
Rank logic is dead, long live rank logic!
Erich Grädel and Wied Pakusa

Mathematical Foundations of Computer Science, RWTH Aachen University
{graedel,pakusa}@logic.rwth-aachen.de

Abstract
Motivated by the search for a logic for polynomial time, we study rank logic (FPR) which
extends fixed-point logic with counting (FPC) by operators that determine the rank of matrices
over finite fields. While FPR can express most of the known queries that separate FPC from
Ptime, nearly nothing was known about the limitations of its expressive power.

In our first main result we show that the extensions of FPC by rank operators over different
prime fields are incomparable. This solves an open question posed by Dawar and Holm and also
implies that rank logic, in its original definition with a distinct rank operator for every field, fails
to capture polynomial time. In particular we show that the variant of rank logic FPR∗ with an
operator that uniformly expresses the matrix rank over finite fields is more expressive than FPR.

One important step in our proof is to consider solvability logic FPS which is the analogous
extension of FPC by quantifiers which express the solvability problem for linear equation systems
over finite fields. Solvability logic can easily be embedded into rank logic, but it is open whether
it is a strict fragment. In our second main result we give a partial answer to this question: in the
absence of counting, rank operators are strictly more expressive than solvability quantifiers.

1 Introduction

“Le roi est mort, vive le roi!” has been the traditional proclamation, in France and other
countries, to announce not only the death of the monarch, but also the immediate installment
of his successor on the throne. The purpose of this paper is to kill the rank logic FPR, in
the form in which it has been proposed in [7], as a candidate for a logic for Ptime. The
logic FPR extends fixed-point logic by operators rkp (for every prime p) which compute
the rank of definable matrices over the prime field Fp with p elements. Although rank logic
is well-motivated, as a logic that strictly extends fixed-point logic with counting by the
ability to express important properties of linear algebra, most notably the solvability of linear
equation systems over finite fields, our results show that the choice of having a separate rank
operator for every prime p leads to a significant deficiency of the logic. Indeed, it follows
from our main theorem that even the uniform rank problem, of computing the rank of a
given matrix over an arbitrary prime, cannot be expressed in FPR and thus separates FPR
from Ptime. This also reveals that a more general variant of rank logic, which has already
been proposed in [15, 16, 18] and which is based on a rank operator that takes not only the
matrix but also the prime p as part of the input, is indeed strictly more powerful than FPR.
Our result thus installs this new rank logic, denoted FPR∗, as the rightful and distinctly
more powerful successor of FPR as a potential candidate for a logic for Ptime.

A logic for polynomial time The question whether there is a logic that expresses precisely
the polynomial-time properties of finite structures is an important challenge in the field of
finite model theory [10, 11]. The logic of reference for this quest is fixed-point logic with
counting (FPC) which captures polynomial time on many interesting classes of structures
and is strong enough to express most of the algorithmic techniques leading to polynomial-
time procedures [5]. Although it has been known for more than twenty years that FPC
fails to capture Ptime in general, by the fundamental CFI-construction due to Cai, Fürer,

© Erich Grädel and Wied Pakusa;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

50
3.

05
42

3v
1 

 [
cs

.L
O

] 
 1

8 
M

ar
 2

01
5

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Rank logic is dead, long live rank logic!

and Immerman [4], we still do not know many properties of finite structures that provably
separate FPC from Ptime. The two main sources of such problems are tractable cases of
the graph isomorphism problem and queries from the field of linear algebra. First of all, the
CFI-construction shows that FPC cannot define the isomorphism problem on graphs with
bounded degree and bounded colour class size whereas the isomorphism problem is known
to be tractable on all classes of graphs with bounded degree or bounded colour class size.
Secondly, Atserias, Bulatov and Dawar [2] proved that FPC cannot express the solvability
of linear equation systems over any finite Abelian group. It follows, that also other problems
from the field of linear algebra are not definable in FPC. Interestingly, also the CFI-query
can be formulated as linear equation system over F2 [7].

Rank logic This latter observation motivated Dawar, Grohe, Holm and Laubner [7] to
introduce rank logic (FPR) which is the extension of FPC by operators for the rank of
definable matrices over prime fields Fp. To illustrate the idea of rank logic, let ϕ(x, y) be a
formula (of FPC, say) which defines a binary relation ϕA ⊆ A ×A in an input structure A.
We identify the relation ϕA with the associated adjacency matrix

MA
ϕ ∶ A ×A→ {0,1}, (a, b)↦

⎧⎪⎪⎨⎪⎪⎩

1, if (a, b) ∈ ϕA

0, if (a, b) ∉ ϕA.

In this sense, the formula ϕ defines in every structure A a matrix MA
ϕ with entries in

{0,1} ⊆ Fp. Now, rank logic FPR contains for every prime p ∈ P a rank operator rkp which
can be used to form a rank term [rkp ϕ(x, y)] whose value in an input structure A is the
matrix rank of Mϕ over Fp (we remark that rank logic also allows to express the rank of
matrices which are indexed by tuples of elements; the precise definition is given in Section 2).

It turns out that rank operators have quite surprising expressive power. For example,
they can define the transitive closure of symmetric relations, they can count the number of
paths in DAGs modulo p and they can express the solvability of linear equation systems
over finite fields (recall that a linear equation system M ⋅ x⃗ = b⃗ is solvable if, and only if,
rk(M) = rk(M ∣ b⃗)) [7]. Furthermore, rank operators can be used to define the isomorphism
problem on various classes of structures on which the Weisfeiler-Lehman method (and thus
fixed-point logic with counting) fails, e.g. classes of C(ai)-F(ürer)-I(mmerman) graphs [4, 7]
and multipedes [12, 15]. The common idea of these isomorphism procedures is to reduce the
isomorphism problem of structures to a suitable linear equation system over a finite field.
More generally, by a recent result (which is mainly concerned with another candidate of
a logic for polynomial time [1]), it follows that FPR captures polynomial time on certain
classes of structures of bounded colour class size. In particular, this holds for the class of all
structures of colour class size two (to which CFI-graphs and multipedes belong).

While these results clearly show the high potential of rank logic, almost nothing has been
known about its limitations. For instance, it has remained open whether rank logic suffices
to capture polynomial time, whether rank operators can simulate fixed-point inductions [7]
and also whether rank logic can define closely related problems from linear algebra (such
as the solvability of linear equations over finite rings rather than fields [6]). One particular
intriguing question is whether rank operators over different prime fields can simulate each
other. In other words: is it possible to reduce the problem of determining the rank of a
matrix over Fp (within fixed-point logic with counting) to the problem of determining the
rank of a matrix over Fq (where p, q are distinct primes)? To attack this problem, Dawar
and Holm [8, 15] developed a powerful toolkit of so called partition games of which one



E. Grädel and W.Pakusa 3

variant (so called matrix-equivalence games) precisely characterises the expressive power of
infinitary logic extended by rank quantifiers. By using these games, Holm [15] was able to
give a negative answer to the above question for the restricted case of rank operators of
dimension one.

In this paper we propose a different method, based on exploiting symmetries rather than
game theoretic arguments, to prove new lower bounds for logics with rank operators. In our
main result (Theorem 3) we prove that for every prime q there exists a class of structures
Kq on which FPC fails to capture polynomial time and on which rank operators over every
prime field Fp, p ≠ q can be simulated in FPC. On the other hand, rank operators over Fq
can be used to canonise structures in Kq which means that the extension of fixed-point logic
by rkq-operators captures polynomial time on Kq. From this result we can easily extract the
following answers to the open questions outlined above.

(a) Rank logic (as defined in [7]) fails to capture polynomial time (Theorem 2).
(b) The extensions of fixed-point logic by rank operators over different prime fields are

incomparable (Theorem 1), cf. [15, 8, 16].

We obtain these classes of structures Kq by generalising the well-known construction of
Cai, Fürer and Immerman [4]. It has been observed that their construction actually is a
clever way of encoding a linear equation system over F2 into an appropriate graph structure
(see e.g. [2, 7, 15, 16]). Intuitively, each gadget in the CFI-construction can be seen as an
equation (or, equivalently, as a circuit gate) which counts the number of transpositions of
adjacent edges modulo two, and the CFI-query is to decide whether the total number of
such transpositions is even or odd. Knowing this, it is very natural to ask whether this idea
can be generalised to encode linear equation systems over arbitrary finite fields or, more
generally, equation systems over arbitrary (Abelian) groups.

In [20], in order to obtain hardness results for the graph isomorphism problem, Torán
followed this idea and established a graph construction which simulates mod k-counting
gates for all k ≥ 2. Moreover, in order to separate the fragments of rank logic by operators
over different prime fields, Holm presented in [15] an even more general kind of construction
which allows the representation of equations over every Abelian group G. In fact, we obtain
the classes Kq essentially by using his construction for the special case where G = Fq.

Solvability logic One important step in our proof is to consider solvability logic FPS which
is the extension of FPC by quantifiers which can express the solvability of linear equation
systems over finite fields (so called solvability quantifiers, see [6, 18]). Obviously the logic
FPS can easily be embedded into rank logic (as rank operators can be used to solve linear
equation systems), but it remains open whether the inclusion FPS ≤ FPR is strict. To prove
our main result outlined above we show that over certain classes of structures the logics FPS
and FPR have precisely the same expressive power. In a more general context this might
give some evidence that in the framework of fixed-point logic with counting rank operators
can be simulated by solvability quantifiers. On the other hand we show in Section 4 that the
extension of first-order logic (without counting) by solvability quantifiers is strictly weaker
than the respective extension by rank operators. This last result thus separates solvability
quantifiers and rank operators in the absence of counting.

Let us briefly sketch the main idea of our proofs which is to exploit the symmetries of
definable linear equation systems. To this end, let M ⋅ x⃗ = 1 be a linear equation system over
some prime field Fp where M is an I × I-matrix over Fp and where 1 is the I-identity vector



4 Rank logic is dead, long live rank logic!

over Fp, i.e. 1(i) = 1 for all i ∈ I. Moreover, let Γ be a group which acts on I and which
stabilises M , i.e. for all i, j ∈ I and π ∈ Γ we have M(i, j) =M(π(i), π(j)). In other words, if
we identify the elements π ∈ Γ with I × I-permutation matrices Π then we have Π ⋅M =M ⋅Π.
Now let b⃗ ∈ FIp be a solution of the linear equation system M ⋅ x⃗ = 1. Then we observe that
also Π ⋅ b⃗ is a solution for π ∈ Γ since

M ⋅ (Π ⋅ b⃗) = (M ⋅Π) ⋅ b⃗ = Π ⋅ (M ⋅ b⃗) = Π ⋅ 1 = 1.

In other words: the solution space of the linear equation system M ⋅ x⃗ = 1 is closed under the
action of Γ. Such and similar observations will enable us to transform a given linear equation
system into a considerably simpler linear system which still is equivalent to the original one.

2 Logics with linear-algebraic operators

By S(τ) we denote the class of all finite, relational structures of signature τ . We assume
that the reader is familiar with first-order logic (FO) and inflationary fixed-point logic (FP).
For details see [9, 10]. We write P for the set of primes and denote the prime field with p
elements by Fp. We consider matrices and vectors over unordered index sets. Formally, if I
and J are non-empty sets, then an I × J-matrix M over Fp is a mapping M ∶ I × J → Fp and
an I-vector v⃗ over Fp is a mapping v⃗ ∶ I ↦ Fp.

A (linear) preorder ⪯ ⊆ A ×A on A is a reflexive, transitive and total binary relation.
A preorder ⪯ induces a linear order on the classes of the associated equivalence relation
x ∼ y ∶= (x ⪯ y ∧ y ⪯ x). We write A = C0 ⪯ ⋯ ⪯ Cn−1 to denote the decomposition of A into
∼-classes Ci which are linearly ordered by ⪯ as indicated.

We briefly recall the definitions of first-order logic with counting FOC and (inflationary)
fixed-point logic with counting FPC which are the extensions of FO and FP by counting
terms. Formulas of FOC and FPC are evaluated over the two-sorted extension of an input
structure by a copy of the arithmetic. Following [7] we let A# denote the two-sorted extension
of a τ -structure A = (A,R1, . . . ,Rk) by the arithmetic N = (N,+, ⋅,0,1), i.e. the two-sorted
structure A# = (A,R1, . . . ,Rk,N,+, ⋅,0,1) where the universe of the first sort (also referred
to as vertex sort) is A and the universe of the second sort (also referred to as number sort or
counting sort) is N.

As usual for the two-sorted setting we have, for both, the vertex and the number sort, a
collection of typed first-order variables. We agree to use Latin letters x, y, z, . . . for variables
which range over the vertices and Greek letters ν,µ, . . . for variables ranging over the numbers.
Similarly, for second-order variables R we allow mixed types, i.e. a relation symbol R of
type (k, `) ∈ N × N stands for a relation R ⊆ Ak × N`. Of course, already first-order logic
over such two-sorted extensions is undecidable. To obtain logics whose data complexity is in
polynomial time we restrict the quantification over the number sort by a numeric term t, i.e.
Qν ≤ t.ϕ where Q ∈ {∃,∀} and where t is a closed numeric term. Similarly, for fixed-point
logic FP we bound the numeric components of fixed-point variables R of type (k, `) in all
fixed-point definitions

[ifpRx̄ν̄ ≤ t̄ . (ϕ(x̄, ν̄))] (x̄, ν̄)

by a tuple of closed numeric terms t̄ = (t1, . . . , t`) where each ti bounds the range of the
variable νi in the tuple ν̄. For the logics which we consider here the value of such numeric
terms (and thus the range of all quantifiers over the number sort) is polynomially bounded in
the size of the input structure. Together with the standard argument that inflationary fixed-
points can be evaluated in polynomial time and the fact that the matrix rank over any field



E. Grädel and W.Pakusa 5

can be determined in polynomial time (for example by the method of Gaussian elimination),
this ensures that all the logics which we introduce in the following have polynomial-time
data complexity.

