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Logical definability versus computational complexity
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Well-understood on finite structures
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Logical definability versus computational complexity

Important issue in many fields:

• finite model theory • complexity theory

• databases • knowledge representation

• verification • . . .

Well-understood on finite structures

Limitation to finite structures is often too restrictive.

Considerable efforts to extend methodology to relevant classes of

infinite structures

• infinite databases: spatial databases, constraint databases, . . .

• verification for systems with infinite state spaces

• model theory of finitely presented structures
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Computational model theory

extends approach and methods of finite model theory to suitable

classes of infinite structures

• finite presentations of infinite structures

• complexity of model checking problems

• capturing complexity classes

• model theoretic constructions

• games
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Computational model theory

D: domain of not necessarily finite structures

What conditions should be satisfied by D so that approach of

computational model theory is applicable?
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Computational model theory

D: domain of not necessarily finite structures

What conditions should be satisfied by D so that approach of

computational model theory is applicable?

Finite presentations: Each structure A ∈ K should be representable

in a finite way (by an algorithm, by an axiomatisation in some

logic, by automata, by an interpretation, . . . ).

Effective semantics (for relevant logic L): Given ψ ∈ L and a

(presentation of) A ∈ D it should be decidable whether A |= ψ.

That is, model checking of L on D must be effective.
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Other possibly relevant conditions (depending on context):

Closure: For A ∈ D and ψ(x) ∈ L, also the expanded structure

(A, ψA) is in D.
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Other possibly relevant conditions (depending on context):

Closure: For A ∈ D and ψ(x) ∈ L, also the expanded structure

(A, ψA) is in D.

Effective query evaluation: Given a presentation of A ∈ D and a

formula ψ(x) ∈ L one can effectively compute a presentation of

(A, ψA).

Note: contrary to finite structures, query evaluation does not

necessarily reduce to model checking.
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Outline of this talk

• survey on different classes of finitely presented structures

• structures presented by interpretations

• structures presented by automata

• automatic groups

• algorithmic problems for automatic structures

• characterizing automatic structures by interpretations
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Finitely presentable structures

• recursive structures

• tree-interpretable structures

- context-free graphs

- HR-equational and VR-equational graphs

- prefix-recognizable graphs

• tree constructible structures

• automatic structures, automatic groups, ω-automatic structures

• other classes with finite presentations

- tree-automatic structures, rational structures

- ground tree rewriting graphs

- constraint databases

- metafinite structures
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Recursive structures

Countable structures A = (A, f1, . . . , fm, R1, . . . , Rn) with computable

functions and decidable relations

Long tradition in model theory since 1960s
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Recursive structures

Countable structures A = (A, f1, . . . , fm, R1, . . . , Rn) with computable

functions and decidable relations

Long tradition in model theory since 1960s

Problem: Only quantifier-free formulae have effective semantics

Some work studying finite model theory issues for recursive structures

• failure of classical results (compactness, completeness,

interpolation, Beth,. . . ) on recursive structures.

(Stolboushkin, Hirst–Harel)

• descriptive complexity (mostly on non-recursive levels)

(Hirst–Harel)

• 0-1 laws (Hirst–Harel, G.–Malmström)
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Interpretations

A σ-structure, L logic, B τ-structure

(k-dimensional) L[τ, σ]-interpretation : sequence

I =
〈

D(x) , E(x, y) , ( φR(x1, . . . , xr) )R∈σ
〉

domain formula equality formula formulae defining relations

of L[τ]-formulae (where x, u, xi are k-tuples of variables)
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Interpretations

A σ-structure, L logic, B τ-structure

(k-dimensional) L[τ, σ]-interpretation : sequence

I =
〈

D(x) , E(x, y) , ( φR(x1, . . . , xr) )R∈σ
〉

domain formula equality formula formulae defining relations

of L[τ]-formulae (where x, u, xi are k-tuples of variables)

I interprets A in B (in short I(B) = A ) if I defines

a copy of A inside B.

h : I(B) := 〈DB, (φB

R )R∈σ〉/E
B ∼

−−→ A
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Interpretations

A σ-structure, L logic, B τ-structure

(k-dimensional) L[τ, σ]-interpretation : sequence

I =
〈

D(x) , E(x, y) , ( φR(x1, . . . , xr) )R∈σ
〉

domain formula equality formula formulae defining relations

of L[τ]-formulae (where x, u, xi are k-tuples of variables)

I interprets A in B (in short I(B) = A ) if I defines

a copy of A inside B.

h : I(B) := 〈DB, (φB

R )R∈σ〉/E
B ∼

−−→ A

A ≤L B : there exists L-interpretation of A in B
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Interpretation Lemma

L[τ, σ]-interpretation I = 〈D(x), E(x, y), (φR(x1, . . . , xr) )R∈σ〉

• I maps τ-structures B to σ-structures I(B)

• in turn, I maps σ-formulae ψ to τ-formulae I(ψ) :

- replace variables x, y, . . . by k-tuples x, y, . . .

