble) S has

thickness (order) ≥ k if there is no X ∈ [V]<k such that X ∩H 6= ∅ for all H ∈ S. The

bramble number bn(G) of G is the maximum of the orders of its brambles.

A screen gives a straightforward strategy for the Robber player in the Treewidth Game

15

Chapter 1 Measures of Graph Complexity

on a graph. One can show even that the existence of a screen is necessary condition for

the existence of a winning strategy of the Robber.

Lemma 1.3.10. [53] Let G be an undirected graph and let k > 0 be a natural number.

The treewidth of G is at least k − 1 if and only if G has a screen of thickness at least k.

Undirected grids play an important role in the theory of minors of Robertson and

Seymour in connection to treewidth (see [49],[50], [27]). As we are actually interested

in directed graphs we just consider grids as an example.

Example 1.3.11 (see [18] for a similar example). An (undirected) m×n-grid, for m,n >

0, is a graph G = (V,E) with V = {(i, j) | i ∈ [m], j ∈ [n]} and E = {((i, j), (k, l)) | i =

k−1 and j = l, or i = k and j = l−1}. The treewidth of a m×n-grid is min(m,n). To

see that min(m,n) + 1 cops have a winning strategy, assume that the graph has m rows

and n columns and that m ≤ n. At their first move, k cops occupy row 0, i.e. vertices

of form (0, j), for j ∈ [m]. Then the last cop goes to vertex (1, 0), then those from (0, j),

j ∈ [m − 1] to (1, j + 1); then that from (0,m − 1) to (1, 0) and so on. In general, the

cops occupy a row r < n. The last cop goes to the vertex (r + 1, 0). Then, in turn, the

cop from (r, j), for j ∈ [m− 1] to vertex (r + 1, j + 1). Thus the cops search the whole

graph and finally capture the robber. Note that the Cop player does not need to know

where the robber goes to.

This strategy obviously does not work if the Cop player has at most m cops. We use

the characterisation by screens to show that the robber has a winning strategy in this

case. Let S be the set of all rows and all columns of the grid. The only sets of size

at most m (for all n ≥ m) that touch all these lines are S1 = {(i, i) | i ∈ [m]} and

S2 = {(i,m − i) | i ∈ [m]}. We add to S the sets C1 = {(i, 0) | i ∈ [m− 1]} (which does

not intersect S1) and C2 = {(m, i) | i ∈ {1, . . . ,m − 1}} (which does not intersect S2).

The set S ∪ C1 ∪ C2 is a screen of thickness at least k.

One of the historical roots of the ideas that lead to treewidth are the Kirchhoff laws

allowing to compute the resistance of an electrical network (see e.g., [17]). Two resis-

tances can be combined either in a serial or in a parallel manner. To formalise these

connections, we define a structure that extends a graph by a set of distinguished vertices.

16

1.3 Treewidth

Definition 1.3.12. A graph with final vertices is a structure G = (V,E, F) with vertices

V , final vertices F ⊆ V , and edges E ⊆ [V]≤2 if it is undirected or E ⊆ V 2 if it is

directed.

A series-parallel graph is a graph that we can construct from graphs with final verti-

ces of form G = ({v,w}, {{v,w}}, {v, w}) that have two vertices (both are distinguished)

and an edge between them, using the following operations. The resulting graphs will

always have exactly two distinguished vertices.

• If G0 = (V0, E0, {v0, w0}) and G1 = (V1, E1, {v1, w1}) are series-parallel graphs with

V0∩V1 = ∅, then so is G = (V,E, v0, w1), where V =
(

(V0\{w0})∪(V1\{v1})
)

∪{v}

and E =
(

(E0\{{a,w0} | a ∈ V0}) ∪ (E1\{{v1, a} | a ∈ V1})
)

∪ {{a, v} | {a,w0} ∈

E0}∪{{v, a} | {v1, a} ∈ E1}. In other words, we build the disjoint union of G0 and

G1 and identify w0 and v1, so that the resulting vertex is not distinguished.

• If G0 = (V0, E0, {v0, w0}) and G1 = (V1, E1, {v1, w1}) are series-parallel graphs

with V0 ∩ V1 = ∅, then so is G = (V,E, v0, w0), where V = V0 ∪ (V1\{v1, w1}) and

E = E0 ∪ (E1\{{v1, a}, {b, w1} | a, b ∈ V1}) ∪ {{v0, a} | {v1, a} ∈ E1} ∪ {{w0, a} |

{w1, a} ∈ E1}. In other words, we build the disjoint union of G0 and G1 and

identify v0 and v1, and w0 and w1.

To fulfil the construction we “forget” which vertices of the resulting graph are final,

i.e., from a graph with final vertices (V,E, F) we get (V,E).

Proposition 1.3.13. [20] A graph has treewidth two if and only if each of its biconnected

components is series-parallel.

Many classes of graphs with bounded treewidth are given in [21].

We give further characterisations for treewidth which were a motivation to explore

similar properties in directed graphs. For an overview of treewidth characterisations see,

for example, [16].

As trees can be constructed recursively, tree decompositions give a hint how a graph

of bounded treewidth can be recursively constructed along its tree decomposition. First,

we need some definitions.

17

Chapter 1 Measures of Graph Complexity

Definition 1.3.14 (see [4]). A k-tree is an undirected graph constructed recursively as

follows:

(i) A clique Kk is a a k-tree.

(ii) If G = (V,E) is a k-tree, C = (VC , EC) is a clique of size k in G, and v is a new vertex

then the graph G′ = (V ′, E′) where V ′ = V ∪ {v} and E′ = E ∪ {{v, c} | c ∈ VC},

is a k-tree. In other words, we obtain a new k-tree by adding a new vertex to an

existing k-tree and connecting it to a k-clique in the graph.

An undirected graph is a partial k-tree if it is a subgraph of a k-tree with the same vertex

set.

Definition 1.3.15. An elimination ordering of an undirected graph G = (V,E) is a

permutation on V . Let v be a vertex in V . An elimination of v from G is the graph

G′ = (V \{v}, E′) where E′ = (E\{{u, v} | u ∈ V }) ∪ {{u,w} | {u, v}, {w, v} ∈ E},

i.e., G′ is the graph obtained from G by deleting vertex v and connecting all vertices

that are adjacent to v in G (if they were not connected). Every elimination order-

ing σ = v0, v1, . . . , vn−1 (where n is the size of V) induces a sequence of eliminations

G0,G1, . . . ,Gn−1 where G0 = G and, for i = 1, 2, . . . , n, Gi is the elimination of vi−1 from

Gi−1. The width of the elimination σ is then maxn−1
i=0 (N(vi,Gi)).

Elimination orderings can be used (among other characterisations) to construct algo-

rithms, see, e.g., [29],[5].

Theorem 1.3.16 (see, e.g., [23]). Let G be an undirected graph and let k be an integer

number. Then the following statements are equivalent:

1. The treewidth of G is k.

2. The least number such that G is a partial k-tree is k.

3. The least number such that G has an elimination ordering of width k is k.

An undirected graph is chordal, or triangulated, if has no cycle of length more than 3

with no chord, i.e., an edge (a chord) connecting its vertices that are not connected by

cycle edges. An undirected graph G′ = (V,E′) is a triangulation of a graph G = (V,E),

if E ⊂ E′ and G′ is chordal. The following result is well known (see [17]).

18

1.4 Pathwidth

Proposition 1.3.17 ([17]). Let G be a k-tree. Then the following holds.

• G has no induced clique of size k + 2.

• G is chordal.

Finally we give yet another characterisation of treewidth.

Proposition 1.3.18 ([17]). Let G be an undirected graph and let k be an natural number.

The treewidth of G is at most k if and only if G is the subgraph of a chordal graph with

no induced clique of size more than k + 1.

1.4 Pathwidth

The notion of pathwidth was introduced in [48]. Pathwidth can be seen as a special case

of the treewidth, if we consider the corresponding decompositions. In terms of games,

the Pathwidth Game is a variant of the Treewidth Game in which the robber is invisible,

i.e., the Cop player does not generally know where the robber is. What is known (or

what can be concluded) is where the robber cannot be, because the cops are on those

vertices or because they have been there and the robber could not have come there,

because the cops cut her way.

Pathwidth gave raise to directed pathwidth, which we shall briefly discuss speaking

about measures for directed graphs.

Definition 1.4.1. Let G = (V,E) be an undirected graph. The cops and invisible robber

game, or the Pathwidth Game PwG(G), on G is a graph searching game on G defined by

the triple (Lc,Lr),A with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = 2V \{∅},

• (X,R) ∈ V0 if R is a union of non-empty connected components of G\X,

• (X,X ′, R) ∈ V1 if (X,R) ∈ V0 and X ′ ∈ Lc,

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if R′ = ReachG\(X∩X′)(R)\X ′.

19

Chapter 1 Measures of Graph Complexity

As we see from the second condition, the robber occupies a union of the connected

components where she can be, i.e., she can move to any of the components and the

cops do not see to which one. This is the difference to the case of treewidth. A winning

strategy of the Cop player should thus be to methodically comb through the graph under

the assumption that the robber can potentially return to a vertex where she has already

been expelled from. The game can be understood as a decontamination process of a

graph that is contaminated by the potential presence of the robber. To be sure that the

robber is not in a certain part of the graph means to decontaminate it. A return of the

robber to an already decontaminated subgraph is recontamination.

Again, as with treewidth we are interested in the minimal number of cops who can

capture the robber.

Definition 1.4.2. Let k > 0 be a natural number. The k cops and invisible robber game

PwGk(G) on an undirected graph G is the Cop and invisible robber game on G with the

additional condition that the Cop player has only k cops, i.e., for every X ∈ Lc, we have

|X| ≤ k.

Definition 1.4.3. Let G be an undirected graph. If k is the minimal number of cops

such that the Cop player wins the Pathwidth Game PwGk(G) on G, then the pathwidth

of G is k − 1.

It turns out that we can also generalise the conditions of a decomposition of a given

graph to get a characterisation of pathwidth. As the name already says, the decomposi-

tion graph is a path rather than a tree. This is indeed the only difference from the tree

decomposition.

Definition 1.4.4. Let G = (V,G) be an undirected graph. A path decomposition of

G is a tuple (P,X , f) where P = (P,EP) is an undirected path P = (p0, . . . , pm) with

vertices called bags, X is a subset of 2V , and f : P → X is a bijection such that

(1)
⋃

X = V ,

(2) for all graph edges {u, v} ∈ E, there exists a bag X with {u, v} ⊆ X,

(3) for all bags pi, pj, pk, if i < j < k then f(pi) ∩ f(pk) ⊆ f(pj).

20

1.4 Pathwidth

We call the images of the function f also bags and say that a graph vertex v is in a bag p

if f(p) contains v. The width of a tree decomposition is maxp∈P |f(p)| − 1, i.e., the size

of a maximal bag.

Lemma 1.4.5. [36] Let G be a graph. There is a path decomposition of G of width at

most k if and only if the pathwidth of G is at most k − 1.

Because every path decomposition is also a tree decomposition, we have the next

corollary.

Corollary 1.4.6. Let G be an undirected graph. Then we have tw(G) ≤ pw(G).

As an example we again take undirected grids (see Example 1.3.11). It shows that the

equality in the last corollary holds for some graphs.

Example 1.4.7. The pathwidth of a m × n-grid G is min(m,n). Remember that the

Cop player’s strategy does not depend on where the robber is, so it is also a winning

strategy of the Cop player having min(m,n) cops in the game with an invisible robber,

i.e., pw(G) ≤ pw(G). From Corollary 1.4.6 it follows that pw(G) = pw(G).

There are also graphs whose pathwidth is strictly greater then their treewidth (so it

makes sense to introduce pathwidth).

Proposition 1.4.8. (see e.g., [16]) The treewidth of non-empty forests one, but the

pathwidth of them is unbounded.

Proof. Let Tk be a (rooted) full binary tree of height k. The order of children is not im-

portant here and we speak about “left” or “right” subtrees informally, so as to distinguish

between different subtrees. Then we have pw(Tk) =
⌈

k
2

⌉

. (This means pw(Tk) =
⌈

k
2

⌉

+ 1

cops in the Pathwidth Game.) The proofs of both inequalities “≤” and “≥” are done by

induction on k. All base cases are simple. For the induction step of the former inequality,

if k is even, then a strategy for k + 1 cops on Tk is to place the additional cop on the

root and play on both subtrees with k cops the strategies given by induction hypothesis.

If k is odd, strengthen the induction by demanding that the cops can win on trees with

odd height having a cop on the root at the start and at the end positions. This does

not affect the case with even k, as this condition holds. Now the strategy of k + 1 cops

21

Chapter 1 Measures of Graph Complexity

on Tk+1 (with an odd k) is to play on the right subtree of the root (then a cop is on the

root of the subtree), then place another cop on the root of Tk+1, then again another on

the root of the left subtree and, finally, play the strategy guaranteed by the induction

hypothesis on the left subtree. Note that due to the strengthened condition, it is not a

constraint that a cop is on the root of the subtree.

It remains to prove the induction step of the “≥”-inequality. We show that if k cops

are needed to capture the robber on Tk then at least k+1 cops are needed to capture the

robber on Tk+2 which finishes the proof. Let r be the root of the tree with its children

r0 and r1 and their children r00, r01, r10, and r11, respectively. We call the according

subtrees T0, T00, T01 and so on. Again, the order of children and subtrees rooted at them

is not important. To decontaminate the graph, the cops must, in particular, expel the

robber from the tree Tk rooted at r11. For this all k cops are needed. The other vertices

are still contaminated. The tree rooted at r10 must be decontaminated as well and all

k cops gather themselves in that subtree of Tk+2. At the latest at that moment, the

subtree rooted at r11 becomes recontaminated being “infected” from the subtree rooted

at r0 and the Cop player gained nothing due to the symmetry between subtrees with

height k. Observe that if the subtree rooted at r0 has already been decontaminated

when the cops were decontaminating the subtree rooted at r10 then the subtree rooted

at r11 was recontaminated as well “infected” from T10.

1.5 Directed treewidth

We now leave the area of undirected graphs and consider measures for directed graphs.

Of course, undirected graph measures can also be used to establish the complexity of

arbitrary graphs by “forgetting” the direction of edges, but in this way substantial

information can be lost. For example, a clique, which has high treewidth and is thus

considered to be complex, can be viewed as an undirected representation of a DAG, an

intuitively simple graph.

Nevertheless, undirected measures can help in constructing directed ones. The latter

should generalise the former in the following sense. Let G = (V,E) be a directed graph

with symmetrical edge relation E ⊆ V 2 without self-loops, i.e., if (u, v) is in E then

22

1.5 Directed treewidth

also (v, u). We denote by Ḡ = (V, Ē) the undirected graph, in which the edge relation

is defined by Ē = {{u, v} | (u, v) ∈ E and (v, u) ∈ E}. Conversely, if G = (V,E) is an

undirected graph, we write
←→
G for the directed graph (V,

←→
E) with

←→
E = {(u, v) | {u, v} ∈

E}. A good property of a directed measure is to correspond to (e.g., to coincide with)

an undirected measure such as the treewidth, e.g., for an undirected graph G, tw(G) = k

if and only if the new measure is k for
←→
G .

The main difference between directed and undirected cases is that, in the former,

the notions of reachability and connectivity do not coincide as they do in the latter.

One possible approach to a generalisation of the treewidth to directed graphs taken by

T. Johnson et al. in [35] is to replace “connected components” by “strongly connected

components” in the definition of the Treewidth Game. Unfortunately, this approach

does not lead to a robust measure. Unlike the treewidth, it is not known whether di-

rected treewidth is fully characterised by the Directed treewidth Game. There are some

reasons to suspect that it is not, see Chapter 2. We therefore give a definition that uses

a graph decomposition, as given in [35].

Definition 1.5.1. Let G = (V,E) be a directed graph. Let S and Z be disjoint subsets

of V . The set S is Z-normal if there is no directed path in G\Z with first and last vertex

in S that contains a vertex in V \(S ∩ Z).

It follows that a set S is Z-normal in a graph G if and only if the sets of strongly con-

nected components of G\Z and its vertices that are in no strongly connected component

of G\Z can be numbered S0, S1, . . . , Sd such that

• if 0 ≤ i < j ≤ d then no edge leads from Sj to Si and

• either S = ∅, or S = Si ∪ Si+1, . . . , Sj for some i and j with 0 ≤ i < j ≤ d. [35]

The numbering order is a linearisation of the topological order on the strongly connected

components of G\Z and its vertices that are in no strongly connected component.

Definition 1.5.2. Let G = (V,E) be a directed graph. An arboreal decomposition of G

is a tuple (R,X ,W, fx, fw) where R = (R,ER) is an arborescence (i.e., a directed tree),

X ,W ⊆ 2V , and fx : ER → X and fw : R→W are bijections such that

• {fw(r) | r ∈ R} is a partition of V into non-empty sets, and

23

Chapter 1 Measures of Graph Complexity

• if e ∈ ER then
⋃

{fw(r) | r ∈ R and r > e} is fx(e)-normal.

The width of (R,X ,W, fx, fw) is the least number k such that, for all r ∈ R,we have

|fw(r) ∪
⋃

e∼r fx(e)| ≤ k + 1. The directed tree width dtw(G) of G is the least number k

such that G has an arboreal decomposition of width k.

Proposition 1.5.3 ([35]). If G is an undirected graph then tw(G) = dtw(
←→
G).

We now describe the corresponding game and discuss its connection to the directed

treewidth and the discrepancy between the game and the width.

Definition 1.5.4. Let G = (V,E) be a directed graph. The strongly connected cops and

visible robber game, or, simpler, the strong cops and visible robber game, or the Directed

treewidth Game dTwG(G), on G is a graph searching game on G defined by the triple

(Lc,Lr,A) with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = {R ⊆ V | R is not empty and strongly connected} ∪ {V },

• (X,R) ∈ V0 if R is a strongly connected component of G\X,

• (X,X ′, R) ∈ V1 if (X,R) ∈ V0 and X ′ ∈ Lc,

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if R∪R′ is contained in a strongly connected component

of G\(X ∩X ′).

Definition 1.5.5. Let k > 0 be a natural number. The strongly connected k cops and

visible robber game, or the strong k cops and visible robber game, or the Directed tree-

width Game with k cops TwGk(G) on a directed graph G is the strongly connected k

cops and visible robber game on G with the additional condition that the Cop player

has only k cops, i.e., for every X ∈ Lc, we have |X| ≤ k.

Example 1.5.6. (see [9]) Let B be the set {0, 1}. Consider Tk = (V,E), the directed

binary tree of height k ≥ 2 with edges oriented away from the root and with additional

edges going from every vertex u to every vertex v that is on the way from the root

to u except u, i.e., V = B≤k and E = {(u, v) | u, v ∈ B≤k, u = vi, i ∈ B} ∪ {(v, u) |

24

1.5 Directed treewidth

u is a proper prefix of v}. In the Directed treewidth Game, two cops suffice to capture

the robber. The winning strategy is to place a guarding cop on the root of the tree and

then, in every cops’s move, place the non-guarding cop on the successor of the vertex,

where the guarding cop is and in whose subtree the robber hides. This latter cop becomes

guarding and the cop who is not guarding any more makes the next move. The robber

can never go to a vertex that is above the guarding cop, because in this case she would

not have a way back.

One could expect that the number of cops needed to capture the robber plus one

equals the directed treewidth, as it is in the undirected case. This number is indeed

not greater than the directed treewidth, but we do not know whether the symmetric

inequality holds. However, a weaker statement can be shown.

Proposition 1.5.7 ([35]). Let G be a directed graph. Let k be an integer number. If G

has directed treewidth at most k then the Cop player wins the Directed treewidth Game

dTwG(G) with k + 1 cops.

Proposition 1.5.8 ([35]). Let G be a directed graph and k > 0 an integer. If k cops

have a winning strategy in the Directed treewidth Game on G then the directed treewidth

of G is at most 3k + 1.

An interesting question about a complexity measure may be whether the complexity

of a graph changes if we reverse all its edges. Robustness might seem natural. However,

Hunter argues in [33] that, in the algorithmic view, the edge direction can be more

critical. If the edge relation is much more difficult to compute than the successor relation

(as for a graph representing computations of a Turing machine) it is substantially easier

to decide whether there is a path between two vertices on an arborescence than on a

tree with all edges oriented towards to root. The following proposition expresses that

directed treewidth is robust in this sense. First, we define the operation of reversing

edges.

Let G = (V,E) be a directed graph. Then Gop = (V,Eop) is the graph with reversed

edges where E is the relation {(v, u) | (u, v) ∈ E}.

Proposition 1.5.9 ([35]). Let G be a directed graph. Then we have dtw(G) = dtw(Gop).

25

Chapter 1 Measures of Graph Complexity

We finally give a definition of extended directed treewidth, a measure without any game

characterisation. It was introduced by Safari in [52]. The measure is a relaxation of the

notion of the arboreal decomposition. In a arboreal pre-decomposition that give raise

to the extended directed treewidth, the non-emptiness conditions are omitted.

Definition 1.5.10. Let G = (V,E) be a directed graph. An arboreal pre-decomposition

of G is a tuple (R,X ,W, fx, fw) where R = (R,ER) is an arborescence, X ,W ⊆ 2V , and

fx : ER → X and fw : R→W are bijections such that

• {fw(r) | r ∈ R} is a partition of V into (possibly empty) sets, and

• if e ∈ ER then
⋃

{fw(r) | r ∈ R and r > e} is fx(e)-normal or empty.

The width of (R,X ,W, fx, fw) is the least number k such that, for all r ∈ R,we have

|fw(r) ∪
⋃

e∼r fx(e)| ≤ k+1. The extended directed tree width extdtw(G) of G is the least

number k such that G has an arboreal pre-decomposition of width k.

1.6 DAG-width

We continue with another generalisation of treewidth to directed graphs. The only

difference between the game we are going to describe and the Treewidth Game is that

the robber can move along directed (rather than along undirected in the Treewidth

Game) paths.

