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Abstract

Model theoretic interpretations are an important tool in algorithmic model
theory. Their applications range from reductions between logical theories to
the construction of algorithms for problems, which are hard in general but
efficiently solvable on restricted classes of structures, like 3-Colorability on
graphs of bounded treewidth. We investigate this tool in three different areas
of Algorithmic Model Theory:

1. automata-based decision procedures for logical theories,

2. algorithmic meta-theorems, and

3. descriptive complexity.

One of the main focus points of this dissertation are automata based presen-
tations of infinite objects, which are closely related to monadic second-order
interpretations over set variables. We introduce automatic presentations with
advice for several automata models. These are presentations where the au-
tomata have access to some fixed auxiliary information. We develop algebraic
and combinatorial tools, which enable us to prove that certain structures can-
not have an ω-automatic presentation with advice. Our main result is that
the field of reals is not ω-automatic with any advice, which has been an open
problem since the introduction of ω-automatic presentations. The result can
also be understood as an answer to a weakened version of a question posed by
Rabin, namely whether the field of reals is interpretable in the infinite binary
tree.
Further, we consider uniformly automatic classes of structures, which are

classes generated by a fixed presentation and a set of advices. Prototypic ex-
amples are the class of all finite graphs of treewidth bounded by some constant,
the torsion-free abelian groups of rank 1, and the class of all countable linear
orders. Uniformly automatic presentations are also found in the mechanics
that build the foundation for several algorithmic meta-theorems. We inves-
tigate the efficiency of this approach by analysing the runtime of the generic
automata-based model checking algorithm in terms of the complexity of the
given presentation. We show that the runtime on a presentation of the di-
rect product closure is only one exponential higher than the runtime on the
presentation of the primal class. We apply these findings to show that first-
order model checking is fixed parameter tractable on the classes of all finite
Boolean algebras and the class of all finite abelian groups. In both cases the
parameter dependence of the runtime is elementary. The runtime which we
achieve on these classes is either provably optimal or outperforms the previ-
ously known approaches. Furthermore, we show that the runtime of the generic
automata based algorithm for monadic second-order model checking on graphs
of treedepth at most h has a (h + 2)-fold exponential parameter dependence.

2



This matches the runtime of the best known algorithms for model checking on
these classes.
In the last part of this dissertation we turn our attention to logics with a

build-in interpretation mechanism. Polynomial time interpretation logic (PIL)
is an alternative characterisation of choiceless polynomial time (CPT). CPT
is currently considered the most promising candidate for a logic capturing
PTIME. We contribute to the exploration of the expressive power of CPT
by showing that there is a CPT-definable canonisation procedure on classes
of structures with bounded abelian colours. A structure has bounded abelian
colours if it is of bounded colour class size and the automorphism group on
every colour class is abelian. Examples emerge from the classical examples that
separate fixed point logic with Counting from PTIME. The CFI-construction
of Cai, Fürer, and Immerman, as well as the Multipedes of Blass, Gurevich, and
Shelah have bounded abelian colours. Consequently, the isomorphism problem
on these classes is solvable in CPT. For Multipedes this was an open question.
In fact, Blass, Gurevich, and Shelah conjectured that the isomorphism problem
for Multipedes might not be solvable by a CPT procedure.
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Zusammenfassung

Modelltheoretische Interpretationen gehören zu den unverzichtbaren Werkzeu-
gen der algorithmischen Modelltheorie. Klassische Anwendungen sind beispiel-
sweise Reduktionen zwischen logischen Theorien oder die Verwendung zur
Konstruktion von Algorithmen für im allgemeinen schwierige Probleme, die
auf eingeschränkten Strukturklassen jedoch effizient lösbar sind, wie etwa 3-
Färbbarkeit auf Graphen beschränkter Baumweite. Wir untersuchen dieses
Konzept und seine Anwendungen in drei verschiedenen Bereichen der algorith-
mischen Modelltheorie:

1. Automatenbasierte Entscheidungsverfahren,

2. algorithmische Metatheoreme und

3. deskriptive Komplexität.