- relativize quantifiers to D(x)

- replace equalities x = y by E(x, y)

- replace atoms Rx1 . . . xr (for R ∈ σ) by φR(x1, . . . , xr)

Interpretation Lemma: I(B) |= ψ ⇐⇒ B |= I(ψ)
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Structures presented by interpretations

Interpretations provide general and powerful way for defining classes

of finitely presentable structures with effective semantics
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Structures presented by interpretations

Interpretations provide general and powerful way for defining classes

of finitely presentable structures with effective semantics

Take structure B with “nice” properties and study closure

{A : A ≤L B} under L-interpretations for suitable L.

Finite presentations: by interpretations into B

Effective semantics: if L is closed under interpretations and L is

effective on B, then L is effective on any A ≤L B.

(Interpretation Lemma)
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Tree interpretable structures

T 2 = ({0, 1}∗, σ0, σ1) infinite binary tree

MSO: monadic second-order logic

A structure A is tree-interpretable if A ≤MSO T 2:

(one-dimensional) MSO-interpretation of A in the infinite binary tree.
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Tree interpretable structures

T 2 = ({0, 1}∗, σ0, σ1) infinite binary tree

MSO: monadic second-order logic

A structure A is tree-interpretable if A ≤MSO T 2:

(one-dimensional) MSO-interpretation of A in the infinite binary tree.

Tree-interpretable structures admit effective evaluation of MSO

- Rabin’s Theorem: The MSO-theory of T 2 is decidable

- Interpretation Lemma
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Tree interpretable graphs

Tree-interpretable graphs generalize various classes of finitely

presentable graphs that admit effective evaluation of MSO.

Context-free graphs: (Muller, Schupp)

configuration graphs of pushdown automata

HR-equational and VR-equational graphs: (Courcelle)

defined by graph grammars

Prefix-recognizable graphs: (Caucal)

G = (V, (Ea)a∈A where V regular language, and

Ea =
m⋃

i=1

Xi(Yi × Zi) =
m⋃

i=1

{(xy, xz) : x ∈ Xi, y ∈ Yi, z ∈ Zi}

for regular languages Xi, Yi, Zi.
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Tree interpretable structures

Theorem (Barthelmann, Blumensath, Caucal, Courcelle, Stirling)

For any graph G, the following are equivalent.

(1) G is tree-interpretable

(2) G is VR-equational

(3) G is prefix-recognizable

(4) G is the restriction to a regular set of the configuration graph of a

pushdown automaton with ε-transitions.
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Tree interpretable structures

Theorem (Barthelmann, Blumensath, Caucal, Courcelle, Stirling)

For any graph G, the following are equivalent.

(1) G is tree-interpretable

(2) G is VR-equational

(3) G is prefix-recognizable

(4) G is the restriction to a regular set of the configuration graph of a

pushdown automaton with ε-transitions.

The classes of context-free graphs and HR-equational graphs are

strictly contained in the class of tree-interpretable graphs.
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Tree-like structures

More powerful domains than the tree-interpretable structures on

which MSO is effective?

Tree constructions:

• Unfolding of a labeled graph G from a node v to the tree T (G, v).

• Muchnik´s construction: With relational structure

A = (A, R1, . . . , Rm), associate its iteration

A
∗:= (A∗, R∗

1, . . . , R
∗
m, son, clone)

with relations

R∗
i := {(wa1, . . . , war) : w ∈ A∗, (a1, . . . , ar) ∈ Ri}

son := {(w,wa) : w ∈ A∗, a ∈ A}

clone := {waa : w ∈ A∗, a ∈ A}
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Muchnik’s construction

A • • • · · · •
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Muchnik’s construction

A
∗ • • • · · · •

•
clone

• • · · · • • •
clone

• · · · • · · · • • • · · · •
clone

son . . . son son . . . son
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Muchnik’s construction

A
∗ • • • · · · •

•
clone

• • · · · • • • • · · · • · · · • • • · · · •
clone

•
clone

• • · · · • • •
clone

• · · · • · · · • • • · · · •
clone

son . . . son son . . . son

son . . . son son . . . son
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Tree constructible structures

Decidability

• If the MSO-theory of (G, v) is decidable, then so is the

MSO-theory of its unfolding T (G, v) (Courcelle, Walukiewicz).