Definition 1.6.1. Let G = (V,E) be a directed graph. The directed cops and visible

robber game, or the DAG Game DAGG(G), on G is a graph searching game on G defined

by the triple (Lc,Lr,A) with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = 2V \{∅},

• V0 = {(X,R) ∈ Lc ×Lr | R = ReachG\X(r) for some r ∈ V } ∪ {(∅, V)},

• V1 = {(X,X ′, R) ∈ L2
c × Lr | (X,R) ∈ V0 and X ′ ∈ Lc},

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

26

1.6 DAG-width

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if and only if there is a vertex r′ with

r′ ∈ ReachG\(X∩X′)(R) and R′ = ReachG\X′(r′).

Definition 1.6.2. Let k > 0 be a natural number. The directed k cops and visible robber

game DAGGk(G) on an directed graph G is the DAG Game on G with the additional

condition that the Cop player has only k cops, i.e., for every X ∈ Lc, we have |X| ≤ k.

Again, as in the case of directed treewidth, it can be shown that the DAG-width,

which we define below, is not equal to the minimal number of cops in the directed k

cops and visible robber game (see Section 2). We, therefore, define the DAG-width using

decompositions.

Definition 1.6.3. Let G = (V,E) be a directed graph. A DAG-decomposition of G is a

triple (D,X , f) where D = (D,ED) is a DAG with vertices called bags, X is a subset of

the power set of V and f : D → X is a bijection such that

(1)
⋃

X = V ,

(2) for all d1, d2, d3 ∈ D with d1 ≤ d2 ≤ d3, f(d1) ∩ f(d3) ⊆ f(d2),

(3) if r is a root of D then f(r) is guarded by ∅,

(4) for all (d, d′) ∈ ED, f(d)∩f(d′) guards X≥d′\f(d) where X≥d′ is the set
⋃

d′′≥d′ f(d′′).

The width of (D,X , f) is max{f(d) | d ∈ D}. The DAG-width of G is the minimum

width of any of its DAG-decompositions.

Proposition 1.6.4 ([9]). Let G be a directed graph of DAG-width k. Then the Cop

player has a winning strategy in the directed k cops and visible robber game DAGGk(G).

Proposition 1.6.4 does not provide a characterisation of DAG-width. The converse

direction of the implication is however false as we shall see below. To characterise the

DAG-width and to prove that the minimal number of cops needed to capture the robber

on a graph can be smaller than its DAG-width we need to introduce a property of

strategies.

27

Chapter 1 Measures of Graph Complexity

Definition 1.6.5. A winning strategy of the Cop player in a searching game on a graph

is robber-monotone, if in every play π consistent with this strategy, the space available

for the robber is non-decreasing with respect to set inclusion. More formally, if π is

(X0, R0), (X0,X1, R0), (X1, R1), . . . then, for all i ≥ 0, it is Xi+1 ⊆ Xi.

Proposition 1.6.6 ([9]). Let G be a directed graph and let k be a natural number. The

DAG-width of G is k if and only if the Cop player has a robber-monotone strategy in the

directed k cops and visible robber game DAGGk(G) on G.

The existence of a robber-monotone winning strategy is an important property that

holds also for other many measures. To complete the game-theoretic characterisation of

DAG-width we state that, for the DAG Game, there are graphs on that general winning

strategies and robber-monotone winning strategies lead to different numbers of cops

needed to capture the robber.

Proposition 1.6.7 ([39]). For every integer k ≥ 2, there exists a directed graph Gk such

that 3k− 1 cops suffice to capture the robber in the DAG Game DAGG(G) on G, but at

least 4k − 1 cops are needed to do this with a robber-monotone strategy2.

The next result shows that DAG-width is a proper generalisation of treewidth.

Proposition 1.6.8 ([9]). Let G be an undirected graph and k a natural number. Then

tw(G) = k if and only if DAGw(
←→
G) = k − 1.

As a next step we consider the DAG-width of certain graphs.

Proposition 1.6.9 ([9]). Let G be a directed graph. Then DAGw(G) = 1 if and only if

G is acyclic.

It is easy to see that the following statements are true.

Proposition 1.6.10. Let G be a directed graph.

1. If G is a clique with k vertices then DAGw(G) = k.

2. If C0, C1, . . . , Cm are the strongly connected components of G then we have

DAGw(G) = max0≤i≤m(DAGw(Ci)).

2In [39], the authors prove more, namely that those numbers are minimal.

28

1.6 DAG-width

Definition 1.6.11 ([10]). Let G = (V,E) and G′ = (V ′, E′) be graphs. Their asyn-

chronous product is the graph G ×G′ = (V ×V ′, F) where F = {((u, u′), (v, v′)) | [(u, v ∈

E) and v = v′] or [u = v and (u′, v′) ∈ E′]}. Let Cn be a cycle with n > 0 vertices, i.e.,

Cn = ({0, . . . , n−1}, En) with En = {(i, j) | i+1 = j (mod n)}. Let m,n > 0 be natural

numbers. The directed (m× n)-torus is the graph Tmn = Cm × Cn.

Less formally, an m×n-torus can be created from the directed m×n-grid by identifying

the left and right border and the upper and the lower border.

Example 1.6.12. Consider a directed m× n-torus Tmn. If m = n, the DAG-width of

Tmn is m + 1. The monotone strategy for the cops is to place m cops on a diagonal and

then to pursuit the robber with the last cop until she has no room to move. The robber

can defend herself from m cops by standing on a cop free column until a cop goes there.

The robber remains in the column one step further than the cop. When another cop

comes to the column, there is a cop free path to a cop free row in the column. She goes

to the free row and then to a cop free column. There is one, because two cops are in the

column where the robber hid.

Let now m be smaller than n. We show that its DAG-width is m + 1 or m + 2. The

strategy for m+2 cops is to occupy in a column all m rows and then to expel the robber

from every other column using two cops. The robber then must move to a next column

and is captured when she reaches the column with m cops. The robber has the following

winning strategy against m cops. She places herself on a vertex in a cop free column.

Whenever a cop moves to that column, there is a cop free column and a cop free row in

the torus. So the robber can proceed to the free column. In this way she escapes the

cops forever.

We show next that if n = m + 1 then the DAG-width is m + 1. The cops choose an

m ×m subgraph and occupy one of its diagonals. There remains one cop free column

c. The last cop combs all vertices outside it. Note that he does not need to know where

the robber is. After that the last cop places himself on the vertex in the cop free column

on the row on that a cop stands (call him C) from whom the distance to the free column

is minimal (it is one). Then the cop C expels the robber from column c. The last

cop remains on it. Now the robber moves to the room already combed and is captured

there. By letting out the first combing we make the winning strategy of the Cop player

29

Chapter 1 Measures of Graph Complexity

monotone.

Analogously to treewidth, graphs that have a DAG-decomposition of width k have a

decomposition of the same width that is nice.

Definition 1.6.13. A DAG-decomposition (D,X , f) is nice if

1. D has a unique root,

2. every bag has at most two successors,

3. if d1 and d2 are two successors of d0 then f(d0) = f(d1) = f(d2),

4. id d1 is the unique successor of d0 then |f(d0)△f(d1)| ≤ 1 where△ is the symmetric

set difference operator (A△B = (A\B) ∪ (B\A)).

Proposition 1.6.14 ([10]). Every directed graph of DAG-width k has a nice DAG-de-

composition of width k.

Corollary 1.6.15. The minimal number of cops needed to capture the robber in a robber-

monotone way in the DAG Game on a directed graph does not change, if the Cop player

is permitted to move only one cop per step.

Speaking about directed treewidth, we mentioned the result 1.5.9 from [35] that re-

versing edges preserves the directed treewidth. The next proposition shows that the

DAG-width is sensitive to the direction of edges.

Proposition 1.6.16 ([9]). For any j, k with 1 ≤ j ≤ k, there exists a directed graph T j
k

such that DAGw(T j
k = j) and DAGw((T j

k)op = k + 1)

Proof. Let T j
k be the directed binary tree of height k with additional edges: from every

vertex to each of its descendant (such that they build a transitive closure) and from every

vertex to its j−1 nearest ancestors.For convenience, call the former edges “forward” and

the latter ones “backward”. We have DAGw(T j
k) = j. The robber-monotone winning

strategy of the Cop player in the DAG Game on T j
k is to place a cop on the root and

then follow the robber in the leap-frogging manner to the subtree she goes to. To defeat

j − 2 cops the robber chooses a leaf and waits there until a cop drives her away from it.

30

1.7 Directed pathwidth

At this moment, there is a cop free ancestor from that leaf and a cop free path from it

to another leaf. The robber goes there and continues in this way infinitely.

For (T j
k)op, k + 1 cops win in the following way: one cop occupies the root. The the

cops place themselves consequently from the root on the path that connects the lowest

cop with the current robber’s vertex in the binary tree. To defeat k cops, the robber

plays the same strategy that guarantees her a win in the game on T j
k against j − 2

cops.

1.7 Directed pathwidth

As on undirected graphs pathwidth is a variant of treewidth, on directed graphs directed

treewidth is a variant of DAG-width.

Definition 1.7.1. Let G = (V,E) be a directed graph. The directed cops and invisible

robber game, or the Directed pathwidth Game dPwG(G), on G is a graph searching game

on G defined by the triple (Lc,Lr),A with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = 2V \{∅},

• (X,R) ∈ V0 if R is a union of non-empty weakly connected components of G\X,

• (X,X ′, R) ∈ V1 if (X,R) ∈ V0 and X ′ ∈ Lc,

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if R′ = ReachG\(X∩X′)(R)\X ′.

The game is analogous to the Pathwidth Game defined in Section 1.4. The difference

is that the robber is only permitted to move along directed paths. It is clear that the

Directed pathwidth Game has the same relation to the DAG Game as the Pathwidth

Game to the Treewidth Game. The only difference to the DAG Game is that the robber

in the Directed pathwidth Game is invisible, so the Cop player can win the latter with

the same number of cops as he needs for the former.

Definition 1.7.2. Let k > 0 be a natural number. The directed k cops and invisible

robber game dPwGk(G) on a directed graph G is the directed cop and invisible robber

31

Chapter 1 Measures of Graph Complexity

game on G with the additional condition that the Cop player has only k cops, i.e., for

every X ∈ Lc, we have |X| ≤ k.

It is not known whether the defined game fully characterises the directed pathwidth.

We, therefore, give a definition based on decompositions. It makes clear that the direc-

ted pathwidth is a special case of the DAG-width except that due to the definitions of

both, the directed pathwidth of a graph (say, of a directed path) can be one less than

the DAG-width, although the Cop players need the same numbers of cops to win. The

decomposition is a path, a special case of a DAG.

Definition 1.7.3 ([6]). Let G = (V,E) be a directed graph. A path decomposition of G

is a tuple (P,X , f) where P = (P,EP) is a directed path P = (p0, . . . , pm) with vertices

called bags, X is a subset of 2V , and f : P → X is a bijection such that

(1)
⋃

X = V ,

(2) for all bags pi, pj, pk, if i < j < k then f(pi) ∩ f(pk) ⊆ f(pj),

(3) for all graph edges (u, v) ∈ E, there exist indices i, j with i ≤ j such that u ∈ f(pi)

and v ∈ f(pj),

(4) for all graph edges (u, v) ∈ E, there are no indices k,m with k < m and u ∈ f(pm)

and v ∈ f(pk).

We call the images of the function f also bags and say that a graph vertex v is in a bag p

if f(p) contains v. The width of a tree decomposition is maxp∈P |f(p)| − 1, i.e., the size

of a maximal bag minus one.

Definition 1.7.4. Let G be a graph. Its directed pathwidth is the least number k such

that G has a directed path decomposition of width k.

Barát establishes connections between the pathwidth and the Directed pathwidth

Game, namely that the difference between them is at most 1 [6]. The next proposition

also states that robber-monotonicity can be achieved at cost of at most one cop. He also

suggests that the two notions describe, in fact the same value.

Proposition 1.7.5 ([6]). Let G be a directed graph and let k > 0 be a natural number.

Then the following downward implications apply:

32

1.7 Directed pathwidth

1. The Cop player has a robber-monotone winning strategy in the game dPwGk(G).

2. The directed pathwidth of G is at most k − 1.

3. The Cop player has a winning strategy in the game dPwGk(G).

4. The Cop player has a robber-monotone winning strategy in the game dPwGk+1(G).

Conjecture 1.7.6. The minimal number of cops needed to capture a robber in the Di-

rected pathwidth Game on a directed graph equal to the directed pathwidth of this graph

minus one.

The following proposition states that the directed pathwidth is a generalisation of

the (undirected) pathwidth. Informally, the directed pathwidth applied on undirected

graphs equals the pathwidth on them.

Proposition 1.7.7 ([6]). Let G be an undirected graph. Then pw(G) = dpw(
←→
G)

We now turn to some examples and simple properties of the directed pathwidth. For

the first one, recall Proposition 1.6.10.

Proposition 1.7.8. Let G be a directed graph.

1. If G is a clique with k vertices then dpw(G) = k − 1.

2. If C0, C1, . . . , Cm are the strongly connected components of G then we have dpw(G) =

max0≤i≤m(dpw(Ci)).

Example 1.7.9. In Example 1.6.12 we looked at the DAG-width of tori graphs, compare

Definition 1.6.11. All Cop player’s strategies discussed there did not assume that the cops

know where the robber hides. That means that in the Directed pathwidth Game, the

Cop player needs the same number of cops to win as in the DAG Game. We exemplarily

revise the strategy on quadratic tori Tmm and check that the cops move independently

of where the robber is. The Cop player has m cops. Initially, m − 1 of them occupy

all vertices but one of a diagonal. For clarity, assume that the rightmost bottom vertex

is not occupied. The last cop searches the left-bottom corner under the standing cops

without visiting the bottom line. Then he does the same in the right-ceiling corner

leaving out the rightmost border. Finitely he searches the bottom row from left to right

continuing then with the rightmost column upwards.

33

Chapter 1 Measures of Graph Complexity

Proposition 1.7.10. The directed pathwidth of arborescences is 0.

Proof. The route of the single cop in the Directed pathwidth Game is according to the

depth-first search from the root in the undirected tree that we get by forgetting the

direction of the edges.

1.8 Kelly-width

We recall characterisations of the treewidth of a graph via elimination orderings and

partial k-trees given in Section 1.3. In the area of directed graphs they gave raise to a

measure that can be characterised in this way by adjusting the definitions to the directed

case. The Kelly-width was introduced by Hunter and Kreutzer in [34].

As for the DAG-width, a definition of Kelly-width via the corresponding search game

must involve monotonicity [39]. We, therefore, give a definition that uses decompositions.

Definition 1.8.1. Let G = (V,E) be a directed graph. A Kelly-decomposition of G =

(V,E) is a tuple (D,B,W, fB , fW) where D = (D,ED) is a DAG with vertices called

bags, B and W are subsets of the power set of V , and fB : D → B and fW : D →W are

bijections such that

(1) B is a partition of V ,

(2) for all d ∈ D, fW (d) guards B≥d where B≥d is the set
⋃

d′≥d fB(d′),

(3) for all d ∈ D, there is a linear order of its successors d1, . . . , dp so that, for all i

with 1 ≤ i ≤ p, fW (di) ⊆ fB(d) ∪ fW (d) ∪
⋂

j<i B≥dj
.

The width of (D,B,W, fB , fW) is max{fB(d)∪ fW (d) | d ∈ D}. The Kelly-width Kw(G)

of G is the minimum width of any of its Kelly-decompositions.

Hunter [33] shows that one can always give a special Kelly-decomposition of the same

size with additional properties, namely that for every bag d ∈ D it holds:

• |fB(d)| = 1,

• fW (d) is the minimal set which guards B≥d,

34

1.8 Kelly-width

• every vertex v ∈ B≥d is reachable in G\fW (d) from the unique w ∈ fB(d), and

• D is an arborescence.

First, we show show that the Kelly-width is a generalisation of the treewidth.

Proposition 1.8.2 ([33]). Let G be an undirected graph and let k be a natural number.

Then tw(G) = k if and only if Kw(
←→
G) = k + 1.

We proceed with various characterisations of Kelly-width and start with a search game.

It is played as the DAG Game with an inert invisible robber, i.e., the Cop player does

not see where the robber is and can just deduce it from the play (invisibility) played so

far, and the robber cannot move until a cop is about to land on her vertex (inertness).

When moving, the robber can still run with infinite speed.

Definition 1.8.3. Let G = (V,E) be a directed graph. The directed cops and inert

robber game, or the Kelly Game KG(G), on G is a graph searching game on G defined

by the triple (Lc,Lr,A) with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = 2V \{∅},

• V0 = {(X,R) ∈ Lc × Lr | R ∩X = ∅},

• V1 = {(X,X ′, R) ∈ L2
c × Lr | (X,R) ∈ V0 and X ′ ∈ Lc},

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if and only if R′ =
(

R ∪ReachG\(X∩X′)(X
′ ∩R)

)

\X ′.

Definition 1.8.4. Let k > 0 be a natural number. The directed k cops and inert robber

game DAGGk(G) on an directed graph G is the DAG Game on G with the additional

condition that the Cop player has only k cops, i.e., for every X ∈ Lc, we have |X| ≤ k.

The defined games are closely connected to the Kelly-width, but to establish corre-

spondence we have to use the notion of a robber-monotone strategy from Definition 1.6.5.

Proposition 1.8.5 ([34]). Let G be a directed graph and let k be a natural number. The

Kelly-width of G is k if and only if the Cop player has a robber-monotone strategy in the

directed k cops and inert robber game KGk(G) on G.

35

Chapter 1 Measures of Graph Complexity

As in the DAG Game and in contrast to the Treewidth Game, robber-monotone

strategies are a substantial constraint for the Cop player.

Proposition 1.8.6 ([39]). For every integer k ≥ 2, there exists a directed graph Gk such

that 6k cops suffice to capture the robber in the Kelly Game KG(G) on G, but at least

7k cops are needed to do this with a robber-monotone strategy3.

Another characterisation of the Kelly-width uses elimination orderings on directed

graphs that are a generalisation of a similar notion (see Definition 1.3.15) on undirected

graphs for the treewidth.

Definition 1.8.7. Let G = (V,E) be a directed graph. Let v ∈ V be a vertex in

it. A directed elimination of v from G is the graph G′ = (V \{v}, E′) where E′ is

E′ = (E\{(u, v), (v, u) | u ∈ V }) ∪ {(u,w) | (u, v), (v,w) ∈ E}, i.e., G′ is the graph

obtained from G by deleting the vertex v and all edges incident with it and replacing

every two edges (u, v) and (v,w) with an edge (u,w) if it is not yet in the graph. A

directed elimination ordering σ of G is a permutation v0, v1 . . . , vn−1 of V where n is the

size of V .

Definition 1.8.8. Let G = (V,E) be a digraph and let V ′ be a subset of V . A (partial)

directed elimination ordering on V ′ is a permutation on V ′. A directed elimination

ordering is a partial directed elimination ordering on V . Every directed elimination

ordering σ = v0, v1 . . . , vn−1 where n is the size of V , induces a sequence of eliminations

G0,G1, . . . ,Gn−1 where G0 = G and, for i = 1, 2, . . . , n, Gi is the directed elimination of

vi−1 from Gi−1. The width of the directed elimination σ is then maxn−1
i=0 (Nout(vi,Gi)).

Proposition 1.8.9 ([33]). Let G be a directed graph and let k be a natural number. Then

there is a directed elimination ordering of width k if and only if the Cop player has a

robber-monotone strategy in the directed k + 1 cops and inert robber game KGk+1(G) on

G.

Recall Definition 1.3.14 of k-trees and Proposition 1.3.16. It follows a generalisation

to directed graphs.

3In [39], the authors prove more, namely that those numbers are minimal.

36

1.8 Kelly-width

Definition 1.8.10. A k-DAG is a directed graph constructed recursively as follows:

(i) A (directed) clique Kk is a a k-DAG.

(ii) If G = (V,E) is a k-DAG, X ⊆ V is a subset of V of size at most k, and v is a new

vertex then the graph G′ = (V ′, E′) where V ′ = V ∪{v} and E′ = E ∪{{v, c} | c ∈

X} ∪ {(u, v) | (u,w) ∈ E for all w ∈ X\{u}}, is a k-DAG.

In other words, we obtain a new k-DAG by adding a new vertex to an existing k-DAG

and connecting it to a small subset of graph vertices in the graph without introducing

new cycles.

An directed graph is a partial k-DAG if it is a subgraph of a k-DAG with the same

vertex set.

Note that every DAG is a 0-DAG that can be constructed using the rules above by

choosing always X = ∅.

For the next property recall Proposition 1.3.17. The next proposition generalises it

for the case of directed graphs.

Proposition 1.8.11 ([17]). Let G be a k-DAG. Then the following holds.

• G has no induced clique of size k + 2.

• Any cycle of G with at least tree vertices has an (directed) chord.

• Any bidirected cycle of at least four vertices has a bidirected chord.

The Kelly-width has a characterisation analogous to the one given in Proposition 1.3.16.

Proposition 1.8.12 ([33]). Let G be a directed graph and let k be an natural number.

The Kelly-width of G is at most k if and only if G is a partial k-DAG.

Next we look at some simple properties of the Kelly-width.

Proposition 1.8.13 ([17]). Let G be a directed graph.

1. Let G′ be a subgraph of G. Then Kw(G′) ≤ Kw(G).

2. Let Kn a clique of size n. Then Kw(G •Kn) = n ·Kw(G).

37

Chapter 1 Measures of Graph Complexity

3. If G is a directed union of the directed graphs G0 and G1 then

Kw(G) = max{Kw(G0), Kw(G1)}.

Example 1.8.14 ([17]). Let T j
k be as in Proposition 1.6.16. The winning strategies

described there are also winning strategies in the Kelly Game, so the Kelly-width and

the DAG-width coincide on T j
k .

Example 1.8.15. Let Tmn be as in Proposition 1.6.16. Again, the winning strategies

described there are also winning strategies in the Kelly Game, so we have Kw(Tmm) =

m + 1, Kw(Tm,m+1) = m + 1 and Kw(Tmm) ≤ m + 2 for m < n + 1.

1.9 Other measures for directed graphs

There are three other widths that we mention here. One of them, the D-width was

introduced by Safari in [51].

