Locality Theorems in Semiring Semantics

Clotilde Bizière, Erich Grädel, Matthias Naaf

AlMoTh 2023, Bochum

Hanf's Locality Theorem

Isomorphism types of *r*-neighbourhoods:

Gaifman Normal Forms

Every FO-formula $\psi(x)$ is equivalent to a Boolean combination of

▶ local formulae, e.g.:

 $\varphi^{(r)}(x) = \exists y(d(x,y) \le r \land Exy)$

basic local sentences:

$$\exists x_1 \dots \exists x_n \Bigl(\bigwedge_{i < j} d(x_i, x_j) > 2r \land \bigwedge_i \varphi^{(r)}(x_i) \Bigr)$$

Semiring Semantics – An Analogy

Boolean semantics

Semiring Semantics – An Analogy

Boolean semantics

Semiring semantics

 $(K,\,+,\,ullet,\,0,\,1)$

Semiring Semantics – An Analogy

Boolean semantics

Semiring semantics

 $(K,\,+,\,ullet,\,0,\,1)$

 $(\{0 < \frac{1}{4} < \frac{1}{2} < \frac{3}{4} < 1\}, \max, \min, 0, 1)$

Semiring Semantics

Idea: Replace Boolean values by semiring values (false: 0, true: \neq 0). Use +/max to evaluate \exists , \lor . Use \cdot /min for \forall , \land .

Semiring Semantics

Idea: Replace Boolean values by semiring values (false: 0, true: \neq 0). Use +/max to evaluate \exists , \lor . Use •/min for \forall , \land .

 $\llbracket \exists x \exists y \exists z (Exy \land Eyz) \rrbracket = \max_{x,y,z \in V} \min(\llbracket Exy \rrbracket, \llbracket Eyz \rrbracket) = 1$

Semiring Semantics – Formal

K-interpretation

Assignment π : Literals $\rightarrow K$

Semiring Semantics – Formal

K-interpretation

Assignment π : Literals $\rightarrow K$ such that 1 consistency: exactly one of $\pi(Evw)$ and $\pi(\neg Evw)$ is 0, 2 for locality: $\pi(\neg Evw) \in \{0, 1\}$.

Hanf's Theorem in Semirings

Which Semirings?

 $\exists x E x x$

- \mathbb{B} : truth depends on single witness
- K: $\max_x \pi(Exx)$ depends on single witness

Which Semirings?

 $\exists x Exx$

- B: truth depends on single witness
- K: $\max_x \pi(Exx)$ depends on single witness

\Rightarrow fully idempotent semirings

Theorem

Hanf's Locality Theorem holds in all fully idempotent semirings. (But not in $\mathbb{N}, \mathbb{T}, \mathbb{R}_+, \dots$)

Proof:

- Follow classical proof
- Appropriate notions of \cong and \equiv_k
- ► Back-and-forth system (EF game) implies ≡_k in fully idempotent semirings

(Grädel, Mrkonjić, ICALP'21)

Gaifman Normal Forms in Semirings

$$\exists x_1 \dots \exists x_n \Bigl(\bigwedge_{i < j} d(x_i, x_j) > 2r \land \bigwedge_i \varphi_{\bigwedge}^{(r)}(x_i) \Bigr)$$

quantifiers relativized to $d(x_i, y) \leq r$

First Example

$$\exists x \forall y \ Exy \equiv_{\mathbb{B}} \neg \exists x_1 \exists x_2 (d(x_1, x_2) > 2 \land \mathsf{true}) \\ \land \exists x_1 \forall y (d(x_1, y) \le 2 \rightarrow Ex_1 y)$$

First Example

$$\exists x \forall y \, Exy \equiv_{\mathbb{B}} \neg \exists x_1 \exists x_2 (d(x_1, x_2) > 2 \land \mathsf{true}) \\ \land \exists x_1 \forall y (d(x_1, y) \le 2 \rightarrow Ex_1 y)$$

$$\exists x \forall y \ Exy \equiv_{\mathbf{K}} \forall x_1 \forall x_2 (d(x_1, x_2) \le 2 \lor \mathsf{false}) \\ \land \ \exists x_1 \forall y (d(x_1, y) > 2 \lor Ex_1 y)$$

The equivalence holds in all semirings.