Automaten basierte Darstellungen unendlicher Objekte, welche Interpretatio-
nen der monadischen Logik zweiter Stufe in Mengenvariablen entsprechen, ist
ein besonderes Augenmerk gewidmet.
Wir führen parametrisierte automatische Präsentationen ein, welche gewöhn-

liche automatische Darstellungen dadurch erweitern, dass die Automaten Zu-
griff auf eine fixierte zusätzliche Hilfseingabe haben. Wir entwickeln algebrais-
che sowie kombinatorische Methoden zur Analyse automatischer Präsentatio-
nen. Wir wenden diese an, um zu beweisen, dass bestimmte Strukturen keine
automatische Darstellung besitzen. Das Hauptergebnis in dieser Hinsicht ist,
dass der Körper der reellen Zahlen keine solche parametrisierte ω-automatische
Darstellung zulässt. Dies war seit der Einführung ω-automatischer Präsenta-
tionen durch Blumensath und Grädel ein offenes Problem. Das Ergebnis kann
auch als die Antwort auf eine abgeschwächte Version einer Frage von Rabin
verstanden werden, nämlich ob der Körper der reellen Zahlen in unendlichen
Binärbaum Mengen-interpretierbar ist.
Wir beschäftigen uns zudem mit uniform darstellbaren Klassen. Dies sind

Strukturklassen, die durch eine feste parametrisierte automatische Präsenta-
tion darstellen lassen, indem man Parameter aus einer festgelegten Menge
betrachtet. Solche uniforme automatische Präsentationen bilden implizit den
Kern vieler algorithmischer Metatheoreme. Wir interessieren uns für die Ef-
fizienz dieses Ansatzes und analysieren die Laufzeit des generischen Algorith-
mus für das Model Checking Problem von uniform baumautomatischen Struk-
turen in Abhängigkeit zu der Komplexität der gegebenen Präsentation. Wir
wenden unsere Ergebnisse an, um zu zeigen, dass FO Model Checking FPT
auf der Klasse der endlichen booleschen Algebren und der endlichen abelschen
Gruppen ist. In beiden Fällen ist Laufzeit elementar im Parameter. Die erhal-
tenen Laufzeiten sind entweder beweisbar optimal oder verbessern die bisher
bekannten oberen Schranken. Zusätzlich beweisen wir, dass die Laufzeit für
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den generischen FPT Algorithmus für MSO Model Checking auf Graphen mit
Baumtiefe höchstens h nur (h + 2)-fach exponentiell im Parameter ist. Diese
Laufzeit entspricht der Laufzeit der zur Zeit besten bekannten Algorithmen
für dieses Problem.
Wir betrachten Polynomial Time Interpretation Logic (PIL). Diese wurde

als eine alternative Charakterisierung der Logik Choiceless Polynomial Time
(CPT) eingeführt, welche zur Zeit der erfolgversprechendste Kandidat für
eine Logik ist, die PTIME einfangen könnte. Wir tragen zum Verständnis
der Ausdrucksstärke von CPT bei, indem wir eine CPT definierbare Kanon-
isierungsprozedur für Strukturen mit beschränkt großen abelschen Farbklassen
angeben. Eine Struktur hat beschränkt große abelsche Farbklassen, wenn
sie nur beschränkt große Farbklassen besitzt und die Automorphismengrup-
pen auf den Farbklassen abelsch sind. Beispiele für solche Strukturklassen
erwachsen vor allen Dingen aus den bekannten Beispielen, welche Fixpunkt-
logik mit Zählen von PTIME trennen. So haben etwa die CFI-Graphen (im
wesentlichen) beschränkte abelsche Farbeklassen. Dies gilt auch für die Multi-
pedes von Blass, Gurevich und Shelah. Dementsprechend sind die entsprechen-
den Isomorphieprobleme im CPT lösbar. Für Multipedes war dies eine offene
Frage.
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1 Introduction