Definition 1.9.1. Let G = (V,E) be a directed graph. A D-decomposition of G is

a triple (T ,W, f) where T = (T,ET) is an undirected tree, W is a subset of 2V and

f : T → W is a bijection such that for every set S ⊆ V that is strongly connected or a

singleton the following holds:

• TS := {t ∈ T | f(t) ∩ S 6= ∅} 6= ∅, and

• the subgraph (TS , {(s, t) | f(t)∩ f(s) ∩ S 6= ∅}) of T forms a (connected) substree

of T .

The width of (T ,W, f) is the minimum k such that, for all t ∈ T , |f(t)| ≤ k + 1. The

D-width dw(G) of G is the minimum width over all D-decompositions.

Safari conjectured that, for all directed graphs G, dw(G) = dtw(G). A known result is

that the directed treewidth of a graph is at least its D-width.

Proposition 1.9.2 ([51]). Let G be a directed graph. Then we have dw(G) ≥ dtw(G).

The next proposition shows that the D-width is a generalisation of the treewidth.

Proposition 1.9.3 ([51]). Let G be an undirected graph. Then tw(G) = dw(
←→
G).

38

1.9 Other measures for directed graphs

The second measure is connected to the star height of a regular language, which is

known to be equal to the cycle rank of the directed graph underlying a finite automaton

that recognises the language [28].

Definition 1.9.4 ([28]). Let G = (V,E) be a directed graph. The cycle rank cr(G) of G

is defined recursively as follows:

• if G is not strongly connected then

– if G has a cycle then cr(G) = max{cr(C) | C is an SCC ofG},

– if G has no cycle then cr(G) = 0,

• if G is strongly connected then cr(G) = 1 + min{G\v | v ∈ V }.

Gruber and Holzer in [30] show that the cyclerank can be described as a search game

similar to those that characterise the treewidth, the DAG-width and others. The rules

follow the recursive definition. The cops are immutable, i.e., once a cop comes into the

play and occupies a graph vertex, he remains there until the end of the play. The robber,

in turn, has her restrictions. The first is that she is hot-plate, i.e., she must move along

a directed path, no matter whether a cop lands on her vertex. The second restriction

is that if the cops occupy a subset X of graph vertices then the robber has to go to a

strongly connected component of the graph induced by the vertices that are not in X.

Definition 1.9.5. Let G = (V,E) be a directed graph. The directed strong immutable

cops and hot-plate visible robber game, or the Cycle rank Game CrG(G), on G is a graph

searching game on G defined by the triple (Lc,Lr,A) with A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = 2V \{∅},

• V0 = {(X,R) ∈ Lc × Lr | R is an SCC of G\X},

• V1 = {(X,X ′, R) ∈ L2
c × Lr | (X,R) ∈ V0 and X ⊆ X ′},

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all X ′ ∈ Lc,

•
(

(X,X ′, R), (X ′, R′)
)

∈ EA if R′ ⊆ R.

39

Chapter 1 Measures of Graph Complexity

Proposition 1.9.6 ([30]). Let G be a directed graph and let k be a natural number.

Then G has cycle rank k if and only if the minimal number of cops needed to capture a

robber in the Cycle rank Game is k.

Courcelle and Olariu defined in [26] clique-width as a graph complexity measure that

is analogous to treewidth as it measures how similar a given graph is to a clique, similar

to treewidth that measures how similar a graph is to a tree. There are two notions of

clique-width: one for directed and one for undirected graphs. We look only at directed

clique-width.

Let C be a finite set of variables. A C-labelled graph is a structure G = (V,E, lab)

where (V,E) is a (directed) graph and lab is a labelling function lab : V → C. We

consider the following operations on graphs.

• Creation of a new graph with a single vertex labelled with a, a ∈ C.

• Renaming ρa→b of all vertices labelled with a to vertices labelled with b, for a, b ∈ C,

a 6= b. Formally, if G = (V,E, lab) then ρa→b(G) = G′ where G′ = (V,E, lab′) with

lab′(v) = lab(v), if lab(v) 6= a and lab′(v) = b, otherwise.

• Creating edges ηa,b leading from vertices labelled with a to vertices labelled with

b, for a, b ∈ C, a 6= b. Formally, if G = (V,E, lab) then ηa,b(G) = G′ where

G′ = (V,E′, lab) with E′ = E ∪ {(v,w) | lab(v) = a, lab(w) = b}.

• Disjoint union ⊕ of two graphs, i.e., if G = (V,E, lab) and G′ = (V ′, E′, lab′)

are directed graphs with V ∩ V ′ = ∅ then G ⊕ G′ = (V ∪ V ′, E ∪ E′, lab′′) where

lab′′(v) = a if lab(v) = a or lab(v′) = a.

The clique-width cw(G) of a graph G is the size of the smallest set C such that G

can be obtained by omitting the last component of a C-labelled graph G′ whereby G′

is the result of applying operations from above. It is clear that an algebraic expression

corresponds to each such construction and thus to each graph.

Example 1.9.7 ([26]). All directed cliques and all acyclic tournaments on at least 2

vertices have clique-width 2. All directed trees have clique-width at most 3.

At the end of this chapter we hint that yet another measure, entanglement, will be

discussed. We devote an own chapter to it (Chapter 3).

40

Chapter 2

Properties of Measures

In this chapter we are going to consider properties that are important for complexity

measures. In Section 2.1 we discuss monotonicity, a property of a game that corresponds

to a measure as discussed in the previous chapter (see also Definition 1.6.5). It concerns

the possibility for the Cop player to win in a particular nice way: either not to revisit any

vertex (cop-monotonicity) or not to allow the robber to go to a vertex that has already

been unavailable for her. Monotonicity provides methods to determine lower bounds for

some measures: If the robber can violate monotonicity then she has a winning strategy.

In Section 2.2 we shall see still other ways to describe a Robber’s winning strategy.

2.1 Monotonicity

In the previous chapter we introduced the notion of robber-monotone strategies, see

Definition 1.6.5. First, we give an related definition of a cop-monotone strategy.

Definition 2.1.1. A winning strategy of the Cop player in a search game, on a graph is

cop-monotone, if in every play π consistent with this strategy, no cop returns to a vertex

he has already left. Formally, if π is (X0, R0), (X0,X1, R0), (X1, R1), . . . then, for all

0 ≤ i ≤ j ≤ k, it is Xi ∩Xk ⊆ Xj .

If the Cop player has a cop-monotone winning strategy in a search game then in many

cases this strategy is also robber-monotone. We need some definitions to describe the

restrictions to the search game with which the game has this property. A search game

permits idling, if the robber can remain on a vertex when no cop is going to land on it.

41

Chapter 2 Properties of Measures

A game is vacating sensitive, if whenever the robber gets a new vertex where she can go

to, then she gets a vertex previously occupied by a cop. Formal definitions follow.

Definition 2.1.2 ([33]). Let (Lc,Lr,A) be a search game on a graph G = (V,E) with

A = (V, V0, V1, E, vI). We say that it permits idling, if for all (X,X ′, R) ∈ V1 and all

r ∈ R\X ′, there exists R′ ⊆ V such that r ∈ R′ and there is an edge in EA from

(X,X ′, R) to (X ′, R′). We say that (Lc,Lr,A) is vacating sensitive, if whenever there is

an edge in EA from (X,X ′, R) to (X ′, R′) with R′ 6⊆ R then X ∩R′ 6= ∅.

Proposition 2.1.3 ([33]). Let (Lc,Lr,A) be a search game on a graph G = (V,E) that

permits idling and is vacating sensitive. If σ is a cop-monotone wining strategy of the

Cop player then σ is robber-monotone.

Corollary 2.1.4. A cop-monotone strategy of the Cop player in the Treewidth Game, in

the Pathwidth Game, in the Directed treewidth Game, in the Directed pathwidth Game,

or in the DAG Game is robber-monotone.

Definition 2.1.5. A winning strategy of the Cop player in a search game is monotone,

if it is both cop-monotone and robber-monotone.

Cop-monotone strategies bound the number of rounds of a play that the Cop player

needs to win. For treewidth and pathwidth, we can construct decompositions of a given

graph using monotone strategies (Cf. Proposition 2.1.6). The decompositions are linear

in the size of the graph. For the treewidth, it follows from the fact that the bags of

different branches of the decomposition tree do not contain common graph vertices that

are not in their ancestors.

We now go through measures we defined in Chapter 1 and see whether there is always

a monotone strategy of the Cop player such that he would not need more cops for it

than for a general one.

Proposition 2.1.6 ([53],[37]).

1. The Cop player has a winning strategy in the k cops Treewidth Game if and only

if he has a monotone winning strategy in the k cops Treewidth Game.

2. The Cop player has a winning strategy in the k cops Pathwidth Game if and only

if he has a monotone winning strategy in the k cops Pathwidth Game.

42

2.1 Monotonicity

On directed graphs, we unfortunately do not know any measures expressible in terms

of search games that would have an analogous property, except the cycle rank, for which

it is trivial. For the directed treewidth, the DAG-width, the Kelly-width, and for the

Entanglement, monotone strategies would require additional cops.

For the directed treewidth, Johnson et al. who introduced the measure, proved that

winning strategies and cop-monotone winning strategies do not coincide.

Proposition 2.1.7 ([35]). There is a graph G where 3 cops have a winning strategy, but

4 cops are needed for a cop-monotone winning strategy in the game dtw(G).

Adler showed by modifying the example given in [35] that neither robber-monotonicity

holds.

Proposition 2.1.8 ([1]). There is a directed graph G where 4 cops have a winning

strategy, but they have no robber-monotone winning strategy in the game dtw(G).

However, Kreutzer and Ordyniak remark in [39] that in [35] an upper bound for the

monotonicity costs with respect to robber-monotonicity is implicitly given. Indeed, an

arboreal decomposition of width k provides a robber-monotone winning strategy of the

Cop player with k + 1 cops, see Proposition 1.5.7. A general winning strategy for k cops

leads, in turn, to an arboreal decomposition of size at most 3k−1, see Proposition 1.5.8.

Corollary 2.1.9 ([39]). Let G be a directed graph and let k be a natural number. If k

cops have a winning strategy in the game dTwG(G) then 3k cops have a robber-monotone

winning strategy in the game dTwG(G).

We note that for the DAG-width, the notions of cop-monotone and robber-monotone

strategies are the same, but to win in a monotone way, the Cop player needs in general

more cops.

Proposition 2.1.10 ([9]). If the Cop player has a cop-monotone winning strategy in the

DAG Game on a graph, or a robber-monotone winning strategy then he has a monotone

strategy.

43

Chapter 2 Properties of Measures

Proposition 2.1.11 ([39]).

1. For every natural number p ≥ 2, there exists a directed graph Gp such that the

minimal number of cops who have a winning strategy in the game DAGG(G) is

3p− 1, but the minimal number of cops who have a monotone winning strategy in

DAGG(G) is 4p− 2.

2. For every natural number p ≥ 2, there exists a directed graph Gp such that the

minimal number of cops who have a winning strategy in the game KG(G) is 6p,

but the minimal number of cops who have a monotone winning strategy in KG(G)

is 7p.

As the last measure with a “non-monotone” game we look at the entanglement. The

Entanglement Game is neither cop-monotone nor robber-monotone.

Proposition 2.1.12. Let m ≥ 6 be a natural number. Let Pm = (Pm, Em) be the

undirected path with shortcuts in one direction, i.e., Pm = {0, 1, . . . m − 1} and Em =

{(i, j) | 0 ≤ i < j ≤ m − 1} ∪ {(j, i) | 0 ≤ i = j + 1 ≤ m− 1}. Then the entanglement

of Pm is two, but there is no cop-monotone or robber-monotone winning strategy of the

Cop player.

Proof. One cop cannot capture the robber even on P4 and two cops have the following

strategy. One goes to the vertex that the robber chooses in the first move. Due to the

symmetry, we can assume that the robber goes to the right. The second cop follows her

until she goes to the right of the second (and the first) cop. Then the first cop takes the

role of the second one and so on.

We show that there is neither a cop-monotone nor a robber-monotone strategy. The

strategy of the Robber player is to choose vertex 0 and switch between 0 and 1 until a

cop goes into the play. Then she “jumps” over a shortcut to the rightmost vertex m− 1

and switches between m− 1 and m− 2 until a cop follows her. If it is the first one then

there is a cop free path to the vertices 0 and 1, one of which was already unavailable

for the robber. She switches between 0 and 1 and a cop has to go there again. So both

kinds of monotonicity are disproved in this case. If the second cop comes on m − 1 or

m− 2, the robber switches between m− 3 and m− 4. Now one of the cops has to move

and the situation is analogous to the one considered above.

44

2.2 Havens and brambles

In Chapter 3 we prove a kind of weak monotonicity for the Entanglement Game in a

special case of two cops and conjecture that it holds also in the general case.

2.2 Havens and brambles

This section is devoted to several methods to prove bounds for complexity measures

on concrete classes of graphs: havens, brambles and separators. We already defined

brambles in Section 1.3, see Definition 1.3.9. While decompositions provide a way to

establish an upper bound for the corresponding widths, they do not guarantee a lower

bound. Indeed, for every measure (if decompositions are defined for them), there always

exist a decomposition consisting of only one bag, but its width is roughly the number

of vertices in the graph. To provide a lower bound, we need a method to prove that the

robber escapes from k cops. One of such methods is to give a function that to every

arrangement of at most k cops assigns a set of vertices where the robber should hide

such that when the cops move, she can reach the new “cover” prescribed by the function

for the new arrangement.

Remember the notion of touching sets in a graph from Definition 1.3.9.

Definition 2.2.1 ([35]). Let G = (V,E) be an undirected graph and k ≥ 1 a natural

number. Let X and Y be sets of vertices of G. The sets X and Y touch if either

X ∩ Y 6= ∅ or there is an edge connecting an vertex from X with a vertex from Y . The

set of vertices of a connected component of G\X is an X-flap. A haven in G of order k

is a function h : [V]<k → 2V where h(X) is an X-flap and, for all X,Y ∈ [V]<k with

Y ⊆ X, h(X) ⊆ h(Y). The haven number hn(G) of G is the largest k such that G has a

haven of order k.

It is clear that a haven of order k of a graph induces a winning strategy of the Robber

player in the Treewidth Game TwG(G): whenever at most k+1 cops leave a set Y vertices

to occupy the set X (whereby X and Y may have a non-empty intersection), the robber

runs from the Y -flap h(Y) where she was to the X-flap h(X), which is possible, because

h(X) and h(Y) touch. It turns out that, for the treewidth, also the other direction of

the implication holds: if the robber has a winning strategy, he has a winning strategy

that is induced by a haven.

45

Chapter 2 Properties of Measures

Proposition 2.2.2 ([53]). Let G be an undirected graph. Then it has treewidth at least

k − 1 if and only if it has a haven of order at least k.

We do not have a measure for directed graphs that would be fully analogous to Propo-

sition 2.2.2. Johnson et al. analyse the connection between havens on directed graphs

and the directed treewidth.

Definition 2.2.3. Let G = (V,E) be a directed graph and k a natural number. A

(directed) haven of order k is a function h : [V]<k → 2V such that, for all X ∈ [V]<k,

h(X) is a strongly connected component of G\X and, for all vertex sets X,Y with

|X| < k and |Y | < k, if X ⊆ Y then h(Y) ⊆ h(X).

We mention that minimal orders of havens correspond to the minimal number of cops

needed to capture a robber in the Directed treewidth Game. If a directed graph G

has a haven of order k then the robber has a winning strategy described by the haven.

Conversely, any strategy of the robber against less than k cops defines, for every set X

that is occupied by cops a vertex vX where the robber hides. We extend the vertex to

a maximal set SX containing the strongly connected component of G\X with vX and

all vertices w with w ∈ ReachG\X (vX) such that the robber still has a winning strategy

from each of these w. Then the function h(X) := SX is a haven of order k.

Proposition 2.2.4 (see [35]). Let G be a directed graph. Then the Robber player has a

winning strategy in the Directed treewidth Game if and if G has a haven of order k.

Proposition 2.2.5 ([35]). Let G = (V,E) be a directed graph and k ≥ 1 a natural

number. If G has a haven of order k then the directed treewidth of G is at least k − 1.

Adler shows in [1] that the other direction fails.

Proposition 2.2.6 ([1]). There is a directed graph with directed treewidth at least 4,

which has no directed haven of order 5.

Nevertheless, in [35], an upper bound for the discrepancy between havens and the

directed treewidth is given.

Proposition 2.2.7 ([35]). Let G be a directed graph and let k ≥ 1 be a natural number.

If the directed treewidth of G is k then G has a directed haven of order 3k − 1.

46

2.2 Havens and brambles

Hunter defines in his dissertation the D-havens and relates them to the DAG-width.

Definition 2.2.8 ([33]). Let G = (V,E) be a directed graph and k ≥ 1 a natural number.

A D-haven of order k is a function h[V]<k → 2V such that, for all X ⊆ V with |X| < k:

• h(X) is a non-empty subset of V \X, and

• if Y ⊆ X then h(X) ⊆ h(Y) and, for all y ∈ h(Y), h(X) ∩Reachh(Y)(y) 6= ∅.

Observe that h(X) must not be connected.

Proposition 2.2.9 ([33]). Let G be a directed graph. Then the Robber player has a

winning strategy against k cops in the DAG Game if and only if G has a D-haven of

order k + 1.

Although the DAG Game does not characterise the DAG-width, havens give a lower

bound for the DAG-width.

Corollary 2.2.10 ([33]). Let G be a directed graph. Let k be a natural number. If G

has a D-haven of order k, then the DAG-width of G is at least k.

Obdržálek gives another variant of directed haven (that resembles brambles) that

characterises the existence of winning (but not monotone) strategies of the Cop player

in the DAG Game.

Proposition 2.2.11 ([42]). Let G be a directed graph and let k ≥ 1 be a natural number.

Then the Robber player has a winning strategy in the DAG Game on G if and only if

there is a function σ : [V]<k → 2V that maps a vertex set X to a non-empty union of

strongly connected components of G\X such that if X ⊆ Y ∈ [V]<k then

1. for all sets S ∈ σ(X) there is a set T ∈ σ(Y) such that there is a directed path

from S to T in G\X, and

2. for all sets S ∈ σ(Y) there is a set T ∈ σ(X) such that there is a directed path

from S to T in G\X.

As havens define strategies of the Robber player and games with an invisible robber

(as in the Kelly Game) are essentially one-player games (where the robber has only one

47

Chapter 2 Properties of Measures

strategy), we cannot expect that havens would help us in establishing lower bounds for

corresponding measures. So we do not consider the Kelly-width and the pathwidth in

in connetion with havens.

Brambles supply efficient algorithms for constant approximation algorithms for planar

graphs, see [18] where an algorithm for computing (not necessarily minimal) brambles

on general undirected graphs is given..

Bramble numbers are closely connected to linkedness and well linkedness. In fact,

these three invariants are essentially the same (see [44]).

Definition 2.2.12 ([44]). Let G be a directed or an undirected graph and let S be a

set of its vertices. Let k be an integer number. The set S is k-linked, if for any set X

of at most k − 1 vertices there is a (unique) (strongly) connected component of G\X

containing more than a half of vertices of S. The linkedness link(G) of G is the largest

k, for which G contains a k-linked set.

Definition 2.2.13 ([44]). Let G be a directed or an undirected graph and let S be

a set of its vertices. The set S is well linked, if, for every pair X,Y of subsets of S

with |X| = |Y |, there are |X| disjoint paths from X to Y in G\
(

(S\X)\Y
)

. The well

linkedness wlink(G) of G is the size of the largest well linked set in G.

The brambles, which we have not defined for directed graphs can be generalised in

the following way.

Definition 2.2.14 ([44]). Let G = (V,E) be a directed graph and k ≥ 1 a natural

number. Let X and Y be sets of vertices of G. The sets X and Y strongly touch if either

X ∩ Y 6= ∅ or there are edges from a vertex in X to a vertex in Y and from a vertex in

Y to a vertex in X. A directed screen or a directed bramble S in G is a set of mutually

strongly touching strongly connected subsets (or singletons) of V . A directed screen (a

directed bramble) S has thickness ≥ k if there is no X ∈ [V]<k such that X ∩H 6= ∅ for

all H ∈ S.

Proposition 2.2.15 ([44]). For every undirected graph G, we have

link(G) ≤ bn(G) ≤ wlink(G) ≤ 4 · link(G).

48

2.2 Havens and brambles

On directed graphs, brambles and havens also define roughly the same invariant.

Proposition 2.2.16 ([51]). Let G be a directed graph. Then we have

⌈
hn(G)

2
⌉ ≤ bn(G) ≤ hn(G)

and for each inequality there are graphs for that the equality holds.

Safari in [51] used these results to extend the havens and the brambles characterisa-

tions of the treewidth to the D-width, but he needed to restrict the class of directed

graphs.

For the DAG-width and for the Kelly-width, one can define two kinds of brambles

such that they correspond to the measures.

Definition 2.2.17 ([33]). Let G = (V,E) be a directed graph. Let H = (VH , EH) be a

strongly connected component of G or a single vetrex. ThenH is an initial component if it

is closed under predecessors, i.e., if v ∈ V with (v,w) ∈ E for some w ∈ VH then v ∈ VH .

Analogously, H is a terminal component if it is closed under successors, i.e., if v ∈ V

with (w, v) ∈ E for some w ∈ VH then v ∈ VH . Denote by Init(G) the set of all vertices

in initial components and Term(G) the set of all vertices in terminal components. For a

subset of vertices B ⊆ V we write Init(B) and Term(B) for Init(G[B]) and Term(G[B])

respectively when it is clear what G is.

Definition 2.2.18 ([33]). Let G = (V,E) be a directed graph. An initial bramble in G

is a set B of subsets of V such that, for all pairs B,B′ ∈ B and for all x ∈ Init(B), there

exists y ∈ Init(B′) such that y ∈ ReachB∪Init(B′)(x).

Definition 2.2.19 ([33]). Let G = (V,E) be a directed graph. An terminal bramble in

G is a set B of subsets of V such that, for all pairs B,B′ ∈ B and for all x ∈ Term(B),

there exists y ∈ Term(B′) such that y ∈ ReachTerm(B)∪B′ (x).

