Zero-One Laws and Almost Sure Valuations of First-Order Logic in Semiring Semantics

Erich Grädel, Hayyan Helal, Matthias Naaf, Richard Wilke

LICS 2022, Haifa
Reminder: Classical 0-1 Law

\[
\psi = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \left(\bigwedge_{i \neq j} x_i \neq x_j \land Ex_1 x_2 \land Ex_2 x_3 \land Ex_3 x_4 \right)
\]

\[G(n,p)\]

\[n = 6\]
\[p = \frac{1}{2}\]
Reminder: Classical 0-1 Law

\[\psi = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \left(\bigwedge_{i \neq j} x_i \neq x_j \land Ex_1 x_2 \land Ex_2 x_3 \land Ex_3 x_4 \right) \]

\[G(n, p) \]

\[n = 6 \]
\[p = \frac{1}{2} \]

\[\not \models \psi \]
Reminder: Classical 0-1 Law

\[\psi = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \left(\bigwedge_{i \neq j} x_i \neq x_j \land E x_1 x_2 \land E x_2 x_3 \land E x_3 x_4 \right) \]

\[G(n, p) \]

\[n = 6 \]
\[p = \frac{1}{2} \]

\[\models \psi \]
Reminder: Classical 0-1 Law

\[\psi = \exists x_1 \exists x_2 \exists x_3 \exists x_4 \left(\bigwedge_{i \neq j} x_i \neq x_j \land E x_1 x_2 \land E x_2 x_3 \land E x_3 x_4 \right) \]

G(n,p)

- \(n = 6 \)
- \(p = \frac{1}{2} \)

If \(n \to \infty \), the probability that \(\psi \) holds converges to either 0 or 1.
Reminder: Proof of Classical 0-1 Law

Extension Axioms

“Every configuration of k elements can be extended in every consistent way to $k + 1$ elements” (expressible in FO)

1. Each extension axiom is **almost surely true**
2. Theory of all extension axioms is **ω-categorical** \leadsto Rado graph
3. **Compactness**: ψ or $\neg\psi$ follows from finitely many axioms
Reminder: Proof of Classical 0-1 Law

Extension Axioms

“Every configuration of k elements can be extended in every consistent way to $k + 1$ elements” (expressible in FO)

1. Each extension axiom is almost surely true
2. Theory of all extension axioms is ω-categorical \leadsto Rado graph
3. Compactness: ψ or $\neg \psi$ follows from finitely many axioms

0-1 law for FO

If $n \to \infty$, the probability that ψ holds converges to either 0 or 1
Boolean semantics
Boolean semantics

Semiring semantics
Semiring Semantics

Idea: Replace Boolean values by values from a semiring K

$(0 = \text{false}, \ j > 0 = \text{shades of true})$

$$K = (\{0 < \text{foot} < \text{car} < \text{plane}\}, \ \text{max}, \ \text{min}, \ 0, \ \Rightarrow)$$
Semiring Semantics

Idea: Replace Boolean values by values from a semiring K
($0 = \text{false}, j > 0 = \text{shades of true}$)

$$K = (\{0 < \text{false} < \text{car} < \text{plane}\}, \text{max}, \text{min}, 0, \to)$$

Boolean Model

\[
\exists x \exists y \exists z (Exy \land Eyz) =: \psi
\]

K-Interpretation π

Matthias Naaf (RWTH Aachen)
Semiring Semantics

Idea: Replace Boolean values by values from a semiring K
($0 = \text{false, } j > 0 = \text{shades of true}$)

$$K = (\{0 < \text{human} < \text{car} < \text{plane}\}, \text{max, min, 0, } \rightarrow)$$

Boolean Model

$$G \models \exists x \exists y \exists z (E_{xy} \land E_{yz}) =: \psi$$

K-Interpretation π

Matthias Naaf (RWTH Aachen)
Semiring Semantics

Idea: Replace Boolean values by values from a semiring K

$(0 = \text{false}, j > 0 = \text{shades of true})$

$K = (\{ 0 < \text{man} < \text{car} < \text{airplane} \}, \max, \min, 0, \rightarrow)$

Boolean Model

$G \models \exists x \exists y \exists z (Exy \land Eyz) =: \psi$

K-Interpretation π

$\pi[\psi] = \max_{a,b,c} \min(\pi(Eab), \pi(Ebc)) = \text{car}$

alternative use

joint use of information

Matthias Naaf (RWTH Aachen) Zero-One Laws in Semiring Semantics 4 / 11
Random process:

1. Choose a $G(n, \frac{1}{2})$ random graph
Random K-Interpretations

Random process:

1. Choose a $G(n, 1/2)$ random graph
2. Map false literals to 0
3. Map true literals to random values > 0
Random \(K \)-Interpretations

Random process:

1. Choose a \(G(n, \frac{1}{2}) \) random graph
2. Map false literals to 0
3. Map true literals to random values > 0

⚠️ Consistency: one of \(\pi(E_{ab}), \pi(\neg E_{ab}) \) is 0
Questions

How does the partition of FO into almost surely true and almost surely false sentences generalize to semiring semantics?