Let x̄ν̄ be a mixed tuple of variables and let t̄ be a tuple of closed numeric terms which
bounds the range of the numeric variables in ν̄. For a formula ϕ we define a counting term
s = [#x̄ν̄ ≤ t̄ . ϕ] whose value sA ∈ N in a structure A corresponds to the number of tuples
(ā, n̄) ∈ Ak ×N` such that A ⊧ ϕ(ā, n̄) and ni ≤ tAi where k = ∣x̄∣ and ` = ∣ν̄∣.

We define first-order logic with counting FOC as the extension of (the above described
two-sorted variant of) FO by counting terms. Similarly, by adding counting terms to the
logic FP we obtain (inflationary) fixed-point logic with counting FPC.

Extensions by rank operators

Next, we recall the notion of rank operators as introduced in [7]. Let Θ(x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) be
a numeric term where t̄ and s̄ are tuples of closed numeric terms which bound the range
of the numeric variables in the tuples ν̄ and µ̄, respectively. Given a structure A we define
N≤t̄ ∶= {n̄ ∈ N∣ν̄∣ ∶ ni ≤ tAi }. The set N≤s̄ ⊂ N∣µ̄∣ is defined analogously. The term Θ defines in
the structure A for I ∶= A∣x̄∣ ×N≤t̄ and J ∶= A∣ȳ∣ ×N≤s̄ the I × J-matrix MΘ with values in N
that is given as MΘ(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄).

The matrix rank operators compute the rank of the matrix MΘ over a prime field Fp
for p ∈ P. Firstly, as in [7], we define for every prime p a matrix rank operator rkp which
allows us to construct a new numeric rank term [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ] whose value in the
structure A is the rank of the matrix (MΘ mod p) over Fp. Secondly, we propose a more
flexible rank operator rk∗ which gets the prime p as an additional input. Formally, with this
rank operator rk∗ we can construct a rank term [rk∗ (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄, π ≤ r) .Θ] where π is
an additional free numeric variable whose range is bounded by some closed numeric term r.
Given a structure A and an assignment π ↦ p for some prime p ≤ rA, the value of this rank
term is the matrix rank of (MΘ mod p) considered as a matrix over Fp. The rank operator
rk∗ can be seen as a unification for the the family of rank operators (rkp)p∈P and has been
introduced in [15, 16, 18].

We define, for every set of primes Ω ⊆ P, the extension FORΩ of FOC and the extension
FPRΩ of FPC by matrix rank operators rkp with p ∈ Ω. For convenience, we let FOR = FORP
and FPR = FPRP. Similarly, we denote by FPR∗ the extension of FPC by the uniform
rank operator rk∗. We remark, that rank operators can directly simulate counting terms.
For example we have that

[#x .ϕ(x)] = [rkp (x, y) . (x = y ∧ ϕ(x))].

Hence, we could equivalently define the rank logics FORΩ,FPRΩ and FPR∗ as the extensions
of (the two-sorted variants of) FO and FP, respectively.

Extensions by solvability quantifiers

It is well-known that the extensions of FOC and FPC by matrix rank operators have
surprising expressive power which, in particular, goes beyond that of fixed-point logic with
counting. For example, it is known that rank operators can easily define the symmetric
transitive closure of binary relations and that they can be used to express the structure
isomorphism problem on various classes on which the Weisfeiler-Lehman test fails like, for
example, classes of Cai, Fürer and Immerman graphs [4, 7]. Interestingly, such results for
rank logic were obtained by reducing the respective queries to a solvability problem for linear



6 Rank logic is dead, long live rank logic!

equation system over finite fields. Although the solvability problem (for linear equation
systems) can be defined in rank logic, we propose to study extensions by quantifiers which
directly express this solvability problem. One advantage of this approach is that one can
naturally define such quantifiers for linear systems over more general classes of algebraic
domains, like rings, for which no appropriate notion of matrix rank exists, cf. [6].

Let Ω ⊆ P be a set of primes. Then the solvability logic FPSΩ extends the syntax of FPC
for every p ∈ Ω by the following formula creation rule for solvability quantifiers slvp.

Let ϕ(x̄ν̄, ȳµ̄, z̄) ∈ FPSΩ and let t̄ and s̄ be tuples of closed numeric terms with ∣t̄ ∣ = ∣ν̄∣
and ∣s̄ ∣ = ∣µ̄∣. Then also ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄) is a formula of FPSΩ.

The semantics of the formula ψ(z̄) is defined similarly as for rank logic. More precisely,
let k = ∣x̄∣ and ` = ∣ȳ∣. To a pair (A, z̄ ↦ c̄) ∈ S(σ, z̄) we associate the I × J-matrix Mϕ over
{0,1} ⊆ Fp where I = Ak × N≤s̄ and J = A` × N≤t̄ and where for ā ∈ I and b̄ ∈ J we have
Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄).

Let 1 be the I-identity vector over Fp, i.e. 1(ā) = 1 for all ā ∈ I. Then Mϕ and 1

determine the linear equation system Mϕ ⋅ x⃗ = 1 over Fp where x⃗ = (xj)j∈J is a J-vector of
variables xj which range over Fp. Finally, A ⊧ ψ(c̄) if, and only if, Mϕ ⋅ x⃗ = 1 is solvable.

At first glance, the solvability quantifier seem to pose serious restrictions on the syntactic
form of definable linear equation systems. Specifically, the coefficient matrix has to be a
matrix over {0,1} and the vector of constants is fixed from outside. However, it is not hard
to show that general linear equation systems can be brought into this kind of normal form
by using quantifier-free first-order transformations (see Lemma 4.1 in [6]).

We write FPS to denote the logic FPSP and FPSp to denote the logic FPS{p} for p ∈ P.
Analogously to the definition of FPR∗ we also consider a solvability quantifier slv which
gets the prime p as an additional input and which can uniformly simulate all solvability
quantifiers slvp for p ∈ P. Let FPS∗ denote the extension of FPC by this uniform version of
a solvability quantifier. Then the following inclusions easily follow from the definitions and
the fact that rank operators can be used to define the solvability problem for linear equation
systems.

FORp ≤ FPRp ≤ FPR ≤ FPR∗ ≤ Ptime

≤ ≤ ≤ ≤

FOSp ≤ FPSp ≤ FPS ≤ FPS∗

≤

FPC

Finally we remark that, analogously to [7], we defined rank operators and solvability
quantifiers for prime fields only. Of course, the definition can easily be generalised to cover
all finite fields, i.e. also finite fields of prime power order. However, for the case of solvability
quantifiers, Holm was able to prove in [15] that this does not alter the expressive power of
the resulting logics since solvability quantifiers over a finite field Fq of prime power order
q = pk can be simulated by solvability quantifiers over Fp. Moreover, a similar reduction
can be achieved for rank operators which altogether shows that it suffices to focus on rank
operators and solvability quantifiers over prime fields.

3 Separation results over different classes of fields

In this section we separate the extensions of fixed-point logic with counting by solvability
quantifiers and rank operators over different prime fields. Specifically, we show that the



E. Grädel and W.Pakusa 7

expressive power of the logics FPSΩ is different for all sets of primes Ω. Moreover, we transfer
these results to the extensions FPRΩ by rank operators. In this way we can answer the
following open question about rank logic:

It holds that FPRp ≠ FPRq for pairs of different primes p, q. [8, 15, 16]

Another important consequence of our result is that rank logic (in the way it was defined
in [7]) does not suffice to capture polynomial time. Let us state these results formally.

▸ Theorem 1. Let Ω ≠ Ω′ be two sets of primes. Then FPSΩ ≠ FPSΩ′ and FPRΩ ≠ FPRΩ′ .

▸ Theorem 2. Rank logic fails to capture polynomial time. We have FPR < FPR∗ ≤ Ptime.

In fact, both theorems are simple consequences of our following main result.

▸ Theorem 3. For every prime q there is a class of structures Kq such that

(a) FPSΩ = FPC on Kq for every set of primes Ω with q ∉ Ω,
(b) FPRΩ = FPSΩ on Kq for all sets of primes Ω,
(c) FPC < Ptime on Kq, and
(d) FPSq = Ptime on Kq.

Proof of Theorem 1. Let Ω and Ω′ be two sets of primes as above. Without loss of generality
let us assume that there exists a prime q ∈ Ω ∖Ω′. Then by Theorem 3 there exists a class
Kq on which FPSΩ = FPRΩ = Ptime and on which FPSΩ′ = FPRΩ′ = FPC < Ptime. ◂

Proof of Theorem 2. Otherwise assume that FPR = Ptime. Then, in particular, FPR
= FPR∗ and there exists a formula ϕ ∈ FPR which can uniformly determine the rank
of matrices over prime fields, i.e. which can express the uniform rank operator rk∗. As
a matter of fact we have ϕ ∈ FPRΩ for some finite set of primes Ω. By using ϕ we can
uniformly express the matrix rank over each prime field Fp in FPRΩ. In other words, we
have FPS ≤ FPR ≤ FPR∗ ≤ FPRΩ.

Now let q ∈ P ∖Ω. By Theorem 3 there exists a class of structures Kq on which FPRΩ =
FPC < Ptime. However, the class Kq can be chosen such that Ptime = FPSq ≤ FPRΩ on
Kq by Theorem 3 (d) and we obtain the desired contradiction. ◂

The proof of Theorem 2 reveals a deficiency of the logic FPR: each formula can only
access rkp-operators for a finite set Ω of distinct primes p. In fact, the query which we
constructed to separate FPR from Ptime can be defined in FPR∗. Altogether this suggests
to generalise the notion of rank operators and to specify the prime p as a part of the input,
as we did for FPR∗, and as it was proposed in [15, 16, 18].

The remainder of this section is devoted to the proof of Theorem 3. We fix a prime q
and proceed as follows. In a first step, we identify properties of classes of structures Kq
which guarantee that the relations claimed in (a), (b), (c) and (d) hold. In a second step,
we proceed to show that we can obtain a class of structures Kq that satisfies all of these
sufficient criteria. This together then proves our theorem.

Establishing sufficient criteria

We start by establishing sufficient criteria for the most relevant part of Theorem 3 which
is the relation claimed in (a). Assume that we have a class of structures Kq = K with the
following properties.



8 Rank logic is dead, long live rank logic!

(I) The automorphism groups ∆A ∶= Aut(A) of structures A ∈ K are Abelian q-groups.
(II) The orbits of `-tuples in structures A ∈ K can be ordered in FPC.

Formally, for each ` ≥ 1 there is a formula ϕ⪯(x1, . . . , x`, y1, . . . , y`) ∈ FPC such that
for every structure A ∈ K, the formula ϕ⪯(x̄, ȳ) defines in A a linear preorder ⪯ on A`
with the property that two `-tuples ā, b̄ ∈ A` are ⪯-equivalent if, and only if, they are
in the same ∆A-orbit.

▸ Lemma 4. If K satisfies (I) and (II), then FPSΩ = FPC on K for all Ω ⊆ P ∖ {q}.

The proof of this lemma is by induction on the structure of FPSΩ-formulas. Obviously,
the only interesting step is the translation of a solvability formula

ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄)

into an FPC-formula ϑ(z̄) which is equivalent to ψ(z̄) on the class K. Let ∣x̄∣ = ∣ȳ∣ = `,
∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. To explain our main argument, we fix a structure A ∈ K and a
k-tuple of parameters c̄ ∈ (A ⊎N)k which is compatible with the type of the variable tuple z̄.
According to the semantics of the solvability quantifier, the formula ϕ defines in (A, z̄ ↦ c̄)
an I × J-matrix M =MA

c̄ with entries in {0,1} ⊆ Fp where I = IAc̄ ∶= A` ×N≤s̄ ⊆ A` ×Nλ and
J = JA

c̄ ∶= A` ×N≤t̄ ⊆ A` ×Nλ that is defined for ā ∈ I and b̄ ∈ J as

M(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, if A ⊧ ϕ(ā, b̄, c̄)
0, else.

By definition we have A ⊧ ψ(c̄) if, and only if, the linear equation system M ⋅ x⃗ = 1

over Fp is solvable. The key idea is to use the symmetries of the structure A to translate
the linear equation system M ⋅ x⃗ = 1 into an equivalent linear system which is simpler in
the sense that its solvability can be defined in the logic FPC. The reader should observe
that each automorphism π ∈ ∆A = Aut(A) naturally induces an automorphism of the two-
sorted extension A# which point-wise fixes every number n ∈ N. In particular we have
Aut(A) = Aut(A#).

We set Γ = ΓA
c̄ ∶= Aut(A, c̄) ≤ ∆ = ∆A = Aut(A). The group Γ acts on I and J in the

natural way. We identify each automorphism π ∈ Γ with the corresponding I × I-permutation
matrix ΠI and the corresponding J × J-permutation matrix ΠJ in the usual way. More
precisely, to π ∈ Γ we associate the I × I-permutation matrix ΠI which is defined as

ΠI(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, π(ā) = b̄
0, otherwise.