Proposition 2.2.20 ([33]). Let G be a directed graph and let k be a natural number.

1. If G has an initial bramble of order k then G has DAG-width at least k.

2. If G has an terminal bramble of order k then G has Kelly-width at least k.

49

Chapter 2 Properties of Measures

2.3 Complexity of computing measures

In this section we discuss how difficult it is to compute a particular measure on a given

graph. For measures that have decompositions, we are also interested in the complexity

of computing decompositions. One of the motivations for this is that given decompo-

sitions of bounded width often lead to fast algorithms for problems that are difficult

otherwise (for example, NP-complete). There is no measure among those we discussed

in Chapter 1 that could be computed in deterministic polynomial time, as far as we

know. There are, however, certain graph classes on which this is possible.

We also discuss graph classes for which we either know their measures or can estimate

them.

Proposition 2.3.1 ([3]). The following decision problem is NP-complete:

Given: An undirected graph G and a natural number k.

Question: Is the treewidth of G at most k: tw(G) ≤ k?

The membership in NP is easy to prove: one has to guess, for example, an elimination

ordering, which has linear size, and then to check whether its order is at most k. If a tree

decomposition of width at most k is needed we can guess such a decomposition instead

of a elimination ordering.

Note that in Proposition 2.3.1 the parameter k is a part of input. If k is fixed the

problem becomes polynomially solvable.

Proposition 2.3.2 ([14]). For any fixed integer k, there is a linear-time algorithm that

tests whether a given undirected graph G has treewidth at most k, and if so, outputs a

tree decomposition of G with treewidth at most k.

Proposition 2.3.3 ([3]). The following decision problem is NP-complete:

Given: An undirected graph G and a natural number k.

Question: Is the pathwidth of G equal to k: pw(G) = k?

For deterministic algorithms for computing the treewidth and the pathwidth on special

graph classes and known treewidths and pathwidths on some graphs see [31], [19], [46],

[47], [13].

50

2.3 Complexity of computing measures

We now turn to directed measures. The following result originates from [9]. It also

follows from Proposition 2.3.1 using Proposition 1.6.8.

Proposition 2.3.4 ([9], see also [33]). The following decision problem is NP-hard:

Given: A directed graph G and a natural number k.

Question: Is the DAG-width of G at least k: DAGw(G) ≤ k?

We do not know whether the problem from the last proposition is in NP, but it seems

to be so [33]. The problem with an approach to compute the DAG-width nondetermin-

istically by guessing a minimal decomposition is that the best bound for the size of a

DAG-decomposition is O(nk) where n is the size of the graph and k is the DAG-width,

which is not bounded in n in general. Brambles and similar characterisations that work

for the treewidth, are not applicable on the DAG-width, because they correspond to

general Cop’s strategies in the DAG Game rather than to monotone ones as needed for

the DAG-width.

When the DAG-width k is known, a DAG-decomposition can be computed in time

|G|k [9].

The problem, given a directed graph G and natural number k, decide whether the

graph has Kelly-width at most k is also NP-complete. The hardness follows (as for the

DAG-width) from the fact that the Kelly-width generalises the treewidth (see 1.8.2).

For membership, note that that a Kelly-decomposition is polynomial in the size of the

graph [34]. A nondeterministic algorithm guesses the Kelly-decomposition and then tests

in polynomial time whether it suffices all requirements of a Kelly-decomposition.

Unlike for the DAG-width, it is an open question, what is the complexity of deciding

whether a given G graph has Kelly-width at most k for a fixed k. For a given k, we can

compute the Kelly-width in exponential time and space.

Proposition 2.3.5 ([33]). Given a directed graph G = (V,E) the Kelly-width of G can

be computed in

• time O(|V |+ |E| · 2|V |) and space O(|V | · 2|V |), or

• time O(|V |+ |E| · 4|V |) and space O(·2|V |).

51

Chapter 2 Properties of Measures

For k = 2, there is a polynomial algorithm to test whether a given graph has Kelly-

width at most 2. For larger k, the complexity of this problem remains an open question.

Proposition 2.3.6 ([41]). There is a deterministic polynomial-time algorithm that tests

whether a given graph G has Kelly-width at most 2.

The directed treewidth can be nondeterministically computed in polynomial time. Let

(R,X ,W, fx, fw) be an arboreal decomposition of a directed graph G = (V,E). It is easy

to see that the decomposition has polynomial size in the size |V | + |E| of G. So as to

decide, whether G has directed treewidth at most k we guess a tuple (R,X ,W, fx, fw)

and test in polynomial time that a this tuple is actually an arboreal decomposition. The

NP-completeness for the directed treewidth follows analogously as for the DAG-width

and the Kelly-width.

We finally consider the complexity of determining the directed pathwidth of a graph.

The same question about entanglement is postponed until Chapter 3.

Proposition 2.3.7 ([40]). The following decision problem is NP-complete:

Given: A directed graph G and a natural number k.

Question: Is dpw(G) ≤ k?

Restricted on trees, the problem can be decided intime Ptime.

Proposition 2.3.8 ([40]). There is a deterministic linear-time algorithm that computes

the directed treewidth of a given directed graph.

2.4 Solving difficult problems for bounded measure

An important application of complexity measures of graphs is the construction of ef-

ficient algorithms for generally difficult (e.g., NP-complete) problems on graphs with

complexity measures bounded by a constant. Pathwidth served as a model for measures

we consider here. We first describe the general approach, which uses tree decompositions.

A useful property of tree decompositions is that every bag that is not a leaf in the

decomposition tree is a separator in the graph, i.e., it divides the graph into two parts

with no edges between them. Formally, let G = (V,E) be a graph and let S ⊆ V be a

set of its vertices. We say that S is a separator, if G\S is not connected.

52

2.4 Solving difficult problems for bounded measure

This property of tree decompositions allows to construct algorithms that combine

partial solutions for graphs induced by subtrees rooted at a bag’s successors in a common

solution for the graph induced by the subtree rooted at the bag. This technique appeared

in [4], see also [8],we describe now this technique in more detail, as it served as an example

for analogous techniques on directed graphs. We give only a brief description, details

can be found in [17].

Consider an undirected graph G = (V,E) of treewidth k with a fixed natural number

k. Consider a fixed problem.

1. Find a nice tree decomposition (T ,X , f) of G of width k. This can be done in

linear time (Proposition 2.3.2 and Proposition 1.3.7). Choose a root r of T .

2. Compute in a bottom-up manner (i.e., using dynamic programming), for each bag

a table containing certain information. What information is computed depends

on the problem. For the computation of the table, one only uses the tables of

the children, the type of the bag (leaf, join, introduce, forget) and the information

about G\X.

3. The answer to the problem can be extracted from the table of the root bag.

4. Construction versions usually need another step where tables are used again to

construct a solution (if one exists).

In this way many NP-hard problems can be solved efficiently on graphs with bounded

treewidth, see [46, 2, p.222] for a list of references. Examples of such problems are Inde-

pendent Set, Hamiltonian Circuit, Vertex Cover. For Pspace-hard problems

that becomes easy if the treewidth is bounded see for example [19, p.359] and [13].

A class of efficiently solvable problems are those definable in MSO [24]. MSO is an

extention of FO by allowing monadic quantifiers for sets of vertices and sets of edges and

the membership relation ∈. An analogous result for graphs with bounded clique-width

is shown in [25].

Directed treewidth can also lead to fast algorithms. Johnson et al. define k-linkage

and introduce itineraries, a concept similar to information tables used with treewidth.

We now follow [35] and describe how these notions help in constructing algorithms.

53

Chapter 2 Properties of Measures

Let G = (V,E) be a directed graph, let S ⊆ V be a set of vertices and let k be a natural

number.Recall the definition of a Z-normal set (Definition 1.5.1). Define the set S to

be k-protected, if it is Z-normal for a set Z ⊆ V with |Z| < k. The genearal algorithm

scheme introduced in [35] prescribes to compute certain information, the itinerary, for

k-protected subsets of V . The latter can be characterised axiomatically. We require

that, for every natural number k there is a real number α and two algorithms such that

the following axioms hold.

Axiom 1. Let G = (V,E) be a directed graph and let A,B ⊆ V be disjoint sets such

that no edge leads from a vertex in B to a vertex in A. Then an itinerary for A∪B can

be computed from itineraries for A and B in time O((|A|+ |B|)α).

Axiom 2. Let G = (V,E) be a directed graph and let A,B ⊆ V be disjoint sets such

that A is k-protected and |B| ≤ k. Then an itinerary for A ∪ B can be computed from

itineraries for A and B in time O((|A|+ 1)α).

Hereby the constants hidden in the O notation depend on k, but not on G, A or B.

Proposition 2.4.1 ([35]). For every natural number k ≥ 1 there exists an algorithm

satisfying the following specifications.

Input A directed graph G = (V,E) and an arboreal decomposition (R,X ,W, fx, fw) of

G of width at most k − 1.

Output An itinerary for G.

Running time: O(|V |α+1), assuming Axioms 1 and 2 are satisfied.

The algorithm resembles the scheme described for the graphs with bounded treewidth.

It uses the arboreal decomposition and the normality of sets that induce subtrees similar

to the algorithms for the treewidth, which use that the vertex sets inducing the subtree

of a tree decomposition are disjoint.

Definition 2.4.2 ([35]). Let G = (V,E) be a graph. A linkage of G is a subgraph L

of G such that every weakly connected component of L is a directed path. Let σ =

(s1, t1, s2, t2, . . . , sm, tm) be a sequence of 2m vertices of G (not necesseraly distinct). A

linkage L is a σ-linkage if the weak components of L can be numbered P1,P2, . . . ,Pm in

such a way that, for 1 ≤ i ≤ m, the directed path Pi has first vertex si and last vertex

ti.

54

2.4 Solving difficult problems for bounded measure

Proposition 2.4.3 ([35]). Let k ≥ 1 and m ≥ 0 be natural numbers. Then there is a

polynomial-time algorithm that solves the following problem.

Given: A directed graph G = (V,E), an arboreal decomposition (R,X ,W, fx, fw) of G

of width at most k− 1, a sequence σ of 2m vertices of G, and a set M ⊆ {1, 2, . . . , |V |}.

Question: Does there exist a σ-linkage L = (VL, EL) in G with |VL| ∈M?

The linkage problem with a fixed number of terminals (given a sequence σ as above,

is there a σ-linkage),Hamilton Path, Hamilton Circuit, Hamilton Path with

Prescribed Ends, the problem whether there is an even cycle containing a given vertex

are problems that can be solved with the algorithm guaranteed by Proposition 2.4.3. If

the arboreal decomposition is not given, but it is known that the graph has directed

treewidth at most k−1, we can efficiently construct an arboreal decomposition of width

at most 3k + 1 and then proceed with the known algorithm replacing k with 3k + 2.

We shall see in Chapter 4 that DAG-width and Kelly-width are special cases of directed

treewidth. So problems that can be efficiently solved on graphs with bounded directed

treewidth can also be solved on graphs with bounded DAG-width or Kelly-width.

For Kelly-width, Hunter and Kreutzer give in [34] a similar scheme as for the directed

treewidth. In a bottom-up manner, one computes the needed data set for the leaves,

combines data sets for successors of a bag, then updates the information taking the

bag itself into account, and finally expands the data set to include the guards of the

sub-DAG.

A weighted (directed or undirected) graph is a structure (G, w) where G = (V,E) is a

graph and w : V → (R) is a weight function of its vertices.

Definition 2.4.4 ([34]). The Weighted w-Linkage problem is given a weighted graph

(G, w), a sequence σ = (s1, t1, s2, t2, . . . , sm, tm), and a set M ⊆ {1, 2, . . . , |V |}, to com-

pute for each l ∈M an s-linkage Ll with |L| = l of minimal weight.

Proposition 2.4.5 ([34]). The Weighted w-Linkage problem on directed graphs with

bounded Kelly-width can be solved in polynomial time.

Another problem that allows a polynomial algorithm on graphs with bounded Kelly-

width is Parity, the problem to decide whether in a given parity game Player 0 has a

55

Chapter 2 Properties of Measures

winning strategy. See for a description Section 1.1. It is unlikely to be NP-complete, but

no deterministic polynomial algorithm is known. We know that Parity∈ NP∩ co−NP.

Proposition 2.4.6 ([33]). Let k be a fixed natural number. Let G be a directed graph

of Kelly-width k and let w be a weight function on G. Then there is a polynomial-time

algorithm that decides the Parity problem on (G, w).

Note that an analogous result for the directed treewidth is not known.

The concept of DAG-width also leads to a fast algorithm to compute Parity [9].

Besides that, as already mentioned above, all problems that are efficiently solvable on

graphs with bounded directed treewidth can be efficiently solved on graphs with bounded

DAG-width, see Chapter 4.

Proposition 2.4.7 ([43]). Let k be a fixed natural number. Let G be a directed graph

of clique-width k and let w be a weight function on G. Then there is a polynomial-time

algorithm that decides the Parity problem on (G, w), provided a corresponding algebraic

expression describing the construction of G is given.

For the entanglement measure, there is until now only one problem of this kind, namely

Parity. We shall discuss the algorithm of Berwanger and Grädel in Chapter 3. One

reason for this may be that we do not know any decomposition of a graph with small

entanglement in parts that are in some sense independent.

As a conclusion of this chapter we state some boundaries to algorithmical application

of cyclicity measures on directed graphs given by Kreutzer and Ordyniak in [39]. While

problems that are similar to the linkage problem allow fast algorithms on graphs with

small cyclicity (i.e., graphs with small values of measures we discuss), only few other

problems have this property. Some explicitly directed problems that are NP-complete

even on “almost acyclic” graphs follow.

Definition 2.4.8. The Minimum Equivalent Subgraph problem is stated as follows.

Given: A directed graph G = (V,E) and a natural number k.

Question: Is there a set of edges E′ ⊆ E with |E′| ≤ k such that the directed graph

G′ = (V,E′) contains a path between two vertices if and only if such a path exists in G.

Proposition 2.4.9 ([39]). The Minimum Equivalent Subgraph problem is NP-

complete on graphs with DAG-width less than 4.

56

2.4 Solving difficult problems for bounded measure

Definition 2.4.10. The Feedback Vertex (Arc) Set problems are as follows.

Given: A directed graph G = (V,E) and a natural number k.

Question: Is there a set of vertices (edges) V ′ ⊆ V (E′ ⊆ E) with |V ′| ≤ k (|E′| ≤ k)

such that the directed graph G[V ′]) (G′ = (V,E\E′)) contains no cycles?

Proposition 2.4.11 ([39]). The Feedback Vertex (Arc) Set problems are NP-

complete on graphs with DAG-width at most 4.

Definition 2.4.12. The Graph Grundy Numbering problem is as follows.

Given: A directed graph G = (V,E).

Question: Is there a function f : V → ω such that, for all v ∈ V , f(v) is the smallest

natural number not contained in {f(u) | u ∈ V, (v, u) ∈ E}?

Proposition 2.4.13 ([39]). The Graph Grundy Numbering problem is NP-complete

on graphs with DAG-width at most 2.

Definition 2.4.14. The Kernel problem is as follows.

Given: A directed graph G = (V,E).

Question: Is there an independent set V ′ ⊆ V such that, for every v ∈ V \V ′, there

exists a u ∈ V ′ with (v, u) ∈ E?

Proposition 2.4.15 ([39]). The Kernel problem is NP-complete on graphs with DAG-

width at most 2.

57

Chapter 2 Properties of Measures

58

Chapter 3

Entanglement

Entanglement is a measure that (unlike measures we considered in previous chapters) was

defined in terms of games [10]. It proved its theoretical importance in showing that the

variable hierarchy in µ-calculus is strict [11]. We, however, concentrate on entanglement

as a complexity measure for directed graphs do not consider its connection to the µ-

calculus.

We do not know any graph decomposition that would correspond to entanglement in

a way as there are decompositions for other measures. To find such a decompositions

can be important for constructing efficient algorithms for difficult problems on graphs

with bounded entanglement as discussed in Chapter 2.4 for other complexity measures.

Until now we know only one such problem that seems to be difficult: Parity defined in

Section 1.1. One step that could lead to this direction was made by Belkhir and Santo-

canale in [7] where a structural characterisation of undirected graphs with entanglement

at most two is given. We generalise this result to arbitrary (i.e., directed) graphs in

Section 3.3.

The Entanglement Game EG(G) is played on G as follows. There are two players:

the Cop player who controls k + 1 cops numbered with {1, . . . , k + 1}, and the Robber

player who controls a robber. At the beginning of the play, all cops stay outside the

graph and the Robber chooses a vertex to place the robber there in the first move. The

players move in turn. The Cop player can take one cop from his vertex or from outside

and place him on the vertex where the robber currently is, or he can let his cops idle.

The robber must move to a vertex where an edge from her current vertex leads to, no

matter whether a cop occupied her current vertex in the previous move or not. The

59

Chapter 3 Entanglement

target vertex must be free of cops. If the robber is unable to do that, the play ends and

she loses. If the play lasts infinitely long, the Robber player wins. Formally, we have

the following definition.

Definition 3.0.16. Let G = (V,E) be a directed graph. The Entanglement Game

EG(G) on G is a graph searching game on G defined by the triple (Lc,Lr,A) with

A = (VA, V0, V1, EA, vI) where

• Lc = 2V , Lr = {{r} | r ∈ V } ∪ {V },

• V0 = {(∅, V)} ∪ {(X, {r}) | r 6∈ X},

• V1 = {(∅, ∅, V)} ∪ {(X,X ′, {r}) | (X, {r} ∈ V0 and X ′ ⊆ X ∪ {r})},

•
(

(X,R), (X,X ′ , R)
)

∈ EA, for all (X,R) ∈ V0 and all (X,X ′, {r} ∈ V1),

• there is an edge from (∅, ∅, V) to (∅, {r}), for all r ∈ V ,

• for all (r, r′) ∈ E and (X,X ′, {r}) ∈ V1 with r′ 6∈ X ′, there is an edge in E from

(X,X ′, {r}) to (X ′, r′), and

• there are no other edges in E.

Definition 3.0.17. Let G be a directed graph. The k cops Entanglement Game EGk(G)

on G is the Entanglement Game on G where the Cop player has only k cops, i.e., for

every X ∈ Lc, we have |X| ≤ k.

Definition 3.0.18. Let G be a directed graph. The entanglement ent(G) of G is the

minimal number k such that the Cop player has a winning strategy in the game EGk(G).

Definition 3.0.19. A directed graph T = (V,E) is a tree with back-edges if E can be

partitioned in tree-edges F and back-edges B such that (V, F) is an arborescence and

whenever (u, v) ∈ B, then there is a path from v to u in (V, F).

Lemma 3.0.20 ([10]). The decomposition of the edge set of a tree with back-edges into

tree-edges and back-edges is unique up to the choice of the root.

60

Definition 3.0.21. Let T = (V,E) be a tree with back-edges with a partition of E into

tree-edges F and back-edges B. The feedback of a vertex v is the number of ancestors

of v (including v) that are reachable by a back-edge from a successor of v (including v).

The feedback fb(T) of T is the minimal feedback of vertices in T , i.e.,

fb(T) = max
v∈V
|{u ∈ V | there is w ∈ V such that u ≤ v ≤ w and (w, u) ∈ B}|.

The back-edge (u, v) and vertex u are active at vertex v, if u ≤ v ≤ w.

Definition 3.0.22. Let G = (V,E) be a directed graph. A finite unravelling of G is a

directed graph UG = (U,EU) that is constructed from G in the following way. Choose a

vertex v ∈ V and let v. be in U . Mark edges of E until every edge in E is marked doing

the following. For every unmarked edge (u,w) ∈ E, either add w to U and (u,w) to

EU , or (only if w ∈ U) add (u,w) to EU . The decision which option to choose is made

non-deterministically. Then mark (u, v) in G.

Proposition 3.0.23 ([10]). The entanglement of a directed graph is the minimal feedback

(and the minimal entanglement) of its finite unravellings, i.e.,

ent(G) = min{fb(T) | T is a finite unravelling of G}

= min{fb(T) | T is a finite unravelling of G}

We turn to the computational aspects of the entanglement.

Proposition 3.0.24 ([10]). The problem whether a given directed graph has entangle-

ment at most k can be decided in polynomial time, if k is fixed.

Proposition 3.0.25 ([10]). Parity games on graphs with bounded entanglement can be

solved in polynomial time.

We shall see in Proposition 4.0.8 that if a graph has Kelly-width or DAG-width k then

its lexicographic product with the complete graph on n vertices has Kelly-width resp.

DAG-width n · k. This will play an important role in proving discrepancies between

monotone and general Cop’s strategies. We show that this property does not hold for

entanglement.

Proposition 3.0.26. Let Kn be the complete graph with n vertices. There is a class of

graphs such that, for any graph G from this class, ent(G) = 1 and ent(G • Kn) = 2n− 1.

61

Chapter 3 Entanglement

Proof. Consider the class of directed cycles of length at least 3. Every cycle has ent-

anglement one. We claim that, for each cycle G, ent(G • Kn) = 2n − 1. A winning

strategy of 2n−1 cops is to occupy a clique of n vertices in G and use the rest n−1 cops

to expel the robber from any other clique. Conversely, the robber escapes 2n − 2 cops,

because when she is expelled from a maximal clique, there is always a cop free path to

another maximal clique with at most n− 1 cops.

3.1 Entanglement of special graph classes

Proposition 3.1.1 ([10]). Let G be a directed graph.

1. ent(G) = 0 if and only if G is acyclic.

2. If G is the graph of a unary function, then ent(G) = 1.

3. If G an undirected tree, then ent(
←→
G) ≤ 2.

4. If G is the complete directed graph with n vertices, then ent(G) = n.

Proposition 3.1.2 ([10]). Let G be a directed graph. The entanglement of G is one if

and only if the graph is not acyclic and in every strongly connected component there is

a vertex whose removal makes the component acyclic.

Corollary 3.1.3 ([10]). For k = 0 and k = 1, the problem whether a given graph has

entanglement k is Nlogspace-complete.

