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Abstract. We study an extension of monadic second-order logic of order with the uncountability
quantifier “there exist uncountably many sets”. We prove that, over the class of finitely branching
trees, this extension is equally expressive to plain monadic second-order logic of order.

Additionally we find that the continuum hypothesis holds for classes of sets definable in monadic
second-order logic over finitely branching trees, which is notable for not all of these classes are
analytic.

Our approach is based on Shelah’s composition method and uses basic results from descriptive set
theory. The elimination result is constructive, yielding a decision procedure for the extended logic.
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1. Introduction

Monadic second-order logic of order, MLO, extends first-order logic by allowing quantification over
subsets of the domain. The binary relation symbol < and unary predicate symbols Pi are its only non-
logical relation symbols. MLO plays a very important role in mathematical logic and computer science.
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The fundamental connection between MLO and automata was discovered independently by Büchi, Elgot
and Trakhtenbrot [7, 9, 23, 24] when the logic was proved to be decidable over the class of finite linear
orders and over (ω,<). Moving away from linear orders, Rabin proved that the monadic second-order
theory of the full binary tree, S2S for short, is decidable [17]. This celebrated theorem, obtained using
the notion of tree automata, is often referred to as “the mother of all decidability results”.

First-order cardinality quantifiers, studied by Mostowski and also by Magidor and Malitz in a topo-
logical setting, count the number of elements satisfying a given property inside a structure. Extensions
of first-order logic with these quantifiers have been widely investigated over various natural classes of
structures with respect to both decidability and the possibility of elimination. See for instance [4].

Second-order cardinality quantifiers in MLO, which we study in this paper, have been mostly con-
sidered in the context of automata and automatic structures [18]. The first observation of this nature,
made in [5], was that the quantifier “there exist infinitely many words such that” can, in a certain sense,
be eliminated on all automatic structures. More precisely, via the standard correspondence of automata
with MLO, this amounts to eliminating the quantifier “there exist infinitely many (finite) sets such that”
from weak MLO over (ω,<). The case of full MLO and the quantifier “there exist uncountably many
sets such that” over (ω,<) corresponds to injectively presented ω-automatic structures and was solved
in [13]. The structural properties of ω-regular languages identified in the latter work and its sequels have
provided important insights into ω-automatic structures.

Motivated by previous work on (ω,<) that used word automata, we investigate second-order cardi-
nality quantifiers over finitely branching trees, in particular, over the binary tree with arbitrary labelings,
which corresponds to tree automata with additional parameters [8]. The parameterless question was pre-
viously studied by Niwiński, who in [15] proved that a regular language of infinite trees is uncountable
if and only if it contains a non-regular tree.

We investigate over trees the expressive power of the extension of MLO by cardinality quantifiers
∃κX , with the interpretation “there exist at least κmany subsetsX such that”, for κ ∈ {ℵ0,ℵ1, 2ℵ0}. We
denote this logic as MLO(∃ℵ0 , ∃ℵ1 ,∃2ℵ0 ) and throughout the paper by trees we mean finitely-branching
trees every branch of which is either finite or of order type ω. Our main results are summarized in the
next two theorems.

Theorem 1.1. For every MLO(∃ℵ0 ,∃ℵ1 , ∃2ℵ0 ) formula ϕ(Y ) there exists an MLO formula ψ(Y ), com-
putable from ϕ, that is equivalent to ϕ(Y ) over trees.

In addition to the above, the reduction will show that over trees the quantifiers ∃ℵ1X and ∃2ℵ0X
are equivalent, i.e. that the continuum hypothesis holds for MLO-definable families of sets. Though not
surprising, this is not obvious for it is known that in MLO one can define non-analytic classes of sets [16]
and that CH is independent of ZFC already for co-analytic sets [14].

Theorem 1.2. On trees ∃ℵ1Xϕ(X,Y ) is equivalent to ∃2ℵ0Xϕ(X,Y ) for every MLO formulaϕ(X,Y ).

Our results trivially extend to cardinality quantifiers ∃ℵ0X , ∃ℵ1X and ∃2ℵ0X counting (finite) tu-
ples of sets using the simple fact that ∃κ (U, V ) ϕ ≡ ∃κ U

(
∃V ϕ

)
∨ ∃κ V (∃U ϕ) for any cardinal

κ ≥ ℵ0. Our theorems also supersede the previously mentioned results from [13] and generalize the
theorem of Niwiński [15], which states that over the full binary tree the validity of ∃ℵ1X ϕ(X) is decid-
able and equivalent to that of ∃2ℵ0X ϕ(X) for every MLO-formula ϕ(X). Niwiński’s theorem follows
form the parameterless instances of our theorems. Certain structural insight gained from some of our
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intermediate lemmas might be of independent interest. More specifically we show that counting sets
of nodes satisfying an MLO-formula on a tree can be effectively reduced to a combination of counting
branches satisfying a certain MLO-formula, and counting chains with certain MLO-definable properties
on individual branches. While the latter essentially amounts to dealing with the special case treated in
[13], relying on basic results from descriptive set theory we show that counting of branches can also be
formalized in MLO. An extended abstract of this paper was published in [3].

Organization

We begin by noting in Section 2 some observations regarding the second-order infinity quantifier ∃ℵ0X .
In Section 3 we fix terminology and notation on trees and recollect some essentials of Shelah’s compo-
sition method for MLO. The rest of the paper is devoted to the proof of Theorems 1.1 and 1.2.

In Section 4 we start by reducing the question of the existence of uncountably many setsX satisfying
a given MLO formula ϕ(X,Y ) with parameters Y over a tree to a disjunction of three conditions: A, B
and C. Condition A deals with MLO-properties of antichains; Condition C deals with a simpler version
of the uncountability quantifier, namely with the quantifier “there exist uncountably many branches”.
Ultimately, condition B is concerned with the cardinality of chains with a specific MLO property on
individual branches. It is postulated first in a broader form for deductive advantages.

In Section 5, we show that Condition B can be significantly weakened assuming that conditions
A and C are not satisfied. Relying on the elimination results on (ω,<) from [13], we formalize this
weakened form of Condition B in MLO and prove, that it guarantees the existence of continuum many
sets satisfying ϕ.