Example:

$$\exists x \exists y \exists z \ (E_{xy} \land E_{yz})$$

$$\exists x \forall y \ E_{xy}$$
Questions

How does the partition of FO into almost surely true and almost surely false sentences generalize to semiring semantics?

1. **0-1 law:**
 When $n \to \infty$, does the probability that ψ evaluates to $j \in K$ in a random semiring interpretation converge to either 0 or 1?

2. **Almost sure valuations (ASV):**
 Which values $j \in K$ may appear with probability 1? Does this depend on the semiring?

3. **Complexity:**
 How can we compute $\text{ASV}(\psi)$?
Example: Almost Sure Valuation

\[\psi = \exists x \exists y \exists z \, (Exy \land Eyz) \]

\[n = 2 \]

\[\pi[\psi] = 0 \]

\[n \to \infty \]
Example: Almost Sure Valuation

\[\psi = \exists x \exists y \exists z (E_{xy} \land E_{yz}) \]

\[n = 3 \]

\[\pi[\psi] = \]

\[0 \]

\[n \to \infty \]
Example: Almost Sure Valuation

\[\psi = \exists x \exists y \exists z (Exy \land Eyz) \]

\(n = 4 \)

\(\pi[\psi] = \)

\(n \rightarrow \infty \)
Example: Almost Sure Valuation

\[\psi = \exists x \exists y \exists z \ (E_{xy} \land E_{yz}) \]

\[n = 5 \]

\[\pi \left[\psi \right] = \text{car} \]

\[0 \quad \text{people} \quad \text{cars} \quad \text{cars} \]

\[n \to \infty \]
Example: Almost Sure Valuation

\[\psi = \exists x \exists y \exists z (E_{xy} \land E_{yz}) \]

\[n = 6 \]

\[\pi[\psi] = \text{Airplane} \]

\[0, \text{Car, Car, Airplane, …} \]

\[n \to \infty \]
Example: Almost Sure Valuation

\[\psi = \exists x \, \exists y \, \exists z \, (E_{xy} \land E_{yz}) \]

\[n = 6 \]

\[\pi[\psi] = \]

\[ASV(\psi) = \]

\[n \to \infty \]
“Every configuration of k elements can be extended in every consistent way to $k + 1$ elements”.

Extension Property

includes semiring values
Extension Property

“Every configuration of \(k \) elements can be extended in every consistent way to \(k + 1 \) elements”.

“\begin{quote}
The first-order 0-1 law looks sophisticated but follows from shallow computations\end{quote}” \quad \textit{Béla Bollobás}
Extension Property

1. “Every configuration of k elements can be extended in every consistent way to $k + 1$ elements”.

“The first-order 0-1 law looks sophisticated but follows from shallow computations”

Béla Bollobás

2. Theory of extension axioms

3. Compactness
Classical Proof Revisited

Extension Property

1. "Every configuration of \(k \) elements can be extended in every consistent way to \(k + 1 \) elements".

"The first-order 0-1 law looks sophisticated but follows from shallow computations"
Béla Bollobás

2. Theory of extension axioms

3. Compactness

Use polynomials \(f_\psi \) to describe \(\text{ASV}(\psi) \)
Example: Polynomial for ASV(ψ)

\[\psi = \forall x \left(Exx \lor (\neg Exx \land \exists y Exy) \right) \]
Example: Polynomial for $\text{ASV}(\psi)$

$$\psi = \forall x \left(Exx \lor (\neg Exx \land \exists y Exy) \right)$$

1. $f_{\varphi_1} = Exy$
Example: Polynomial for ASV(ψ)

\[\psi = \forall x (E_{xx} \lor (\neg E_{xx} \land \exists y E_{xy})) \]