Lemma 3.1.4 ([10]). Let G = (V,E) be a directed graph such that, for some k ∈ ω,

there exists a partial labelling i : V → [k] under which every strongly connected subgraph

C = (VC , EC) of G contains a vertex v whose label is unique in C, that is, i(v) 6= i(w)

for all w ∈ VC with w 6= v. Then ent(G) ≤ k.

Proposition 3.1.5 ([10]). For every natural n, the undirected (n × n)-grid has entan-

glement at most 3n.

Proof. We show that there exists a labelling of graph vertices satisfying the requirements

of Lemma 3.1.4. Assign the values 0, . . . , n to the horizontal median of the grid, i.e.,

62

3.1 Entanglement of special graph classes

i(
⌊

n
2

⌋

, j) = j for all j ∈ [n]. For the two n
2×n-grids obtained when removing the positions

already labelled, we proceed independently and assign the values n, . . . , n + n
2 to their

vertical medians, and so on, in step k applying the procedure to the yet unlabelled

domain consisting of 2k many n
2k ×

n
2k disconnected grids.

We state the following simple lemma.

Lemma 3.1.6. Let G be a graph. Let m ≥ 1 and k ≥ 0 be natural numbers. If

there exist m vertices v0, . . . , vm−1 in G such that k cops have a winning strategy on

G\{v0, . . . , vm−1} then ent(G) ≤ m + k.

Proof. The Cop player has the following winning strategy. Play on G\{v0, . . . , vm−1}

the strategy for k cops guaranteed by conditions of the lemma. When the robber enters

a vertex in {v0, . . . , vm−1} place there one of m cops. Continue in this way until all

vertices in {v0, . . . , vm−1} are occupied by the cops. Then win on G\{v0, . . . , vm−1} with

k

Here a straightforward way to win is to place m cops on {v0, . . . , vm−1} and then use k

cops for the rest graph. A reuse of some of the m cops may be an obvious improvement of

the Cop’s strategy. In Section 3.2 we shall strengthen this idea to get a characterisation

of graphs with entanglement two. For the next proposition, recall the definition of a

torus from Section 1.6. We characterise the entanglement of such graphs.

Proposition 3.1.7 ([10]). Let m,n ≥ 1 be natural numbers. Let Tmn be a torus.

1. If m = n then ent(Tmn) = n.

2. If m < n then ent(Tmn) = m + 1.

Proof. For m = n, a winning strategy of the Cop player is to place cops on a diagonal

of the grid. The graph with deleted diagonal becomes acyclic, so 0 cops win on it. From

Lemma 3.1.6 for k = 0 follows that ent(Tmn) ≤ m. The converse is shown similarly to

Examples 1.6.12 and 1.7.9. The Robber can hold the invariant that there is a cop free

column in the torus and a cop free path there from the robber’s vertex. At the beginning

of a play it is clear. In general, the robber moves on such a column until a cop announces

to land on her vertex. In that moment, there is another cop free column (we have m

63

Chapter 3 Entanglement

columns and m− 1 cops, but a cop is flying to the robber’s vertex). Then there is a cop

free row in the torus. The robber runs to the crossing of that row and the column she

is on and then along the row to the column that became free.

If m < n then m cops occupy diagonal of a (m×m)-subtorus. The rest graph consists

of n−m strongly connected components. These are rows of Tmn). Every row is a directed

cycle and one cop suffices to expel the robber from it. According to Proposition 3.1.2, the

entanglement of the rest graph is one. From Lemma 3.1.6 follows that ent(Tmn) ≤ m+1.

The winning strategy of the robber against m cops is the same as on Tmm) against m−1

cops.

Example 3.1.8. Consider undirected (m × n)-grid Gmn where m is much less than n.

We want to give an upper bound for the entanglement of Gmn that depends only on m.

We start with small values of m and n.

Proposition 3.1.9.

1. ent(G2,n) = 1 if and only if n = 1.

2. ent(G2,n) = 2 if and only if n = 2.

3. ent(G2,n) = 3 if and only if 3 ≤ n ≤ 9.

4. ent(G2,n) = 4 if and only if n ≥ 10.

Proof. We show that ent(G2,n) ≤ 4 for all n and that ent(G2,n) ≤ 3 for n = 8. For n = 9

the strategy is similar. For simplicity of description, we imagine natural coordinates on

the grid as shown in Figure 3.3. The vertices have coordinates (i, j) with i ∈ {0, 1} and

j ∈ {0, . . . , n − 1}.

Four cops have the following winning strategy. Two of them place themselves on

(0,
⌊

n
2

⌋

) and (1,
⌊

n
2

⌋

). We call the other cops the chasers. Due to symmetry, assume

without lost of generality that the robber hides in the right part of the grid (with larger

second coordinate). The goal of the cops is to shift to the right the wall of two cops on

(0,
⌊

n
2

⌋

) and (1,
⌊

n
2

⌋

) such that the robber remains on the right of the wall. The new wall

can be built also by the chasers. The chasers remain free from guarding the left part of

the grid. One of them follows the robber until she moves vertically, i.e., from (i, j) to

64

3.1 Entanglement of special graph classes

10 2 3 4 5 6 7 n−1n−2
0

1

...

Figure 3.1: The first part of Cop’s player strategy to move the wall on G2,n. The cops

in helicopters are blue, the robber is red. Cops on (0, 3) and (1, 3) build the wall. The

chaser from (0, 5) goes to (0, 7). Then the robber goes to (1, 7). The cop from (0, 6)

follows her there.

(1− i, j) for some i ∈ {0, 1} and j ∈ {
⌊

n
2

⌋

, . . . , n−1}. In this moment the second chaser

goes to (1 − i, j). See Figure 3.1. If the robber moves to the right, the wall is moved

(the chasers build it and the cops from the old wall become chasers). In the other case,

the chaser from (i, j) follows the robber. Both chasers continue to follow the robber in

the leap-frogging manner to the left until she moves vertically. (Figure 3.2, steps 1 and

2.) The rightmost chaser follows her (step 3). Again, if she goes to the right, the wall

is moved. She can go further to the left (step 4) followed by the cop (step 5), but this

process can continue at most until the robber meets the wall. So finally she must move

vertically (step 6), is followed by rightmost cop (step 7) and must go to the right (step

8). So the wall moves to the right and the robber remains to the right of the wall. This

suffices to capture her.

For n = 8, consider the (2 × 8)-grid (Figure 3.3). We show how tree cops capture

the robber. The idea is to place a cop on vertex (0, 3) and a cop on 1, 5 such that the

robber to the right of column 3. We show first that it suffices for the Cop player to

win. He expels the robber from the area right from the cop on (1, 5). For this, the third

cop places himself on (0, 6). If the robber remains on (0, 7), (1, 6) or (1, 7) the she is

captured wit help of the cop from (0, 3). So assume that she goes to (0, 5) and then

to (0, 4) (she must move every time it is her turn). The third cop follows her to (0, 4).

65

Chapter 3 Entanglement

n−1n−2
0

1

10 2 3 4 5 6 7

...32

4

6

5

7

1

8

Figure 3.2: The second part of Cop’s player strategy to move the wall on G2,n. Cops

on (0, 3) and (1, 3) build the wall. The moves of cops (in blue) and those of the robber

(in red) are labelled to indicate the order of the moves.

Again, if she goes to the right, i.e., to (0, 5), the cop from (0, 3) follows her, she must go

to (0, 6), the cop from (0, 4) goes there and she is captured in the corner. So when the

cops are on (0, 3), (0, 4), (1, 5) the robber goes from (0, 4) to (1, 4). The cop from (0, 4)

goes there. The robber has two possibilities: to (1, 3) and then to (1, 2), or to (0, 4) and

then to (0, 5). In the first case she is followed to (1, 2) by the cop from (1, 5) and she is

captured in the left corner. In the second case she is followed to (0, 5) by the cop from

(1, 5). Then the cop from (0, 3) forces her to go to (1, 6) and she is captured.

It remains to show how the cops force a position when two of them stay on (0, 3) and

(1, 5) and the robber is to the right of column 3. It is clear that the Cop player can place

two of his cops on those vertices. Assume that the robber is on a column with number

less than 4. The third cop and the cop (1, 5) expel her from there placing themselves on

(1, 1) and (0, 2). (One of them must return to (1, 5). In that moment the robber will be

to the right of column 3.) She is either captured in the left corner or goes to (1, 2) and

then to (1, 3). One of the cops not from (0, 3)follows her. The robber goes to (1, 4), the

other cop follows. She tries to avoid (0, 5) and goes to (0, 4) followed from the cop from

(1, 3) and goes to (0, 5). The cop from (0, 4) follows her. Now the robber either goes

(0, 4) where she is immediately captured or is blocked in the right corner.

For m = 3, we do not give entanglements for all n, but only for n = 1, 2, . . . , 6 and

66

3.1 Entanglement of special graph classes

and estimate the entanglement for sufficiently large n in the general case.

Proposition 3.1.10.

1. ent(G3,n) = 1 if and only if n = 1.

2. ent(G3,n) = 3 if and only if n = 2.

3. ent(G3,n) = 4 if 3 ≤ n ≤ 6.

Proposition 3.1.11. ent(G3,n) ≤ 12.

Proof. We describe a winning strategy of the Cop player. We show that the cops are

able to occupy a column with 3 cops using only 6 of cops. If they have a way to do this,

they construct thus a barrier separating the grid. They can then use the same strategy

to construct another barrier on the side where the robber escaped, say on the right. If

she escapes to the right again the cops from the first barrier can be reused. If the robber

moves in the area between the barriers the remaining 6 cops construct a third barrier

thus releasing 3 cops from themselves and 3 cops from the first or the second barrier.

Continuing in this way they shrink the free space for robber and finally capture her.

We now describe how 6 cops manage to place 3 of them on a column. The first goal is

to set two cops directly one under another without using any other cops, i.e., to construct

a partial barrier. One cop goes to the vertex where the robber is. If she goes up or down,

another cop takes this place and a partial barrier is constructed. Otherwise the robber

moves horizontally and is followed by both cops in a leap-frogging manner. The robber

can now run some time horizontally. Finally she moves up or down and the cop whose

turn to move it is completes the construction of the partial barrier.

The goal of the cops is now to force the robber to occupy the remaining free vertex

under or above the barrier. They can use 4 remaining cops for that. Two other cops

construct a new partial barrier and then the remaining two a third one. The two cops

from a partial barrier that is the furthest from her construct a new barrier next to the

robber and so on until the robber’s free place is shrunken and she is forced to visit a

vertex that is in the same column as a partial barrier.

The last strategy can be easily generalised for arbitrary m. The cops build two com-

plete barriers (of height m) with the robber between them, two partial barriers of height

67

Chapter 3 Entanglement

10 2 3 4 5 6 7
0

1

Figure 3.3: The 2× 8-grid. The cops (in helicopters) stay on (0, 3) and (1, 5) and one

cop is outside. He announces to go to vertex (0, 4) where the robber stays.

m − 1 (with the robber between them) and so on until height 1. The total number of

cops is thus 2 ·
∑m

i=1 i = m · (m + 1).

Proposition 3.1.12. ent(Gm,n) ≤ m · (m + 1).

As a last graph class we discuss tournaments — graphs that are explicitly directed.

Definition 3.1.13. A tournament on n vertices is a directed graph Tn = (V,E) such

that |V | = n and E satisfy the condition: for every pair u, v ∈ V , either (u, v) ∈ E or

(v, u) ∈ E.

We consider classes Tn of tournaments T on n vertices. First we define entanglement

of such a class. Note that, for every n, there is a tournament T with ent(T) = 0. One

needs to enumerate the vertices of T and draw an edge from smaller vertices to larger

ones. The resulting tournament is acyclic and has entanglement 0.

Definition 3.1.14. Let Tn be the class of tournaments on n vertices. The entangle-

ment ent(Tn) of Tn is the maximal entanglement over all tournaments in Tn, i.e.,

ent(Tn) = maxT ∈Tn
(ent(T)).

By inspection we determine the entanglements of small tournament classes. See Fig-

ure 3.4 for examples of tournaments on 5, 6 and 7 vertices with entanglement respectively

2, 3 and 4.

68

3.1 Entanglement of special graph classes

• ent(T1) = ent(T2) = 0.

• ent(T4) = ent(T3) = 1.

• ent(T5) = 2.

• ent(T6) = 3.

• ent(T7) = 4.

1

3

2

4

5

1 2

3

45

6

1

2

3

45

6

7

TTT 765

Figure 3.4: Examples of tournaments on 5, 6 and 7 vertices with entanglement respec-

tively 2, 3 and 4. For every vertex (two, three vertices) there exists a cycle reachable

from the vertex (both, all vertices) such that the vertex (two, three vertices) is (are)

not in the cycle.

It seems that the entanglement of a class grows with every n by one, beginning by

n = 4, but this is not the case. It is clear that it does not grow by 2 or more: if, for any

n, ent(Tn) = k then ent(Tn+1) ≤ k + 1, because the additional cop can occupy the new

vertex and the graph without this vertex is in Tn, where k cops suffice to win. We show

in that the difference between n and ent(Tn) cannot be bounded from above.

Proposition 3.1.15. For every natural n ≥ 2, we have that ent(T2n) ≤ 2n − n− 1.

69

Chapter 3 Entanglement

Proof. We make an induction on n. For n = 2, ent(T4) = 1. Assume that ent(T2n) ≤

2n − n − 1. We show that ent(T2n+1) ≤ 2n+1 − n− 2. Consider a tournament T2n+1 ∈

T2n+1 with T2n+1 = (V,E) and |V | = 2n+1. Then T2n+1 has exactly 2n · (2n+1− 1) edges

and at least one vertex v0 with in-degree din(v0) ≥ ⌈2
n·(2n+1−1)

2n+1 ⌉ = 2n. Let v1, . . . , v2n be

2n distinct vertices with (vi, v0) ∈ E for each i ∈ {1, . . . , 2n}. There are 2n+1 − (2n + 1)

vertices different from any vi (i ∈ [2n + 1]). We place a cop on each of them. On

T2n+1 [v0, . . . , v2n], 2n−n−1 cops have a winning strategy. Note that if the Robber visits

v0 she looses immediately, no matter whether there are any cops on T2n+1 [v0, . . . , v2n]

because there is no edge from v0 to any vi for i ∈ {1, dots, 2m}. So we can apply the

induction hypothesis ans state that 2n − n − 1 cops indeed win on T2n+1[v0, . . . , v2n].

Summing up, we get that we used
(

2n+1 − (2n + 1)
)

+
(

2n − n − 1
)

= 2n+1 − n − 2

cops.

On the other hand, the entanglement of a tournament class is never too small.

Proposition 3.1.16. For every natural n ≥ 2, if ent(Tn = k) then ent(Tn+2 ≥ k + 1).

Proof. Let Tn = (V,E) ∈ Tn be a tournament of entanglement k. We construct a

tournament Tn+1 on n + 1 vertices with Tn+1 ≥ k + 1. Let Tn+1 be the tournament Tn

with two additional vertices u and v and additional edges (u,w) and w, v for all w ∈ V

and the edge (v, u). We claim that Tn+1 has entanglement at least k + 1. We show how

the robber escapes k cops. She can escape from k − 1 cops remaining in Tn+1\{u, v},

because ent(Tn = k). By Proposition 3.1.15, if at most k − 1 cops are in Tn+1\{u, v}

there is a cop free vertex w in Tn+1\{u, v}. When the k-th cop comes into the play, she

goes to the cycle u,w, v and remains there until a cop occupies u or v. Then the robber

returns to the strategy on Tn+1\{u, v} using that from the cycle u,w, v there is a cop

free path to any vertex of Tn+1\{u, v}. If a cop goes to w instead of to u or v, there is

another free vertex w′ that is used by the robber instead of w.

In Section 3.2 we give a characterisation of graphs of entanglement two. The idea is

based on a characterisation given by Belkhir and Santocanale in [7]. They show that

undirected graphs of entanglement two are essentially undirected forests to those trees

the following two types of operations have been applied an arbitrary number of times.

70

3.1 Entanglement of special graph classes

Figure 3.5: A typical graph of entanglement two. Bigger blue points denote vertices of

the underlying tree.

1. Let a and b be tree vertices with an edge {a, b} between them. Add m ≥ 1 vertices

v1, . . . , vm to the graph and edges {a, vi} and {b, vi}, for all i ∈ {1, . . . ,m}. Delete

the edge {a, b}.

2. The second operation is the same as the first, but {a, b} is not deleted.

A typical graph of entanglement two is shown in Figure 3.5. The strategy of the Cop

player is to go to the vertex where the robber is, then with another cop to the tree vertex

where she goes (if she goes to an added vertex, wait). In this way, the cops move in turn

and one cop always guard the way from the robber to the other cop.

We now give formal definitions and state the characterisation.

Definition 3.1.17 ([7]). A molecule M ε,n
a,b , where ε ∈ {0, 1} and n ≥ 0, is the undirected

graph (V,E) with V = {a, b, c1 . . . , cn} and E = E1 ∪ E2, where E1 = {{a, ci} | 1 ≤ i ≤

n}∪ {{b, ci} | 1 ≤ i ≤ n} and E2 = {a, b}, if ε = 1, and E2 = ∅, if ε = 0. The glue points

of M ε,n
a,b are a and b. Its dead points are {a, b, c1 . . . , cn}.

Definition 3.1.18 ([7]). Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs

with V1 ∩ V2 = ∅, let a ∈ V1 and b ∈ V2. The collapse of G1 and G2 on vertices a and b,

71

Chapter 3 Entanglement

denoted G1
⊕z

a,b G2, is the graph G = (V,E) defined as follows:

V = (V1\{a1}) ∪ (V1\{a1}) ∪ {z}, where z 6∈ V1 ∪ V2,

E = {{x1, y1} ∈ E1 | a1 6∈ {x1, y1}} ∪ {{x2, y2} ∈ E2 | a2 6∈ {x2, y2}}

∪ {{x, z} | {x, a1} ∈ E1 or {x, a2} ∈ E2}.

Recall the definition of a graph with final vertices from Section 1.3.121.

Definition 3.1.19. If G1 = (V1, E1, G1) and G2 = (V2, E2, G2) are graphs with final

vertices then we say that G1
⊕z

a,b G2 is a legal collapse if a ∈ G1 and b ∈ G2. We

shall use the notation G1
⊕z

a,b G2 and define the glue points of the legal collapse to be

(G1\{a}) ∪ (G2\{b}) ∪ {z}, so that G1
⊕z

a,b G2 is a graph with final vertices.

We denote the singleton graph whose own vertex is a glue point by

Definition 3.1.20 ([7]). Let E2 be be the least class of graphs with final vertices con-

taining the molecules, the singleton graph with the own vertex as a glue point, and

closed under legal collapses and graph isomorphisms.

Before we state that E2 is the class of undirected graphs of entanglement two, we give

some definitions (motivated in [7]) that help us to formulate another characterisation of

this class.

Definition 3.1.21. An undirected graph G is simple if the following conditions are

satisfied:

1. Every cycle in G has length is at most four.

2. Every cycle of length tree has at least one vertex with degree two in G.

3. Every cycle of length four does not have two adjacent vertices of degree strictly

greater than two.

Proposition 3.1.22 ([7]). For an undirected graph G the following are equivalent:

1. G has entanglement at most two.

1Belkhir and Santocanale call it a glue graph.

72

3.2 Modular entanglement

2. G is simple.

3. G belongs to class E2
2.

3.2 Modular entanglement

We study entanglement on strongly connected subgraphs of a graph. To express connec-

tions between them consider the notion of a graph with final vertices in Definition 1.3.12.

We define a variant of the Entanglement game played on it.

Definition 3.2.1. The Entanglement game with final vertices EGk(G) is played on G as

follows. There are two players: the Cop player who controls k + 1 cops numbered with

{1, . . . , k + 1}, and the Robber player who controls a robber3. At the beginning of play,

all cops stay outside the graph and the Robber chooses a vertex to place the robber there

in the first move. The players move in turn. The Cop player can take one cop from his

vertex or from outside and place him on the vertex where the robber currently is, or he

can let his cops idle. The robber must move to a vertex where an edge from her current

vertex leads to, no matter whether a cop occupied her current vertex in the previous

move or not. The target vertex must be free of cops. If the robber is unable to do that,

the play ends and she loses. If the play lasts infinitely long, the Robber player wins.

Moreover, to use the final vertices, we add a new winning condition for the Robber: if

the robber reaches a vertex v with v ∈ F after the Cop player has moved the k + 1-st

cop (i.e., has brought him from outside into the graph), then the Robber player wins as

well.

A graph with final vertices G = (V,E, F) is k-complex, if the robber has a winning

strategy in the Entanglement game with final vertices EGk(G).Otherwise the graph is

k-simple.

The next lemma states that the Cop player in Entanglement game with final vertices

gets no advantage if we change the definition of the game in that not the Robber, but

2To be precise, the class E2 consists of graphs with final vertices. We mean that we forget the glue

points, i.e., if G = (V, E, G) we make it to (V, E).
3Informally, for convenience, we shall sometimes confuse the Robber player with the robber in the play

and the Cop player with his cops.

73

Chapter 3 Entanglement

the Cop player is allowed to choose the vertex for the robber to start on.

Lemma 3.2.2. Let G = (V,E, F) be a strongly connected k-complex graph with final

vertices. The Robber player still wins the Entanglement game with final vertices on G

if at the beginning of a play it is the Cop player who chooses the vertex from which the

robber has to start.

Proof. Assume that there are vertices v and w such that

1. v is a vertex from which the robber wins if she can use the additional winning

condition from Definition 3.2.1, and

2. w is a vertex such that the Cop player wins the game if the robber starts from it.

As G is strongly connected, we can take vertices such that (w, v) ∈ E.

Let σv
R be a winning strategy for the robber starting in v and let σw

C be a winning

strategy for the Cop player for the case that the robber starts in w. If, in any play

consistent with σv
R, the robber never enters w until the last (k + 1)-st cop moves, then

σv
R is a counter-strategy for σw

C : in the first step, the robber goes from w to v and plays

according to σv
R and wins, no matter whether a cop placed himself on w in a first Cop’s

move. The only difference to the case when the robber starts from v is that a cop is not

outside the graph, but on w4.