In Section 6 we consider Condition C in the special case of the complete binary tree. The key theorem
that we prove there, which might be of independent interest, is that MLO-definable sets of branches of
the binary tree are Borel. This opens the way to formalizing Condition C in plain MLO, first over the
binary tree and finally, in Section 7, over arbitrary trees.

The proofs of our main theorems are summarized in Section 8.

2. Infinity quantifier

With regard to the second-order infinity quantifier ∃ℵ0X the following observations are worth making.
While it clearly cannot be eliminated over all structures, it is easily expressible in monadic second-order
logic (MSO) with the auxiliary predicate Inf(Z) asserting that the set Z is infinite, or equivalently, with
the help of the first-order infinity quantifier ∃ℵ0x.

Proposition 2.1. For every MSO(∃ℵ0) formula ϕ(Y ) there exists an MSO(Inf) formula ψ(Y ) equiva-
lent to ϕ(Y ) over all structures.

Proof:
Observe that the following are equivalent:

(1) There are only finitely many X which satisfy ϕ(X,Y ).

(2) There is a finite set Z such that any two distinct X1, X2 which both satisfy ϕ(Xi, Y ) differ on Z, i.e.

∃Z
(
¬Inf(Z) ∧ ∀X1X2

(
ϕ(X1, Y ) ∧ ϕ(X2, Y ) ∧X1 6= X2 → ∃z ∈ Z (z ∈ X1 ↔ z 6∈ X2)

))
.
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Item (2) implies (1) as a collection of sets pairwise differing only on a finite set Z has cardinality at
most 2|Z|. Conversely, if X1, . . . , Xk are all the sets that satisfy ϕ(Xi, Y ), then choose for every pair of
distinct sets Xi, Xj an element zi,j in the symmetric difference of Xi and Xj and define Z as the set of
these chosen elements. ut

Over finitely branching trees, Inf(Z) can of course be expressed in MLO. Indeed, with König’s
Lemma in mind, Z is infinite iff there is no downward closed set which includes Z and does not include
an infinite, i.e., unbounded branch.

Corollary 2.1. MLO(∃ℵ0) collapses effectively to MLO over (finitely branching) trees.

Observe that the converse of Proposition 2.1 holds as well. In fact, the predicate Inf(Z) can be
defined over all structures by the formula ∃κY (Y ⊆ Z) for any ℵ0 ≤ κ ≤ 2ℵ0 . Therefore, by Propo-
sition 2.1, any of the quantifiers ∃κY with ℵ0 < κ ≤ 2ℵ0 can be used to define ∃ℵ0X over arbitrary
structures.

3. Preliminaries

For a given set A we denote by A∗ the set of all finite sequences of elements of A, by Aω the set
of all infinite sequences of elements of A (i.e. functions ω → A), and A≤ω = A∗ ∪ Aω. For any
sequence s = s0s1s2 . . . ∈ A≤ω we denote by |s| the length of s (either a natural number or ω) and by
s|n = s0 . . . sn−1 the finite sequence composed of the first n elements of s, with s|0 = ε, the empty
sequence. We write s[n] for the (n+1)st element of s (we count from 0), so s[n] = sn for n ∈ N. Given
a finite sequence s and a sequence t ∈ A≤ω we denote by s · t (or just st) the concatenation of s and t.
Moreover, we write s � t if s is a prefix of t, i.e. if there exists a sequence r such that t = sr. A subset
B of A≤ω is said to be prefix-closed if for every t ∈ B and s � t it holds that s ∈ B.

3.1. Trees

For a number l ∈ N, l > 0, an l-tree is a structure T = (T,<, P1, . . . , Pl), where the Pi’s are unary
predicates and < is the irreflexive and transitive binary ancestor relation with a least element called the
root of T and such that for every v ∈ T the set {u ∈ T | u < v} of ancestors of v is finite and linearly
ordered by < and the number of v ∈ T with at most n ancestors is finite for every natural n. Elements
of a tree are referred to as nodes, maximal linearly ordered sets of nodes are called branches, ancestor-
closed and linearly ordered sets of nodes are called paths, whereas chains are arbitrary linearly ordered
subsets. An antichain is a set of pairwise incomparable nodes. Given a node v, the subtree of T rooted
in v is obtained by restricting the structure to the domain Tv = {u ∈ T | u ≥ v} and is denoted Tv.

Given a finite setA, we denote by T(A) the full tree overA, which is a structure with the universeA∗,
unary predicates Pa = A∗a for each a ∈ A, and < interpreted as the prefix ordering. For finite A with
|A| = n, this structure is axiomatizable in MLO and its MLO theory is essentially the same as SnS, the
monadic second-order theory of n successors (modulo trivial MLO-interpretations). We identify a path
B of T(A) with the sequence β = a0a1a2 . . . ∈ A≤ω such that B = {a0 . . . as | s ≤ |β|}. Conversely,
given a sequence β ∈ A≤ω we write Pref(β) for the corresponding path B.

Ordered sums of trees are defined as follows.
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Definition 3.1. (Tree sum)
Let l > 0, I = (I,<I) be an unlabeled tree and let Ti = (Ti, <

i, P i1, . . . , P
i
l ) be an l-tree for each i ∈ I .

The tree sum of (Ti)i∈I, denoted
∑

i∈I Ti, is the l-tree

T =
( ⋃
i∈I
{i} × Ti , <T,

⋃
i∈I
{i} × P1

i, . . . ,
⋃
i∈I
{i} × Pli

)
,

where (i, a) <T (j, b) for i, j ∈ I , a ∈ Ti, b ∈ Tj iff:

i <I j and a is the root of Ti, or i = j and a <i b .

Unless explicitly noted, we will not distinguish between Ti and the isomorphic subtree {i} × Ti of T.

A particular special case of the sum we will be using is when the index structure I consists of a
single branch. Let (I,<) be a linear order, which is finite or isomorphic to ω, and let 〈Ti | i ∈ I〉 be an
I-indexed sequence of l-trees. Then the sum T =

∑
i∈I Ti is well defined, and (I,<) forms a path (not

necessarily maximal) in T.

3.2. MLO and the composition method

We will work with labeled trees in the relational signature {<,P1, . . . , Pl} where < is a binary rela-
tion symbol denoting the ancestor relation of the tree, and the Pi’s are unary predicates representing a
labeling.