Motivation

When I think about what drew me to theoretical computer science in the first
place, I remember the awe that I felt as a child when I was first confronted
with mathematical thoughts that go beyond simple calculations. I wondered
how we could be sure that a statement, say about numbers, is true. After all,
the object under consideration is infinite and infinity itself is something that
we can only vaguely imagine. It seemed to me that mathematicians must have
access to some spheres of infinity to which entrance is denied for a normal
mortal being.
As my education progressed, I got acquainted to the axiomatic approach

and I learned that the insights that amazed me as a child are actually possible
because we condense infinity into a finitely presentable collection of elementary
properties which serve as a starting point for the journey on the vehicle of
logical deduction.
The fact that we can investigate the process of strict logical deduction itself

in mathematical terms is not a natural course of action. It is rather the result
of a thousands of years lasting progress. The beginnings can be traced back to
ancient philosophers and mathematicians, like Aristotle [67] and Euclid [62],
who first studied the laws of thought and applied the axiomatic approach. The
torch was passed on to people like Leibniz [50], Boole [16], and De Morgan [31]
who developed an algebraic theory of logic. All culminated in the works of
Frege [45] and Russel and Whitehead [100] who took the formal approach in
its strictness to a new level with the aim to make logic the foundation of every
mathematical truth. Finally Gödel [60,61] clarified what can and what cannot
be done in these formal systems, which also illuminated the deep intercon-
nections between logic and computability, just to mention a few cornerstones
(while unjustly omitting many others).
But there is another approach of deepening the understanding of an object,

which is so elementary that every child is familiar with it. Simply put, we can
understand an object A by describing it in terms of another object B that we
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1 Introduction

already understand quite well. However, this process is by no means contrary
to the process of gaining knowledge by logical deduction, but rather goes hand
in hand with it.
This technique has incarnations in almost every field of science. For instance,

in computer science we find this concept in form of reductions, where one trans-
forms an instance of a certain algorithmic problem A to an instance of another
problem B. Given that we know how to solve B, we also know how to solve A.
But probably the most natural formal realisation is (and in my understanding
must be) found in mathematical logic, more precisely in the field of model
theory. Here it is known as model-theoretic interpretation. Roughly speaking,
objects are modelled as structures, and the descriptions are formulated in logic.
In its simplest version, an interpretation of a structure A = (A,R1, . . . , Rn)
in another structure B is a tuple of formulae (ϕA(x), ϕR1(x̄1), . . . , ϕRn(x̄n)) in
the vocabulary of B, such that the evaluation of these formulae in B defines
a copy of A, that is (ϕB

A , ϕ
B
R1
, . . . , ϕB

Rn
) ∼= A.

While this can be seen as a very abstract formalisation of the general concept,
it can also be seen as a special case of the reductions from computer science.
Indeed, the existence of an interpretation yields an effective reduction between
the theories of A andB. Hence, model-theoretic interpretations an an essential
interface between logic and computer science. The most classical application
is the transfer of decidability and undecidability results, as described above.
Some of the most influential decidability results, both in computer science

and model theory, are the decidability of the monadic second-order (MSO) the-
ory of the orders on the natural numbers N = (N,≤) and the infinite binary
tree Tω = ({0, 1}∗, S0, S1). Even more influential than the mere statements are
their proofs, due to Büchi [21] and Rabin [87], which establish a direct corre-
spondence between MSO formulae and finite state automata. In their seminal
papers they already apply these findings to reduce the first-order (FO) theory
of structures like (N,+), (R,+), and (N, ·) to the MSO theory of these two
very simple structures. This is done via a very powerful kind of interpretation,
which is today known as set-interpretation. In contrast to usual interpreta-
tions, set-interpretations use formulae in which the free variables range over
sets. This way the elements of the interpreted structure are presented by higher
order objects of the original structure. Although implicitly in use for a long
time, a systematic study of set-interpretations has not been carried out until
a few years ago (see [25]).
In finite model theory, especially in descriptive complexity, interpretations

9



1 Introduction

have been used under the term of logical reducibility to identify complete
problems for certain complexity classes and to investigate the expressiveness
of logics like fixed point logic (FP). For an overview see [51,66].
In the course of this thesis we examine applications of model-theoretic in-

terpretations (often implicitly through equivalent characterisations) in three
different areas of algorithmic model theory:

1. automata-based decision procedures for logical theories,

2. algorithmic meta-theorems, and

3. descriptive complexity.