• If the MSO-theory of A is decidable, then so is the MSO-theory of

its iteration A
∗ (Muchnik, Walukiewicz, Berwanger-Blumensath)
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• If the MSO-theory of (G, v) is decidable, then so is the

MSO-theory of its unfolding T (G, v) (Courcelle, Walukiewicz).

• If the MSO-theory of A is decidable, then so is the MSO-theory of

its iteration A
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Unfoldings are interpretable in iterations: T (G, v) ≤MSO (G∗, v)
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Tree constructible structures

Decidability

• If the MSO-theory of (G, v) is decidable, then so is the

MSO-theory of its unfolding T (G, v) (Courcelle, Walukiewicz).

• If the MSO-theory of A is decidable, then so is the MSO-theory of

its iteration A
∗ (Muchnik, Walukiewicz, Berwanger-Blumensath)

Unfoldings are interpretable in iterations: T (G, v) ≤MSO (G∗, v)

Tree constructible structures: Closure of finite structures under

MSO-interpretations and Muchnik’s construction.

• MSO is effective on tree constructible structures

• There exist tree constructible structures that are not tree

interpretable (Courcelle)
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Automatic structures

A = (A, R1, . . . , Rs) is automatic if there exist a regular language

Lδ ⊆ Σ∗ and a surjective function h : Lδ → A such that the relations

L= := {(u, v) : h(u) = h(v)} ⊆ Lδ × Lδ

LRi := {(u1, . . . , ur) : A |= Rih(u1) . . . h(ur)} ⊆ Lδ × · · · × Lδ

are regular (i.e. recognizable by synchronous automata)
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Automatic structures

A = (A, R1, . . . , Rs) is automatic if there exist a regular language

Lδ ⊆ Σ∗ and a surjective function h : Lδ → A such that the relations

L= := {(u, v) : h(u) = h(v)} ⊆ Lδ × Lδ

LRi := {(u1, . . . , ur) : A |= Rih(u1) . . . h(ur)} ⊆ Lδ × · · · × Lδ

are regular (i.e. recognizable by synchronous automata)

Automatic presentation of A: list of automata

〈Mδ,M=,MR1
, . . . ,MRs〉

recognizing Lδ, L=, LR1
, . . . , LRs .

(Khoussainov-Nerode, Blumensath, Blumensath-G.)
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Synchronous automata

AutomatonM, recognizing a relation R ⊆ Σ∗ × · · · × Σ∗

︸ ︷︷ ︸

r

:

works on alphabet Γ := (Σ ∪ {¤})r − {¤}r

(u1, . . . , ur) ∈ R ⇐⇒

M accepts

u11u12 . . . u1j¤¤¤ . . .¤
u21u22 . . . . . . u2k¤ . . .¤
...

...
...

ui1ui2 . . . uiℓ
...

...
...

ur1ur2 . . . urj¤¤¤ . . .¤
︸ ︷︷ ︸

ℓ=max{|ui|:i=1,...,r}

∈ Γ∗
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Examples of automatic structures

• (N,+) is automatic

− Lδ = {0, 1}∗1 ∪ {0}

− h(w0 . . . wn−1) =
∑

i<n wi2
i (h injective)

− L+ recognised by automatonM+

scans
u0u1 . . . . . . um¤ . . . . . .¤
v0v1 . . . . . . vn−1¤

w0w1 . . . . . . wm

remembering carry bit ci for u0 . . . ui−1 + v0 . . . vi−1

checks whether wi = ui + vi + ci (mod 2)

• every finite structure is automatic

• the configuration graphs of Turing machines are automatic
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Examples of automatic structures