Monadic second-order logic of order, MLO for short, extends first-order logic by allowing quantifi-
cation over subsets of the domain. MLO uses first-order variables x, y, . . . interpreted as elements, and
set variables X,Y, . . . interpreted as subsets of the domain. Set variables will always be capitalized to
distinguish them from first-order variables. The atomic formulas are of the form “x < y”, “x ∈ Pi” or
“x ∈ X”. All other formulas are built from the atomic ones by applying Boolean connectives and the
universal and existential quantifiers for both kinds of variables. Concrete formulas will be given in this
syntax, taking the usual liberties and short-hands, such as X ∪ Y,X ∩ Y,X ⊆ Y , guarded quantifiers
and relativization of formulas to a set.

The quantifier rank of a formula ϕ, denoted qr(ϕ), is the maximum depth of nesting of quantifiers
in ϕ. For fixed n and l we denote by Formn,l the set of formulas of quantifier depth ≤ n and with free
variables amongX1, . . . , Xl. Let n, l ∈ N and T1,T2 be l-trees. We say that T1 and T2 are n-equivalent,
denoted T1 ≡n T2, if for every ϕ ∈ Formn,l, T1 |= ϕ iff T2 |= ϕ.

Clearly,≡n is an equivalence relation. For any n ∈ N and l > 0, the set Formn,l is infinite. However,
it contains only finitely many semantically distinct formulas, so there are only finitely many ≡n-classes
of l-structures. In fact, we can compute representatives for these classes as follows.

Lemma 3.1. (Hintikka Lemma [11])
For n, l ∈ N, we can compute a finite set Hn,l ⊆ Formn,l such that:

– For every l-tree T there is a unique τ ∈ Hn,l such that T |= τ .

– If τ1, τ2 ∈ Hn,l and τ1 6= τ2 then τ1 ∧ τ2 is unsatisfiable.

– If τ ∈ Hn,l and ϕ ∈ Formn,l, then either τ |= ϕ or τ |= ¬ϕ. Furthermore, there is an algorithm
that, given such τ and ϕ, decides which of these two possibilities holds.
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Elements of Hn,l are called (n, l)-Hintikka formulas.

Given an l-tree T we denote by Tpn(T) the unique element of Hn,l satisfied in T and call it the
n-type of T. Thus, Tpn(T) effectively determines which formulas of quantifier-depth ≤ n are satisfied
in T. We sometimes speak of the n-type of a tuple of subsets V = V1, . . . , Vm of a given l-tree T. This is
synonymous with the n-type of the (l +m)-tree (T, V ) obtained by expansion of T with the predicates
Pl+1, . . . , Pl+m interpreted as the sets V1, . . . , Vm. This type will be denoted by Tpn(T, V ) and often
referred to as an n-type in m variables, whereby the n-type of the (l + m)-tree (T, V ) is understood.
To denote the n-type of V restricted to a substructure T′ ⊆ T we simply write Tpn(T′, V ) instead of
Tpn(T′, V ∩ T′).

The essence of the composition method is that certain operations on structures, such as disjoint union
and certain ordered sums, can be projected to n-types. A general composition theorem for MLO from
which most others follow is due to Shelah [19]. In this paper we use the following form of composition,
a more detailed presentation of the method can be found in [10, 21].

Theorem 3.1. (Composition Theorem for Trees)
For every MLO-formula ϕ(X) in the signature of l-trees having m free variables and quantifier rank n,
and given the enumeration τ1(X), . . . , τk(X) of Hn,l+m, there exists an MLO-formula θ(Q1, . . . , Qk)
computable from ϕ and such that for every tree I = (I,<I) and family {Ti | i ∈ I} of l-trees and
subsets V1, . . . , Vm of

∑
i∈I Ti,∑

i∈I
Ti |= ϕ(V ) ⇐⇒ I |= θ(Q1, . . . , Qk)

where Qr = QI;Vr = {i ∈ I | Tpn(Ti, V ) = τr} for each 1 ≤ r ≤ k.

4. D-nodes versus U-nodes and relevant branches

A tree segment, or interval, of an l-tree is a connected and convex set I of nodes, i.e. such that for every
u,w ∈ I if u and w are incomparable, then their greatest common ancestor is in I , and if u < w then for
every u < v < w also v ∈ I . Every tree segment has a minimal element and every subtree Tz of a tree
T is a tree segment. More generally, the summands Ti of any tree sum T =

∑
i∈I Ti are tree segments

of T. The terms ‘interval’ and ‘tree segment’ are used interchangeably.
We denote by T|I the restriction of an l-tree T to the interval I . Alternatively, given a node z and a set

Z of nodes of T we use the notation Tz\Z for the restriction of T to the tree segment Tz\(
⋃
w∈Z,z<w Tw).

Any interval I with a minimal element z can be written in the form Tz\Z , whereZ = {u | u ≥ z∧u 6∈ I}.
In particular, if B is a branch, v, w ∈ B such that w is the immediate successor of v on B, then
Tv\B = Tv \ Tw. These notations are schematically depicted in Figure 1.

Consider an MLO formula ϕ(X,Y ) of l-trees. To eliminate a single occurrence of the uncountability
quantifier from ∃ℵ1X ϕ(X,Y ) over l-tree T we will make extensive use of the following notions for
intervals. For the rest of this section we fix ϕ(X,Y ): an MLO formula of l-trees with 1 + m free
variables – of which Y = (Y1, . . . , Ym) will often be regarded as parameters – and of quantifier rank n.



V. Bárány, Ł. Kaiser, A. Rabinovich / Expressing cardinality quantifiers in MLO over trees 1007

T
v•

Tv

T
v•

w
•u

•
Tv\{u,w}

T
v•

w
•

Tv\B B

Figure 1. A subtree Tv and tree segments Tv\{u,w} and Tv\B .

Definition 4.1. Let T be an l-tree, X,Y subsets such that T |= ϕ(X,Y ), and let I be an interval of T.

(1) We say that I is a U-interval for ϕ, X , Y whenever X ∩ I is the unique subset of its type on T|I .
More precisely, if T|I |= ∀Z τ(Z, Y )→ Z = X , where τ(X,Y ) is the n-type of (T, X, Y )|I .