If there is a strategy σv
C for k cops, such that in the play consistent with both σv

R and

σv
C the robber visits w, then there is a counter-strategy for σv

R: the cops play according

to σv
C until the robber enters w and then place a cop on w and use σw

C to win.

A direct corollary (if we take F = ∅) is the next proposition.

Proposition 3.2.3. In the Entanglement game on a strongly connected graph, the num-

ber of cops needed to capture the robber does not change, if it is the Cop player who

chooses the vertex from which the robber starts.

4In a more general definition of modular entanglement, when more than one cop must stay outside

before additional vertices become winning for the Robber, the proof does not work: a cop on w may

block exit points that are guarded by several cops. So a cop on w would make several cops free.

74

3.2 Modular entanglement

v
v

v

v

Figure 3.6: A graph and its components. Components of vertices marked with large

circles are shown in dashed rectangular boxes.

To simplify the notation, for a graph with final vertices G = (V,E, F) or a graph

G = (V,E) and a vertex a ∈ V , we shall write G\a instead of G[V \{a}] for the structure

induced by all vertices but a. Consider the strongly connected component decomposition

of G\a.

Let G = (V,E) be a graph and let G′ = (V ′, E′) be an induced subgraph of G. We call

a vertex v ∈ V ′ an exit point if there is a vertex u ∈ V \V ′ in G with (v, u) ∈ E.

Note that strategies of both players in the Entanglement games with final vertices are

strategies in the Entanglement Games.

Definition 3.2.4. Let G = (V,E) be a graph, let C = (C,E′, F) be a graph with final

vertices, and v a vertex in V \C. We say that C is a v-component of G if (C,E′) is a

strongly connected component of G\v and F is the set of exit points of (C,E′). If, for a

number k, C is k-complex, we call strategies of the Robber player on C that are winning

in the Entanglement game with final vertices C-strategies.

Example 3.2.5. Consider the graph in Figure 3.6. Every vertex w induces a w-

component, which contains all other vertices except the leftmost one with a component

induced by v and a component induced by the other two vertices. The v-component C

is 1-complex, because the robber can escape from one cop in C and there is always a cop

free path to an exit point of the component. In fact, every strategy of the Robber player

on C is a C-strategy. All other vertices induce 1-simple components.

Proposition 3.2.6. If there is a vertex v in a graph G such that all v-components are

k-simple, then ent(G) ≤ k + 1.

75

Chapter 3 Entanglement

Proof. Let v be a vertex such that all v-components are k-simple. The Cop player has

the following winning strategy. A cop places himself on v. (If the robber never visits v,

the rest of the strategy does not change.) Wherever the robber enters a v-component

(C,E′) with exits points F , no matter, at which point, the rest of the cops play according

to the (C,E′, F)-strategy to expel her from there or block all exit points of it and win

(if necessary with help of the cop from v).

Our goal is to show the converse for the case k = 1. For this, we first prove some

lemmas.

In a strongly connected graph G, for a vertex v, the partial order ≤v on strongly

connected components of G\v is the topological order

{(C, C′) | there is a path from C to C′ in G\v}.

Lemma 3.2.7. Let G = (V,E) be a graph and let v be a vertex in V . Further, let

C0 = (V0, E0, F0) and C1 = (V1, E1, F1) be two k-complex v-components. If C0 and C1 are

incomparable with respect to ≤v, then ent(G) > k + 1.

Proof. Without loss of generality assume that C0 and C1 have entanglement at most

k + 1. We describe a winning strategy for the robber against k + 1 cops. She starts

on some vertex in C0 and plays a C0-strategy waiting there for all cops to come. When

the last cop moves to C0, the robber can reach an exit point, because the component is

(k + 1)-complex. From there, she runs to v and then to C1 (she can do this, because the

components are incomparable). Now she plays the same strategy with C1 instead of C0.

It follows that k + 1 cops never capture her.

Lemma 3.2.8. Let Cv = (Cv, Ev , Fv) be a v-component, and Cw = (Cw, Ew, Fw) be a

w-component of a strongly connected graph G = (V,E), for distinct vertices v and w.

Let Cv and Cw be intersecting and let Cw be not a proper subset of Cv, i.e., Cv ∩Cw 6= ∅

and Cw 6⊆ Cv. If v is in Cw, then w is in Cv.

Proof. Assume that the conditions of the lemma hold, but w is not in Cv (Figure 3.7).

Let u be in Cv ∩Cw and u′ in Cv\Cw. Because u′ and u are in Cv, there are paths from

76

3.2 Modular entanglement

C
v

C
w

w

u

u’

v

Figure 3.7: The w-component Cw contains v, but the v-component Cv does not include

w.

u′ to u and vice versa that do not include v. None of the paths includes w (because

otherwise w would be in Cv), so u′ and u lie in the same w-component, but we assumed

that u′ is not in Cw and u is in Cw.

Lemma 3.2.9. Let G = (V,E) be a strongly connected graph, and let a0 and a1 be

vertices in V such that, for i ∈ {0, 1}, ai is in a k-complex a1−i-component C1−i =

(C1−i, E1−i, F1−i). If C0 and C1 are disjoint, then ent(G) > k + 1.

Proof. Without loss of generality, assume that C0 and C1 have entanglement at most

k + 1, so C0-strategy and C1-strategy prescribe the robber to go to an exit point when

all k + 1 cops arrive in the component.

The following strategy for the Robber player against k cops is winning. The idea is

to change between C0 and C1. The robber starts on a vertex in the component C0, in

which there is no cop at this time, and plays a C0-strategy waiting for all cops to move

there. When the last cop arrives, she runs to an exit point and then to a0 and thus

enters C1 (on the way to a0). No matter which vertex in C1 she enters first, she has a

C1-strategy, according to Lemma 3.2.2. Note that all cops are outside C1 at this moment,

as C0 ∩C1 = ∅. The robber continues in the same way with the switched roles of C0 and

C1, and a0 and a1, and so on.

Lemma 3.2.10. Let G = (V,E) be a strongly connected graph. For i ∈ {0, 1}, let

Ci = (Vi, Ei, Fi) be two k-complex ai-components. Let C0 be maximal with respect to ≤a0

77

Chapter 3 Entanglement

and let a1 be in C0. If C0 and C1 are disjoint, then ent(G) > k + 1.

Proof. It suffices to prove that then a0 is in C1. Lemma 3.2.9 implies then the desired

result. Assume, that a0 6∈ C1. There are tree cases how C1 can be combined with

k-complex a0-components.

Case 1. The component C1 is a (not necessarily proper) subset of another k-complex

a0-component C′ = (C ′, E′, F ′). If the components C′ and C0 are incomparable then

Lemma 3.2.7 guarantees a winning strategy for the robber in the Entanglement game

on G against k + 1 cops. So we have C′ ≤a0
C0 (because C0 is maximal) and there is a

path P1 from C1 to C0 that does not contain a0.

There is a path P2 from a0 to C1, since G is strongly connected, but no such path

includes vertices of C0. Otherwise C0 and C ′ would be in the same strongly connected

component of G\a0. Further, every path P3 from C ′ to a0 (there is at least one) goes

through a1 (otherwise a0 is in C1), see Figure 3.8.

P
3

P
1

P
2

a
0

P
3

C1

C
0

a

C’

1

Figure 3.8: Case 1: C1 is in a a0-component C′.

This guarantees that the robber wins the Entanglement game on G switching between

C′ and C0, because playing according to a C0-strategy and being expelled from C0 by

k + 1 cops she can reach a0 and then C1. Playing according to a C0-strategy and being

expelled from C1 she can reach C0. Lemma 3.2.2 assures that it makes no difference at

which vertex the robber enters an strongly connected component.

Case 2. The component C1 includes vertices of two different strongly connected com-

ponents of G\a0. Then there is a path in C1 from one such strongly connected component

to the other that does not go through a1, but through a0: if all such paths avoid a0, the

78

3.2 Modular entanglement

two strongly connected components are not distinct. But then we have a0 ∈ C1.

Case 3. In this last case, C1 does not include vertices of different a0-components

and is not a subset of a k-complex a0-component. Due to our assumption, a0 6∈ C1,

so C1 consists of some vertices from an a0-component C′ and some vertices that are in

no strongly connected component of G\a0. The latter are also a part of C′, because all

vertices of C1 are connected by paths that contain neither a0 nor a1. So, in fact, this

case is not possible.

The next example shows that the maximality of C0 in Lemma 3.2.10 is essential.

Example 3.2.11. Consider the graph in Figure 3.9. All requirements of Lemma 3.2.10

are fulfilled for this graph except the maximality of C0: C0 is a 1-complex a0-component,

C1 is a 1-complex a1-component, and a1 ∈ C0. The entanglement of the graph is 2,

although C′ and C1 are disjoint. The Cop player has the following winning strategy. The

cops expel the robber from C1, if she is there, and place one cop on vertex a1. The robber

visits vertex v and a cop goes there. The robber proceeds to w and the cop who is not

on v occupies w. Then, if necessary, the cop from v forces the robber to leave C1 and

follows her to a1. The robber visits v again, the cop from a1 goes there too. As vertex

w is occupied, the robber has to remain in C0 and a0. The cop from w goes to a1 and

captures the robber.

a
0

a
1

C1

C
0

v

w

Figure 3.9: All requirements of Lemma 3.2.10 are fulfilled except the maximality of C0:

C0 is a 1-complex a0-component, C1 is a 1-complex a1-component, and a1 ∈ C0. The

entanglement of the graph is 2.

79

Chapter 3 Entanglement

3.3 Directed graphs of entanglement 2

We want to give a characterisation of the class of graphs that have entanglement at most

two. Our goal is to restrict ourselves on certain winning strategies of the Cop player:

he can consequently shrink the room available for the robber. Unlike some other games

(e.g., for DAG-width) where we can assume a monotone winning strategy for the Cop

player, in this case, a sort of weak monotonicity can be proved. The robber may be able

to return several times to a vertex that has already been unavailable for her. But after

playing a while, her room becomes smaller and she cannot visit a certain part of the

graph any more.

We show that the Cop player can place a cop on a vertex a in the given graph G,

such that all a-components are simple, and then use the other cop to either expel the

robber from every a-component or block all exit points of the component placing himself

on a vertex b, in order to make the first cop free from guarding vertex a. In this case,

the current component, in turn, is decomposed by b and the first cop is used to follow

the robber. Finitely, there remain only components of entanglement 1 and the robber is

captured.

Lemma 3.3.1. Let G = (V,E) be a strongly connected graph. Let I = {0, 1, . . . ,m}, for

some m ∈ {1, . . . , |V | − 1}. For i ∈ I, let ai be vertices in V and let Ci = (Ci, Ei, Fi) be

1-complex ai-components. Let, further, ai be in Cj , for all i 6= j, i, j ∈ I.

If
⋂

i∈I Ci = ∅, then ent(G) > 2.

Note that the last condition of the lemma can be generalised for the case k > 1 to the

condition: for every Ci and every set {v1, . . . , vk} ⊆ Ci there is a component Cm with

vj 6∈ Cm, for all j ∈ {1, . . . , k}. Though, we shall use only the above weaker condition.

Proof. If m is 1, then we have the conditions of Lemma 3.2.9, so assume that m ≥ 2.

The situation for |I| = 3 is shown in Figure 3.10.

We show that the robber can stay in a component Ci until both cops come to it and

then escape from it reaching a cop free component. At the beginning, she starts in C0

and plays according to her C0-strategy until the second cop enters the component. In

general, she enters a cop free component Cj and plays according to a Cj-strategy waiting

80

3.3 Directed graphs of entanglement 2

there for both cops to come. Let the second cop come to Cj on a vertex v, the first cop

being on a vertex w ∈ Cj. At this point, since
⋂

i∈I Ci = ∅, there is an ai-component Ci

with w 6∈ Ci. If v ∈ Ci, the robber plays her Ci-strategy starting from v and assuming

that the Cop player has put his cop on it. If v 6∈ Ci, then the robber can escape from Cj

and reach aj , which is in Ci. On entering Ci, the robber continues with a Ci-strategy.

a
0

a
1

a
2

C
2

C
1

C
0

Figure 3.10: The components are 1-complex and include all vertices that induce other

components. The Robber player has a winning strategy.

We give now a characterisation of graphs that have entanglement at most 2. It is clear

that the entanglement is at most 2 if and only if the entanglement of all its strongly

connected components is at most 2, so we can restrict ourselves to strongly connected

graphs.

Lemma 3.3.2. On a strongly connected graph G = (V,E), two cops have a winning

strategy if and only if there exists a vertex a ∈ V such that every a-component C =

(VC , EC , FC) is 1-simple .

Proof. The direction from right to left is proven in Lemma 3.2.6: if every a-component

is 1-simple, then ent(G) ≤ 2. We show the other direction.

Towards a contradiction, assume that the Cop player wins EG(G), but loses EG2(C),

for all a ∈ V and all a-components C of G.

We construct a sequence a0, a1, . . . , am of vertices from V and a sequence C0, C1, . . . , Cm

of corresponding ai-components Ci = (Vi, Ei, Fi), where Fi are exit points of the com-

81

Chapter 3 Entanglement

ponents. We require that all Ci are maximal 1-complex ai-components with respect to

≤ai
. Further, we require that

⋂m
i=0 Ci 6= ∅.

Take an arbitrary vertex as a0. There is a 1-complex a0-component C0, due to the

assumption. Choose among all such strongly connected components a maximal one with

respect to ≤a0
.

Suppose that ai and Ci are already constructed, and every Cj is maximal with respect

to ≤aj
, for j ≤ i, and we have

⋂

j≤i Cj 6= ∅. Choose a vertex ai+1 in
⋂

j≤i Cj and a

maximal ai+1-component Ci+1. Due to Lemma 3.2.10, it intersects all Cj, for j ≤ i

(otherwise ent(G) would be greater than 2). According to Lemma 3.3.1,
⋂

j≤i+1 Cj 6= ∅

(otherwise ent(G) > 2 and we get a contradiction to our assumption) and we can continue

the construction.

Note that all ai are not in Ci. Finitely, for some m < |V |, there is no corresponding 1-

complex am+1-component for am+1 and the construction stops. This am+1 is the desired

vertex a with only 1-simple a-components, which is a contradiction to our assumption.

Proposition 3.3.3. Let G = (V,E) be a graph. In the Entanglement game on G, two

cops have a winning strategy if and only if in every strongly connected component C of

G, there exists a vertex a ∈ V , such that every a-component of C is 1-simple.

Corollary 3.3.4. If a graph G has entanglement at most 2, then there is a vertex a in

G such that the Cop player has a winning strategy that allows the robber to enter the

vertex a only once.

3.3.1 Deciding entanglement two

The proof of lemma 3.3.2 shows the structure of a strongly connected graph G with

entanglement 2. It has a vertex a0 such that the graph G\a0 decomposes in simple

a0-components. We can divide them into two classes: leaf components, from which one

cop expels the robber, and inner components, where one cop does not win, but blocks

all exit points making the other cop free from guarding the simple components. It turns

out that every inner component C0 again has a vertex a1 such that C0 decomposes in

82

3.3 Directed graphs of entanglement 2

simple a1-components an so on. We shall show that a1 is the vertex where the second

cop stays (blocking all exit points of C0) when the first cop leaves a0.

Lemma 3.3.5. Let G = (V,E, F) be a graph with final vertices such that the graph

(V,E) is strongly connected. If, for all v ∈ V , there is a cycle C in G\v from that a final

vertex of G is reachable in G\v then G is 1-complex.

Proof. Consider a position in a play of the Entanglement game with final vertices on G

when a cop enters G for the first time. Without loss of generality it is the first cop. The

second cop is still outside G and it is the robber’s move. Let the robber and the first cop

stay on a vertex v0. There is a cycle C0 in G\v0. Because (V,E) is strongly connected,

there is a (cop free) path from the vertex v0 to any vertex in V . Particularly, the robber

can run to some vertex in C0. The strategy of the robber is to do so and to wait in C0 for

the first cop to follow her on a vertex v1. Then she goes to another cycle C1 and so on.

If the second cop never comes into the graph, the play is infinite and the Robber player

wins. Otherwise let v be the vertex where the first cop is when the second one comes

and let Cv be a cycle in G\v from which there is a path to an exit point in G\v. After

the arrival of the second cop the robber goes to Cv and from there to an exit point and

wins.

Let G = (V,E, F) be a graph with final vertices. We call a vertex v ∈ V a blocking

vertex of G, if there is no strongly connected component of G\v from which there is a

path to a final vertex. We denote the set of blocking vertices B(G) and define a binary

relation → on B(G):

→:= {(v,w) | w is not on a cycle in G\v}.

Lemma 3.3.6. If G = (V,E, F) is a 1-simple graph with final vertices then the relation

→ on B(G) is a total preorder, i.e., it is transitive and total.

Proof. For transitivity, let u, v,w be in B(G) and assume that it is u → v and v → w.

It follows that all cycle on that w is contain v and all cycles with v contain u. It follows

that all cycles with w contain u and w is not on a cycle in G\u.

It remains to show the totality of →. Because the reflexivity is trivial, let v and w

be distinct vertices in B(G). Assume that neither v → w nor w → v holds, i.e. w is

83

Chapter 3 Entanglement

on a cycle Cv in C\v and v is on a cycle Cw in C\w. Further, every path from Cv to an

exit point lead through v, because v is blocking, and there is such a path, because G is

strongly connected. Consider the part of this path from v to a final vertex. Together

with Cw it witnesses that w is not blocking in contradiction to the choice of w.

Note that → is not necessarily antisymmetric, so we define an equivalence relation ∼

on B(G), for a graph with final vertices G, to be ∼ := {(v,w) | v → w and w → v}.

Further, we extend the relation → on B(G)
/

∼
. Let [v] denote the equivalence class of v

with respect to ∼. The binary relation →∼ is well defined by→∼:= {([v], [w]) | v → w}.

Lemma 3.3.7. If G = (V,E, F) is a 1-simple graph with final vertices then the relation

→∼ on B(G) is a total order.

Proof. The transitivity and the totality are inherited by→∼ from→, the antisymmetry

is guaranteed by including all not antisymmetric pairs of elements into the same class.

If we have, for vertices v and w in a graph with final vertices G = (V,E, F), that

v → w then we say that vertex v blocks vertex w.

Lemma 3.3.8. If G = (V,E, F) is a 1-simple graph with final vertices of entanglement

2 then there is a vertex v in V that blocks all vertices from B(G).

Proof. Consider the relation →∼ on B(G)/∼. According to Lemma 3.3.7, it is a total

order, so it has an element [u] with [u] →∼ [w], for all [w] ∈ B(G). An arbitrary vertex

v ∈ [u] blocks all blocking vertices of G.

Now we are ready to give a structural characterisation of graphs that have entangle-

ment two.

Definition 3.3.9. An entanglement two-decomposition of a strongly connected graph

G = (V,E) is a triple (T , F, g), where T is a nontrivial directed tree T = (T,ET) with

root r and edges directed away from the root, and F and g are functions F : T → 2V

and g : T → V with the following properties:

1. F (r) = V ,

2. g(v) ∈ F (v) for all v ∈ T ,

84

3.3 Directed graphs of entanglement 2

3. if (v,w) ∈ ET then F (w) (F (v),

4. if (v,w1) ∈ ET and (v,w2) ∈ ET , then F (w1) ∩ F (w2) = ∅, for w1 6= w2,

5. if (v,w) ∈ ET then G[F (w)] is a strongly connected component of G[F (v)\g(v)],

6. if vET = {w1, . . . , wm} then the subgraph of G induced by the vertex set
(

F (v)\g(v)
)

\
(
⋃m

i=1 F (wi)
)

is acyclic,

7. no exit point of G[F (v)] is on a cycle in G[F (v)\g(v)],

8. if v ∈ T is a leaf then F (v)\g(v) is acyclic.

We shall call tree vertices and (abusing the notation) their F -images bags and g-images

decomposition points.

Observe that successors of a bag are partially ordered in the sense that, for each bag

v, its successors vET = {w1, . . . , wm} form a DAG D = (vET , ED) such that, for all

wi, wj ∈ vET , wj is reachable from wi in D if and only if F (wj) is reachable from F (wi)

in G[F (v)\g(v)]. An example of a graph and its entanglement two-decomposition is given

in Figure 3.11.

Proposition 3.3.10. A strongly connected graph G = (V,E) has entanglement at most

2 if and only if G has a entanglement two-decomposition.

Proof. Having ent(G) = 2 we construct the tree T = (T,ET) and the functions F and

g in a top-down manner. In each step we enlarge the tree adding to a bag v that

is currently a leaf some successors {w1, . . . , wm} and define the functions F and g on

them. We require that all g(wi)-components of G[F (wi)] are 1-simple.

There is a vertex a0 ∈ V such that all a0-components of G are 1-simple (Lemma 3.3.2).

Set F (r) = a0 and g(r) = V . In general, for every bag v that is a leaf of the already

constructed part of the tree, let C1, . . . , Cm be all strongly connected components of

F (v)\g(v). If there are no such components (i.e., m = 0), skip this bag and proceed

with a next one, if there is any. If m is at least 1 create, for each i ∈ {1, . . . ,m},

a successor wi of v and set F (wi) = Ci. From the construction we know that each

Ci induces a 1-simple g(v)-component. If it has a vertex a whose removal makes the

85

Chapter 3 Entanglement

C001

a
0000

a
0001

a
00020

a
000200

a
00010

a
0001010

a
000101

C0000

C0001

C0002

a
000100

a
0

a
000

a
00

a
010

C01 C010

a
01

C00

C000

a
0

a
01

010
a

a
00

a
000C

000
a
001

a
0002

a
0001a

000 0 C
0002

a
00010

a
00020C

00020
C
00010

C
01

C
010

C
00

C
0001C

0000

C
001

C
000100

a
000100

C
000101

a
000101

C
000200

a
000200

a
0001010

C
0001010

V

Figure 3.11: A typical graph of entanglement 2 and its entanglement two-

decomposition. On the left, the components (images of function F) are shown as

squares (only up to level 4), blocking points (images of function g) are shown in cir-

cles. On the right, the decomposition tree of the graph. The bags have images from

functions F and g as labels.

component acyclic, i.e., one cop wins EG(G[Ci]), then set g(wi) = a. If one cop cannot

win EG(G[Ci]) then, according to the definition of a 1-simple component, he can block

all exit points (to win with help of the other cop), i.e., he can place himself on a blocking

vertex. Among all blocking vertices there is a vertex a that blocks all vertices in B(G[Ci]),

due to Lemma 3.3.8. Set g(v) = a. Then all a-components of G[F (wi)] are 1-simple.