Outline

In the following we describe the structure and content of this dissertation.

Advice Automatic Structures If one takes a closer look at the standard
examples of structures that are set-interpretable inN and Tω, it is striking that
the list contains already a large part of the prominent examples of structures
with decidable first-order theory. This gives way to the obvious question if this
is a general phenomenon. In other words, is every structure with decidable
FO theory also set-interpretable in a structure with decidable MSO theory?
Unfortunately, up to this date we seem to be far from being able to answer
these kind of questions. Indeed, in order to prove or disprove such a statement,
we probably need to be able to tell whether a given structure A is interpretable
in a given structure B. But as a matter of fact, it is already challenging to
prove that a structure is not set-interpretable in N, let alone in Tω.
However, in the case where we consider N or Tω as underlying structures,

we have a powerful methodology at hand. Instead of working directly with the
formulae, we can go one step further along the line of the standard decision
procedure for N or Tω and work with automata that correspond to these for-
mulae. This leads to the notion of automatic structures. Roughly speaking,
a structure is automatic if it consists of a regular domain, such that all rela-
tions of the structure are recognizable by synchronous multi-tape automata.
Working with this notion has the advantage that the combinatorics of the
problem become more visible. In fact, automatic structures are a very active
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1 Introduction

field of research on their own. In their present form they were introduced by
Khoussainov and Nerode [72] for word-automatic structures and later gener-
alised to infinite words and trees by Blumensath and Grädel [13], leading to
ω-automatic, tree-automatic, and ω-tree-automatic structures, respectively. A
noteworthy predecessor are automatic groups [37].
Besides N, there are several other linear orders for which MSO has a corre-

sponding automaton model. In recent years an active line of research was to
incorporate these models into the family of automata-based presentations (see
for instance [41, 69, 70, 95]) and to compare the classes of structures that are
generated by them. One may hope that the investigation of interpretations
via an increasing number of combinatorial characterisations will sharpen the
view towards the general case.
We also aim at enriching the class of structures on which we apply the set-

interpretations while maintaining a useful correspondence to automata-based
presentations, although we proceed on a path that is in a certain sense orthog-
onal to the one described above. More precisely, we consider the expansions of
N and Tω by unary predicates, say P1, . . . , Pn. From the automata-theoretic
point of view, the sets P1, . . . , Pn can be seen as a fixed advice that the au-
tomaton reads while it processes the input. This model of automata with
advice is known in the literature as referenced automata [8]. The motivating
example is the additive group of rational numbers Q. For a long time it has
been on open problem whether Q has a word-automatic presentation until it
was finally answered negatively by Tsankov [98]. However, it was noted that Q
has an automatic presentation where the automata have additional access to a
fixed infinite advice string. Moreover, this advice string has a decidable MSO
theory. Subsequently, Kruckman, Rubin, Sheridan, and Zax [76] suggested the
consideration of automatic presentations with advice.
The goal of Chapter 3 is to enrich our understanding of ω-automatic presen-

tations with advice. While in the classical setting without advice, automatic
presentations over finite words and trees are reasonably well understood (see
for instance [93] for a survey of the finite string case), automatic presentations
over infinite words and infinite trees received a lot less attention. Although
there are essays that treat several aspects of ω-automatic presentations, see for
instance [9, 63, 79], there have been very few works that focus on the develop-
ment of techniques to show the non-existence of an ω-automatic presentation
for a given structure. One reason for this is certainly that the analysis becomes
more complex if automata over infinite objects are considered. Notable excep-
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1 Introduction

tions are the result by Kuske given in [77] that the ω-automatic ordinals are
exactly the ordinals below ωω and the result of Finkel and Todorcevic given
in [40] which shows that the injectively ω-tree-automatic ordinals are exactly
the ordinals below ωω