(2) I is a D-interval for ϕ, X , Y iff it is not a U-interval.

(3) In the special case of I = {u | u ≥ z} we say that the subtree Tz is a U-tree or D-tree, respectively,
and further say that z is a U-node or D-node for ϕ,X, Y .

(4) The set of D-nodes for ϕ,X, Y is denoted D(X).

(5) An infinite path P is called a D-path for ϕ,X, Y if every v ∈ P is a D-node for ϕ,X, Y . That is if
P ⊆ D(X).

The name “U-interval” attests to the fact that the set X in question is uniquely determined by its
type on a given interval, as opposed to “D-intervals” offering two (or more) distinct choices for X with
the same type on the interval, thus (at least) doubling the total number of choices for X over the entire
domain. Whenever ϕ and Y are clear from the context we will write e.g. “D-interval for X” instead of
“D-interval for ϕ,X, Y ”, and similarly for the other notions above.

It is worth noting that each set D(X) is prefix-closed since whenever Tv is a D-tree and u < v, then
Tv is a subtree of Tu and hence, by composition, Tu is a D-tree as well. Thus D(X) induces a tree
whose infinite paths are precisely the D-paths for X .

Each of the notions introduced in Definition 4.1 can be formalized in MLO. Let us start by con-
structing the formula DINTϕ(I,X, Y ), expressing that I is a D-interval for ϕ,X, Y . By Lemma 3.1,
the set of n-types Hn,l+m+1 is finite and can be computed. Take the formula

ψeqtp(X,Z, Y ) =
∧

τ∈Hn,l+m+1

τ(X,Y )↔ τ(Z, Y )

expressing that X and Z have the same n-type (on the tree at large), and let ψrel
eqtp(X,Z, Y , I) be the

relativization of ψeqtp(X,Z, Y ) to an interval I , thus asserting that X and Z have the same n-type on I .
DINTϕ(I,X, Y ) can now be written as

ϕ(X,Y ) ∧ ∃Z(ψrel
eqtp(X,Z, Y , I) ∧ X ∩ I 6= Z ∩ I) .
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(A)

. . .
(B) (C)

Figure 2. The three conditions.

Using DINTϕ(I,X, Y ) one can build formulas DNODEϕ(v,X, Y ) and DPATHϕ(P,X, Y ) express-
ing, respectively, that v is a D-node and that P is a D-path for ϕ,X, Y ; and also DSETϕ(D,X, Y )
which holds iff D = D(X).

The following lemma is the first step in eliminating the ∃ℵ1 quantifier from MLO over trees. The
three cases are depicted in Figure 2.

Lemma 4.1. Let T be an l-tree and ϕ(X,Y ) an MLO-formula in the signature of l-trees. Then, for
every tuple of subsets V of T,

T |= ∃ℵ1X ϕ(X,V )

if and only if one of the following conditions is satisfied.

A. There is a setU satisfying T |= ϕ(U, V ) and there is an infinite antichainA of D-nodes for ϕ,U, V .

B. There is an infinite branch B, which is a D-path for uncountably many U satisfying T |= ϕ(U, V ).

C. There are uncountably many branches B in T, each of which is a D-path for some U satisfying
T |= ϕ(U, V ).

Proof:
Note that over finitely branching trees, where König’s Lemma applies, condition A implies condition B
and is enlisted here for deductive reasons only.

On the one hand, A is arguably the most natural and easily expressible condition sufficient for the
existence of continuum many sets U satisfying T |= ϕ(U, V ). To see that, let U and A be as in A and let
I = {w ∈ T | ¬∃v (v ∈ A ∧ v < w) } be the set of all nodes which are not below any of the nodes of
A. Then T can be decomposed with (I,<) as index structure as T =

∑
w∈I\A[w]+

∑
w∈A Tw. Here [w]

denotes a tree consisting of a single node bearing the same labels as w in T. We apply the Composition
Theorem to this decomposition. Given that T |= ϕ(U, V ) using Theorem 3.1 we can ascertain that
T |= ϕ(U ′, V ) for every U ′ such that U ′∩ (I \A) = U ∩ (I \A) and Tpn(Tw, U

′, V ) = Tpn(Tw, U, V )
for all w ∈ A. By the choice of A such a U ′ can be independently chosen either to coincide or not to
coincide with U on each subtree Tw with w ∈ A without changing its type. Hence there are continuum
many different such U ′ and A is an antichain of D-nodes for every such U ′. In a (finitely branching)
tree with U and A fulfilling condition A there is also, by König’s Lemma, an infinite branch B such that
Tv ∩ A is infinite for all v ∈ B. In particular, B is a D-path for each U ′ obtained from U as above,
implying condition B.
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On the other hand, ¬A amounts to saying that for each U satisfying ϕ(U, V ) the set D(U) induces
a tree comprised of only finitely many branches. In particular, that there are only finitely many infinite
D-paths for each such U .

Condition B explicitly requires the existence of uncountably many sets satisfying ϕ(X,V ), so it too
is sufficient for ∃ℵ1X ϕ(X,V ) to hold. Hence it remains to be shown that when B fails then C is both
sufficient and necessary hereto.

Assuming B does not hold in some T then, as we have seen, A fails too and therefore there are
only finitely many infinite D-paths for each U satisfying T |= ϕ(U, V ). Also by the failure of B every
branch is a D-path for at most countably many U satisfying T |= ϕ(U, V ). It follows that for every
such set U the collection {U ′ | D(U ′) = D(U) , T |= ϕ(U ′, V )} is finite or countable. Indeed, this
is clear from the above whenever D(U) contains an infinite D-path. If on the other hand D(U) is finite
then U is fully determined by U ∩ D(U) and the n-types of all those U-nodes that are successors of
some D-node,which only allows for a finite number of choices of U given that T is finitely branching.
Thus we have established that whenever B fails in some T then there are uncountably many U satisfying
T |= ϕ(U, V ) iff there are uncountably many sets D(U) with T |= ϕ(U, V ) if and (because now each
relevant D(U) contains only finitely many branches) only if condition C holds. ut

We remark that Lemma 4.1 fails for infinitely branching trees. Consider a tree of depth one with
the root r having countably many successor nodes and the formula ϕ(X,Y ) = X ⊆ Y and fix a set V
of successor nodes. Then D(X) ⊆ {r} for every X satisfying ϕ(X,V ), hence conditions A, B and C
all fail. Note that over infinitely branching trees even the predicate Inf(X) cannot be expressed in pure
MLO. To extend our results to infinitely branching trees (reducing to MLO(Inf) instead of pure MLO)
thus requires a fourth condition addressing such cases while making use of the Inf predicate.