Then Γ acts on the set of I×J-matrices by left multiplication with I×I-permutation matrices.
Similarly, we let ΠJ denote the J × J-permutation matrix defined as

ΠJ(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, π(ā) = b̄
0, otherwise.

Then Γ also acts on the set of I × J-matrices by right multiplication with J × J-permutation
matrices. Specifically, for π ∈ Γ we have (ΠI ⋅M)(ā, b̄) =M(π(ā), b̄) and (M ⋅Π−1

J )(ā, b̄) =
M(ā, π(b̄)). Since M is defined by a formula in the structure (A, c̄) and since Γ = Aut(A, c̄)
we conclude that (ΠI ⋅M ⋅Π−1

J )(ā, b̄) =M(π(ā), π(b̄)) =M(ā, b̄) and thus

ΠI ⋅M ⋅Π−1
J =M ⇔ ΠI ⋅M =M ⋅ΠJ .

This identity leads to the following important observation.



E. Grädel and W.Pakusa 9

▸ Lemma 5. If M ⋅ x⃗ = 1 is solvable, then the system has a Γ-symmetric solution, i.e. a
solution b⃗ ∈ FJp such that ΠJ ⋅ b⃗ = b⃗ for all π ∈ Γ.

Proof. If M ⋅ b⃗ = 1, then also ΠI ⋅ (M ⋅ b⃗) = 1 and thus M ⋅ (ΠJ ⋅ b⃗) = 1 for all π ∈ Γ. This
shows that Γ acts on the solution space of the linear equation system. Since K satisfies
property (I) we know that Γ is a q-group for a prime q ≠ p. Thus each Γ-orbit has size qr for
some r ≥ 0. On the other hand, the number of solutions is a power of p. We conclude that
there is at least one Γ-orbit of size one which proves our claim. ◂

Let b⃗ ∈ FJp be a Γ-symmetric solution. Then the entries of the solution b⃗ on Γ-orbits
are constant: for j ∈ J and π ∈ Γ we have b⃗(π(j)) = (ΠJ ⋅ b⃗)(j) = b⃗(j). We proceed to use
the property (II) and show that there exists an FPC-formula ϕ⪯(x̄, ȳ) which defines for all
A ∈ K and c̄ ∈ (A ⊎N)k as above a linear preorder ⪯ on A` which identifies Γ-orbits. Note
that, in general, Γ = Aut(A, c̄) is a strict subgroup of ∆ = Aut(A). Thus we can not directly
apply (II). However, the Γ-orbits on A` correspond to the ∆-orbits on Ak

′
+` where the first

k′ entries are fixed to the elements {c1, . . . , ck} ∩A.
The linear preorder ⪯ naturally extends to a preorder on the sets I and J with the same

properties. Let us write J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jv−1 to denote the decomposition of J into the
Γ-orbits Jj which are ordered by ⪯ as indicated. Moreover, for j ∈ [v] we let ej denote the
identity vector on the j-th orbit Jj , i.e. the J-vector which defined for i ∈ J as

ej(i) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if i ∈ Jj
0, else.

Let E denote the J × [v]-matrix whose j-th column is the vector ej . It follows that a
Γ-symmetric solution b⃗ can be written as E ⋅ b⃗∗ = b⃗ for a unique [v]-vector b⃗∗. Together with
Lemma 5 this shows the following.

▸ Lemma 6. The linear equation system M ⋅ x⃗ = 1 is solvable if, and only if, the linear
equation system (M ⋅E) ⋅ x⃗∗ = 1 is solvable.

Finally, we observe that the coefficient matrix M∗ ∶= (M ⋅ E) of the equivalent linear
equation system M∗ ⋅ x⃗∗ = 1 can easily be obtained in FPC and that it is a matrix over the
ordered set of column indices [v]. It is a simple observation that such linear equation systems
can be solved in FPC: the linear order on the column set induces (together with some fixed
order on Fp) a lexicographical ordering on the set of rows which is, up to duplicates of rows,
a linear order on this set. Thus, in general, if we have a linear order on one of the index sets
of the coefficient matrix this suffices to obtain an equivalent matrix where both index sets
are ordered, see also [18]. This finishes our proof of Lemma 4.

We proceed to show that the conditions (I) and (II) also guarantee that rank operators
can be reduced to solvability operators over the class K. In fact, for this translation we only
require the somewhat weaker assumption that we can define in FPC on `-tuples in structures
A ∈ K a linear preorder in which every class can be linearised in FPC by fixing a constant
number of parameters. The precise technical requirements will become clear from the proof
of the following lemma.

▸ Lemma 7. If K satisfies (I) and (II), then FPRΩ = FPSΩ on K for all sets of primes Ω.

Proof. We inductively translate FPRΩ-formulas into formulas of FPSΩ which are equivalent
on the class K. The only interesting case is the transformation of rank terms

Υ(z̄) = [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ(x̄ν̄, ȳµ̄, z̄)].



10 Rank logic is dead, long live rank logic!

Let ∣x̄∣ = ∣ȳ∣ = `, ∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. Let A ∈ K and let c̄ be a k-tuple of parameters
c̄ ∈ (A⊎N)k which is compatible with the type of the variable tuple z̄. The term Θ defines in
(A, z̄ ↦ c̄) for IA = I ∶= A∣x̄∣ ×N≤t̄ and JA = J ∶= A∣ȳ∣ ×N≤s̄ the I × J-matrix M over Fp which
is defined as

M(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄, c̄) mod p.

According to the semantics of matrix rank operators, the value ΥA(c̄) ∈ N is the rank
of the matrix M . We proceed to show that we can determine the matrix rank of M by a
recursive application of solvability queries. To this end we make the following key observation.

Claim: There are FPC-formulas ϕ⪯(ȳ1µ̄1, ȳ2µ̄2), ψ≤(v̄, ȳ1µ̄1, ȳ2µ̄2) such that for every A ∈ K

(a) ϕA
⪯ is a linear preorder ⪯ on JA, and such that

(b) for every ⪯-class [j] ⊆ JA there exists a parameter tuple d̄ ∈ A∣v̄∣ such that ψA
≤ (d̄) is a

linear order ≤ on [j].

Proof of claim: First of all, we let ϕ⪯ be an FPC-formula which defines in every structure
A ∈ K a linear preorder ⪯ on JA such that ⪯-classes correspond to ∆A-orbits. Such a
formula exists by our assumption that K satisfies property (II). Analogously, we choose an
FPC-formula ϑ⪯ which defines in every structure A ∈ K a linear preorder ⪯∗ on JA ×JA that
induces a linear order on the ∆A-orbits.

Now let [j] ⊆ JA be a ⪯-class for some A ∈ K. By property (I) we know that ∆A is an
Abelian group. Thus, each automorphism π ∈ ∆A which fixes one element in the ∆A-orbit
[j] point-wise fixes every element in the class [j]. We conclude that the restriction of ⪯∗ to
elements in {j} × [j] corresponds to a linear order on [j] for each j ∈ [j]. In this way we
obtain an FPC-formula ψ≤ with the desired properties. ⊣

We are now prepared to describe the recursive procedure which allows us to determine
the rank of the matrix M in FPSΩ. To this end we fix formulas ϕ⪯ and ψ≤ with the above
properties. Moreover, let ⪯ denote the linear preorder defined by ϕ⪯ on J and let

J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jr−1.

We use the formula ψ≤ to obtain on each class Ji a family of definable linear orderings (which
depend on the choice of different parameters). For j ∈ J we denote by m⃗j ∈ FIp the j-th
column of the matrix M . Then the rank of M coincides with the dimension of the Fp-vector
space which is generated by the set of columns {m⃗j ∶ j ∈ J} of the matrix M .

Now, for i ∈ [r] we recursively obtain the dimension di ∈ N of the Fp-vector space
generated by Vi ∶= {m⃗j ∶ j ∈ J0 ∪ J1 ∪ ⋯ ∪ Ji} as follows. First, we use ψ≤ to fix a linear
order on Ji (the following steps are independent of the specific linear order and can thus
be performed in parallel for each such order). Using this linear order on Ji we can identify
in FPSΩ a maximal set W ⊆ {m⃗j ∶ j ∈ Ji} of linearly independent columns such that
⟨Vi−1⟩∩ ⟨W ⟩ = {0⃗}. Indeed, if ⟨Vi−1⟩∩ ⟨W ⟩ = {0⃗}, then for m⃗ ∈ {m⃗j ∶ j ∈ Ji}, m⃗ ∉ ⟨W ⟩ we have
that ⟨Vi−1⟩ ∩ ⟨W ⊎ {m⃗}⟩ = {0⃗} if, and only if, m⃗ ∉ ⟨Vi−1 ∪W ⟩. Observe that the conditions
m⃗ ∉ ⟨W ⟩ and m⃗ ∉ ⟨Vi−1 ∪W ⟩ correspond to the solvability of a linear equation system over Fp.
We claim that di = di−1 + ∣W ∣. Indeed, by the maximality of W and since ⟨Vi−1⟩ ∩ ⟨W ⟩ = {0⃗}
it follows that ⟨Vi⟩ = ⟨Vi−1⟩⊕ ⟨W ⟩. Moreover, W consists of linearly independent columns
and is a basis for ⟨W ⟩.

Since the above described recursion can easily be implemented in FPSΩ, we conclude that
the rank dr−1 of the matrix M can be determined in FPSΩ which completes our proof. ◂



E. Grädel and W.Pakusa 11

We now focus on the parts (c) and (d) of Theorem 3 and establish sufficient criteria
which guarantee that FPC fails to capture Ptime on K while FPSq can express every
polynomial-time decidable property of K-structures.

(III) There exists an FPSq-definable canonisation procedure on K.
(IV ) For every k ≥ 1 there exists a pair of structures A ∈ K and B ∈ K such that A /≅ B

and A ≡Ck B.

▸ Lemma 8. If K satisfies (III) and (IV), then FPC < FPSq = Ptime on K.

Proof. It is clear that by property (III) we have FPSq = Ptime on K. Moreover, if we had
FPC = Ptime on K then, by the embedding of FPC into Cω

∞ω and the fact that K-structures
can be canonised in polynomial time, there exists a fixed k ≥ 1 such that Ck

∞ω can identify
each structure in K which, in turn, contradicts property (IV). ◂

Constructing an appropriate class of structures

We proceed to construct a class of structures K which satisfies properties (I) - (IV). Our
approach is a generalisation of the well-known construction of Cai, Fürer and Immerman [4]
for cyclic groups other than F2. To illustrate the main differences, let us briefly recall
the idea of the original construction. Starting from an undirected and connected graph
G = (V,E), we take two copies e0, e1 of every edge e ∈ E. Moreover, for every vertex v ∈ V
we consider the set vE ⊆ E of edges which are adjacent to v and we add one of the following
two constraints to restrict the symmetries of the resulting CFI-graph: either the set of all
sets {eρ(e) ∶ e ∈ vE} with ρ ∶ vE → F2 and ∑e∈vE ρ(e) = 0 is stabilised (an even node) or the
dual set of all sets {eρ(e) ∶ e ∈ vE} with ρ ∶ vE → F2 and ∑e∈vE ρ(e) = 1 is stabilised (an odd
node). These constraints are encoded by a simple graph gadget. Although it seems that
for each of these exponentially many choices we obtain a different CFI-graph, there really
are, up to isomorphism, only two such graphs which in turn are determined by the parity of
the number of odd nodes. Very roughly, the reason is that we can transpose, or twist, two
copies e0, e1 of each an edge e and move this twist along a path (in the connected graph G)
to iteratively resolve pairs of odd nodes.

In order to generalise this construction to Fq we take for every edge e ∈ E a directed cycle
of length q over q copies e0, e1, . . . , eq−1 of the edge e. We then add similar constraints for
sets of incident edges as above, but naturally, instead of having only two different kinds of
such constraints, we have one for each value 0,1, . . . , q − 1 ∈ Fq. Now, instead of twisting
pairs of edges, we consider cyclic shifts of length ≤ q on the edge classes e0, e1, . . . , eq−1 which
respect the cycle relation. Again, these shifts can be propagated along paths in the original
graph G and, with a reasoning analogous to the original approach, it turns out that there
are, up to isomorphism, only q different types of generalised CFI-graphs over Fq. We remark
that the same kind of generalisations has been studied, for example, in [15, 20].

Let us formalise the above described intuitions. We start with an (undirected), connected
and ordered graph G = (V,≤,E). Let C, I and R be binary relation symbols. We set τ ∶= {⪯
,C, I,R}. We define for every prime q and every sequence of gadget values d⃗ = (dv)v∈V ∈ [q]V
a τ -structure CFIq(G, d⃗) which we call a CFI-structure over G. For the following construction
we agree that arithmetic is modulo q so that we can drop the operator “mod q” in statements
of the form x = ymod q and x + y mod q for the sake of better readability. For what follows,
let E(v) ⊆ E denote the set of directed edges starting in v. Since G is an undirected graph,
this means that for each undirected edge {v,w} of G we have (v,w) ∈ E(v) and (w, v) ∈ E(w).
The construction is illustrated in Figure 1.



