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Theorem
Normal form for FO+slvg.
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Intra-definability: solvability as a logical operator

SIV(X)gafi)-[(PM(i)gaf% (Pb(i, f)» ((pR» Py (P-)(f1>f'2>f3) ]

_— / |

coefficient matrix solution vector finite ring

J

FO+slv : First-order logic closed under solvability quantifier

FO+slvg : Solvability quantifier over a fixed finite field F
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Proof illustration: (nesting of solvability)
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Conclusion and outlook

Theorem

Every FO+slve-formula is equivalent to an FO+slvg-formula

sIv()Z,Q).[(pM, 1], with @ quantifier-free.

Theorem

FP-red.
k-ideal rings — cyclic groups of prime power order.

Outlook: Permutation group membership (GM)

Given: Permutations 711,...,7T and 7t on a set A

Question: Is 7€ (mMy,...,m) < SA?

Slv(D) FO-reduetion o (Cayley’s theorem)