Let us note again that if condition A holds then there are in fact continuum many sets X satisfying
the formula ϕ(X,Y ). The description of Condition A can be directly formalized in MLO(Inf), hence,
over (finitely branching) trees, also in MLO as follows:

ψA(Y ) = ∃U ∃A
(
ϕ(U, Y ) ∧ Inf(A) ∧ antichain(A) ∧

(
∀w ∈ A DNODEϕ(w,U, Y )

) )
,

where antichain(A) = ∀x, y ∈ A ¬(x < y ∨ y < x).

5. Condition B

In this section, we show that a branch B is a witness for Condition B if and only if this branch satisfies
a disjunction of three sub-conditions: Ba, Bb and Bc. Moreover, if both Condition A and Condition C
fail, then already the sub-conditions Ba and Bc are sufficient. Finally, we express both Ba and Bc in
MLO and show, that in fact both these sub-conditions guarantee the existence of continuum many sets
X satisfying the formula ϕ(X,Y ) in consideration. As in the previous section, we fix an MLO-formula
of l-trees ϕ(X,Y ) in 1 +m many free variables and of quantifier rank n.

Consider the formula ψ(X,Y , P ) stating that P is an infinite D-path for X and that ϕ(X,Y ) holds.

ψ(X,Y , P ) = DPATHϕ(P,X, Y ) ∧ Inf(P ) ∧ ϕ(X,Y )

Note that a branchB witnesses Condition B in an l-tree T if and only if T |= ∃ℵ1U ψ(U, Y ,B). To break
up Condition B for a given branch B we therefore apply the Composition Theorem for the formula ψ
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with the decomposition T =
∑

w∈B Tw\B along that branch. To that end let r be the number of qr(ψ)-
types in l +m + 2 variables, which we enumerate as τ1, . . . , τr. Then Theorem 3.1 yields a formula θ
such that

T |= ψ(X,Y ,B) ⇐⇒ (B,<) |= θ(P1, . . . , Pr) (1)

with Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi} for each 1 ≤ i ≤ r. Note that we use the expansion of
Tw\B by {w} as w is the only element of Tw\B that belongs to B.

With this reformulation it is clear that a branch B witnesses Condition B in an l-tree T if and only
if there are uncountably many different P satisfying θ, or some P satisfying θ has uncountably many X
corresponding to it. Taking advantage of the fact that, by virtue of the Composition Theorem, θ merely
depends on ψ but not on T nor the chosen branch B, we obtain the following breakdown of condition B.

Lemma 5.1. Let T be an l-tree and B an infinite branch in T. There are uncountably many X ⊆ T
satisfying the formula ψ(X,Y ,B) in T iff one of the following sub-conditions holds.

(Ba) There exists a set X such that Tw\B is a D-interval for ϕ,X, Y for infinitely many w ∈ B.

(Bb) There exists a set X satisfying ψ and a w ∈ B so that

Tw\B |= ∃ℵ1X ′ τi(X ′, Y ∩ Tw\B, {w}),

where τi = Tpqr(ψ)(Tw\B, X, Y , {w}) for all 1 ≤ i ≤ r.

(Bc) It holds that

(B,<) |= ∃ℵ1P
(
θ(P ) ∧

r∧
i=1

Pi ⊆ Qi ∧ ∀x
r∨
i=1

(
x ∈ Pi ∧

∧
j 6=i

x 6∈ Pj
))

,

where for each 1 ≤ i ≤ r, Qi is the set of nodes on the branch B in which the type τi is satisfied
by some set X , i.e.

Qi = {w ∈ B | Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w})}.

Proof:
Recall that by (1) we have T |= ψ(X,Y ,B) iff (B,<) |= θ(P1, . . . , Pr). We consider two cases.

Case 1: There exists a tuple P such that (B,<) |= θ(P ) and there are uncountably many sets X for
which Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi} for each 1 ≤ i ≤ r.
In this case the branch B witnesses Condition B, so we only need to show that one of the sub-conditions
holds. Consider a set X0 satisfying ψ(X0, Y , B) and having qr(ψ)-types on Tw\B for all w ∈ B as de-
scribed by P . Assume that sub-condition (Ba) does not hold. Then the segment Tw\B is a U-interval for
ϕ,X0, Y for all but finitely many w ∈ B. Observe that qr(ψ) ≥ qr(ϕ). Therefore all of the uncountably
many sets X that induce P , i.e. have the same qr(ψ)-type as X0 on each segment Tw\B , must be equal
toX0 on all but finitely many Tw\B . So there is a w ∈ B for which there are uncountably many different
X having the same qr(ψ)-type as X0 on Tw\B , and thus Condition (Bb) is satisfied.
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Case 2: For each tuple P such that (B,<) |= θ(P ) there are only countably many sets X for which
Pi = {w ∈ B | (Tw\B, X, Y , {w}) |= τi}.
In this case, we show that Condition (Bc) is both necessary and sufficient for the existence of uncountably
many sets X satisfying ψ.

Necessity of Condition (Bc).
As a direct consequence of (1) and the condition of this case, if there are uncountably many sets X
satisfying ψ then there are uncountably many corresponding tuples P for which (B,<) |= θ(P ). Each
Pi induced by some X as in (1) is, by definition, the set of w’s for which (Tw\B, X, Y , {w}) |= τi. So
for every w ∈ Pi we have, in particular, that Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w}). Thus Pi ⊆ Qi for
every i. Since Hintikka formulas are mutually exclusive the Pi’s are pairwise disjoint. This guarantees
that the remaining conjunct ∀x

(∨r
i=1(x ∈ Pi ∧

∧
s 6=r x 6∈ Ps

)
of Condition (Bc) is also satisfied, and

therefore Condition (Bc) holds.
Sufficiency of Condition (Bc).