1. \(f_{\varphi_1} = E_{xy} \)
2. \(f_{\varphi_2} = \) Max value occurs almost surely (extension property!)
Example: Polynomial for \(\text{ASV}(\psi) \)

\[
\psi = \forall x \left(Exx \lor (\neg Exx \land \exists y E xy) \right)
\]

\(f_{\varphi_1} = Exy \)

\(f_{\varphi_2} = \)

\(f_{\varphi_3} = \max (Exx, \min(\neg Exx, \rightarrow)) \)

Max value \(\rightarrow \) occurs almost surely (extension property!)
Example: Polynomial for ASV(ψ)

\[\psi = \forall x \left(Exx \lor (\neg Exx \land \exists y Exy) \right) \]

\[f_{\varphi_1} = Exy \]
\[f_{\varphi_2} = \text{Max value occurs almost surely (extension property!)} \]
\[f_{\varphi_3} = \max (Exx, \min(\neg Exx, \rightarrow)) \]

Consistency: \(Exx, \neg Exx \)
Example: Polynomial for \(\text{ASV}(\psi) \)

\[
\psi = \forall x \left(Exx \lor (\neg Exx \land \exists y Exy) \right)
\]

\[f_{\varphi_1} = Exy\]

\[f_{\varphi_2} = \text{airplane}\]

\[f_{\varphi_3} = \max (Exx, \min(\neg Exx, \text{airplane}))\]

\[f_{\varphi_4} = \min \left\{ \max (0, \text{airplane}), \max (0, \text{airplane}) \right\} = \text{human}\]

Max value \(\text{airplane} \) occurs almost surely (extension property!)

⚠️ Consistency: \(Exx, \neg Exx \)
Example: Polynomial for $\text{ASV}(\psi)$

\[
\psi = \forall x \left(E_{xx} \lor (\neg E_{xx} \land \exists y E_{xy}) \right)
\]

1. $f_{\varphi_1} = E_{xy}$
2. $f_{\varphi_2} = E_{xx}$
3. $f_{\varphi_3} = \max (E_{xx}, \min(\neg E_{xx}, \quad))$
4. $\min \left\{ \max (\ , \min(0 , \quad)), \quad \right\} = \text{ASV}(\psi)$

Max value \rightarrow occurs almost surely (extension property!)

⚠️ Consistency: $E_{xx}, \neg E_{xx}$
Max-Min Semirings

- 0-1 law holds, with almost sure valuation $\text{ASV}(\psi) = f_{\psi}$
- Possible ASVs: 0, ∞, \times, \rightarrow
- Computing $\text{ASV}(\psi)$ is PSPACE-complete
Results

Max-Min Semirings

- 0-1 law holds, with almost sure valuation $\text{ASV}(\psi) = f_\psi$
- Possible ASVs: 0, ✗, ✗, ✗
- Computing $\text{ASV}(\psi)$ is $PSPACE$-complete

also: (in)finite lattice semirings
Results

Max-Min Semirings
- 0-1 law holds, with almost sure valuation $\text{ASV}(\psi) = f_\psi$
- Possible ASVs: 0 ✗
- Computing $\text{ASV}(\psi)$ is PSPACE-complete

Corollary
0-1 law for Tropical semiring $(\mathbb{R}_+, \text{min}, +, \infty, 0)$
Max-Min Semirings

- 0-1 law holds, with almost sure valuation $ASV(\psi) = f_\psi$
- Possible ASVs: 0, 0
- Computing $ASV(\psi)$ is $PSPACE$-complete

Corollary

0-1 law for Tropical semiring $(\mathbb{R}_{\infty}^+, \min, +, \infty, 0)$

Natural Numbers

- 0-1 law holds (by modifying f_ψ)
- ASVs: 0 or unbounded (except for trivial cases)
Conclusion:

- 0-1 law generalizes to semiring semantics
- Tools: extension property + polynomials f_ψ

Outlook:

- more general random structures (probability depends on n)
- different logic: Σ_1 (0-1 law depends on prefix class)
- non-definability results?
Summary & Outlook

\[\exists x \exists y \exists z (E_{xy} \land E_{yz}) \]

\[
\begin{align*}
\max & \quad (Exy \land Eyz) \\
\min & \quad (Exy \land Eyz)
\end{align*}
\]

Conclusion:
- 0-1 law generalizes to semiring semantics
- Tools: extension property + polynomials \(f_\psi \)

Outlook:
- more general random structures (probability depends on \(n \))
- different logic: \(\Sigma_1^1 \) (0-1 law depends on prefix class)
- non-definability results?

Thanks for your attention