12 Rank logic is dead, long live rank logic!

The universe of CFIq(G, d⃗) consists of edge nodes and equation nodes.
The set of edge nodes Ê is defined as Ê ∶= ⋃e∈E ê where for every directed edge e ∈ E
we let the edge class ê = {e0, e1, . . . , eq−1} consist of q distinct copys of e. In particular,
for every edge e = (v,w) ∈ E and its reversed edge e−1 ∶= f = (w, v) ∈ E the sets ê and
f̂ are disjoint. We say that two such edges (or edge classes) are related.
The set of equation nodes V̂ is defined as V̂ ∶= ⋃v∈V v̂d⃗(v) where for every vertex v ∈ V
and d ∈ [q] the equation class v̂d consist of all functions ρ ∶ E(v) → [q] which satisfy
∑ρ ∶= ∑e∈E(v) ρ(e) = d.

The linear preorder ⪯ orders the edge classes according to the linear order induced by
≤ on E. More precisely, we let ê ⪯ f̂ whenever e ≤ f . Similarly, ⪯ orders the equation
classes according to the order of ≤ on V , i.e. v̂ ⪯ ŵ if v ≤ w. Moreover, we let ê ⪯ v̂ for
edge classes ê and equation classes v̂.
The cycle relation C contains a directed cycle of length q on each of the edge classes ê
for e ∈ E, i.e. C = {(ei, ei+1) ∶ i ∈ [q], e ∈ E}.
The inverse relation I connects two related edge classes by pairing additive inverses.
More precisely, let e = (v,w) ∈ E and f = (w, v) ∈ E. Then I contains all edges (ex, fy)
with x + y = 0 for x, y ∈ [q].
The gadget relation R is defined as R ∶= ⋃v∈V Rd⃗(v)v where for v ∈ V and d ∈ [q] the
relation Rdv is given as

Rdv ∶= {(ρ, eρ(e)) ∶ ρ ∈ v̂d, e ∈ E(v)}.

G

v

a

b

c

ea

fa

eb f b

ec

f c

eb
0

eb
1

eb
2

C

fb
0

fb
1

fb
2

C

I

ea
0

ea
1

ea
2

C

fa
0

fa
1

fa
2

C

I

ec
0

ec
1

ec
2

C

fc
0

fc
1

fc
2

C

I

ρ = (2, 1, 0) ρ = (1, 1, 1)
⋯
R

Figure 1 Generalised CFI-construction for the v-gadget where q = 3 and d⃗(v) = 0

At first glance our construction associates to every graph G (with the above properties)
and to each sequence of gadget values d⃗ ∈ [q]V a different structure CFIq(G, d⃗). However, for
each graph G with the above properties there really are, up to isomorphism, only q different



E. Grädel and W.Pakusa 13

CFI-structures CFIq(G, d⃗). In fact, the value ∑ d⃗ ∶= ∑v∈V d⃗(v) completely determines the
isomorphism class of a CFI-structure over G.

To obtain this characterisation, we analyse the automorphism group of CFI-structures
and, more generally, the set of isomorphisms between two structures A = CFIq(G, d⃗1) and
B = CFIq(G, d⃗2). For such structures we know that the set Ê of edge nodes, the linear
preorder ⪯ on Ê, the cycle relation C and the inverse relation I do not depend on the
sequence of gadget values. This means that each possible isomorphism π which maps A to
B induces an automorphism of the common substructure C ∶= (Ê, (⪯ ↿ Ê),C, I) which only
depends on G but not on d⃗ ∈ [q]V . Thus

(Iso(A,B) ↿ Ê) ⊆ Γ ∶= Aut(C) ≤ Sym(Ê).

Let π ∈ Γ. The linear preorder ⪯ on Ê and the cycle relation C enforce that π is the
composition of cyclic shifts on the individual edge classes ê, i.e. π ∈ ∏e∈E⟨( e0e1⋯eq−1 )⟩ ≤
Sym(Ê). It is convenient to identify the group ∏e∈E⟨( e0e1⋯eq−1 )⟩ with the vector space
FEq in the obvious way.

In addition, the inverse relation I enforces that cyclic shifts for pairs of related edge
classes are inverse to each other in the following sense: let e = (v,w) ∈ E and f = (w, v) ∈ E
be a pair of related edges. Assume that we have a permutation π ∈ FEq such that π(e) = x
and π(f) = y. We have (e0, f0) ∈ I. Hence, if π is supposed to be an automorphism of C then
we have π(I) = I and thus (ex, ey) ∈ I which means that x + y = 0.

In conclusion, it follows that Γ ≤ FEq is the subgroup of FEq which contains all E-vectors
π ∈ FEq with the property that π(e) + π(f) = 0 for pairs of related edges e, f ∈ E. Again we
remind the reader that Γ only depends on G but not on d⃗ ∈ [q]V . If we want to stress this
dependence, then we sometimes write Γ(G) but usually we omit G if the graph is clear from
the context.

Now, given a CFI-structure A = CFIq(G, d⃗), we define for each vertex v ∈ V the v-gadget
as the set gadget(v) ∶= v̂d(v) ⊎⋃e∈E(v) ê.

▸ Lemma 9. Let A = CFIq(G, d⃗) and let π ∈ Γ. Then there is precisely one extension π̂ of π
to Ê ⊎ V̂ such that π̂(A) is a CFI-structure over G.

Proof. Let ρ ∈ v̂ = v̂d⃗(v) for some v ∈ V . We show that under the assumption that π̂(A) is a
CFI-structure over G the action of π on Ê determines π̂(ρ).

We have that (ρ, eρ(e)) ∈ R for all e ∈ E(v). Hence for a potential isomorphism π̂ we must
have that (π̂(ρ), π(eρ(e))) ∈ R′ (for a gadget relation R′ of a CFI-structure over G). Since
we have π(eρ(e)) = eρ(e)+π(e), it follows by the definition of CFI-structures that the function
π̂(ρ) ∶ E(v) → [q] is determined as (π̂(ρ))(e) = ρ(e) + π(e) which in turn only depends on
the action of π on the edge classes ê for e ∈ E(v). ◂

The preceding lemma shows that Iso(A,B) can be identified with a subset of Γ. In fact,
the set Aut(A) turns out to be a subgroup of Γ of which Iso(A,B) is a coset in Γ. Specifically,
we saw that every π ∈ Γ can uniquely be identified with an isomorphism of CFI-structures
over G by setting π(ρ) = ρ + π for ρ ∈ v̂d . As a consequence, this means that π(v̂d) = v̂d∗
where d∗ = d +∑e∈E(v) π(e) and that

π(Rdv) = {(ρ + π, eρ(e)+π(e)) ∶ (ρ, eρ(e)) ∈ Rdv} = Rd∗v .

In particular, π stabilises the relation Rdv if, and only if, ∑e∈E(v) π(e) = 0.



14 Rank logic is dead, long live rank logic!

▸ Lemma 10. Γ acts on {CFIq(G, d⃗) ∶ d⃗ ∈ [q]V }. For π ∈ Γ we have

π(CFIq(G, d⃗)) = CFIq(G, d⃗∗) where d⃗∗(v) = (d⃗(v) + ∑
e∈E(v)

π(e)).

▸ Lemma 11. Let d⃗, d⃗∗ ∈ ([q])V be two sequences of gadget values. Then CFIq(G, d⃗) ≅
CFIq(G, d⃗∗) if, and only if, ∑ d⃗ = ∑ d⃗∗.

Proof. Let π ∈ Γ such that π(CFIq(G, d⃗)) = CFIq(G, d⃗∗). By Lemma 10 this means that
d⃗∗(v) = (d⃗(v) +∑e∈E(v) π(e)) for v ∈ V . Thus ∑v∈V d⃗∗(v) = ∑v∈V d⃗(v) +∑v∈V ∑e∈E(v) π(e) =
∑v∈V d⃗(v) +∑e∈E π(e). Since for all pairs of related edges e, f ∈ E we have π(e) + π(f) = 0
the claim follows.

For the other direction we proceed by induction on the number i of vertices v ∈ V such
that d⃗(v) ≠ d⃗∗(v). If no such vertex exists, then the claim is trivial. Otherwise, because of
our assumption, there exist at least two such vertices v,w ∈ V , v ≠ w. Since G is connected
we find a simple path

p̄ ∶ v = v0
EÐ→ v1

EÐ→ v2
EÐ→ ⋯ EÐ→ vm = w

from v to w of length m ≥ 1. Consider the following E-vector π ∈ FEq which is defined for
z ∶= d⃗∗(v) − d⃗(v) as

π(e) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z, if e = (vi, vi+1),0 ≤ i <m
−z, if e = (vi+1, vi),0 ≤ i <m
0, else.

By the definition of π it follows that π ∈ Γ. Let π(CFIq(G, d⃗)) = CFIq(G, d⃗+). We claim that
the number of v ∈ V such that d⃗+(v) ≠ d⃗∗(v) is at most i − 1. From Lemma 10 we know that
d⃗+(v) = d⃗(v) +∑e∈E(v) π(e). For v ∈ V it follows that

if v ∉ {v0, . . . , vm}, then d⃗+(v) = d⃗(v), and
if v = v0, then d⃗+(v) = d⃗(v) + z = d⃗∗(v), and
if v = vj for 1 ≤ j <m, then

d⃗+(v) = d⃗(v) + π(vj , vj−1) + π(vj , vj+1) = d⃗(v) − z + z = d⃗(v), and

if v = vm, then d⃗+(v) = d⃗(v) − z.
Thus the claim follows from the induction hypothesis. ◂

The kind of isomorphism that we constructed in the proof of Lemma 11 plays an important
role later on. Thus, for a simple path p̄ from v0 to vm (m ≥ 1)

p̄ ∶ v = v0
EÐ→ v1

EÐ→ v2
EÐ→ ⋯ EÐ→ vm = w

as above and a constant z ∈ Fq we denote this isomorphism by π[p̄, z] ∈ Γ. In other words, if
we let σz[e] ∈ Γ for e ∈ E and z ∈ Fq denote the E-vector which is defined as

σz[e](f) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z, if f = e,
−z, if f = e−1,

0, else,

then π[p̄, z] = σz[(v0, v1)] + σz[(v1, v2)] +⋯ + σz[(vm−1, vm)]. Intuitively, the isomorphism
π[p̄, z] allows us to simultaneously increase the gadget value at v0 by z and to decrease the



E. Grädel and W.Pakusa 15

gadget value at vm by z while the induced twists are moved along the path p̄ through the
gadget relations of the vertices vj , 1 ≤ j <m, whose gadget value does not change. A very
important special case arises when p̄ is a simple cycle of length m ≥ 3

p̄ ∶ v = v0
EÐ→ v1

EÐ→ v2
EÐ→ ⋯ EÐ→ vm = v.

Then for all values z ∈ Fq the isomorphism π[p̄, z] ∈ Γ is an automorphism of CFI-structures
over G. We are going to use these automorphisms to show that it is possible to define in
FPC an ordering on the orbits of `-tuples as required by property (II). It turns out that it
therefore suffices to ensure that the graph G is sufficiently connected.

Recall that a graph G is k-connected, for k ≥ 1, if G contains more than k vertices and if
G stays connected when we remove any set of at most k vertices. The connectivity con(G)
of a graph G is the maximal k ≥ 1 such that G is k-connected. Moreover, the connectivity
con(G) of a class G of graphs is the function con(G) ∶ N→ N defined by

n↦ min
G∈G,∣G∣=n

con(G).

We are prepared to define the class K: let G be a class of undirected, ordered graphs such
that con(G) ∈ ω(1). Then we set

K = Kq ∶= {CFIq(G, d⃗) ∶ G = (V,≤,E) ∈ G, d⃗ ∈ [q]V }.

Verifying the required properties

We proceed to show that K satisfies the required properties (I) - (IV).
First of all, we saw that the automorphism group of each CFI-structure CFIq(G, d⃗) is a

Fq-vector space, so property (I) clearly holds for the class K.
The proof that K satisfies property (II) is more involved. Let us fix the length ` ≥ 1 of

tuples on which we want to define a linear preorder which identifies ∆A-orbits. By the choice
of K it suffices to consider CFI-structures A = CFIq(G, d⃗) over graphs G = (V,≤,E) with
con(G) > (` + 2) since almost all structures in K satisfy this condition. As above let Γ ≤ FEq
denote the group that acts on the set of CFI-structures over G and let A ∶= (V̂ ⊎ Ê) denote
the universe of the CFI-structure A.

▸ Definition 12. Let λ ≤ ` and let ā ∈ Aλ.

(i) Let v ∈ V . We say that the vertex v is marked (given the parameters ā) if for some
x ∈ {a1, . . . , aλ} we have x ∈ v̂ (= v̂d⃗(v)).

(ii) Let e = (v,w) ∈ E. We say that the edge e is marked (given the parameters ā) if one
of the vertices v or w is marked or if for some x ∈ {a1, . . . , aλ} we have that x ∈ ê ∪ f̂
where f = (w, v) ∈ E is the edge related with e.

▸ Lemma 13. Let λ ≤ ` and let ā ∈ Aλ.

(a) If v ∈ V is marked, then the v-gadget can be identified in C`+2
∞ω (using the parameters ā),

i.e. for every c ∈gadget(v) there exists a formula ϑ(x̄, y) ∈ C`+2
∞ω such that ϑA(ā) = {c}.

(b) If an edge e ∈ E is marked, then the edge classes ê and f̂ for f = e−1 are identified in C`+2
∞ω

(given the parameters ā), i.e. for every c ∈ ê ⊎ f̂ there exists a formula ϑ(x̄, y) ∈ C`+2
∞ω

such that ϑA(ā) = {c}.