ω .
One of the most prominent and important structures with a decidable first-

order theory is certainly the field of reals (R,+, ·). The decidability goes back
to Tarski [97] and is based on a quantifier elimination argument. Therefore, it is
very natural to ask whether the field of reals admits an automatic presentation.
Indeed, Rabin asked already in his seminal paper [87] whether we can solve the
theory of certain fields by automata-theoretic methods. We show that this is
not possible using automata over infinite words with advice, i.e., that the field
of reals is not ω-automatic with advice. Additionally we show that no infinite
integral domain is ω-automatic. Also the question whether the field of reals is
ω-automatic has also been explicitly posed in [63]. Of course our result does
not completely settle the question of Rabin because it is still possible that the
field of reals has an ω-tree-automatic presentation.
The proof employs algebraic methods via the characterisation of ω-regular

languages by ω-semigroups. We show that for every presentation of an un-
countable structure A there is an uncountable substructure B that induces a
subpresentation where all ω-semigroups that recognise the relations of A have
a in some sense nice algebraic structure on B. This, in turn, allows for an com-
binatorial analysis which involves an inspection of the behaviour of automatic
relations on sets of words that pairwise differ only on finitely many positions.
Furthermore, we use our techniques to lift several known non-automaticity

results to the advice setting.

Uniformly Automatic Classes Chapter 4 discusses another interesting twist
which comes with the introduction of an advice. Instead of a single structure
that is presented using a fixed advice we consider classes which are generated by
a fixed automatic presentation and an advice set. We call a class of structures
which can be presented in this way uniformly automatic. The motivating
example here is a generalisation of the advice-automatic presentation of Q:
using the same presentation as for Q, one can present all torsion-free abelian
groups of rank 1 simply by altering the advice. Moreover, the class of all
torsion-free abelian groups of rank 1 is generated by an ω-regular advice set.
We observe that this concept forms a natural framework in which many well-
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1 Introduction

known automata-based approaches to certain algorithmic problems in finite
and algorithmic model theory can be expressed uniformly. These applications
span from classical results like the decidability of the MSO theory of all count-
able linear orders [87] to the algorithmic meta-theorems for MSO-definable
properties of graphs with bounded treewidth and bounded cliquewidth by
Courcelle, Makowsky, and Rotics [26,27].
We examine basic algorithmic applications with respect to the complexity of

the advice set. An interesting special case of uniformly automatic presentations
are those for which every isomorphism type of the class is presented via exactly
one advice. We call this property the unique presentation property. In this case
the decidability of FO with modulo and cardinality counting quantifiers for
automatic structures can be used to count the models of a formula inside the
respective class. We prove, however, that this property is already Π0

1-complete
for classes of finite sets and Σ1

1-hard over signatures with at least one binary
predicate.
Moreover, we investigate which closure operators on classes preserve auto-

maticity. It is known that the class of (ω-)[tree-]automatic structures is closed
under the basic composition operators of disjoint union and direct product [13].
For (ω-)tree-automatic structures it can easily be seen that a standard con-
struction is uniform in the sense that for every uniformly (ω-)tree-automatic
class the closure under disjoint union and direct product is also uniformly (ω-
)tree-automatic. For the string case the picture becomes more diverse. The
closure under disjoint unions is uniformly automatic for every uniformly au-
tomatic class. For classes of finite structures, uniform automaticity is also
preserved when closing the class under direct products. In general this is not
the case: we show that the free abelian groups of finite rank and the class
of all finite direct products of the interval algebra on ω are not uniformly ω-
automatic. Note that both are the closure under direct products of uniformly
automatic classes. It remains open whether the closure under disjoint unions
preserves automaticity for uniformly ω-automatic classes.