• (N,+, |m) is automatic

x |m y :⇐⇒ x is a power of m dividing y

use m-ary representation of numbers

L|m =
{
u
v

: u
v

= 0 . . . 0 1 ¤ . . . . . .¤
0 . . . 0vrvr+1 . . . vn

}

• Tree(m) = ({0, . . . , m− 1}∗, σ0, . . . , σm−1,≤, el) is automatic

− σi : u 7→ ui

− u ≤ v : ∃w uw = v

− el(u, v) : |u| = |v|
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Automatic groups

(G, ·) countable group with set S of semigroup generators

=⇒ canonical surjective map h : S∗ → G
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Automatic groups

(G, ·) countable group with set S of semigroup generators

=⇒ canonical surjective map h : S∗ → G

Cayley graph: Γ(G, S) = (G, (
s
−→)s∈S)

vertices: g ∈ G, edges: g
s
−→ h iff g · s = h
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Automatic groups

(G, ·) countable group with set S of semigroup generators

=⇒ canonical surjective map h : S∗ → G

Cayley graph: Γ(G, S) = (G, (
s
−→)s∈S)

vertices: g ∈ G, edges: g
s
−→ h iff g · s = h

(G, ·) is an automatic group if there is a finite set S ⊆ G of semigroup

generators, such that Γ(G, S) is an automatic structure with

presentation 〈Lδ, h, . . .〉 where Lδ ⊆ S∗ and

Lδ

∩|
h

S∗
h

G
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Automatic groups: Example

(Z × Z,+), with S = {X, Y, x, y}, x = X−1, y = Y−1

...
...

...
...

...

· · · • • • • • · · ·

· · · • • •
X

x

Y

• • · · ·

· · · • • •

y

• • · · ·
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Automatic groups: Example

(Z × Z,+), with S = {X, Y, x, y}, x = X−1, y = Y−1

...
...

...
...

...

· · · • • • • • · · ·

· · · • • •
X

x

Y

• • · · ·

· · · • • •

y

• • · · ·

Lδ = (X∗ ∪ x∗)(Y∗ ∪ y∗)

Erich Grädel Finite presentations of infinite structures



Automatic groups: Example

(Z × Z,+), with S = {X, Y, x, y}, x = X−1, y = Y−1

...
...

...
...

...

· · · • • • • • · · ·

· · · • • •
X

x

Y

• • · · ·

· · · • • •

y

• • · · ·

Lδ = (X∗ ∪ x∗)(Y∗ ∪ y∗)
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The k-fellow traveller property

(G, ·) automatic group, with automatic presentation h : Lδ → G.

For all u, v ∈ Lδ, if dist(u, v) ≤ 1 in Γ(G, S), then

dist(u1 . . . ui, v1 . . . vi) ≤ k for all i ≤ max(|u|, |v|).

•

≤k
• • • •

• • •
• • • •

• • •
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The k-fellow traveller property

(G, ·) automatic group, with automatic presentation h : Lδ → G.

For all u, v ∈ Lδ, if dist(u, v) ≤ 1 in Γ(G, S), then

dist(u1 . . . ui, v1 . . . vi) ≤ k for all i ≤ max(|u|, |v|).

•

≤k
• • • •

• • •
• • • •

• • •

Proposition. (G, ·) is automatic ⇐⇒ for some S and k, there is a

regular language Lδ ⊆ S∗ such that the canonical map h : Lδ → G is

surjective and satisfies the k-fellow traveller property.
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Automatic groups versus automatic Caley graphs

By definition, if (G, ·) is an automatic group, then for some S, the

Cayley graph Γ(G, S) is an automatic graph.

The converse is not true!

Counterexample: (Senizergues) The Heisenberg group H is the

group of affine transformations of Z
3 generated by S = {α, β, γ}.

α : (x, y, z) 7→ (x+ 1, y, z + y)

β : (x, y, z) 7→ (x+ 1, y+ 1, z)

γ : (x, y, z) 7→ (x, y, z + 1)

• Obviously, Γ(H, S) is first-order interpretable in (N,+). Hence,

Γ(H, S) is an automatic graph.