16 Rank logic is dead, long live rank logic!

Proof. First of all, it is straightforward (even without using the parameters) to fix the ⪯-class
of any element c ∈ A in C`+2

∞ω. Secondly, observe that if an element ρ ∈ v̂ is fixed, then we can
fix an element in each of the edge classes ê for e ∈ E(v) since ρ is R-connected to precisely
one vertex in each of these classes. Moreover, if we have fixed an element x ∈ ê in some edge
class ê, then we can simply use the cycle relation C to identify each element c ∈ ê via its
C-distance to a in C`+2

∞ω. Finally, the inverse relation I yields a definable bijection between
related edge classes. ◂

▸ Lemma 14. Let λ ≤ `, ā ∈ Aλ and let v ∈ V be a vertex that is not marked. Then for
all edges e, e′ ∈ E(v), e ≠ e′ which are not marked there exists π ∈ Aut(A, ā) such that
π(e) = −π(e′) ≠ 0 and such that π(f) = 0 for all f ∈ E(v) ∖ {e, e′}.

Proof. Let e = (v,w) and e′ = (v,w′) as above. Then the vertices w and w′ are not marked.
Consider the graph G′ that results from G by removing the vertex v and each marked

vertex y ∈ V . Let V ′ ⊆ V denote the vertex set and E′ ⊆ E the edge relation of the graph G′.
Moreover, let M ∶= {a1, . . . , aλ} ∩ (⋃e∈E ê). We observe that ∣V ∣ − ∣V ′∣ ≤ λ − ∣M ∣ + 1.

For every x ∈ M there is an edge f ∈ E such that x ∈ f̂ . For each such edge f that is
also contained in the subgraph G′ we delete one of its endpoints but neither the vertex w
nor the vertex w′ and denote the resulting subgraph by G′′ with vertex set V ′′ ⊆ V ′ and
edge relation E′′ ⊆ E′. It still might happen that there is a parameter x ∈ M such that
x ∈ f̂ for f ∈ E′′. However, this can only occur if f connects w′ and w. Since we removed
at most (∣V ∣ − ∣V ∣′) + ∣M ∣ ≤ λ + 1 ≤ (` + 1) vertices from the graph G to obtain G′′ and since
con(G) > (` + 2) we know that there is a simple path of length m ≥ 2 (i.e. the path does not
consist of a single edge between w and w′) which connects w and w′ in G′′:

p̄ ∶ w E′′
Ð→ v1

E′′
Ð→ v2

E′′
Ð→ ⋯ E′′

Ð→ vm−1
E′′
Ð→ w′.

We extend p̄ to a simple cycle p̄c in G from v to v by using the edges (v,w), (v,w′) ∈ E:

p̄c ∶ v
EÐ→ w

EÐ→ v1
EÐ→ v2

EÐ→ ⋯ EÐ→ vm−1
EÐ→ w′ EÐ→ v.

Let 0 ≠ z ∈ [q]. We claim that π ∶= π[p̄c, z] satisfies the desired properties.
By the definition of π it holds that π(e) = z = −π(e′). Let x ∈ {a1, . . . , aλ}. Then we

have x ∉ ⋃m−1
i=1 v̂i ∪ ŵ ∪ ŵ′ ∪ v̂, since none of the vertices v, w and w′ is marked and since we

removed any other marked vertex y ∈ V from G.
Moreover, for f ∈ {(v,w), (w, v), (v,w′), (w′, v)} we have that x ∉ f̂ by our assumption

that e, e′ are not marked. Also for f ∈ {(w, v1), (w′, vm−1)} we have x ∉ f̂ since otherwise we
had removed the vertices v1 and vm−1 from G′. Finally, for f ∈ ⋃m−2

i=1 {(vi, vi+1), (vi+1, vi)} we
have x ∉ f̂ since otherwise we had removed one of the endpoints of each such edge f from G′.
Hence π(x) = x. Finally, since v ∉ V ′′ we also have that π(f) = f for all f ∉ E(v)∖{e, e′}. ◂

▸ Lemma 15. Let λ ≤ ` and let ā, b̄ ∈ Aλ. Then (A, ā) ≡C`+2 (A, b̄) if, and only if, there exists
π ∈ Aut(A) such that π(ā) = b̄.

Proof. We proceed by induction on the maximal position 1 ≤ i ≤ λ up to which the tuples ā
and b̄ agree, i.e. such that for 1 ≤ j < i we have aj = bj and such that ai ≠ bi. Let a ∶= ai and
b ∶= bi. Then we have to show that there exists an automorphism π ∈ Aut(A, a1⋯ai−1) such
that π(a) = b. Since ā and b̄ have the same C`+2

∞ω-type we know that a and b belong to the
same ⪯-class. We choose v ∈ V such that a, b ∈gadget(v).

In what follows, whenever we speak of marked vertices or marked edges then we implicitly
refer to a marking with respect to the already fixed part of parameters {a1, . . . , ai−1}.



E. Grädel and W.Pakusa 17

Without loss of generality we may assume that the vertex v is not marked (by an element
x ∈ {a1, . . . , ai−1}), because otherwise, by Lemma 13, every element in gadget(v) can uniquely
be identified in C`+2

∞ω. We distinguish between the two cases where a and b are equation
nodes and where a and b are edge nodes.

For the first case let a, b ∈ v̂. There exists a unique π ∈ FE(v)q such that π(a) = b and
such that ∑e∈E(v) π(e) = 0. Moreover, this vector π can easily be defined in C`+2

∞ω given
the elements a and b. Now assume that one of the edges e = (v,w) ∈ E(v) is marked but
that π(e) ≠ 0. Since the edge e is marked, every element in ê can uniquely be identified in
C`+2
∞ω by Lemma 13. However, since a and b are R-connected to different elements in ê (as

π(e) ≠ 0) this contradicts the fact that ā and b̄ have the same C`+2
∞ω-type. Thus, for every

edge e ∈ E(v) we either have that π(e) = 0 or that e is not marked. By induction on the
number of edges e ∈ E(v) with π(e) ≠ 0 we show that π can be extended to an automorphism
in Aut(A, a1, . . . , ai−1). Thus let us fix e ∈ E(v) such that π(e) ≠ 0. Since we have that
∑f∈E(v) π(f) = 0 there has to be another edge e′ ∈ E(v) with π(e′) ≠ 0. We apply Lemma 14
to obtain an automorphism σ ∈ Aut(A, a1, . . . , ai−1) such that σ(e) = π(e), σ(e′) = −π(e)
and σ(f) = 0 for all f ∈ E(v) ∖ {e, e′}. Now consider (π − σ) ∈ FE(v)q . By the induction
hypothesis we can extend this vector to an automorphism π∗ ∈ Aut(A, a1, . . . , ai−1). But
then (π∗ + σ) ∈ Aut(A, a1, . . . , ai−1) is an extension of π.

For the second case assume that a, b ∈ ê for some edge e ∈ E(v). As above we conclude
that the edge e is not marked. Since con(G) > (` + 2) the minimal degree of each vertex in G
is at least (` + 4). Since the vertex v is not marked there has to be another edge e′ ∈ E(v),
e ≠ e′ which is not marked. Thus we can apply Lemma 14 to obtain an automorphism
π ∈ Aut(A, a1, . . . , ai−1) such that π(a) = b and π(f) = 0 for all f ∈ E(v) ∖ {e, e′}. ◂

It is well-known that classes of C`+2
∞ω-equivalent tuples can be ordered in FPC, see e.g.

[17]. Hence, it follows from our previous lemma that the class K satisfies property (II).

▸ Lemma 16. The class K satisfies the properties (I) and (II).

Let us now turn our attention to property (IV). In the next lemma we are going to
show that for each k ≥ 1 and each sufficiently connected graph G ∈ G, the logic Ck

∞ω cannot
distinguish between any pair of CFI-structures over G (although there exist non-isomorphic
CFI-structures over G).

▸ Lemma 17. Let k ≥ 1 and let G = (V,≤,E) ∈ G such that con(G) > k. Then for all
d⃗, d⃗∗ ∈ [q]V it holds that

CFIq(G, d⃗) ≡Ck CFIq(G, d⃗∗).

Thus, the class K satisfies property (IV).

Proof. Let A = CFIq(G, d⃗) and let B = CFIq(G, d⃗∗). Without loss of generality we assume
that A /≅B. We show that Duplicator wins the k-pebble bijection game on A and B. Let
za ∶= ∑v∈V d⃗(v), let zb ∶= ∑v∈V d⃗∗(v) and let z ∶= zb − za. As above, for e = (v,w) ∈ E and
y ∈ [q] we let σy[e] ∈ Γ = Γ(G) denote the isomorphism which shifts the edge class ê by y,
the edge class f̂ for f = (w, v) by −y and which stabilises all remaining classes, i.e.

σy[e](f) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

z, if f = (v,w),
−z, if f = (w, v),
0, else.



18 Rank logic is dead, long live rank logic!

Given a position (A, a1, . . . , a`,B, b1, . . . , b`) in the k-pebble bijection game, we say that a
pair (v, π) with v ∈ V and π ∈ Γ(G) is good if:

the v-gadget is not marked (by the pebbled elements a1, . . . , a` in A or, equivalently, by
the pebbled elements b1, . . . , b` in B),

π(ai) = bi for 1 ≤ i ≤ `,

π(A ∖ v̂) =B ∖ v̂, and

(σz[e] + π)(A ↿gadget(v)) =B ↿gadget(v) for all e ∈ E(v).
Intuitively this means that π is nearly an isomorphism between A and B except for the
gadget associated to vertex v. Of course π itself does not induce a bijection between the
universes of the two CFI-structures (as otherwise A ≅B). However, for each e ∈ E(v) we can
associate a bijection π̂e ∶ A→ B to π which is defined as

π̂e(x) =
⎧⎪⎪⎨⎪⎪⎩

π(x), if x ∉ v̂,
(σz[e] + π)(x), if x ∈ v̂.

In what follows we show that Duplicator can play in such a way that after each round
such a good pair (v, π) exists. Obviously, if Duplicator can maintain this invariant this
suffices for her to win the game.

Indeed we can find such a good pair (v, π) by Lemma 11 for the initial position (A,B)
of the game. Let us now consider one round of the game which starts from a position
(A, a1, . . . , a`,B, b1, . . . , b`) for which a good pair (v, π) exists. First, Spoiler chooses a pair
i ≤ k of pebbles which he removes from the game board (if the corresponding pebbles are
placed at all). Duplicator then answers Spoiler’s challenge by providing a bijection π̂e for
some edge e ∈ E(v) which is not marked. Note that such an edge e exists since con(G) > k
and thus each vertex has degree at least k + 2. Spoiler picks a new pair (a, π̂e(a)) ∈ A ×B of
π̂e-related elements on which he places the i-th pair of pebbles. By the properties of π it
immediately follows that the resulting mapping ā[i↦ a]↦ b̄[i↦ b] is a partial isomorphism.
However, it might happen that Spoiler placed the i-th pair of pebbles on equation nodes
v̂ in the gadget associated to vertex v. In this case the pair (v, π) is not good any longer.
So assume that Spoiler pebbled a new pair of elements (a, πe(a)) ∈ v̂ × v̂. Since the edge
e = (v,w) was not marked we know that w is not marked. Thus it is easy to see that the
pair (w,σz[e] + π) is good. ◂

To complete our proof we establish an FPSq-definable canonisation procedure on the
class K. The idea is as follows: given a CFI-structure A = CFIq(G, d⃗) over a graph G and a
value z ∈ [q] we construct a linear equation system over Fq which is solvable if, and only if,
∑ d⃗ = z. This linear equation system is FO-definable in the structure A which shows that
FPSq can determine the isomorphism class of a CFI-structure over G. Since the graph G is
ordered it is easy to construct an ordered representative from each isomorphism classes of
CFI-structures over G which concludes our argument.

More specifically, let G = (V,≤,E) ∈ G, let A = CFIq(G, d⃗) ∈ K and let z ∈ Fq. For our
linear equation system we identify each element ei ∈ Ê and each vertex v ∈ V with a variable
over Fq, i.e. we let V ∶= Ê ⊎ V be the set of variables. The equations of the linear system are
given as follows:



E. Grädel and W.Pakusa 19

ei+1 = ei + 1 for all ei ∈ Ê (E 1)
ei = −f−i for related edges e, f ∈ E (E 2)
v = ∑

e∈E(v)

eρ(e) for all v ∈ V, ρ ∈ v̂ (E 3)

z = ∑
v∈V

v. (E 4)

It is easy to see that this system is FO-definable in A. First of all, the equation (E 4)
can be defined as a sum over the ordered set V . Moreover, we can express the equations
of type (E 1) and (E 2) by using the cycle and inverse relation, respectively. Finally, the
equations of type (E 3) can be expressed by using the gadget relation R.

▸ Lemma 18. The above defined system is solvable if, and only if, ∑ d⃗ = z.

Proof. If ∑ d⃗ = z then it is easy to verify that we obtain a solution σ⃗ ∈ FVq of the linear
system by setting σ⃗(ei) = i and σ⃗(v) = d⃗(v). For the other direction, we show that a solution
σ⃗ ∈ FVq of this system defines an isomorphism π between A and B = CFIq(G, d⃗+) where
d⃗+(v) ∶= σ⃗(v). As a preparation, we let δ(e) ∶= σ⃗(ei) − i for e ∈ E and some ei ∈ ê. Since σ⃗ is
a solution, δ ∈ FEq is well-defined. Now we obtain the isomorphism π for ei ∈ Ê and ρ ∈ V̂ by
setting

π(ei)↦ eσ(ei)

π(ρ)↦ ρ + δ.