Classes of Finite Structures In Chapter 5 we consider the application of
uniform tree-automaticity in finite model theory. More precisely, we investi-
gate the use of automata in algorithmic meta-theorems. Algorithmic meta-
theorems are general algorithmic results stating that a class of problems P
can be efficiently solved on a class of instances C. In many cases P is the class
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1 Introduction

of problems definable in a certain logic L. Parameterised complexity theory
provides one of the key notions to establish algorithmic meta-theorems: we
say that the model checking problem for a logic L on a class of structures C
is fixed-parameter tractable (FPT) (in the size of the formula) if the is a com-
putable function f and a constant c such that we can decide for every ϕ ∈ L
and every A ∈ C in time f(|ϕ|) · |A|c whether A |= ϕ.
Prototypical examples of automata-based algorithmic meta-theorems are the

theorem of Courcelle [26] for MSO-definable problems on graphs of bounded
treewidth and the result of Courcelle, Makowsky, and Rotics [27] for MSO-
definable problems on graphs of bounded cliquewidth. The basic idea is in
both cases to compute from a graph G a tree-like decomposition tG and from
an MSO-formula ϕ a tree-automaton Aϕ that accepts exactly the tree-like
decompositions of graphs that model ϕ. Since the construction of tG from G
can be performed efficiently, we can efficiently check if G |= ϕ by checking if Aϕ
accepts tG. Note that many NP-complete problems, such as 3-Colourability,
are definable in MSO and hence efficiently solvable on the above mentioned
classes.
Interestingly, the presentations which build the core of the FPT algorithms

for bounded treewidth and bounded cliquewidth graphs are obtained from
MSO-interpretations on trees. Uniformly automatic presentations, however,
correspond to set-interpretations, which are strictly more powerful than MSO-
interpretations. In fact, it is not hard to construct even uniformly word-
automatic classes of graphs which have unbounded tree- and cliquewidth. The
power to present more complex classes of structures comes with a trade-off:
We cannot hope that MSO model checking is FPT on every uniformly auto-
matic class of structures. Instead we have to restrict our consideration to FO
model checking. While every FO-definable problem can obviously be solved in
polynomial time, we can still derive some very interesting consequences. For
instance, if FO model checking is FPT on a class of graphs C then Independent
Set is FPT on C in the size of the independent set because we can compute
for every k ∈ N an FO-formula ϕk such that for every graph G it holds that
G |= ϕk if and only if G contains an independent set of size k.
Meta-theorems for first-order logic have been studied extensively on classes

of sparse graphs. The first result in this direction is due to Seese for graphs
of bounded degree [96]. Over the past decades larger and larger classes of
sparse graphs have been identified for which FO model checking is FPT. This
development has recently found its climax in the result of Grohe, Kreutzer,
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1 Introduction

and Siebertz for nowhere dense graphs [54]. They proved that under certain
complexity theoretic assumptions this is the largest possible subgraph-closed
class of graphs where FO model checking is FPT.
We investigate automaticity as a generic notion of simplicity which might

bring up new and interesting classes of structures for which FO model check-
ing is FPT. Towards the theory, we are concerned with the efficiency of this
approach. Note that in general the non-elementary worst-case runtime of the
automaton construction process leads to a non-elementary parameter depen-
dence in the algorithmic meta-theorems. Frick and Grohe [47] showed, unless
PTIME = NP, there is no algorithm that solves the model checking problem
for MSO on words or trees in time

f(|ϕ|) · poly(|t|)

for any elementary function f : N → N. A similar statement holds for FO on
words. As trees have treewidth one, this renders Courcelle’s approach to model
checking of graphs with bounded treewidth optimal. Moreover, the efficiency
of the automata theoretic approach has also been confirmed in practice. For
instance, Langer et al. [81] implemented Courcelle’s technique and found that
their implementation can compete with other approaches for specific problems
such as Dominating Set.
Even more interestingly, the automata-based approach also tends to behave