It follows from the construction that all requirements of the entanglement two-decomposition

are fulfilled.

Conversely, a entanglement two-decomposition induces a winning strategy for two cops

on G. Note that if a cop is on a vertex g(v), for a bag v, and the robber is in a bag on a

lower level of the tree, then the cop blocks the robber in the bags under v. Consider a

vertex a of the graph with the robber on it. Let v be the bag with the smallest F -image

(it is the lowest in the tree) among all with a ∈ F (v) and let vET be {w1, . . . , wm}, for

m ≥ 0 (if m = 0 then vET is empty). The Cop player waits for the robber to enter a

86

3.3 Directed graphs of entanglement 2

component G[F (wi)] or to go to g(v). In the first case, he plays the same strategy with

wi instead of v. This descending along the tree is finite and on some level (without loss

of generality already on that where v is) the robber visits g(v). One cop goes there.

If the robber proceeds to a component G[F (wi)], the second cop continues to chase her

using the same strategy until she reaches a leaf bag and is captured. If she leaves F (v)

and enters a brother bag v′ of v, the cop from v follows her there and so on until the

robber is forced to go to g(u), where u is the predecessor of v. The first cop goes to

g(u) as well and chases the robber in this manner upwards. This process is finite and

when the robber goes downwards, the second cop plays the described strategy with the

difference that the robber cannot climb so high as before. Continuing in this way the

cops finally capture the robber.

Now we describe a polynomial algorithm (that uses a recursive subprocedure) deter-

mining whether a given strongly connected graph has entanglement at most 2 and, if so,

returning a winning strategy for the Cop player.

87

Chapter 3 Entanglement

Algorithm 3.3.11. Entanglement-Two

Input: A strongly connected directed graph G = (V,E)

Question: Is the entanglement of G at least 2?

1: for all a ∈ V do

2: compute a-components C1, . . . , Cm of G\a

3: for all i ∈ {1, . . . ,m} do

4: if One-Cop-Wins(Ci) returns “Cop wins” then

5: continue with the next i

6: if B(Ci) = ∅ then

7: return no

8: else find a vertex b that blocks all blocking vertices with procedure Find-Block-

Exit

9: Let F be the set of exit points of G[Ci]

10: call Final-Entanglement-Two((G[Ci], F), b)

11: if Final-Entanglement-Two returns “no” then

12: return no

13: return yes

Algorithm 3.3.12. Final-Entanglement-Two

Input: A strongly connected graph with final vertices G = (V,E, F), b ∈ V

Question: Does the Cop player have a winning strategy in the Entanglement game with

final vertices EG2(G)?

1: compute SCCs C1, . . . , Cm of G\b

2: for all i ∈ {1, . . . ,m} do

3: if One-Cop-Wins(Ci) returns “Cop wins” then

4: continue with the next i

5: if B(Ci) = ∅ then

6: return no

7: find a vertex b′ ∈ B(Ci) that blocks all blocking vertices with prosedure Find-

Block-Exit

88

3.3 Directed graphs of entanglement 2

8: call Final-Entanglement-Two(Ci, b
′)

9: if Final-Entanglement-Two(Ci, b
′) returns “no” then

10: return no

11: return yes

Complexity of Algorithm Entanglement-Two

Let n be the size of the given graph G = (V,E). The first line of the procedure

Entanglement-Two is executed at most n times. In the second line, strongly con-

nected components of G are computed, which can be done with Tarjan’s algorithm ([54])

in time O(n). Checking whether a component has entanglement one in lines 3,4 and 5 is

linear in n via procedure One-Cop-Wins. Note that deciding whether a given graph has

vertex disjoint cycles, as needed in line 5 of One-Cop-Wins, can be done in linear time

according to [22]. Algorithm Find-Block-Exit computes B(Ci) needed in line 6 in linear

time with respect to the size of its input. The same algorithm finds a blocking vertex

for line 8. Because the time complexity of the procedure Final-Entanglement-Two is

greater than O(n), it is crucial for the total complexity.

The procedure Final-Entanglement-Two is similar to Algorithm Entanglement-Two

and runs in linear time multiplied by the number of recursive calls in line 8. They occur

in parallel on every level of the decomposition tree, except the on level with the lowest

leaves. There are at most n − 1 such levels. In total, the time complexity of Algorithm

Entanglement-Two is in O(n3).

89

Chapter 3 Entanglement

Algorithm 3.3.13. One-Cop-Wins

Input: A directed graph G

Output: “Robber wins” or “Cop wins”

1: if G is acyclic then

2: return “Cop wins”

3: compute SCCs {G1, . . . ,Gm} of G

4: for all i ∈ {1, d . . . ,m} do

5: if there are vertex disjoint cycles in Ci then

6: return “Robber wins”

7: find a cycle C = (C,EC) in Ci

8: enumerate vertices of C with {0, . . . , t− 1}

9: Start← 0, End← (t− 1)

10: i← Start

11: while Start ≤ i ≤ End do

12: make a DFS from i in Ci\C deleting edges while backtracking and checking:

13: if an edge leads to a vertex p ∈ C then

14: Start← min(i, p)

15: End← max(i, p){DFS is continued}

16: delete from C vertex with smallest number between Start and End

17: if a cycle in Ci remains then

18: return “Robber wins”

19: return “Cop wins”

Algorithm 3.3.14. Find-Block-Exit

Input: a strongly connected graph with final vertices G = (V,E, F)

Output: vertex v ∈ B(G) that blocks all blocking vertices or “No blocking vertex”

1: compute the set of exit points of C

2: trace paths to exit points in parallel backwards until a cycle is found at the beginning

of each path

3: if the intersection of all cycles is empty, then return “No blocking vertex”

90

3.3 Directed graphs of entanglement 2

4: return any vertex from the intersection

Our next purpose is to establish a connection to the characterisations of graphs of

entanglement 2 given by Belkhir and Santocanale in [7].

Every undirected graph G = (V,E) of entanglement at most two is a union of trees

T that, in addition, for every edge {a, b}, can have vertices va,b
1 , . . . , va,b

m with edges

{a, va,b
i } and {b, va,b

i }, for every i ∈ {1, . . . ,m}. For a entanglement two-decomposition

of a strongly connected component of G, consider the corresponding tree T = (VT , ET)

that forms a component of G. Add a new vertex r to the tree and a directed edge (r, v)

to an arbitrary leaf v ∈ VT . We get a decomposition tree after orienting all edges from

ET away from the root r and deleting all other leaves than v. The functions F and g can

be defined as follows. Set F (r) to be VT and g(r) to be r. In general, if, for a bag w, the

functions F and g on w are already defined, let C be a strongly connected component of

G[F (w)]\g(w). Choose a vertex u in C with an edge between w and u and set F (u) = C

and g(u) = u.

3.3.2 An Application of structural description

The structure of a graph with entanglement at most two that is given in Lemma 3.3.2

allows to compare the entanglement of such graphs with its Kelly-width. In [9] it is

shown that if a graph has entanglement k then its DAG-width is at most k + 1.

Proposition 3.3.15. For any graph G, if ent(G) ≤ 2, then both the DAG-width and the

Kelly-width of G are at most 3.

Proof. We first use the entanglement two decomposition to show that the Cop has a

winning strategy in the DAG Game on graphs that have entanglement two and then

adjust this strategy to the Kelly Game. Recall that the DAG-width (respectively the

Kelly-width) of a graph is the minimal number of cops needed to capture the robber

in the DAG Game (respectively, in the Kelly Game). Without loss of generality, G is

acyclic. Consider a entanglement two-decomposition (T , F, g) of G. The idea of the

desired winning strategies of the Cop player in the DAG Game is, first, to place one cop

on the vertex whose existence is guaranteed by Lemma 3.3.2. In general, assume that,

for a bag v, a cop is on a blocking vertex g(v) and the robber is on a vertex in F (w), for

91

Chapter 3 Entanglement

a successor bag w of v. The component F (w) has also a blocking vertex g(w). Another

cop (who is not on g(v)) goes to g(w) and the third cop visits every vertex in F (w) that

is not in a strongly connected component of F (w). Thus the robber is forced to move

down the decomposition tree (i.e., she is blocked in a shrinking part of G) and finally

loses.

The strategy of the Cop player in the Kelly Game is similar. Assume that a cop is

on a blocking vertex g(v). The Cop player does not know where the robber is, so he

decontaminates a strongly connected component of F (v)\g(v) as described for the DAG

Game, moves a cop back on vertex g(v) and continues with the next strongly connected

component.

Note that both winning strategies are monotone.

Proposition 3.3.15 gives the best possible upper bound for the number of cops needed

to capture the robber in the same graph in the DAG Game and Kelly Game. Note that

the third cop in the DAG Game and the Kelly Game is used to force the robber to move.

Proposition 3.3.16. There is a graph G with entanglement two, but DAG-width and

Kelly-width 3.

Proof. Let G be the graph consisting of two directed cycles of length 4 connected by two

undirected edges, formally: the graph G is G = (V,E) with V = {v0, . . . , v3, w0, . . . , w3},

and
E = {(vi, vi+1(mod 4)), (wi, wi+1(mod 4)) | i = 1, 2, 3}

∪ {(v0, w0), (w0, v0), (v2, w2), (w2, v2)}.

See Figure 3.12 for an illustration. It is easy to verify that the entanglement of G is two

and the DAG-width and the Kelly-width are three.

3.4 Towards decomposing graphs of entanglement k

In order to prove a statement analogous to Proposition 3.3.3, we need to generalise some

definitions. In a play of the Entanglement game, the Cop player would like to cut the

graph G into several parts by placing some cops on vertices v1, . . . , vp rather than just

one cop on a vertex as it is the case for two cops. The strongly connected components of

92

3.4 Towards decomposing graphs of entanglement k

0
v

v v

v
1

2 3
w w

ww
0

1 2

3

Figure 3.12: An example of a graph with entanglement 2 and DAG-width and Kelly-

width 3.

G\{v1, . . . , vp} should be simple if the remainder cops can either win the Entanglement

game on the strongly connected component or block some exit points to make some cops

from v1, . . . , vp free from guarding the strongly connected component such that they can

help to capture the robber in it.

It must not be the case that the cops in the component block all exit points as in

Section 3.2. It can suffice if they block only some of exit points and a cop becomes free.

Then together with this additional cop they block other exit points, another cop from

outside comes into the component and so on until the robber is captured. Consider the

following example.

Example 3.4.1. Let G = (V,E) be an undirected graph with V = {a1, . . . , am} ∪

{b1, . . . , bm}, for some m > 1 and edge relation E = E1 ∪E2 ∪E3 where E1 is {{ai, bi} |

i = 1, . . . ,m}, E2 is {{am, bi} | i = 1, . . . ,m − 1}, E3 is {{bi, bj} | i, j = 1, . . . ,m} (see

Figure 3.13). Suppose that m + 1 cops and a Robber play a Entanglement game with

final vertices on a graph with final vertices (G, {a1, . . . , am}) and the (m + 1)-st cop

has already moved. Let m cops guard the subgraph G′ := G[{b1, . . . , bm}] on vertices

a1, . . . , am. The Cop player can use only one cop additionally to those on ai. This one

cop is unable to capture the robber in G′, so he wants to block an exit point bi to make

the cop on ai free. For this, every bi is good except bm, because it is not an exit point.

Therefore, it is reasonable for the robber to stay in bm, but being expelled from there

she visits another bi and the additional cop blocks ai. In the remainder of the play this

cop will stay on bi and the just described process repeats with the cop from ai. The

robber has a strategy to force the Cop player to use all his guarding cops in G′, if he

wants to win.

93

Chapter 3 Entanglement

For a natural number m ≤ 1, an graph with m-guarded final vertices is a structure

G = (V,E, I, F, block) with edges E ⊆ V 2, initial vertices I ⊆ V , final vertices F ⊆ V

and a function block : {1, . . . ,m} → P(F). The intuition is that G is a subgraph of a

graph G′, and V is guarded by a set w1, . . . , wm. Let the robber start in I and let m

cops guard the exit points of G on w1, . . . , wm. A final vertex v is in block(i), if there

is a path from v to wi in
(

(G′\G) ∪ {v}
)

\{w1, . . . , wi−1, wi+1 . . . , wm}. Informally, the

function block describes which exit points must be blocked by a cop to make the cop on

a guarding vertex wi free.

Definition 3.4.2. Let G = (V,E, I, F, block) be a graph with m-guarded final vertices.

The Entnglement game with m-guarded final vertices EGm
k (G) is played on G as follows.

There are two players: the Cop player who controls (m + k) numbered cops, and the

Robber player who controls a robber. At the beginning, all cops stay outside the graph

and the Robber chooses a vertex in I to place the robber there in the first move. The

players move in turn. The Cop player can take one cop from his vertex or from outside

and place him on the position where the robber currently is, or he can let his cops idle.

The robber must move to a vertex where an edge from her current vertex leads to, no

matter whether a cop occupied her current vertex in the previous move or not. The

target vertex must be free of cops. If the robber is unable to do that, the play ends and

she loses. If the play lasts infinitely long, the Robber player wins.

In addition, there is another winning condition for the Robber: if the robber reaches

the vertex v with v ∈ block(i) after the Cop player has moved the (k + i)-th cop for

1 ≤ i ≤ m (i.e., has brought him from outside into the graph), then the Robber player

wins as well.

Figure 3.13: New cops come consequently in the strongly connected component

94

3.4 Towards decomposing graphs of entanglement k

v w

Figure 3.14: Three cops on the lowest vertices guard the rest part of the graph. There

is one additional cop for it. If the robber starts on v, she loses, if she starts on w, she

wins.

A graph with m-guarded final vertices G = (V,E, I, F, block) is k-m-complex, if the

robber has a winning strategy in the Entnglement game with m-guarded final vertices

EGm
k (G), otherwise the graph is k-m-simple.

We call cops that guard a subgraph guarding and the others active.

The next example shows that an analogon of Lemma 3.2.2 does not hold.

Example 3.4.3. Consider the graph in Figure 3.14. Three cops on the lowest vertices

guard the subgraph resulting from deleting these vertices. Assume that the Cop player

has one active cop for the rest part. The robber chooses to start on a vertex different

from v and wins, because the Cop player can make at most one cop free (if the robber

starts on w), which is not sufficient for the upper part. But if the robber starts on v the

active cop goes to v too, becomes guarding, but makes two cops free of guarding and

active. These two cops capture the robber.

Let G = (V,E, I, F, block) be an graph with m-guarded final vertices. Assume that

the Cop player has k + m cops. We say that a strategy σC allows an introduction of m0

cops, if for all strategies σR for the Robber, in the play consistent with σC and σR the

Cop player brings k + m0 cops into the graph.

Lemma 3.4.4. Let, for some k,m > 0, Gv = (V,E, {v}, F, block) be a k-m-simple graph

with m-guarded final vertices and let Gw = (V,E, {w}, F, block) be a k-m-complex graph

with m-guarded final vertices. If (V,E) is strongly connected then every Cop’s winning

95

Chapter 3 Entanglement

strategy for the game EGm
k (Gv) allows an introduction of more cops than any Cop’s

strategy for the game EGm
k (Gw).

The proof is analogous to the proof of Lemma 3.2.2.

We were not able to prove an analogon of Proposition 3.3.3. However, we conjecture

that it holds. We need another definition to formulate the conjecture.

Definition 3.4.5. Let G = (V,E) be a strongly connected directed graph. Let v0, . . . , vm−1

be a sequence of distinct vertices. Let C = (C,EC , I, F, block) be a Entnglement game

with m-guarded final vertices. We say that C is a (v0, . . . , vm−1)-component of G, if

(C,EC) is a strongly connected component of G, I = {v ∈ C | there is a vertex w ∈

V \C with (w, v) ∈ E}, F = {v ∈ C | there is a vertex w ∈ V \C with (v,w) ∈ E}, and

block : {1, . . . ,m} → 2F with v ∈ block(i) if and only if there is a path from v to vi−1 in

G.

Conjecture 3.4.6. A directed graph G = (V,E) has entanglement at most k if and

only if every its strongly connected component has m ≤ k vertices v0, . . . , vm−1 such that

every (v0, . . . , vm−1)-component is k-m-simple.

Proposition 3.3.15 uses decompositions. Note that a decomposition implies monotone

Cops’ strategies in games that characterise the DAG-width and the Kelly-width. This

means that if we can prove a generalisation of the decomposition characterisation for

arbitrary entanglement, we can also show that DAG-width and Kelly-width of a graph

are at most its entanglement plus one.

96

Chapter 4

Comparing Measures

In this chapter we summarise results about relations between different measures. An

schematic overview can be found in Appendix A. We are interested how does one measure

bounded on a graph class, bound another measure on this class.

We start with a usefull statement that allows to rise a non-boundness result for a

graph, to a class of graphs.

Definition 4.0.7 ([34]). Let G1 = (V1, E1) and G2 = (V2, E2) be directed graphs. The

lexicographic product G1 • G2 of G1 and G2 is the directed graph G = (V,E) with V =

V1 × V2 and E = {((x, y), (x′, y′)) | (x, x′) ∈ E1, or x = x′ and (y, y′) ∈ E2}.

Proposition 4.0.8 ([34]). Let G be a directed graph and let Kn be the complete graph

on n vertices. Then at least k cops have a winning strategy on G in the DAG Game (in

the Kelly Game) if and only if at lest n · k cops have a winning strategy on G •Kn in the

DAG Game (in the Kelly Game).

For convenience, we define some more measures that correspond to the DAG Game,

the Kelly Game and the directed treewidth (but are different from the DAG-width, the

Kelly-widthand the directed treewidth, see Propositions 1.6.7, 1.8.6, 2.1.7, and 2.1.8).

Definition 4.0.9. Let G be a directed graph. The non-monotone DAG-width nmDAGw(G)

is the minimal number of cops needed to capture a robber in the DAG Game on G. The

non-monotone Kelly-width nmKw(G) is the minimal number of cops needed to capture

a robber in the Kelly Game on G. The directed treewidth game measure dtwG(G) is the

minimal number of cops needed to capture a robber in the Directed treewidth Game on

G.

97

Chapter 4 Comparing Measures

We do not consider non-monotone variants of the Directed treewidth Game, because

we do not know any results that relate them to measures other than the directed tree-

width. The relations are, however, described in Section 2.1.

The last measure we take into consideration is defined by Safari in [51] and is is a

restricted version of the D-width.

Definition 4.0.10 ([51]). Let G = (V,E) be a directed graph. A set X ⊆ V is a good

separator, if, for every minimal strongly connected set H ⊆ V , H ⊆ X ∪ C, where C is

the vertex set of a strongly connected component C of G\X.

Further, we say that G satisfies the augmenting condition if, for any bramble B and

any cover X ⊆ V of B, there exists a directed graph G′ such that

• G and G′ have havens of the same orders,

• X is a good separator in G′, and every strongly connected set of G is a strongly

connected set of G.

Now we are ready to discuss relations between different measures. We start with

the directed treewidth. Recall the definition of extended directed treewidth from Sec-

tion 1.5. The following result follows trivially from definitions. Note that an arboreal

decomposition is also an arboreal pre-decomposition.

Proposition 4.0.11. For any directed graph G, we have extdtw(G) ≤ dtw(G).

Proposition 4.0.12 ([9, Proposition 5.4]). For any directed graph G, we have extdtw(G) ≤

DAGw(G).

Proposition 4.0.13 ([9, Corollary 1]). For any directed graph G, we have dtw(G) ≤

dw(G).

For graphs satisfying the augmenting condition, we have the following statement

proved in [51].

Proposition 4.0.14 ([51, Corollary 3]). For any directed graph G that satisfies the

augmenting condition, we have dw(G) = tw(G).

98

While, as stated in Proposition 1.4.8, there are classes of graphs with treewidth one

and unbounded pathwidth, the former can be used to establish an upper bound for the

latter.

Proposition 4.0.15. [16] Let G be an undirected graph with n vertices. Then we have

pw(G) ≤ O(tw(G) · log n).

Recall Proposition 2.2.4 saying that in the Directed treewidth Game Robber’s winning

strategies against less than k cops correspond to havens of order k. The following

proposition limits the use of havens in the Directed treewidth Game.

Proposition 4.0.16 ([1]). There is a directed graph G with directed treewidth at least

4, but no haven of order 5.

Corollary 4.0.17. There is a directed graph G with dtw(G) ≥ 4, but dtwG(G) ≤ 4.

In the Directed treewidth Game, the robber can move only to a vertex from that she

can go back to her original vertex. This constraint is not present in the DAG Game,

which is the only difference between the games. So, the next property follows.

Proposition 4.0.18. For any directed graph G, we have dtwG(G) ≤ nmDAGw(G).

We now turn to the DAG-width and related measures. We give the next proposition

from [9] in another form than the authors who relate the DAG-width to the directed

treewidth rather than to the directed treewidth game measure.

Proposition 4.0.19 ([9, Proposition 5.3]). For any directed graph G, we have dtwG(G) ≤

DAGw(G).

The converse does not hold. Consider graphs (T 1
k)op defined in Example 1.6.16. For

any k ≥ 3, the DAG-width of (T 1
k)op is k + 1, but it is easy to see how 2 cops win the

Directed treewidth Game. (See [9] for a detailed proof.)

Proposition 4.0.20 ([9, Proposition 5.3]). There exists a family of graphs {Gk | k ≥ 2}

with DAGw(Gk) = k + 1 and dtwG(Gk) = 2.

A monotone winning strategy is in particular, of course, a winning strategy, so the

next statement is trivial.