Normal Forms for Formulae

$$\psi(x) = \exists y (x \neq y \land Uy) \quad \equiv_{\mathbb{B}}$$

$$\exists x_1 \exists x_2 (x_1 \neq x_2 \land Ux_1 \land Ux_2) \\ \lor \ (\neg Ux \land \exists x_1 Ux_1)$$

Normal Forms for Formulae

$$\psi(x) = \exists y (x \neq y \land Uy) \equiv_{\mathbb{B}} \exists x_1 \exists x_2 (x_1 \neq x_2 \land Ux_1 \land Ux_2) \\ \lor (\neg Ux \land \exists x_1 Ux_1)$$

Theorem

No Gaifman normal form of $\psi(x)$ in any naturally-ordered semiring with ≥ 3 elements.

$$\pi \llbracket \varphi^{(r)}(x) \rrbracket =$$
 polynomial expression in *s*.

 $\pi[\![\begin{smallmatrix} \mathsf{basic \ local} \\ \mathsf{sentence} \end{smallmatrix}]\!] = \mathsf{symmetric \ polynomial \ in \ } s,t.$

 \Rightarrow cannot express $\pi \llbracket \psi(x) \rrbracket = t$.

Overview

	$\mathbb B$	min-max	fully idempotent	non- idempotent
Hanf	1	<i>✓</i>	\checkmark	(🗙)
Gaifman				
- formulae	1	×	×	×
- sentences	1			(🗙)
				Ĵ

Counterexample

 $\exists z \forall x \exists y (Uy \lor x = z)$ has no Gaifman normal form in the Tropical semiring.

Normal Forms for Sentences

Main Result

Gaifman normal forms exist for sentences in min-max semirings.

Every sentence is equivalent to a positive Boolean combination of basic local sentences

$$\exists \mathbf{x} \Big(\bigwedge_{i < j} d(x_i, x_j) > 2r \, \wedge \, \bigwedge_i \varphi^{(r)}(x_i) \Big) \quad \text{and} \quad \forall \mathbf{x} \Big(\bigvee_{i < j} d(x_i, x_j) \leq 2r \, \lor \, \bigvee_i \varphi^{(r)}(x_i) \Big) \, .$$

Normal Forms for Sentences

Main Result

Gaifman normal forms exist for sentences in min-max semirings.

Every sentence is equivalent to a positive Boolean combination of basic local sentences

$$\exists \mathbf{x} \Big(\bigwedge_{i < j} d(x_i, x_j) > 2r \, \wedge \, \bigwedge_i \varphi^{(r)}(x_i) \Big) \quad \text{and} \quad \forall \mathbf{x} \Big(\bigvee_{i < j} d(x_i, x_j) \leq 2r \, \vee \, \bigvee_i \varphi^{(r)}(x_i) \Big) \, .$$

Remarks:

- Textbook proofs not applicable (characteristic sentences)
- Gaifman's proof (1982): quantifier elimination, case distinctions $\varphi \wedge (C \vee \neg C)$
- ▶ Here: elimination of quantifier alternations, surprisingly difficult

Main Result

Gaifman normal forms exist for sentences in min-max semirings.

MOH IN PROBLEM

Main Result

Gaifman normal forms exist for sentences

in min-max semirings.

MOIT IN Brogree

Main Result

NOT IN Drog.

Main Result

Recall:

$$\psi(x) = \exists y (x \neq y \land Uy) \equiv_{\mathbb{B}} \exists x_1 \exists x_2 (x_1 \neq x_2 \land Ux_1 \land Ux_2) \\ \lor (\neg Ux \land \exists x_1 Ux_1)$$

NOT IN Drog.

Summary

Semiring Semantics $\llbracket \exists x \exists y \exists z (Exy \land Eyz) \rrbracket = \max_{x,y,z \in V} \min(\llbracket Exy \rrbracket, \llbracket Eyz \rrbracket)$ Results fully non-B min-max idempotent idempotent Hanf (\mathbf{X}) 0-0-0 00000 1 1 "many" Gaifman X X X - formulae x_3 (\mathbf{X}) x_1 - sentences (✓) 1 x_2 x_{A}

Standard Semantics

Every sentence has a Gaifman normal form which does not add negations.

Summary

Standard Semantics

Every sentence has a Gaifman normal form which does not add negations.

Thank you for listening