By definition of the sets Qi, for each w ∈ Qi there is a subset Xw,i ⊆ Tw\B such that Tw\B |=
τi(Xw,i, Y , {w}). Assuming that Condition (Bc) holds, let P be the uncountable set of tuples P that
witness this condition. For each such tuple P and each w ∈ B the last conjunct of Condition (Bc)
guarantees that there is a unique i = i(w,P ) for which w ∈ Pi. Let XP =

⋃
w∈BXw,i(w,P ). Since

Pi ⊆ Qi, the tuple P describes indeed the types of the set XP on the tree segments Tw\B . According
to (1) from (B,<) |= θ(P ) we can infer that T |= ψ(XP , Y , B). Clearly, for distinct tuples P 1 and P 2

the sets XP1
and XP2

are also distinct. Therefore {XP | P ∈ P} constitutes an uncountable family of
sets satisfying ψ. ut

Observe that (Ba) already subsumes A in the sense that if condition A holds then there is a branch
satisfying (Ba). Also observe that Condition (Bb) is itself just another instance of our initial problem. It
is important to note, however, that the above cases classify conditions under which an individual branch
may satisfy B. At closer inspection we find that if no branch satisfies either (Bc) or (Ba) (so that in
particular A fails) and moreover condition C fails too, then (Bb) cannot hold either.

Lemma 5.2. If over a tree T both Conditions A and C fail, then Condition B implies that some branch
of T satisfies Condition (Ba) or Condition (Bc).

One intuitive way to see this is that if all the conditions A, (Ba), (Bc) and C fail on a tree, and thereby
also on every tree segment of that tree, then for (Bb) to hold for a proper tree segment that tree segment
would have to contain a proper tree segment on which (Bb) holds, and so on indefinitely. This would
ultimately trace an infinite branch witnessing (Ba) contrary to the initial assumption.

Proof:
It is easy to see that if conditions A and C fail then D = {D(X) | T |= ϕ(X,Y )} is countable. Indeed,
in the proof of Lemma 4.1 we have already remarked that the failure of A implies that each D ∈ D is a
union of finitely many paths and, by definition, C holds unless there are only countably many potential
D-paths in total.

If Condition B holds then there are uncountably many sets X satisfying ϕ(X,Y ) and thus, as D is
countable, there is a set D such that D = D(X) for uncountably many X satisfying ϕ. Fix such a D
and consider the set of labelings L = {λX : D → Hn,l+m+1 | D(X) = D, T |= ϕ(X,Y )}, where
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λX(w) = Tpn(Tw\D, X, Y ) for all w ∈ D. We distinguish two cases.

Case 1: L is uncountable. Then, given that D contains only finitely many infinite paths and finitely
many additional nodes, there is an infinite branch B in D such that {λ|B | λ ∈ L} is uncountable.
Observe that λX(w) = Tpn(Tw\B, X, Y ) for all but finitely many nodes w ∈ B. Also observe that,
since qr(ψ) ≥ n, each qr(ψ)-type on the variables X,Y ,B induces a unique n-type on the variables
X,Y . So there are necessarily uncountably many different partitions PX = 〈PX1 , . . . PXr 〉 of B

PXj = {w ∈ B | Tpqr(ψ)(Tw\B, X, Y , {w}) = τj} (1 ≤ j ≤ r)

withD(X) = D andX satisfyingϕ. Using (1) we can check that Condition (Bc) is met for the branchB.

Case 2: L is countable. Then there is a type labeling λ : D → Hn,l+m+1 such that λ = λX for
uncountably many X satisfying ϕ and having D(X) = D. Suppose that Condition (Ba) is not satisfied
for any infinite branchB inD. Then λ(w) uniquely determinesX∩Tw\D for all but finitely manyw ∈ D
and all X satisfying ϕ and D(X) = D. Thus, there exists a w ∈ D such that there are uncountably
many X as above pairwise differing on the tree segment Tw\D. However, by definition, every subtree of
Tw\D is a U-tree relative to each of these X , because D(X) = D. Because T is finitely branching, i.e.
Tw\D \ {w} is a finite union of such U-trees, there can be only finitely many X as above and pairwise
differing on Tw\D, which is a contradiction. Therefore Condition (Ba) must hold. ut

Next we will construct MLO formulas ψBa(B, Y ) and ψBc(B, Y ) formalizing sub-conditions (Ba)
and (Bc), respectively. By the above, we can then use the formulaψB(Y ) = ∃B(ψBa(B, Y )∨ψBc(B, Y ))
in place of Condition B in Lemma 4.1.

5.1. Formalization of Condition Ba

Much like condition A, (Ba) is naturally expressible in MLO(Inf) and thus, over trees, in pure MLO as
well by the formula

ψBa(B, Y ) = ∃X ∃ℵ0w DINT(Tw\B, X, Y ),

where Tw\B is just a notation for the set defined by

x ∈ Tw\B ⇐⇒ w ≤ x ∧ ¬∃b ∈ B (b > w ∧ b ≤ x).

The fact that Condition (Ba) is sufficient for the existence of continuum many sets U satisfying
ϕ(U, V ) can be arrived at by appealing to the Composition Theorem in the same manner as for Condition
A in the proof of Lemma 4.1, because the set X can be left intact or changed to another one with the
same type on any of the infinitely many trees Tw\B which are D-intervals for X .

5.2. Formalization of Condition Bc

In order to eliminate the explicit use of the uncountability quantifier in Condition (Bc) over (B,<) ∼=
(ω,<), we make use of Proposition 2.5 from [13], which states that cardinality quantifiers can be elimi-
nated over (ω,<), cf. also [2]. In [13] it was stated in automata theoretic language, we reformulate it in
logical terms.
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Proposition 5.1. For every MLO formula ϕ(X,Y ) there exists an effectively constructible formula
ψ(Y ) such that over (ω,<) the following equivalence holds:

ψ(Y ) ≡ ∃ℵ1X ϕ(X,Y ) ≡ ∃2ℵ0
X ϕ(X,Y ).