tamely when applied to interpretations of structures whose theory is elemen-
tary. Eisinger [36] gave a triply-exponential upper bound on the size of the
minimal automaton for formulae of integer and mixed-real addition. In [33]
Durand-Gasselin and Habermehl showed for word-automatic structures that
the runtime of the generic algorithm can be bounded by a function which
estimates how well the presentation goes along with the Ehrenfeucht-Fraïssé
relations of the structure and gave runtime bounds for integer addition match-
ing Eisinger’s bound. Additionally they gave a triply-exponential bound for
automatic graphs of bounded degree complementing a result by Kuske and
Lohrey who proved, using a specialised algorithm, that model checking for au-
tomatic graphs of bounded degree is solvable in doubly-exponential space [80].
We adopt Durand-Gasselin’s and Habermehl’s technique and generalise their

result to uniformly tree-automatic presentations. We apply this technique to
the presentations of the direct product closures that we described earlier. We
prove that the bound of the runtime of the model checking algorithm is at
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1 Introduction

most exponential in the bound of the runtime for the primal classes. Further
we apply these findings in the context of FPT model checking for first order
logic. We demonstrate the efficiency of the automata-theoretic approach by
analysing the runtime in terms of the parameter dependence on structurally
rather simple classes. Our results are as follows:

• FO model checking is FPT on the class of all finite Boolean algebras that
are succinctly encoded by the number of atoms and can be performed in

exp2(poly(|ϕ|)) · log |B|.

Unless NEXP =
⋃
c∈N STA(∗, 2cn, n), this parameter dependence is opti-

mal.

• FO model checking is FPT on the class of all finite abelian groups that
are succinctly encoded by the orders of the direct product factors and
can be performed in

exp4(poly(|ϕ|)) · log |G|.

We generalise this result to finite groups of bounded non-abelian decom-
position width, that is groups whose non-abelian direct product factors
are of bounded size. We obtain the same asymptotic runtime on these
classes.
This provides some first results towards Grohe’s question on which classes
of algebraic structures FO model checking is FPT [52]. The mere FPT
result for FO model checking on abelian groups was independently also
discovered by Bova and Martin [17]. Their algorithm assumes that
the groups are encoded by their multiplication tables and yields a non-
elementary parameter dependence. Therefore our approach has the two
advantages that it works for succinct encodings and yields an elementary
parameter dependence.

• MSO model checking is FPT on every class of graphs with tree-depth at
most h and can be performed in

exph+2(poly(|ϕ|)) · poly(|G|).

This matches the runtime of the best known algorithm for these classes,
which is due to Gajarsky and Hliněný [48]. Their algorithm uses a ker-
nelisation procedure. Our proof makes use of their analysis.
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Extending Fixed-Point Logic By Interpretations In the last part of this
dissertation, we take a different view towards interpretations. Namely, we
consider interpretations as the description of the behaviour of an abstract
machine. Roughly speaking, we think of a structure as a representation of a
machine state and the interpretation to describe the transitions from one state
to another. On the one hand, this describes a model of computation where the
interpretation is repeatedly applied. On the other hand this also describes a
logic. Therefore it is natural to investigate this idea in the context of descriptive
complexity. The logic that substantiates the above idea is called interpretation
logic (IL). It was suggested by Kaiser and formally introduced by Schalthöfer
[94]. We investigate the polynomial-time fragment of interpretation logic (PIL)
as a candidate logic for capturing PTIME.
Descriptive complexity theory is the branch of finite model theory that tries

to characterise complexity classes by the type of logic needed to express ex-
actly the languages inside this complexity class. The first result in this field is
Fagins Theorem, which states that the properties of finite structures that are
recognisable in non-deterministic polynomial time are exactly the properties
expressible in existential second-order logic [38]. Below NP the situation is
more delicate. The most interesting question, especially in the light of the
PTIME versus NP problem, is whether there is a logic capturing PTIME. If
we assume that a linear order is present, then fixed-point logic (FP) captures
exactly the PTIME properties of finite structures. This was discovered in-
dependently by Immerman [65] and Vardi [99]. Without the presence of a
linear order, however, FP is relatively far from capturing PTIME. For in-
stance, FP cannot even express simple properties that involve counting: the
class EVEN = {(A) | |A| is even} is not definable in FP. Therefore Immerman
suggested to extend FP with a mechanism to count. This leads to fixed-point
logic with counting (FPC), which was formally introduced by Grädel and Otto
in [57].
Cai, Fürer, and Immerman [22] could prove, however, that FPC still does