Using the equations (E 1) and (E 2) one easily verifies that π respects the cycle relation C
and the inverse relation I. Moreover, let (ρ, eρ(e)) ∈ R. Then

π(eρ(e)) = eσ⃗(eρ(e)) and σ⃗(eρ(e)) = ρ(e) + δ(e).

Thus, π also respects R. Finally, by the equations of type (E 3), for all v ∈ V and ρ ∈ v̂ we
have that

∑ρ + δ = ∑
e∈E(v)

σ⃗(eρ(e)) = σ⃗(v).

This shows that σ⃗(v) = d+(v) and that ∑ d⃗+ = ∑v∈V σ⃗(v) = z because of equation (E 4). ◂

▸ Lemma 19. The class K satisfies the property (III).

This finishes our proof of Theorem 3.

4 Solvability quantifiers vs. rank operators

In the previous section we obtained separation results for the extensions of FPC by solvability
quantifiers (and rank operators) over different sets of primes. One important step of our proof
was to construct a class of structures on which the expressive power of the logics FPRΩ and
FPSΩ coincides. Moreover, as we already mentioned in Section 2, most of the queries which
are known to separate fixed-point logic with counting and rank logic can also be expressed
in FPS. This leads to the interesting question whether, in general, rank operators can be
simulated by solvability quantifiers within fixed-point logic with counting. In this context, it



20 Rank logic is dead, long live rank logic!

is worthwhile to remark that many other problems from linear algebra are known to sit in
between of “solving linear equation systems” and “computing the matrix rank”, for example,
deciding whether two matrices are similar or equivalent, see [18, 15, 16].

In this section we solve a simplified version of this question and show that in the absence
of fixed-points and, more importantly, in the absence of counting, rank operators are strictly
more expressive than solvability quantifiers. The reader should note that rank operators can
easily simulate counting terms but this does not hold for solvability quantifiers.

In order to state our main result formally, we first define for every prime p the extension
FOSp of first-order logic (without counting) by solvability quantifiers over Fp. The crucial
difference to the extension FORp of first-order logic by rank operators rkp is that the logic
FOSp is a one-sorted logic which does not have access to a counting sort.

▸ Definition 20. For every prime p, the logic FOSp results by extending the syntax of FO
by the following formula creation rule:

If ϕ(x̄, ȳ, z̄) ∈ FOSp, then ψ(z̄) = (slvp x̄, ȳ)ϕ(x̄, ȳ, z̄) is an FOSp-formula.
The semantics of ψ(z̄) are defined as above. For completeness, let k = ∣x̄∣ and ` = ∣ȳ∣. A pair
(A, z̄ ↦ c̄) with c̄ ∈ A∣z∣ defines an I × J-matrix Mϕ over {0, 1} ⊆ Fp where I = Ak and J = A`
and where Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄).

Let 1 be the I-identity vector over Fp, i.e. 1(ā) = 1 for all ā ∈ I. Then Mϕ and 1

determine the linear equation system Mϕ ⋅ x⃗ = 1 over Fp. Now we let A ⊧ ψ(c̄) if, and only if,
Mϕ ⋅ x⃗ = 1 is solvable.

Analogously to the definition of FPS in Section 2, the syntactic normal form of definable
linear equation systems in the definition of slvp-quantifier does not lead to a severe restriction
(again, see Lemma 4.1 in [6]).

Let us briefly summarise what is known about the logic FOSp (see also [6, 18]). First
of all, it follows from [7] that for every prime p, the logic FOSp can express the symmetric
transitive closure of definable relations. Hence, FOSp subsumes the logic STC and can
express every Logspace-computable property of ordered structures. Secondly, it also follows
from [7] that FOS2 can distinguish between the odd and even version of a CFI-graph,
which means that FOS2 cannot be a fragment of FPC. More generally, by adapting the
CFI-construction for other fields one can show that FOSp /≤ FPC for all p ∈ P (see e.g. [15]).

On the domain of ordered structures, the expressive power of FOSp can be characterised
in terms of a natural complexity class: in [3], Buntrock et. al. introduced the logarithmic
space modulo counting classes MODkL for integers k ≥ 2. Analogously to the case of modulo
counting classes for polynomial time, the idea is to say that a problem is in MODkL if there
exists a non-deterministic logspace Turing machine which verifies its inputs by producing a
number of accepting paths which is not congruent 0 mod k. For the formal definition we
refer the reader to [3]. It turns out that, at least for primes p, the class MODpL is closed
under many natural operations, including all Boolean operations and even logspace Turing
reductions [3, 14]. Furthermore, many problems from linear algebra over Fp are complete
for MODpL. In particular this is true for the solvability problem of linear equation systems
over Fp and for computing the matrix rank over Fp [3].

Building on these insights, Dawar et. al. were able to show that for all primes p, the logic
FORp captures MODpL on the class of ordered structures. It has been noted in [18] that
their proof shows that the same correspondence holds for the logic FOSp.

▸ Proposition 21 ([7],[18]). On ordered structures we have FOSp = FORp = MODpL.



E. Grädel and W.Pakusa 21

Despite this characterisation over the class of ordered structures, the situation over general
structures remained unclear. It easily follows that FOSp ≤ FORp ≤ FPR, but, so far, it has
been open whether one, or even both, of these inclusions are strict. In this section we are
going to settle one of these questions:

▸ Theorem 22. For all primes p we have FOSp < FORp (over the class of sets S(∅)).

In some sense, this result is not very surprising. Over the class of sets, the logic FORp

captures the complexity class MODpL since the size of a set is a complete invariant. In
contrast, the logic FOSp cannot access the counting sort and thus had to express properties
over pure unordered sets which have the maximal amount of symmetries. However, it is
not obvious how one can turn this intuition into a formal argument. Strikingly, FOSp has
non-trivial expressive power over sets. For instance, FOSp can determine the size of sets
modulo p [18], and consequently, modulo pk for every fixed k (since n ≡ 0 mod pk if, and
only if, n ≡ 0 mod p and (n

p
) ≡ 0 mod pk−1). Note that fixed-point logic FP, for example,

collapses to first-order logic over sets.
In order to prove Theorem 22 we make use of the following strong normal form for FOSp

which has been established in Corollary 4.8 of [6].

▸ Theorem 23. Every formula ϑ(z̄) ∈ FOSp is equivalent to an FOSp-formula of the form
(slvp x̄1, x̄2)α(x̄1, x̄2, z̄) where α(x̄1, x̄2, z̄) is quantifier-free.

Similar to our approach in Section 3, the main idea for separating FOSp and FORp

is to exploit the symmetries of definable linear equation systems. More precisely, we are
aiming at considerably reducing the size of an input linear equation system via an FORp-
definable transformation. For the remainder of this proof, let us fix a quantifier-free formula
α(x1, . . . , xk, y1, . . . , y`) ∈ FO(∅) and a prime p. According to the semantics of FOSp, the
formula α defines in an input structure A = ([n]) of size n the [n]k × [n]`-coefficient matrix
Mn which is given for ā ∈ [n]k, b̄ ∈ [n]` as

Mn(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, if A ⊧ α(ā, b̄)
0, otherwise.

Then A ⊧ (slvp x̄1, x̄2)α(x̄1, x̄2) if the linear equation system Mn ⋅ x⃗ = 1 over Fp is solvable.
For convenience we set In = [n]k and Jn = [n]`.

Let Γ = Γn = Sym([n]). Then the group Γ acts on In and Jn in the natural way. As in
Section 3 we identify the action of π ∈ Γ with the multiplication by the associated In × In-
permutation matrix ΠI and the Jn × Jn-permutation matrix ΠJ , respectively. Hence, for
π ∈ Γ we have

ΠI ⋅Mn ⋅Π−1
J =Mn ⇔ ΠI ⋅Mn =Mn ⋅ΠJ .

For what follows, we fix a prime q which is distinct from p and a subgroup ∆ ≤ Γ which
is a q-group, i.e. ∣∆∣ = qm for some m ≥ 0. The overall strategy is to use the ∆-symmetries of
the matrix Mn to strongly reduce the size of the linear equation system Mn ⋅ x⃗ = 1. More
precisely we claim that for M∗

n ∶= ∑π∈∆ ΠI ⋅Mn the linear equation system Mn ⋅ x⃗ = 1 is
solvable if, and only if, M∗

n ⋅ x⃗ = 1 is solvable. First of all we note that for all π ∈ ∆ we have:
ΠI ⋅M∗

n = ∑λ∈∆ ΠI ⋅ΛI ⋅Mn = ∑π∈∆ ΠI ⋅Mn =M∗
n

M∗
n ⋅ΠJ = ∑λ∈∆ ΛI ⋅Mn ⋅ΠJ = ∑λ∈∆ ΛI ⋅ΠI ⋅Mn =M∗

n .



22 Rank logic is dead, long live rank logic!

To verify our original claim assume that M∗
n ⋅ b⃗ = 1. Then we have

1 =M∗
n ⋅ b⃗ = (∑

π∈∆
ΠI ⋅Mn) ⋅ b⃗ = (∑

π∈∆
Mn ⋅ΠJ) ⋅ b⃗ =Mn ⋅ ∑

π∈∆
(ΠJ ⋅ b⃗).

For the other direction let Mn ⋅ b⃗ = 1. Then ∑π∈∆ ΠI ⋅Mn ⋅ b⃗ = ∣∆∣ ⋅ 1, hence (1/∣∆∣) ⋅ b⃗ is a
solution of the linear equation system M∗

n ⋅ x⃗ = 1. Note that for this direction we require that
q and p are co-prime as we have to divide by ∣∆∣.

Since M∗
n satisfies ΠI ⋅M∗

n =M∗
n ⋅ΠJ =M∗

n for all π ∈ ∆ we have

M∗
n(ā, b̄) =M∗

n(π(ā), b̄) =M∗
n(ā, π(b̄))

for all ā ∈ In, b̄ ∈ Jn and π ∈ ∆. In other words, the entries of the In × Jn-matrix M∗
n are

constant on the ∆-orbits of the index sets In and Jn. More specifically, if we let I∆
n and J∆

n

denote the sets of ∆-orbits on In and Jn, respectively, then M∗
n can be identified with the

matrix (M∗
n/∆) which is defined as

(M∗
n/∆) ∶ I∆

n × J∆
n → Fp, ([ā], [b̄])↦M∗

n(ā, b̄).

Note that, depending on the size of the group ∆, the sets I∆
n and J∆

n can be noticeably
smaller than the index sets In and Jn. Hence our obvious strategy is to choose ∆ as large as
possible to obtain a much more compact linear equation system M∗

n ⋅ x⃗ = 1 which is equivalent
to the given one.

Recall that the maximal q-subgroups ∆ ≤ Γ are the q-Sylow groups of Γ. It is well-
known that for the case where Γ = Sym([n]) these groups can be obtained via an inductive
construction which we want to explain here for the special case of n being a power of q (the
general case can be handled similarly, see e.g. [13]). Hence from now on, let us assume that
n = qr for some r ≥ 1.

First of all, we determine the size of q-Sylow groups of Γ. A simple induction shows that
the maximal t ≥ 1 such that qt divides n! = (qr)! is given as

t = qr−1 + qr−2 +⋯ + q + 1 = q
r − 1
q − 1

.

In fact, we can write (qr)! as (qr)! = 1⋯(1 ⋅ q)⋯(2 ⋅ q)⋯(qr−1 ⋅ q). Hence t = t∗ + qr−1 where t∗
is the maximal such that qt∗ divides (qr−1)!.

In particular, if we denote for n = qr a q-Sylow of Sym([n]) by ∆r, then our argument
from above shows that ∣∆1∣ = q and that

∣∆r+1∣ = ∣∆r ∣q ⋅ q.

As it turns out, this equation already gives a hint about the algebraic structure of ∆r.
Indeed, ∆r+1 can be obtained as the wreath product of ∆r and the cyclic group Fq. Since
∆1 = Fq it follows that ∆r is the r-fold wreath product of the cyclic group Fq. We decided to
skip the formal definition of the notion of wreath products and rather to directly illustrate
this concept for the particular case of the q-Sylow groups of Γ = Sym([n]) = Sym([qr]).

To obtain an algebraic description of these groups, we inductively construct for r ≥ 1
a q-Sylow subgroup ∆r ≤ Sym([qr]) together with a family of trees T xi for i = 0, . . . , r and
x ∈ [qr−i] such that the following properties hold.

(I) T xi is a complete q-ary tree of height i whose leaves are labelled with elements from [n].
More precisely, the labels of the leaves of T xi form the set Pxi = {x ⋅qi, . . . , (x+1) ⋅qi−1}
(note that Pxi is the x-th block of the natural partition of [n] into parts of size qi).



E. Grädel and W.Pakusa 23

(II) For all i ≤ r the group ∆r transitively acts on the set {T xi ∶ x ∈ [qr−i]} by applying
permutations δ ∈ ∆r to the labels of the leaves of the tress T xi . Moreover, for each
i ≤ r, the subgroup of ∆r which point-wise stabilises the trees T xi is a normal subgroup
of ∆r.

(III) We have ∆1 ≤ ∆2 ≤ ⋯ ≤ ∆r where ∆i acts on the set of labels P0
i of the tree T 0

i .
More generally, for every block Pxi , the group ∆r contains a subgroup ∆i,x

r ≤ ∆r

which point-wise fixes the elements of all blocks Pyi for y ≠ x and whose action on Pxi
corresponds to the action of ∆i on P0

i .