99

Chapter 4 Comparing Measures

Proposition 4.0.21. For any directed graph G, we have nmDAGw(G) ≤ DAGw(G).

The converse does not hold, recall Propositions 1.6.7 and 1.8.6.

Similar to the fact that the treewidth generalises the pathwidth, the DAG-width

generalises the directed pathwidth. Again, as in the undirected case, the converse fails.

Proposition 4.0.22 ([9, Proposition 5.5]).

• For any directed graph G, we have DAGw(G) ≤ dpw(G) + 1.

• There exists a family of graphs {Gk | k ≥ 3} with DAGw(Gk) = 2 and dpw(Gk) = k.

Proposition 4.0.23 ([34, Theorem 29]). For any directed graph G, we have DAGw(G) ≤

nmKw(G).

We turn to the Kelly-width and related measures.

Proposition 4.0.24 ([34, Theorem 20]). For any directed graph G, we have

2 · nmDAGw(G)− 1 ≤ Kw(G).

Proposition 4.0.25 ([34, Theorem 22]). For any k, there is a directed graph Gk such

that Kw(Gk) ≤ 3k and nmDAGw(Gk) ≥ 4k.

The next proposition is analogous to 4.0.20.

Proposition 4.0.26 ([34, Theorem 28]). There exists a family of graphs with unbounded

Kelly-width and directed treewidth one.

Proposition 4.0.27. For any directed graph G, we have nmKw(G) ≤ Kw(G).

We finally consider connections between the entanglement and some other measures.

Before comparing the entanglement with the treewidth, we define the treewidth of a

directed graph G to be the treewidth of the graph Ḡ. First, we note a relation between

the treewidth and the DAG-width.

Proposition 4.0.28 ([9, Proposition 5.1],[42]).

• For any directed graph G, we have DAGw(G) ≤ tw(G) + 1.

100

• There exists a family of graphs with unbounded treewidth and DAG-width one.

Proposition 4.0.29 ([10, Proposition 8]). There exists a family of graphs with un-

bounded entanglement and treewidth two.

Despite this discrepancy, we can bound the entanglement in terms of the treewidth if

we consider the number of vertices in the graph.

Proposition 4.0.30 ([10, Proposition 7]). Let G be a directed graph with n vertices.

Then we have ent(G) = O
(

(tw(G) + 1) · log n
)

.

An analogous connection can be established between the entanglement and the DAG-

width and the non-monotone DAG-width.

Proposition 4.0.31 ([9, Proposition 5.6]).

• For any directed graph G, we have nmDAGw(G) ≤ ent(G) + 1.

• There exists a family of graphs with unbounded entanglement and DAG-width two.

• Let G be a directed graph with n vertices. Then we have ent(G) = O
(

(DAGw(G) +

1) · log n
)

.

Recall the definition of the cycle rank from Section 1.9.

Proposition 4.0.32. For any directed graph G, we have ent(G) ≤ cr(G).

Proof. Without loss of generality, let G be strongly connected. Let cr(G) be k. Then k

cops have a winning strategy in the Cycle rank Game . In the Entanglement Game, k

cops have the following winning strategy. In every round i of a play the Cop player uses

k − i cops to force the robber to go to a vertex vi, where the i-th cop in the Cycle rank

Game would place himself. Then the i-th cop in the Entanglement Game goes there.

From that time on, he remains on the vertex till the end of the play and the i-th round

is over.

It remains to show that k − i + 1 cops can drive the robber to vi in the i-th round,

or, to say it differently, to win the i-th round. We do this inductively backwards on

the number of the round. Note, that if the Cop player has a strategy to win every

101

Chapter 4 Comparing Measures

j-th round with k − j + 1 cops, for all j > i, then he just plays this strategy until the

robber either loses or goes to vi. In the last round, there is a vertex vk in the current

strongly connected component, whose removal makes it acyclic. This means, the robber

will finally visit this vertex.

Taking as Gn the complete graph of size n + 1 we get the next proposition.

Proposition 4.0.33. For every n, there exists a directed graph Gn of size n with

ent(Gn) = cr(Gn).

Proposition 4.0.34. There exist a class of graphs with entanglement two and unbounded

cycle rank.

Proof. Consider undirected paths Pn = ({v1, v2, . . . , vn}, {{vi, vi+1} | 1 ≤ i ≤ n − 1})

of length n, for n ≥ 3. For simplicity, we confuse Pn and
←→
Pn. The entanglement of Pn

is 2 for all n. But the cycle rank of Pn is log n. A winning strategy for log n cops in

the Cycle rank Game on Pn is to place the first cop on a “middle” vertex of the path

and then to play in the same way on the subpath where the robber went. On the other

hand, (log n)− 1 cops lose against the robber, because she can always choose the larger

strongly connected component of the remaining graph.

Remark 4.0.35. Instead of Pn we can give even a graph without undirected edges.

Consider the directed path with shortcuts of Proposition 2.1.12 (denote it by P ′
n). We

have seen that the entanglement of it is two. Analogously to 4.0.34 it can be shown that

cr(P ′
n) is also unbounded.

For the proof of the next proposition it suffices to take the directed path with n vertices

that has additionally a self-loop on every vertex.

Proposition 4.0.36. There exists a class of graphs Gn = (V,E) with |V | = n such that

cr(Gn) = n and directed treewidth, DAG-width, Kelly-width, entanglement one.

Recall the definition of clique-width from Section 1.9.

Proposition 4.0.37 ([26]). Let G be a directed graph and let k be a natural number. If

22·tw(G) ≤ k then cw(G) ≤ k.

102

Finally we compare entanglement with pathwidth and directed pathwidth.

Proposition 4.0.38. Let G be a directed graph. Then ent(G) ≤ dpw(G).

Proof. Let (P,X , f) be a path decomposition of G of minimal width k with P = (P,EP)

and P = (p0, . . . , pm). Then the largest bag has size k + 1. The strategy of the Cop

player is to expel the robber from f(p0), then from f(p1) and so on, every time until

the robber proceeds to a bag with a larger index. For that at most k cops are needed

(remember that the robber has to move when it is her turn). She is then captured in

the last bag.

In fact, this bound is tight: we take as Gm the complete graph on m vertices.

Proposition 4.0.39. For all natural m > 0, there exists a directed graph Gm with

ent(Gm) = dpw(Gm) = m.

Proposition 4.0.40. There exist a class of undirected graphs Gm such that, for every

m > 1, ent(
←→
Gm) = m and pw(Gm) = dpw(

←→
G) = 2m.

Proof. Let Gm be the graph Gm = (V,E) consisting of 2m + 2 cliques Ki, for 1 ≤ i ≤

2m + 2, each of size m (we call K2m+2 central and the others peripheral), and 2m + 1

connecting vertices {v1, . . . , v2m+1} such that every vi is connected to every vertex in

K2m+2 and to every vertex in Ki. First, we show that ent(Gm) = m.

ent(Gm) ≤ m. The strategy for the Cop player is the following.

1. Force the robber to the central clique: if she is on a peripheral clique, force her to

leave it using m cops and wait for her to enter the central clique.

2. Place cops on the central clique until the robber goes to a connecting vertex vi.

Place a new cop on it. If she comes back to the centre, fill it further, unless m− 1

cops are already there (then the robber is captured). If the robber goes to Ki,

leave the cop on vi block the way to the centre and use m−1 other cops to capture

the robber in Ki.

ent(Gm) ≥ m. The cliques Ki ∪ {vi} are (m + 1)-cliques, so the robber can escape

m− 1 cops.

103

Chapter 4 Comparing Measures

For the second part of the proof, recall that the pathwidth of an undirected graph is

the minimum number of cops needed to capture a robber in the Pathwidth Game minus

one. The strategy for 2m + 1 cops to capture the robber is to place m of them on the

central clique and then, successively for all 1 ≤ i ≤ 2m + 1, to place a cop on vi and m

cops on Ki. (This strategy is both cop-monotone and robber-monotone.)

Why is the Cop player unable to win with 2m cops? We want to show that he has no

robber-monotone strategy, what would be sufficient ([37]). At some time the Cop player

will have to place m cops on the central clique. At this moment at least m + 1 of the

peripheral cliques, without lost of generality, K1, . . . ,Km+1 are still contaminated. The

cops first have to block every vi, for 1 ≤ i ≤ m + 1, before they can use the cops from

the central clique, because otherwise the robber can return to K2m+2 which contradicts

the robber-monotonicity of the Cop’s strategy. But the Cop player has at the moment

only m free cops, so he is unable to do so.

104

Conclusions

In Section 3.1 we studied entanglement on tournaments and gave lower and upper bounds

for the difference between the size of tournaments and their entanglements.

In Section 3.3.1 we set Kelly-width in relation to entanglement for values at most two.

We compared directed pathwidth and entanglement in Chapter 4 and proved that

entanglement of a graph is always at most its directed pathwidth.

Our main result presented in Sections 3.2 – 3.3.1 are two characterisations of directed

graphs of entanglement two. One of them is a description of a structure (a decomposi-

tion) that the graph should have. From this decomposition we derived an O(n3)-time

algorithm to decide whether a given graph has entanglement at most two.

In Section 3.4 we proposed definitions that generalise those used in the characterisa-

tions in Section 3.2.

We conjectured that at least the first characterisation can be generalised to the case

of an arbitrary k. We stated in Section 3.3.1 that a generalisation of the decomposition

characterisation of entanglement would imply that Kelly-width of a graph are at most

its entanglement plus one.

105

Bibliography

[1] Isolde Adler. Directed tree-width examples. J. Comb. Theory, Ser. B, 97(5):718–

725, 2007.

[2] Stefan Arnborg. Efficient algorithms for combinatorial problems with bounded

decomposability - a survey. BIT, 25(1):2–23, 1985.

[3] Stefan Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding em-

beddings in a k-tree. SIAM J. Algebraic and Discrete Methods, 8:277–284, 1987.

[4] Stefan Arnborg and Andrzej Proskurowski. Linear time algorithms for np-hard

problems restricted to partial k-trees. Discrete Appl. Math., 23(1):11–24, 1989.

[5] Emgad H. Bachoore and Hans L. Bodlaender. A branch and bound algorithm for

exact, upper, and lower bounds on treewidth. In Siu-Wing Cheng and Chung Keung

Poon, editors, AAIM, volume 4041 of Lecture Notes in Computer Science, pages

255–266. Springer, 2006.

[6] Janos Barat. Directed path-width and monotonicity in digraph searching. Graphs

and Combinatorics, 22:161–172(12), June 2006.

[7] Walid Belkhir and Luigi Santocanale. Undirected graphs of entanglement 2. In

Vikraman Arvind and Sanjiva Prasad, editors, FSTTCS, volume 4855 of Lecture

Notes in Computer Science, pages 508–519. Springer, 2007.

[8] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear-time computation of optimal

subgraphs of decomposable graphs. J. Algorithms, 8(2):216–235, 1987.

[9] Dietmar Berwanger, Anuj Dawar, Paul Hunter, and Stephan Kreutzer. Dag-width

and parity games. In Proceedings of the 23rd Annual Symposium on Theoretical

IX

Aspects of Computer Science, STACS 2006, volume 3884 of LNCS, pages 524–536.

Springer-Verlag, 2006.

[10] Dietmar Berwanger and Erich Grädel. Entangelemet - a meausre for the complexity

of directed graphs with applications to logic and games. In Proceedings of LPAR

2004, Montevideo, Uruguay, volume 3452 of LNCS, pages 209–223. Springer-Verlag,

2005.

[11] Dietmar Berwanger, Erich Grädel, and Giacomo Lenzi. The variable hierarchy of

the µ-calculus is strict. Theory of Computing Systems, 40:437–466, 2007.

[12] Dietmar Berwanger and Giacomo Lenzi. The variable hierarchy of the µ-calculus is

strict. In STACS 2005, Proceedings of the 22nd Symposium on Theoretical Aspects

of Computer Science, volume 3404 of LNCS, pages 97–109. Springer-Verlag, 2005.

[13] H. L. Bodlaender. A tourist guide through treewidth. Technical Report RUU-

CS-92-12, Department of Information and Computing Sciences, Utrecht University,

1992.

[14] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of

small treewidth. In STOC, pages 226–234, 1993.

[15] Hans L. Bodlaender. Treewidth: Algorithmic techniques and results. In Igor Privara

and Peter Ruzicka, editors, Proceedings 22nd International Symposium on Mathe-

matical Foundations of Computer Science, MFCS’97, Lecture Notes in Computer

Science, volume 1295, pages 19–36, Berlin, 1997. Springer-Verlag.

[16] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.

Theor. Comput. Sci., 209(1-2):1–45, 1998.

[17] Hans L. Bodlaender. Treewidth: Structure and algorithms. In Giuseppe Prencipe

and Shmuel Zaks, editors, SIROCCO, volume 4474 of Lecture Notes in Computer

Science, pages 11–25. Springer, 2007.

[18] Hans L. Bodlaender, Alexander Grigoriev, and Arie M. C. A. Koster. Treewidth

lower bounds with brambles. In Gerth Stølting Brodal and Stefano Leonardi, ed-

itors, ESA, volume 3669 of Lecture Notes in Computer Science, pages 391–402.

Springer, 2005.

[19] Hans L. Bodlaender and Ton Kloks. Efficient and constructive algorithms for the

pathwidth and treewidth of graphs. J. Algorithms, 21(2):358–402, 1996.

[20] Hans L. Bodlaender and Babette van Antwerpen-de Fluiter. Parallel algorithms for

series parallel graphs and graphs with treewidth two. Algorithmica, 29(4):534–559,

2001.

[21] H.L. Bodlaender. Classes of graphs with bounded tree-width. Technical Report

RUU-CS-86-22, Department of Information and Computing Sciences, Utrecht Uni-

versity, 1986.

[22] H.L. Bodlaender. On disjoint cycles in graphs. Technical Report RUU-CS-90-29,

Department of Information and Computing Sciences, Utrecht University, 1990.

[23] Daniela Bronner and Bernard Ries. An introduction to treewidth. Technical report,

2006.

[24] Bruno Courcelle. The monadic second-order logic of graphs. i. recognizable sets of

finite graphs. Inf. Comput., 85(1):12–75, 1990.

[25] Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable op-

timization problems on graphs of bounded clique-width. Theory Comput. Syst.,

33(2):125–150, 2000.

[26] Bruno Courcelle and Stephan Olariu. Upper bounds to the clique width of graphs.

Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[27] Erik D. Demaine and MohammadTaghi Hajiaghayi. Graphs excluding a fixed minor

have grids as large as treewidth, with combinatorial and algorithmic applications

through bidimensionality. In SODA ’05: Proceedings of the sixteenth annual ACM-

SIAM symposium on Discrete algorithms, pages 682–689, Philadelphia, PA, USA,

2005. Society for Industrial and Applied Mathematics.

[28] L. C. Eggan. Transition graphs and the star-height of regular events. Michigan

Math. J., 10:385–397, 1963.

[29] Vibhav Gogate and Rina Dechter. A complete anytime algorithm for treewidth. In

AUAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intelli-

gence, pages 201–208, Arlington, Virginia, United States, 2004. AUAI Press.

[30] Hermann Gruber and Markus Holzer. Finite automata, digraph connectivity, and

regular expression size. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,

Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP

(2), volume 5126 of Lecture Notes in Computer Science, pages 39–50. Springer,

2008.

[31] D. M. Thilikos H. L. Bodlaender. Treewidth and small separators for graphs with

small chordality. Technical Report UU-CS-1995-02, Department of Information and

Computing Sciences, Utrecht University, 1995.

[32] R. Halin. s-functions for graphs. Journal of Geometry, 8(1):171–186, 1976.

[33] Paul Hunter. Complexity and Infinite Games on Finite Graphs. PhD thesis, Com-

puter Laboratory, University of Cambridge, 2007.

[34] Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions,

games, and orderings. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors,

SODA, pages 637–644. SIAM, 2007.

[35] Thor Johnson, Neil Robertson, Paul D. Seymour, and Robin Thomas. Directed

tree-width. J. Comb. Theory, Ser. B, 82(1):138–154, 2001.

[36] Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and seatching.

Discrete Mathematics, 55(2):181–184, 1985.

[37] M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theor. Comput.

Sci., 47(2):205–218, 1986.

[38] Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture

Notes in Computer Science. Springer, 1994.

[39] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and mono-

tonicity in digraph searching. CoRR, abs/0802.2228, 2008.

[40] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.

The complexity of searching a graph. J. ACM, 35(1):18–44, 1988.

[41] Daniel Meister, Jan Arne Telle, and Martin Vatshelle. Characterization and recog-

nition of digraphs of bounded kelly-width. In Andreas Brandstädt, Dieter Kratsch,

and Haiko Müller, editors, WG, volume 4769 of Lecture Notes in Computer Science,

pages 270–279. Springer, 2007.

[42] Jan Obdržálek. Dag-width: connectivity measure for directed graphs. In SODA,

pages 814–821. ACM Press, 2006.

[43] Jan Obdrzálek. Clique-width and parity games. In Jacques Duparc and Thomas A.

Henzinger, editors, CSL, volume 4646 of Lecture Notes in Computer Science, pages

54–68. Springer, 2007.

[44] B. Reed. Introducing directed tree width. In H. J. Broersma, U. Faigle, C. Hoede,

and J. L. Hurink, editors, Electronic Notes in Discrete Mathematics, volume 3.

Elsevier, 2000.

[45] B. A. Reed. Tree width and tangles: a new connectivity measure and some appli-

cations. In Surveys in combinatorics, 1997 (London), volume 241 of London Math.

Soc. Lecture Note Ser., pages 87–162. Cambridge Univ. Press, Cambridge, 1997.

[46] Bruce A. Reed. Finding approximate separators and computing tree width quickly.

In STOC ’92: Proceedings of the twenty-fourth annual ACM symposium on Theory

of computing, pages 221–228, New York, NY, USA, 1992. ACM.

[47] Neil Robertson and P. D. Seymour. Graph minors. xiii: the disjoint paths problem.

J. Comb. Theory Ser. B, 63(1):65–110, 1995.

[48] Neil Robertson and Paul D. Seymour. Graph minors. i. excluding a forest. J. Comb.

Theory, Ser. B, 35(1):39–61, 1983.

[49] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of

tree-width. J. Algorithms, 7(3):309–322, 1986.

[50] Neil Robertson, Paul D. Seymour, and Robin Thomas. Quickly excluding a planar

graph. J. Comb. Theory, Ser. B, 62(2):323–348, 1994.

[51] Mohammad Ali Safari. D-width: A more natural measure for directed tree width.

In Joanna Jedrzejowicz and Andrzej Szepietowski, editors, MFCS, volume 3618 of

Lecture Notes in Computer Science, pages 745–756. Springer, 2005.

[52] Mohammad Ali Safari. D-width, metric embedding, and their connections. PhD

thesis, Vancouver, BC, Canada, Canada, 2007.

[53] Paul D. Seymour and Robin Thomas. Graph searching and a min-max theorem for

tree-width. J. Comb. Theory, Ser. B, 58(1):22–33, 1993.

[54] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146–160, 1972.

Appendix A

Relations between complexity measures

of graphs

We give a schematic overview of relations between complexity measures we discuss. In

Figure A the notation is the following. Here A and B denote measures, f, g : ω → ω are

functions, k is a natural number and G is a graph.

Notation Explanation

A f(x)6
g(x) B for all G, f(A(G)) 6 g(B(G))

A f(x)>
g(x) B for all G, f(A(G)) > g(B(G))

A f(x)66
g(x) B for all k there exists G with f(A(G)) > k · g(B(G))

A f(x)6>
g(x) B for all k there exists G with f(A(G)) < k · g(B(G))

n number of vertices in G

Th. Theorem

P. Proposition

Cor. Corollary

At the subscripts given in the table above we write a reference to a source in the Bib-

liography in squared brackets. References on propositions in the text are given without

brackets. Basic directed measures are given in blue colour. Abbreviations used in the

following figure are given in the next table.

XV

Notation Explanation

extdtw extended directed treewidth

augD-width augmented D-width

DAGw DAG-width

nmKw the least number of cops needed to non-monotonely win Kelly Game

pw pathwidth

nmDAGw the least number of cops needed to non-monotonely win DAG Game

tw treewidth

dpw directed pathwidth

D-width D-width

ent entanglement

dtwG the least number of cops to win Directed treewidth Game

cr cycle rank

dtw directed treewidth

Kw Kelly-width

cw clique-width

3x+1

3x-1

4

4
x3

2
x 7

x
 (

n
)

lo
g

x+1

2x
4.0.39

4.0.37

x+
1

x
(

 n

)
lo

g

2
 +

1
2
x
+

2

dtwG

DAGw

dtw

D−width

Kw

augD−width

extdtw nmKw

nmDAGw
2
x
-1

x+
1

tw

ent

cr

dpw

[9], P. 3.3

[9], P. 5.3

[9], P. 5.3

[9], P. 5.3

[9], P. 5.3

[9], P. 5.3

[9], P. 5.3

[10], Th. 8

[10], Th. 7

x+1

4.0.33

[9], P. 5.1

[9], P. 5.1

[16], Cor. 24

pw
x-1 cw

[25]

[26], Th. 5.1
[34], Th. 29

[39], Th. 3.1

[39], Th. 3.2

[34], Th. 20

[34], Th. 22

[34], Th. 28
[35], P. 3.3

[35]

[51], Cor. 1

[51], Cor. 3

F
ig

u
r
e

A
.1

:
R

elation
s

b
etw

een
grap

h
com

p
lex

ity
m

easu
res

of
grap

h
s.

	List of Figures
	Measures of Graph Complexity
	Preliminaries
	A framework to describe games
	Treewidth
	Pathwidth
	Directed treewidth
	DAG-width
	Directed pathwidth
	Kelly-width
	Other measures for directed graphs

	Properties of Measures
	Monotonicity
	Havens and brambles
	Complexity of computing measures
	Solving difficult problems for bounded measure

	Entanglement
	Entanglement of special graph classes
	Modular entanglement
	Directed graphs of entanglement 2
	Towards decomposing graphs of entanglement k

	Comparing Measures
	Bibliography
	Relations between complexity measures of graphs