• But H is not an automatic group (Epstein et al.).
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ω-automatic structures

A = (A, R1, . . . , Rs) is ω-automatic if there exist a ω-regular language

Lδ ⊆ Σω and a surjective function h : Lδ → A such that the relations

L= := {(u, v) : h(u) = h(v)} ⊆ Lδ × Lδ

LRi := {(u1, . . . , ur) : A |= Rih(u1) . . . h(ur)} ⊆ Lδ × · · · × Lδ

are ω-regular, i.e. recognizable by synchronous Büchi automata.
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ω-automatic structures

A = (A, R1, . . . , Rs) is ω-automatic if there exist a ω-regular language

Lδ ⊆ Σω and a surjective function h : Lδ → A such that the relations

L= := {(u, v) : h(u) = h(v)} ⊆ Lδ × Lδ

LRi := {(u1, . . . , ur) : A |= Rih(u1) . . . h(ur)} ⊆ Lδ × · · · × Lδ

are ω-regular, i.e. recognizable by synchronous Büchi automata.

• every automatic structure is ω-automatic

• (R,+) and (R,+,≤, |m, 1) are ω-automatic

x |m y :⇐⇒ ∃k, r ∈ Z : x = mk, y = r · x

• ω-Tree(m) = ({0, . . . , m− 1}≤ω, σ0, . . . , σm−1,≤, el) is ω-automatic
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First-order logic on ω-automatic structures

FO(∃ω): FO + “∃ infinitely many x such that . . . ”

Theorem. Given φ(x) ∈ FO(∃ω) and an ω-automatic structure A,

one can effectively compute an automatic presentation of (A, φA).
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First-order logic on ω-automatic structures

FO(∃ω): FO + “∃ infinitely many x such that . . . ”

Theorem. Given φ(x) ∈ FO(∃ω) and an ω-automatic structure A,

one can effectively compute an automatic presentation of (A, φA).

Regular and ω-regular relations are closed under

• first-order operations: classical automata theory

• the quantifier ∃ω:

for regular relations, this follows from the Pumping Lemma

for ω-regular relations, more complicated arguments needed

Corollary.

The FO(∃ω)-theory of every ω-automatic structure is decidable.
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Query evaluation and model checking

Query evaluation: (for a logic L on (ω)-automatic structures)

Given: φ(x) ∈ L, and an automatic presentation of A

Compute: a presentation of φA := {a : A |= φ(a)}

(compatible with presentation of A)

Model checking:

Given: φ(x) ∈ L, a presentation of A and a

Decide: A |= φ(a) ?
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Query evaluation and model checking

Query evaluation: (for a logic L on (ω)-automatic structures)

Given: φ(x) ∈ L, and an automatic presentation of A

Compute: a presentation of φA := {a : A |= φ(a)}

(compatible with presentation of A)

Model checking:

Given: φ(x) ∈ L, a presentation of A and a

Decide: A |= φ(a) ?

structure complexity: For fixed φ, determine complexity of A 7→ φA

in terms of size of deterministic automata representing A.

expression complexity: For fixed A, determine complexity of

A 7→ φA or ThL(A) in terms of length of φ

combined complexity: both inputs variable
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More powerful logics than FO

Query evaluation and model checking are undecidable for

• transitive closure logics

• fixed point logics (µ-calculus, LFP, . . . )

• FO + counting

• monadic second-order logic

on certain fixed automatic structures.
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More powerful logics than FO

Query evaluation and model checking are undecidable for

• transitive closure logics

• fixed point logics (µ-calculus, LFP, . . . )

• FO + counting

• monadic second-order logic

on certain fixed automatic structures.

- define multiplication in (N,+)

- configuration graphs of Turing machines are automatic.

Any logic that is strong enough for R can express the

halting problem.
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Complexity

There are automatic structures with non-elementary FO-theories.

Examples: (N,+, |m), Tree(m)
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Complexity

There are automatic structures with non-elementary FO-theories.

Examples: (N,+, |m), Tree(m)

Simple fragments of (relational) FO:

structure complexity expression complexity

Model Checking

quantifier-free L A

existential NP P

Query-Evaluation

quantifier-free L P

existential P E
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Automatic structures with functions

Model checking complexity of quantifier-free formulae with functions:

structure complexity: N-complete

expression complexity: P-complete and solvable in time O(|φ|2)
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Automatic structures with functions

Model checking complexity of quantifier-free formulae with functions:

structure complexity: N-complete

expression complexity: P-complete and solvable in time O(|φ|2)

Corollary. The word problem of any automatic group can be solved

in quadratic time.

(G, ·) automatic group, generated by {s1, . . . , sm}

⇒ G′ := (G, e, g 7→ gs1, . . . , g 7→ gsm) is automatic structure

Word problem for (G, ·) described by term equations over G′.
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The isomorphism problem

Theorem.