The inductive construction of the trees T xi is depicted in Figure 2. To understand this
construction better, it is quite useful to think of elements y ∈ [n] as being represented in
their q-adic encoding, i.e. y = y0 + y1 ⋅ q +⋯ + yr−1 ⋅ qr−1. Then we have that y ∈ P0

r = [n] and
y ∈ Pyr−1

r−1
y ∈ Pyr−2+yr−1⋅q

r−2
. . .

y ∈ Py0+⋯+yr−1⋅q
r−1

0 = Py0 .
Hence, the q-adic encoding of y describes the unique path in the tree T 0

r from the root to
the leaf T y0 . The trees T xi clearly satisfy the properties stated in (I).

For the inductive construction of the q-Sylow groups ∆r we first fix ∆1 as the cyclic
group generated by the natural cyclic shift γ = (0 1⋯ q − 1) on the set P0

1 = {0, . . . , q − 1}.

i = 0 ∶ T 0
0 : 0 ⋯ T x0 : x ⋯ T q

r
−1

0 : qr − 1

i > 0 ∶ T 0
i :

T 0
i−1

⋯
T q−1
i−1

⋯ T xi :

T xqi−1

⋯
T (x+1)q−1
i−1

⋯ T q
r−i

−1
i :

T q
r−i+1

−q
i−1

⋯
T q

r−i+1
−1

i−1

Figure 2 Inductive definition of the trees T x
i

We proceed with the inductive step r ↦ r + 1. The set [q]r+1 splits into q blocks
P0
r , . . . ,Pq−1

r each of size qr. The group ∆r acts on P0
r and point-wise fixes the elements

from the blocks Pxr with x ≠ 0. Let γ ∈ Sym([n]) for n = qr+1 be the following permutation
which shifts the segments P0

r , . . . ,Pq−1
r in a cycle of length q by composing the natural shifts

on the sets of residues modulo qr:

γ = (0⋯ (q − 1)qr)(1⋯1 + (q − 1)qr)⋯(qr − 1⋯ qr − 1 + (q − 1)qr).

Hence for all a ∈ [n] we have γ(a) = (a + qr) mod qr+1. We set ∆0
r = ∆r and, more

generally, ∆x
r = (γx)∆r(γx)−1 for x = 0, . . . , q−1 to obtain q copys of ∆r which independently

act on the segments Pxr for 0 ≤ x ≤ q − 1. Finally, we define ∆r+1 as the semi-direct product
of (∆0

r ×⋯×∆q−1
r ) and the cyclic group ⟨γ⟩ of size q. This means that the group elements of

∆r+1 are elements in the set (∆0
r ×⋯ ×∆q−1

r × ⟨γ⟩) and that the group operation is given by

(δ1, . . . , δq−1, α) ⋅ (ε1, . . . , εq−1, β) = (δ1 ⋅ αε1α−1, . . . , δq−1 ⋅ αεq−1α
−1, α ⋅ β).

Since ∣∆r+1∣ = ∣∆r ∣q ⋅ q we conclude that ∆r+1 indeed is a q-Sylow subgroup.



24 Rank logic is dead, long live rank logic!

From our construction it immediately follows that ∆r+1 satisfies the properties stated
in (III). To see that ∆r+1 also satisfies the properties stated in (II) we start by showing
that, for i ≤ r, ∆r+1 transitively acts on {T xi ∶ x ∈ [qr+1−i]}. If we split the set [qr+1−i] into
q blocks P0

r−i, . . . ,P
q−1
r−i of size qr−i then we know from the induction hypothesis that ∆0

r

transitively acts on the set of trees {T xi ∶ x ∈ P0
r−i} = {T xi ∶ x ∈ [qr−i]}. Moreover, it is easy

to verify that for all x ∈ [qr+1−i] we have γ(T xi ) = T zi where z = x + qr−i mod qr+1−i. Hence
(γy){T xi ∶ x ∈ P0

r−i} = {T xi ∶ x ∈ Pyr−i} for all 0 ≤ y ≤ q − 1 which means that ∆y
r transitively

acts on {T xi ∶ x ∈ Pyr−i} and thus (II) holds.

The crucial step is to understand the action of ∆r on the sets In = [n]k and Jn = [n]`
(for the case where n = qr). In fact, our next aim is to develop a complete invariant for the
∆r-orbits on these index sets. Recall that the sets of ∆r-orbits on In and Jn provide index
sets for the succinct linear equation system M∗

n ⋅ x⃗ = 1. To define this invariant, the main
idea is to describe the position of a tuple ā ∈ In (or ā ∈ Jn, respectively) in the tree T ∶= T 0

r .
Let us first define the signature sgn(a, b) of a pair (a, b) ∈ [n] × [n] as the tuple (i, z) ∈

[r + 1] × [q] such that the lowest common ancestor of a, b in T is the root of a tree T xi and
such that a is located in a subtree T xq+yai−1 for ya ∈ [q] and b is located in the subtree T xq+ybi−1
where yb = ya + z mod q. For the special case where i = 0 we have a = b and agree to set z = 0.
With this preparation we define the signature sgn(ā) of a tuple ā = (a1, . . . , a`) ∈ Jn as the
list σ ∈ ([r + 1] × [q])`(`−1)/2 consisting of the individual signatures sgn(ai, aj) for all pairs
ai, aj with 1 ≤ i < j ≤ `. The signature of tuples in In is defined analogously.

▸ Lemma 24. Let ā ∈ Jn. Then sgn(ā) = sgn(πā) for all π ∈ ∆r.

Proof. Immediately follows from the construction of ∆r and the trees T xi . ◂

▸ Lemma 25. Let ā, b̄ ∈ Jn. If sgn(ā) = sgn(b̄), then b̄ ∈ ∆r(ā).

Proof. We proceed by induction on the maximal position 0 ≤ i ≤ ` such that aj = bj for all
j = 1, . . . , i. The case i = ` is clear, so assume that i < `. Let ā = (a1, . . . , ai, ai+1, . . . , a`)
and b̄ = (a1, . . . , ai, bi+1, . . . , b`). We show that there exists a permutation δ ∈ ∆r which
pointwise fixes a1, . . . , ai and such that δ(ai+1) = bi+1. Then the claim follows from Lemma 24
together with the induction hypothesis. For i = 0 this is easy, because ∆r acts transitively
on [n]. If i > 0 we choose aw ∈ {a1, . . . , ai} such that sgn(aw, ai+1) = (c, d) and such that
c is minimal with this property. Obviously we have c > 0. By the choice of aw the lowest
common ancestor of aw and ai+1 is the root of a tree T xc . Moreover, aw is located in a
subtree T xq+yc−1 for some 0 ≤ y ≤ q − 1 and ai+1 is located in the subtree T xq+zc−1 where z = y + d
mod q. Since sgn(ā) = sgn(b̄) also bi+1 occurs as the label of a leave in the subtree T xq+zc−1 .
By the minimality assumption on c we know that non of the elements {a1, . . . , ai} occurs
in the tree T xq+zc−1 . Hence, by the properties of the group ∆r stated in (III) we can find an
element δ ∈ ∆r which point-wise fixes all elements outside the block Pxq+zc−1 (in particular, the
elements a1, . . . , ai) and which moves ai+1 to bi+1. ◂

Following our definition from above, the signature sgn(ā) of an element ā ∈ Jn is a tuple
of length `(` − 1)/2 whose entries are pairs (i, z) ∈ [r + 1] × [q]. We denote the set of all
possible sequences of this form by S`n = ([r + 1] × [q])`(`−1)/2. Of course, not every tuple in
σ ∈ S`n can be realised as the signature sgn(ā) = σ of an element ā ∈ Jn. Similarly, we define
the set Skn = ([r + 1] × [q])k(k−1)/2 to capture all possible signatures of elements in In.

Since the coefficient matrix M∗
n of the equivalent linear equation system M∗

n ⋅ x⃗ = 1 can
be defined as a matrix whose index sets are the collections of ∆r-orbits on In and Jn, we



E. Grädel and W.Pakusa 25

can use the notion of signatures to describe M∗
n as an (Skn × S`n)-matrix. This fits with our

proof plan as the index sets Skn and S`n of the matrix M∗
n are much smaller than the index

sets In and Jn of the coefficient matrix Mn of the original linear equation system. However,
it still might be the case that the succinctness of the matrix M∗

n does not help, because it is
not possible to obtain its entries within FORp.

We show that this is not the case. More precisely we show that we can define the matrix
M∗
n in FOC in a structure of size r (where we assume that r ≥ q). Therefore, the main

technical step is to show that FOC can count (modulo p) the number of realisations of a
potential signature σ ∈ Skn.

First of all, we need some further notation. A complete equality type in k + ` variables
is a consistent set τ(x1, . . . , xk, xk+1, . . . , xk+`) of literals xi = xj , xi ≠ xj which contains for
every pair i < j either the atom xi = xj or the literal xi ≠ xj . Note that each quantifier-free
formula α ∈ FO(∅) can be expressed as a Boolean combination of complete equality types.

In the following main technical lemma we show that in the structure A = ([r]) we can
count (modulo p) the number of realisations of a (potential) signature σ ∈ S`n in a subtree
T xi in FOC. More generally, this is possible if we additionally fix some entries of the tuples
which should realise σ in T xi . Here we need another prerequisite: as we want to work with
elements from the set [n] = [qr] in a structure of size r we have to agree on some sort of
succinct representation. Of course the natural choice here is to represent numbers x ∈ [n]
in the structure A via their q-adic encoding: a binary relation R ⊆ [r]2 which corresponds
to a function R ∶ [r]→ [q] represents the number x(R) ∈ [n] = ∑r−1

i=0 R(i) ⋅ qi. Note that this
encoding requires a linear order on the set [r] (which is not the case for the structure A).
However, as we are working with FOC we can just use the number sort on which a linear
order is available. Hence in the following, whenever we specify FOC-formulas or FOC-terms
with free variables or with free relation symbols which should represent numbers, then we
implicitly assume that these variables are numeric variables and that the relation symbols
are evaluated over the number sort. The same holds for signatures σ ∈ S`n which we specify
in FOC-formulas by a list of pairs (hi, di) of numeric variables of length (`2).

Before we state our main technical lemma it is helpful to recall that our inductive
construction of the trees T xi fits very well with the q-adic encoding of numbers x ∈ [n]. Again,
let x ∈ [n] be given by its q-adic encoding as x = (x0, . . . , xr−1) ∈ [q]r, i.e. x = ∑r−1

i=0 xi ⋅ qi.
Then the i-th node on the unique path from the root in the tree T = T 0

r to the leave T x0 is
the root of the tree T yr−i where y = xr−i + xr−i+1q +⋯ + xr−1q

i−1. In other words, the q-adic
encoding of x precisely describes the path in the tree T from the root to the leave labelled
with x where at level (r − i) the i last entries xr−i, . . . , xr−1 in the q-adic encoding of x are
determined (i.e. x is a member of the block Pyr−i).

▸ Lemma 26. For all ` ≥ 1 and 0 ≤ s ≤ ` there exist

(a) a term Θ(i, h1, d1, . . . , ht, dt) ∈ FOC({Rx,R1, . . . ,Rs}), and
(b) formulas ϕe(y, z, i, h1, d1, . . . , ht, dt) ∈ FOC({Rx,R1, . . . ,Rs}) for e = s + 1, . . . , `,
where t = (`2), such that for all r ≥ q, all i ≤ r, all σ = ((h1, d1), . . . , (ht, dt)) ∈ S`n where n = qr,
all x ∈ [qr−i] and all a1, . . . , as ∈ Pxi the following holds: let A = ([r]) and let Rx,R1, . . . ,Rs
be numerical relations such that Rx represents the (q-adic encoding of the) element x ∈ [qr−i]
and such that each Ri represents the (q-adic encoding of) the element ai. Then we have that

(i) the value ΘA(q, i, h1, d1, . . . , ht, dt) of the term Θ in A is ∣Z ∣ mod p where

Z = {(as+1, . . . , a`) ∈ (Pxi )`−s ∶ sgn(a1, . . . , as, as+1, . . . , a`) = σ}.



26 Rank logic is dead, long live rank logic!

(ii) if Z ≠ ∅, then the formulas (ϕe)s<e≤` define the q-adic representation of witnessing
elements as+1, . . . , a` ∈ Pxi , i.e. such that (as+1, . . . , a`) ∈ Z.

Proof. First of all, by our previous observations it is easy to see that the condition aj ∈ Pxi
for j = 1, . . . , s can be defined in FOC. More generally, we can use the q-adic encoding of
the elements aj to determine sgn(a1, . . . , as) in FOC. Hence, for the remainder of the proof
we assume that sgn(a1, . . . , as) is consistent with σ and that aj ∈ Pxi for j = 1, . . . , s.

We proceed by induction on `. For ` = 1 it suffices to show that FOC can compute
(n mod p) where n = qr in the structure A. To see this, recall that p and q are co-prime and
thus we can use Lagrange’s theorem to conclude that qr ≡ qr′ mod p if r′ ≡ r mod (p − 1).
Since p is a constant, the claim follows.

Let ` ≥ 2. We distinguish between the following two cases. If s = 0, then we can partition
the set of realisations ā of σ according to first entry a1 into ∣Pxi ∣ parts of equal size. It suffices
to determine the size of each of these blocks, since we can determine ∣Pxi ∣ mod p in FOC
similarly as above.

