Parity Games with Imperfect Information and Complexity Measures

Roman Rabinovich

22.04.2011
Parity Games with Imperfect Information

Parity games: \((V, V_0, v, (E_a)_{a \in A}, \Omega)\)

Indistinguishable vertices build an information set.
Parity Games with Imperfect Information

- Parity games:
 \((V, V_0, v, (E_a)_{a \in A}, \Omega)\)
- **Indistinguishable** vertices build an information set.
Powerset Construction (Reif 1984)

Information tracking with perfect recall:

\[\text{Theorem (Reif)} \]

Player 0 wins from \(v \) in \(G \) \(\implies \) Player 0 wins from \(\{ v \} \) in \(G_{\text{perf}} \).
Powerset Construction (Reif 1984)

Information tracking with perfect recall:

\[\text{Player 0 wins from } v \text{ in } G^{\text{imp}} \iff \text{Player 0 wins from } \{v\} \text{ in } G^{\text{perf}}. \]
Motivation:

- solve parity games in P despite imperfect information,
- but:
 - not known whether PARITY is in P
 - the powerset graph can be exponentially larger

Hope: on **simple** graphs PARITY in P (like without imperfect information)

⇒ Need to measure **complexity** of a graph.
Tree-width: Game Theoretical Definition

Game rules:
- k Cops, one Robber
- Robber runs along cop free paths
- Cops fly
- Cops want to capture Robber

Tree-width = minimal number of cops monotonously capturing Robber - 1

Rabinovich – Parity Games, Imperfect Information, Complexity Measures
Tree-width: Game Theoretical Definition

Game rules:

- \(k \) Cops, one Robber
- Robber runs along cop free paths
- Cops fly
- Cops want to capture Robber

Tree-width = minimal number of monotonously capturing Robber − 1
Tree-width: Game Theoretical Definition

Game rules:

- k Cops, one Robber
- Robber runs along cop free paths
- Cops fly
- Cops want to capture Robber

Tree-width = minimal number of cops monotonously capturing Robber - 1
Tree-width: Game Theoretical Definition

Game rules:
- **\(k \) Cops, one Robber
- Robber runs along cop free paths
- Cops fly
- Cops want to capture Robber
Tree-width: Game Theoretical Definition

Game rules:
- \(k \) Cops, one Robber
- Robber runs along cop free paths
- Cops fly
- Cops want to capture Robber

Tree-width = minimal number cops monotonously capturing Robber – 1
On Directed Graphs

- **tree-width** (forget directions of edges) ⊕ (Obdržálek 2003)
- directed tree-width ?
- **DAG-width** ⊕ (Berwanger et al. ’06; Obdržálek ’06)
- Kelly-width ⊕ (Kreutzer, Hunter 2008)
- entanglement ⊕ (Berwanger, Grädel 2005)
- ...
- no game characterisation:
 - clique-width
 - rank-width
 - bi-rank-width
- ...

Rabinovich – Parity Games, Imperfect Information, Complexity Measures
DAG Game

- DAG-width game (Berwanger et al. 2006; Obdržálek 2006)
 - like before, but Robber runs along directed paths (+ monotonicity)
 - monotonicity costs: positive (Kreutzer, Ordyniak, 2008)
 - DAG-width bounded \Rightarrow PARITY in P

Interesting questions (asked a year ago):
- Monotonicity bounded? (most interesting) — Weak DAG games, Kaiser, Puchala, R.
- Many more offhanded cops? — Yes, Kaiser, Puchala, R.
- Many more cops if many Robbers? — Very strong conjecture: Yes, Puchala, R., in this talk.
Unbounded Imperfect Information

(General Case)
Measures Grow Exponentially

Theorem (Puchala, R.)

 Exists G^{imp} of small complexity, but G^{perf} of exponential complexity (w.r.t. all our measures).

- very large information sets

Theorem (Puchala, R.)

Reachability: EXPTIME-hard even if entanglement ≤ 2 and directed path-width ≤ 2. (Based on original idea for hardness by Reif.)
Measures Grow Exponentially

Theorem (Puchala, R.)

Exists G^{imp} of small complexity, but G^{perf} of exponential complexity (w.r.t. all our measures).

- very large information sets

Theorem (Puchala, R.)

Reachability: EXPTIME-hard even if entanglement ≤ 2 and directed path-width ≤ 2. (Based on original idea for hardness by Reif.)