The isomorphism problem for automatic structures is undecidable.
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The isomorphism problem

Theorem.

The isomorphism problem for automatic structures is undecidable.

Proof. Every deterministic TMM can be effectively translated into

TMM′ whose configuration graph C(M′) contains

• ωmany copies of (N, succ)

• for each x ∈ L(M) a path

• • · · · · · · • • · · · · · · •

Hence, L(M) = ∅ ⇐⇒ C(M′)
︸ ︷︷ ︸

automatic

∼= ω · (N, succ)
︸ ︷︷ ︸

automatic

Erich Grädel Finite presentations of infinite structures



The isomorphism problem

Theorem.

The isomorphism problem for automatic structures is undecidable.

Proof. Every deterministic TMM can be effectively translated into

TMM′ whose configuration graph C(M′) contains

• ωmany copies of (N, succ)

• for each x ∈ L(M) a path

• • · · · · · · • • · · · · · · •

Hence, L(M) = ∅ ⇐⇒ C(M′)
︸ ︷︷ ︸

automatic

∼= ω · (N, succ)
︸ ︷︷ ︸

automatic

Theorem.

The connectivity problem for automatic graphs is undecidable.
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Automatic structures and interpretations

A ≤FO B : A is first-order interpretable in B

Automatic structures and ω-automatic structures are closed under

FO-interpretations:

B is (ω)-automatic, A ≤FO B =⇒ A is (ω)-automatic
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Automatic structures and interpretations

A ≤FO B : A is first-order interpretable in B

Automatic structures and ω-automatic structures are closed under

FO-interpretations:

B is (ω)-automatic, A ≤FO B =⇒ A is (ω)-automatic

In particular, the (ω)-automatic structures are closed under

- expansion by definable relations

- factorisation by definable congruences

- substructures with definable universe

- finite powers

Note: They are not closed under taking arbitrary substructures
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Model theoretic characterisation of automatic structures

Theorem. The following are equivalent:

(1) A is automatic

(2) A ≤FO (N,+, |m) for some (and hence all) m ≥ 2

(3) A ≤FO Tree(m) for some (and hence all) m ≥ 2
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Model theoretic characterisation of automatic structures

Theorem. The following are equivalent:

(1) A is automatic

(2) A ≤FO (N,+, |m) for some (and hence all) m ≥ 2

(3) A ≤FO Tree(m) for some (and hence all) m ≥ 2

Theorem. The following are equivalent:

(1) A is ω-automatic

(2) A ≤FO (R,+,≤, |m, 1) for some (and hence all) m ≥ 2

(3) A ≤FO ω-Tree(m) for some (and hence all) m ≥ 2
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Characterising automatic groups

Theorem. (G, ·) is an automatic group

⇐⇒

there is finite set S ⊆ G of semigroup generators such that Caley graph

Γ(G, S) is FO-definable in Tree(S).
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Characterising automatic groups

Theorem. (G, ·) is an automatic group

⇐⇒

there is finite set S ⊆ G of semigroup generators such that Caley graph

Γ(G, S) is FO-definable in Tree(S).

There exist first-order formulae D(x), E(x, y), φ1(x, y), . . . , φm(x, y) of

vocabulary {s1, . . . , sm,≤, el} such that

〈DTree(S), φ
Tree(S)
1 , . . . , φTree(S)

m 〉/ETree(S) = Γ(G, S)

(equality rather than isomorphism)
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Structures that are not automatic

How to prove that a structure A is not automatic ?

1) A not countable: (R,+, , · )

2) Th(A) undecidable: (N,+, , · )

3) Growth rates

Take automatic presentation of A with bijective h : Lδ → A

For any set a1, a2, . . . of definable elements in A (ordered by |h−1(ai)|),

and any finite set F of definable functions on A, let

G1 := {a1}, Gn+1 := Gn ∪ {an+1} ∪
⋃

f∈F

f (Gn × · · · × Gn)

Theorem. |Gn| = 2O(n) for all n

Elements of Gn are represented by words of length O(n)

Erich Grädel Finite presentations of infinite structures



Application

Corollary. (N, · ) is not automatic.

For a1, a2, . . . enumeration of primes, f (x, y) = x · y

|Gn| = 2Ω(n2)

But: (N. · ) is tree automatic

Erich Grädel Finite presentations of infinite structures
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