Applying this result to the formula on the right hand side of Condition (Bc), with Q as parameters,
we obtain a formula ϑ(Q) such that Condition (Bc) holds iff (B,<) |= ϑ(Q), with Q as specified there.
By Proposition 5.1, if ϑ(Q) holds, then there are even continuum many sets P satisfying Condition (Bc).
This in turn ensures the existence of continuum many sets X satisfying ϕ(X,Y ), because for each P
accounted for in ϑ(Q) a corresponding X satisfying ψ(X,Y ,B) can be found and this association is
necessarily injective.

To formalize Condition (Bc) in MLO over the tree T, we first define the sets Qi on T. As the set
of types is computable, we can compute each τi and thus effectively construct the formula αi(w,B, Y )
expressing that w is a node on the branch B such that Tw\B |= ∃X τi(X,Y ∩ Tw\B, {w}), i.e. w ∈ Qi.
Using this formula we can express Condition (Bc) as

ψBc(B, Y ) = ∃Q

(
r∧
i=1

(
w ∈ Qi ↔ αi(w,B, Y )

)
∧ ϑB(Q)

)

where ϑB is a relativization of ϑ to the branch B.

6. The full binary tree and the Cantor space

In order to formalize Condition C in MLO over trees, we first analyze the problem only on the full binary
tree and identify and prove the following key topological property that distinguishes counting branches
from counting arbitrary sets.

On the full binary tree T(2) = ({0, 1}∗,≺, S0, S1) where ≺ is the prefix-order and Si = {0, 1}∗i,
we show that the set of branches satisfying any given MLO formula is a Borel set in the Cantor topology
and hence it has the perfect set property: it is uncountable iff it contains a perfect subset iff it has the
cardinality of the continuum. A perfect set is a closed set without isolated points.

Overview of topological notions

The argument we present is based on basic results of descriptive set theory and the theory of finite
automata on infinite words in connection with monadic second-order logic and the Borel hierarchy of
the Cantor space. Let us recall a few basic notions from descriptive set theory. A thorough introduction
to descriptive set theory can be found in [14], we only mention a few basic facts.

The Cantor space is the topological space with the product topology on {0, 1}ω. It is a Polish space
with the topology generated by basic neighborhoodsw{0, 1}ω with the prefixw ∈ {0, 1}∗. Alternatively,
it can be defined by the metric d(α, β) = 2−min{n : α[n] 6=β[n]}.

The hierarchy of Borel sets is generated starting from open sets, i.e. unions of basic neighborhoods,
denoted Σ0

1, and closed sets, which are complements of open sets and denoted Π0
1. Further on by

transfinite induction for any countable ordinal α, Σ0
α is defined as {

⋃
i∈ω Ai | ∀i ∃βi < α Ai ∈ Π0

βi
}

and the Π0
α-sets are the complements of Σ0

α-sets. Each class Σ0
α and Π0

α is closed under taking inverse
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images by continuous functions. In fact there are complete languages in each class with respect to
continuous reductions. The projective hierarchy is built on top of the Borel hierarchy, starting with
Σ1

0 = Π1
0 as the class of Borel sets. On the first level one has the class Σ1

1 of analytic sets, which are
projections of Borel sets, and the class Π1

1 of co-analytic sets, whose complements are analytic. The
hierarchy is built in this manner with sets in Σ1

α+1 being projections of Π1
α-sets, and Π1

α+1 sets being
complements of Σ1

α sets.
The connection between the topological complexity of MLO-definable tree languages and the com-

plexity of tree-automata recognizing them is well understood [22, 16]. By Rabin’s complementation
theorem, all MLO-definable tree languages are in Σ1

2 ∩ Π1
2. There are Σ1

1-complete as well as Π1
1-

complete regular tree languages. For instance, the set of {a, b}-labeled binary trees, which have on every
path only finitely many a’s, is Π1

1-complete [1, 16]. There are regular tree languages on arbitrary finite
levels of the Borel hierarchy [20]. There also exist regular tree languages not contained in Σ1

1 ∪ Π1
1,

however, languages accepted by deterministic tree automata do belong to Π1
1.

This is in stark contrast to the situation of ω-regular languages, i.e. MLO-definable sets of ω-words,
which are, by McNaughton’s theorem, Boolean combinations of Π0

2 sets [22].

The Cantor-Bendixson Theorem states that closed subsets of a Polish space have the perfect set
property: they are either countable or contain a perfect subset and thus have cardinality continuum. A set
P is perfect if it is closed and if it has no isolated points, i.e. if every open neighborhood of every point
p ∈ P contains another point of P . We shall rely on the following fundamental result on Borel sets.

Proposition 6.1. ([12, Theorem 13.6])
Every uncountable Borel subset of a Polish space contains a perfect subset.

In fact, Souslin has proved that all analytic sets have the perfect set property [14]. It is, however,
independent of ZFC whether all co-analytic sets, or all sets on higher levels of the projective hierarchy,
satisfy the continuum hypothesis [14]. A key observation that our formalization will exploit is that, even
though there are non-analytic sets of trees definable in MLO, sets of definable paths are Borel. Recall
that for a sequence π ∈ {0, 1}ω we denote by Pref(π) the path through the full binary tree T(2) that
corresponds to this sequence, which formally is the set of prefixes of π.

Theorem 6.1. (MLO definable sets of branches are Borel)
Let U1, . . . , Um be subsets of T(2) and let ψ(X,Y ) be an MLO formula over T(2). Then the set

X = {π ∈ {0, 1}ω | T(2) |= ψ(Pref(π), U) }

of branches of the binary tree satisfying ψ(X,U) is on the third level of the Borel hierarchy, in particular,
it has the perfect set property.

Proof:
Given a path π ∈ {0, 1}ω let B = Pref(π) be the corresponding infinite branch and consider the
labeled tree Tπ = (T(2),Pref(π), U), and its decomposition as a tree sum along π : Tπ =

∑
v∈B Tπv\B .

Applying the Composition Theorem to Tπ and ϕ we find θ such that

T(2) |= ϕ(Pref(π), U) ⇐⇒
∑
v∈B

Tπv\B |= ϕ ⇐⇒ (B,<) |= θ(Qπ1 , . . . , Q
π
k)
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where Qπr = {v ∈ B | Tpn(Tπv\B) = τr} for each 1 ≤ r ≤ k in the enumeration of appropriate types, θ
does not depend on π and (B,<) ∼= (ω,<).