- further restrictions needed
- natural approach: bound size of information sets
Bounded Imperfect Information
General Procedure

- show for appropriate \oplus measures:

Lemma

$\text{measure}(G^{imp}) \leq k$, $|\text{information sets}| \leq r$

$\Rightarrow \text{measure}(G^{perf}) \leq f(k, r)$

- then
 - if $\text{measure}(G^{imp}) \leq k$ and $|\text{information sets}| \leq r$
 - $(\Rightarrow |G^{perf}| \text{ polynomial in } |G^{imp}|)$

- $\Rightarrow \text{PARITY in P}$
How Measures Behave (Puchala, R.)

- **tree-width**: \(\Theta \) \(\text{treewidth}(G^{imp}) = 2 \), but \(\text{treewidth}(G^{perf}) \) unbounded
 - **still**: \(\Theta \) \(\text{treewidth}(G^{imp}) \) bounded \(\Rightarrow \) \(\text{DAG}(G^{perf}) \) bounded
- **entanglement**: \(\Theta \) \(\text{entanglement}(G^{imp}) = 2 \), but \(\text{entanglement}(G^{perf}) \) unbounded
- **DAG-width**:
 - **non-monotone** (not appropriate): \(\Theta \) \(f(k, r) = k \cdot r \cdot 2^{r-1} \)
 - if every information set is an SCC: \(\Theta \), \(f(k, r) = k \cdot r^2 \cdot 2^{r-1} \)
 - if every \(|\text{information set}| \leq 2\): \(\Theta \), \(f(k, r) \) bounded
 - **in general**: \(\Theta \) a newer result: \(f(k, r) = kr \cdot 2^{r-1} \)
- **Kelly-width**: ?
- **directed tree-width**: ? (idea doesn’t work)
General Proof Idea for Boundedness of Measures

\[\{v\} \]

\[\{v_1, \ldots, v_r\} \]

\[\text{nm-DAG-width: } f(k, r) = k \cdot r \cdot 2^{r-1} \]
General Proof Idea for Boundedness of Measures

\[\{v_1, \ldots, v_r\} \]

\[\text{nm-DAG-width: } f(k, r) = k \cdot r \cdot 2^{r-1} \]
General Proof Idea for Boundedness of Measures

\[\{v\} \]

\[\{v_1, \ldots, v_r\} \]

\[\text{nm-DAG-width: } f(k, r) = k \cdot r \cdot 2^r - 1 \]
General Proof Idea for Boundedness of Measures
General Proof Idea for Boundedness of Measures

\[
m\text{-DAG-width: }\quad f(k, r) = k \cdot r \cdot 2^{r-1}
\]
New DAG-Game: Multiple Robbers

- Cops must capture \(r \) Robbers.
- Robbers can jump:

- Monotonicity:
 no robber can access a vertex that was inaccessible to all robbers
For Tree-width

k cops win Tree-width Game

\iff forget directions of edges and win

Stronger assumption: robber has more paths to run!
For Tree-width

\(k \) cops win Tree-width Game

\[\iff \text{forget directions of edges and win} \]

Stronger assumption: robber has more paths to run!

Theorem

For tree-width:

If \(k \) cops \textit{monotonously} win against one robber

then \(k \cdot r \) cops \textit{monotonously} win against \(r \) robbers.
For Tree-width

\(k \) cops win Tree-width Game

\[\Leftrightarrow \text{forget directions of edges and win}\]

Stronger assumption: robber has more paths to run!

Theorem

For tree-width:

If \(k \) cops \textit{monotonously} win against one robber
then \(k \cdot r \) cops \textit{monotonously} win against \(r \) robbers.
Summing up for Tree-width

Theorem

If $|\text{information set}| \leq r$ and tree-width of $G \leq k$ then PARITY is efficiently solvable on G.

What doesn’t work for DAG-width?
Summing up for Tree-width

Theorem

If $|\text{information set}| \leq r$ and tree-width of $G \leq k$ then PARITY is efficiently solvable on G.

What doesn’t work for DAG-width?
Problem with Monotonicity
Problem with Monotonicity
Problem with Monotonicity
Problem with Monotonicity
Place Cops only Inside?

Theorem (Kaiser, Puchala, R.)

There is a family of graphs such that

- Four cops capture the robber.
- Unboundedly many cops needed if only inside the component.
Place Cops only Inside?

Theorem (Kaiser, Puchala, R.)

There is a family of graphs such that

- Four cops capture the robber.
- Unboundedly many cops needed if only inside the component.
Solving Monotonicity Problem for r Robbers
Solving Monotonicity Problem for \(r \) Robbers
Solving Monotonicity Problem for r Robbers
Solving Monotonicity Problem for r Robbers
Solving Monotonicity Problem for \(r \) Robbers
Solving Monotonicity Problem for r Robbers
Solving Monotonicity Problem for r Robbers
Solving Monotonicity Problem for r Robbers
Thank you for your attention!