Without loss of generality let us assume that a1 = x ⋅ qi. Since we have given the q-adic
encoding of x it is easy to see that we can define the q-adic encoding of xqi in FOC. This
gives us the formula ϕ1. Next, we partition the set of indices {2, . . . , `} into classes according
to the equivalence relation j1 ≈ j2 if σ(1, j1) = σ(1, j2). Let the resulting classes be Y1, . . . , Yv
and let σ(1, y) = (hw, dw) for all y ∈ Yw and w = 1, . . . , v.

We observe that there exists a tuple ā with a1 = x ⋅ qi which realises σ in the tree T xi
(that is Z ≠ ∅) if, and only if, the following conditions are satisfied:

for all w = 1, . . . , v we have hw ≤ i, and
for every Yw = {yw1 , . . . , yw`w} there is a tuple āw of length `w which realises σ (restricted
to the indices from Yw) in the subtree T xq

i−hw+1
+dw

hw−1 , and
for all pairs y1 ∈ Yw1 and y2 ∈ Yw2 with w1 ≠ w2 we have that

σ(y1, y2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(hw1 , dw2 − dw1 mod q), if hw1 = hw2

(hw2 , dw2) if hw1 < hw2

(hw1 , dw1) if hw2 < hw1 .

Since ` is a constant, the number of possible partitions of {2, . . . , `} is bounded by a
constant as well. It is easy to see that for every possible such partition we can check the first
and third condition in FOC. To verify the second condition in FOC we use the induction
hypothesis. There are two aspects which have to be discussed with more precision. First of
all, we have to handle one particular case separately: indeed, if hw = 1 for all w = 1, . . . , v,
then we cannot use the induction hypothesis since all elements (including a1) have to be
chosen in the same subtree of height one. However, in this case there is only one realisation
(if the third condition is satisfied) so this does not cause any problems. The other difficulty
is that we have to define the q-adic encoding of the value zw = xqi−hw+1 + dw in FOC. We
already noted before that the q-adic representation of xqi−hw+1 can be defined in FOC and
since 0 ≤ dw < q we can also define the q-adic encoding of z in FOC.

In fact, the induction hypothesis also provides us with a term which counts modulo p
the number of possible realisations of σ in the subtrees T zwhw−1 restricted to the indices in
Yw together with formulas ϕe which define witnessing elements. Finally, since the overall
number of possible realisations of σ in T xi is the product of the realisations restricted to the
components Yw, the claim follows for the case where s = 0.

For the general case let ` ≥ s > 0 and let a1, . . . , as ∈ Pxi be the components of the
tuple ā that are already fixed. Recall that we can assume without loss of generality that



E. Grädel and W.Pakusa 27

sgn(a1, . . . , as) is consistent with σ and that all elements a1, . . . , as are located in the subtree
T xi . Since we have fixed the element a1, we can proceed as above except for two small changes.
First of all, when applying the induction hypothesis we have to respect the remaining fixed
elements a2, . . . , as. Moreover, when we form the partitions of {2, . . . , `} into parts Y1, . . . , Yv
as above then we have to adapt the position of elements corresponding to the index set Yw
since the element a1 is not necessarily contained in the tree T xq

i−hw+1

hw+1 . However, since we
have given the q-adic representation of a1 we can define in FOC the element 0 ≤ da < q such
that a1 is located in the subtree T xq

i−hw+1
+da

hw+1 . The remaining steps can be performed as
above. This finishes our proof. ◂

▸ Lemma 27. Let τ(x1, . . . , xk, y1, . . . , y`) ∈ FO(∅) be a complete equality type (in k + `
variables). Then there is an FOC-term Θτ(z̄x, z̄y) such that for all r ≥ q, all σā ∈ Skn and
σb̄ ∈ S`n, where n = qr, the value ΘA(σā, σb̄) of Θ in A = ([r]) is

ΘA(q, σā, σb̄) = ∣{b̄ ∈ Jn ∶ sgn(b̄) = σb̄, ([n]) ⊧ τ(ā, b̄)}∣ mod p

for some (or, equivalently, all) ā ∈ In with sgn(ā) = σā.

Proof. By Lemma 26 we can first check in FOC that σā and σb̄ can be realised (otherwise
the answer is trivial). Moreover, if τ (restricted to x1, . . . , xk) is not consistent with σā or if
τ (restricted to y1, . . . , y`) contradicts σb̄, then the answer is trivial as well.

In all other cases, Lemma 26 provides FOC-formulas which define in the structure A the
q-adic encoding of elements a1, . . . , ak ∈ [n] such that sgn(ā) = σā. Moreover, if τ contains
a literal xi = yj , then we can fix the entry bj as well. Hence, let us assume without loss of
generality that τ contains the literals xi ≠ yj for all 1 ≤ i ≤ k and 1 ≤ j ≤ `.

For Y ⊆ {1, . . . , `} and a partial assignment ε ∶ {1, . . . , `}→ {a1, . . . , ak} with dom(ε)∩Y =
∅ we define the set

BεY = {b̄ ∈ Jn ∶ sgn(b̄) = σb̄, for i ∈ dom(ε) ∶ bi = ε(i), for i ∈ Y ∶ bi ≠ a1, . . . , ak}.

With this notation our overall aim is to determine (∣B∅
Y ∣ mod p) for Y = [`] in FOC.

The first observation is that by Lemma 26 we can determine (∣Bε∅∣ mod p) for all par-
tial assignments ε in FOC. The second observation is that we can construct the values
(∣BεY ∣ mod p) by induction on ∣Y ∣ as follows. For Y ⊆ {1, . . . , `} and a partial assignment ε
(with dom(ε) ∩ Y = ∅) we have for all j ∈ Y that

∣BεY ∣ = ∣BεY ∖{j}∣ − ∑
a∈{a1,...,ak}

∣Bε∪{j↦a}
Y ∖{j}

∣.

In this way we recursively obtain the value (∣B∅
Y ∣ mod p) for Y = [`]. Since ` is a constant

the recursion depth is bounded by a constant as well and the procedure can be formalised in
FOC. ◂

▸ Lemma 28. There exists an FOC-term Θ(µ̄, ν̄) which defines for all r ≥ q in the structure
A = ([r]) the matrix M∗

n where n = qr.

Proof. Recall that we can view M∗
n as an (Skn × S`n)-matrix over Fp. To represent the index

sets Skn and S`n we let µ̄ and ν̄ be tuples of numeric variables of lengths ∣µ̄∣ = (k2) and ∣ν̄∣ = (`2),
respectively.

Note that the entry M∗
n(σā, σb̄) of M∗

n for σā ∈ Skn and σb̄ ∈ S`n is given as

M∗
n(σā, σb̄) = ∣{b̄ ∈ Jn ∶ sgn(b̄) = σb̄,Mn(ā, b̄) = 1∣ mod p,



28 Rank logic is dead, long live rank logic!

for some (or, equivalently, all) ā ∈ In with sgn(ā) = σā. The entry Mn(ā, b̄), in turn,
is determined by the quantifier-free formula α(x̄1, x̄2) ∈ FO(∅). With this preparation,
Lemma 27 already shows that we can determine the value M∗

n(σā, σb̄) for the case where α
is a complete equality type. For the general case we just write α as the union of complete
equality types and combine the constant number of intermediate results. ◂

▸ Definition 29. Let K ⊆ S(∅) be a class of sets. The q-power Kq ⊆ S(∅) of K consists of all
sets A = ([qr]) such that B = ([r]) ∈ K.

▸ Theorem 30. Let K ⊆ S(∅) be a class of sets. If Kq is definable in FOSp, then K is
definable in FORp.

Proof. If Kq is definable in FOSp, then by Theorem 23 we can also find a formula ϕ =
(slvp x̄1, x̄2)α(x̄1, x̄2) ∈ FOSp that defines Kq such that α is quantifier-free.

By using the above construction and Lemma 28, we conclude that the linear equation
system Mn ⋅ x⃗ = 1 defined by α in an input structure A = ([n]) of size n = qr can be
transformed into the equivalent system M∗

n ⋅ x⃗ = 1 which is FOC-definable in B = ([r]). Let
ϕ∗ ∈ FORp be a formula which expresses the solvability of the linear system M∗

n ⋅ x⃗ = 1 in a
structure B = ([r]).

Then B ⊧ ϕ∗ if, and only if, A ⊧ ϕ since the linear equation systems Mn ⋅ x⃗ = 1 and
M∗
n ⋅ x⃗ = 1 are equivalent. ◂

▸ Theorem 31. For all primes p we have FOSp < FORp (even over S(∅)).

Proof. Otherwise we had FOSp = FORp. As above we fix some prime q ≠ p. Let K ⊆ S(∅)
be a class of sets such that K ∉ FORp, but such that (Kq)q ∈ FORp. Such a class K is well-
known to exist (just combine the fact that, over sets, we have Logspace ≤ FORp ≤ Ptime
and the space-hierarchy theorem, see e.g. [19]). Since FOSp = FORp we had (Kq)q ∈ FOSp
and by Theorem 30 this means that Kq ∈ FORp. Again, since FORp = FOSp, we had
Kq ∈ FOSp. A second application of Theorem 30 yields K ∈ FORp which contradicts our
assumptions. ◂

Finally we remark that the proof also works for the extension of fixed-point logic by
solvability quantifiers but in the absence of counting. The simple reason is that fixed-point
operators do not increase the expressive power of first-order logic over the empty signature
since all definable relations are composed from a constant-sized set of basic building blocks.

5 Discussion

We showed that the expressive power of rank operators over different prime fields is incom-
parable and we inferred that the version of rank logic FPR with a distinct rank operator rkp
for every prime p ∈ P fails to capture polynomial time. In particular our proof shows that
FPR cannot express the uniform version of the matrix rank problem where the prime p is
part of the input. Moreover, we separated rank operators and solvability quantifiers in the
absence of counting.

Of course, an immediate question is whether the extension FPR∗ of FPC by the uniform
rank operator rk∗ suffices to capture polynomial time. We do not believe that this is the
case. A natural candidate to separate FPR∗ from Ptime is the solvability problem for linear
equation systems over finite rings rather than fields [6]. While linear equations systems
can be efficiently solved also over rings, there is no notion of matrix rank that seems to be
helpful for this purpose. In particular, it is open, whether FPR∗ can define the isomorphism



E. Grädel and W.Pakusa 29

problem for CFI-structures generalised to Z4. A negative answer to this last question would
provide a class of structures on which FPR∗ is strictly weaker than Choiceless Polynomial
Time (which captures Ptime on this class [1]).

Another question concerns the relationship between solvability logic FPS and rank logic
FPR∗. Our proof of Lemma 7 shows that on every class of structures of bounded colour
class size the two logics have the same expressive power. However, over general structures
this reduction fails. We only know, by our results from Section 4, that a simulation of rank
operators by solvability quantifiers would require counting.

Finally, we think it is worth to explore the connections between our approach and the
game-theoretic approach proposed by Dawar and Holm in [8] to see to what extent our
methods can be combined. For example, what kind of properties does a variant of their
partition games have for infinitary logics with solvability quantifiers?

References
1 F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa. Choiceless Polynomial Time on

structures with small Abelian colour classes. In MFCS 2014, volume 8634 of Lecture Notes
in Computer Science, pages 50–62. Springer, 2014.

2 A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary
logic. Theoretical Computer Science, 410:1666–1683, 2009.

3 G. Buntrock, U. Hertrampf, C. Damm, and C. Meinel. Structure and importance of
logspace-mod-classes. STACS ’91, pages 360–371, 1991.

4 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

5 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
pages 8–21, 2015.

6 A. Dawar, E. Grädel, B. Holm, E. Kopczynski, and W. Pakusa. Definability of linear
equation systems over groups and rings. Logical Methods in Computer Science, 9(4), 2013.

7 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with Rank Operators. In LICS ’09,
pages 113–122. IEEE Computer Society, 2009.

8 A. Dawar and B. Holm. Pebble games with algebraic rules. In Automata, Languages, and
Programming, pages 251–262. Springer, 2012.

9 H.-D. Ebbinghaus and J. Flum. Finite model theory. Springer-Verlag, 2nd edition, 1999.
10 E. Grädel et al. Finite Model Theory and Its Applications. Springer, 2007.
11 M. Grohe. The quest for a logic capturing PTIME. In LICS 2008, pages 267–271, 2008.
12 Y. Gurevich and S. Shelah. On finite rigid structures. The Journal of Symbolic Logic,

61(02):549–562, 1996.
13 M. Hall. The theory of groups. American Mathematical Soc., 1976.
14 U. Hertrampf, S. Reith, and H. Vollmer. A note on closure properties of logspace mod

classes. Information Processing Letters, 75(3):91–93, 2000.
15 B. Holm. Descriptive complexity of linear algebra. PhD thesis, University of Cambridge,

2010.
16 B. Laubner. The structure of graphs and new logics for the characterization of Polynomial

Time. PhD thesis, Humboldt-Universität Berlin, 2011.
17 M. Otto. Bounded variable logics and counting: A study in finite models. 1997.
18 W. Pakusa. Finite model theory with operators from linear algebra. Staatsexamensarbeit,

RWTH Aachen University, 2010.
19 C. Papadimitriou. Computational complexity. Addison-Wesley, 1995.
20 J. Torán. On the hardness of graph isomorphism. SIAM Journal on Computing, 33(5):1093–

1108, 2004.


	1 Introduction
	2 Logics with linear-algebraic operators
	3 Separation results over different classes of fields
	4 Solvability quantifiers vs. rank operators
	5 Discussion