By the well-known correspondence of MLO and finite automata there is an ω-regular language Lθ ⊆
({0, 1}k)ω consisting of precisely those ω-words representing the characteristic sequences of predicates
Q on ω for which (ω,<) |= θ(Q). In particular, by McNaughton’s theorem, Lθ ∈ Σ0

3 [22].
Consider now the mapping f assigning to each π ∈ {0, 1}ω the sequence ρ ∈ ({0, 1}k)ω with

ρ[n] = 〈Qπr (π|n) | 1 ≤ r ≤ k〉. Note that if π|n+1 = π′|n+1 then Qπr (π|n) ↔ Qπ
′
r (π′|n) for all

1 ≤ r ≤ k, in other words, ρ|n = ρ′|n. Therefore f is continuous with respect to the Cantor topology.
By the above, X = f−1(Lθ) and therefore also X ∈ Σ0

3 as claimed. ut

Theorem 6.1 was recently strengthened in [6].

7. Formalizing Condition C

The perfect set property established in Theorem 6.1 provides an MLO-definable characterization of
Condition C of Lemma 4.1 over the full binary tree (with arbitrary labeling). Via interpretations, this can
be extended to all (finitely branching) trees to yield the following characterization.

Proposition 7.1. (Eliminating uncountably-many-branches quantifier)
For every MLO formula ϕ(X,Y ) the assertion “∃ℵ1B branch(B)∧ϕ(B, Y )” is equivalent over all trees
to the existence of a perfect set of branches B, each satisfying ϕ(B, Y ). The latter ensures that there are
in fact continuum many such branches.

Proof:
Perfect sets of branches are of continuum cardinality, hence the condition is clearly sufficient. Con-
versely, Theorem 6.1 shows that over the full binary tree with arbitrary additional unary predicates this
condition is also necessary. We can transfer this result to all trees as follows.

Every l-tree T is isomorphic to some (T,≺, P1, . . . , Pl) where T ⊆ N∗ is a prefix-closed subset
of finite sequences of natural numbers and ≺ is the prefix relation. Consider the following encoding
µ : N∗ → {0, 1}∗

(n0, n1, . . . , ns) 7→ 0n010n11 . . . 0ns1,

and set S = µ(T ) and Qi = µ(Pi) for each i = 1 . . . l. Given that v ≺ w in T iff µ(v) ≺ µ(w) in T(2),
this defines an interpretation of T inside (T(2), S,Q1, . . . , Ql). In particular, for every MLO-formula
ϑ(X) of l-trees

T |= ϑ(U) ⇐⇒ (T(2), S,Q1, . . . , Ql) |= ϑ∗(µ(U)),

where ϑ∗ is obtained from ϑ by interpreting each Pi with Qi and relativizing all quantifiers to sub-
sets/elements of S.

The embedding µ induces an injective mapping µ∗ of the set of infinite branches of T to infinite
branches of T(2). It is easy to check that µ∗ is continuous.

Consider the formula ϕ(B, Y ) defining an uncountable setD of branchesB of T with parameters V .
ThenD∗ = {µ∗(B) | B ∈ D} is an uncountable set of branches of T(2), which is defined by the formula
“branch(B) ∧ ∃ infinite P ⊆ B ϕ∗(P, µ(V ))” over (T(2), S,Q1, . . . , Ql). Hence, by Theorem 6.1, D∗
contains a perfect set of branches, the inverse image of which under the continuous mapping µ∗ is a
perfect set of branches in D. ut
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Towards an MLO formulation, note that the collection of nodes of a perfect set of branches induces
a perfect tree, and vice versa. Let perfect(P ) be a formula that expresses that P is a perfect subset, i.e.
that P is prefix closed and for every u ∈ P there are incomparable v, w > u such that v ∈ P and w ∈ P .

Corollary 7.1. Over trees Condition C is expressible in MLO as

ψC(Y ) = ∃P perfect(P ) ∧ ∀B ⊂ P branch(B)→ ∃X ϕ(X,Y ) ∧DPATHϕ(B,X, Y ) .

In particular, Condition C entails the existence of continuum many D-paths of setsX satisfying ϕ(X,Y ).

8. Summary

As we have shown above, each of the conditions of Lemma 4.1 can be formalized in MLO over trees.
Thus we can again state the conclusion of this lemma: T |= ∃ℵ1X ϕ(X,Y ) holds if and only if

T |= ψA(Y ) ∨ ∃B (ψBa(B, Y ) ∨ ψBc(B, Y ) ) ∨ ψC(Y ).

Using the above, we can reduce any formula of MLO(∃ℵ1) to an MLO formula equivalent over the class
of trees by inductively eliminating the inner-most occurrence of a cardinality quantifier. Theorem 1.1 fol-
lows. Moreover, as we have shown in the corresponding sections, each of the conditions of Lemma 4.1
implies the existence of continuum many sets X satisfying ϕ(X,Y ), whence Theorem 1.2.

We remark that the same technique employed here can be adapted to obtain similar results on elimi-
nating cardinality quantifiers over several classes of linear orders, such as on the class of all ordinals and
on the class of countable linear orders. These findings will appear in [2].
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[2] V. Bárány, Ł. Kaiser, and A. Rabinovich. Expressing cardinality quantifiers in monadic second-order logic
over chains. J. Symb. Logic. to appear.
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[8] Thomas Colcombet and Christof Löding. Transforming structures by set interpretations. Logical Methods in
Computer Science, 3(2:4):1–36, 2007.

[9] Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Transactions of the
American Mathematical Society, 98:21–51, 1961.

[10] Yuri Gurevich. Monadic second-order theories. In Jon Barwise and Solomon Feferman, editors, Model-
Theoretical Logics, pages 479–506. Springer, 1985.

[11] J. Hintikka. Distributive normal forms in the calculus of predicates. Acta Philosophica Fennica, 6, 1953.

[12] Alexander S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics. Springer-Verlag,
1995.

[13] Dietrich Kuske and Markus Lohrey. First-order and counting theories of omega-automatic structures. Journal
of Symbolic Logic, 73:129–150, 2008.

[14] Yiannis N. Moschovakis. Descriptive Set Theory, volume 100 of Studies in Logic and the Foundations of
Mathematics. North-Holland Publishing Company, 1980.
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