not capture polynomial time. Their example is basically a tractable instance of
the graph isomorphism problem on a special class of graphs, called CFI-graphs.
The constructions of the CFI-graphs is tuned so that the resulting graphs have
bounded degree and bounded colour class size. This in turn means that FPC
fails to capture PTIME on both of these classes. CFI-graphs have been useful
way beyond the mere application in [22]. In fact they are now a standard tool
in finite model theory to show upper bounds on the expressiveness of logics.
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However, the CFI-query is not really a natural problem because the CFI-
graphs emerge from a rather artificial construction. Atserias, Bulatov and
Dawar noted that there is a very natural problem underlying the CFI-query [6].
They showed that via interpretations the CFI-query can be reduced to the
solvability of linear equation systems over a finite field, which implies that
FPC cannot express solvability of these systems.
Another quite prominent query known to be not expressible in FPC is the

isomorphism problem for the multipedes introduced by Blass, Gurevich, and
Shelah [11,59]. In the light of the previous observations it is an interesting fact
that the polynomial time algorithm, which decides the isomorphism problem
for multipedes, also reduces the problem to the solvability of a linear equation
system.
In spite of these shortcomings in expressiveness, FPC still captures a large

and natural fragment of PTIME. Therefore, FPC is today an important bench-
mark for every candidate logic for capturing PTIME. Every such logic should
be strictly more expressive than FPC. Choiceless Polynomial Time (CPT) is
currently the most prominent such candidate. The rough idea about it is that
it operates on the hereditary finite expansion of an abstract input structure to
allow everything that a normal program could do, for instance to use counting,
complex data structures, and parallelism. The only exception is that must not
perform any operation that would break symmetries, such as arbitrarily pick-
ing an element of the input structure. In other words, the operations that a
CPT-program can use are defined such that every automorphism of the input
structure extends to an automorphism of every “state of the machine”. In order
to remain in PTIME one artificially bounds the resources of the machine by a
polynomial. Although the formal definition of CPT is quite technical, it is still
a natural model of automorphism-invariant computations. Moreover, it turns
out that CPT has exactly the same expressiveness as PIL [94], which further
underlines that these logics capture a natural fragment of PTIME. Also CPT
is indeed more expressive than FPC: while it is easy to see that every FPC-
formula can be transformed into an equivalent CPT-program, Dawar, Richerby,
and Rossman showed that the CFI-query is definable by a CPT-program [30].

Structures of Bounded Colour Class Size We contribute to the exploration
of the expressive power of CPT with respect to several of the shortcomings of
FPC. Our main contribution is a CPT-definable canonisation procedure for
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structures of bounded colour class size where the automorphism groups of the
colour classes are abelian. The strategy is as follows: We iteratively canonise
the structure along the linear order on the colour classes. This is done by
storing all isomorphisms between the already processed part of the structure
and the ordered copy of the processed part. Suppose we have already canonised
the substructure that is induced by the first n colour classes. When we add the
(n + 1)-st colour class we search for the lexicographically smallest extension
of the ordered copy such that some of the stored isomorphisms extend to an
isomorphism between the first n + 1 colour classes and the newly obtained
ordered structure. This is done by iteratively considering the connections to
all already processed colours.
One of the main obstacles here is that we cannot store the set of isomor-

phisms directly without violating the polynomial restrictions. Therefore we
show that in the case where the automorphism groups on the colour classes
are abelian, we can represent the set of isomorphisms succinctly by a system
of linear equations with a total preorder on the variables and cyclic constraints
on the bags of the preorder. Checking that the canonisation of a new part of
the structure is consistent to the canonisation of the previous parts reduces to
a solvability check of a linear equation system over a finite ring.
Our main technical contribution is to show that the linear equation systems

that arise in this procedure can be solved in CPT. We implement a version
of Gaussian elimination where symmetric choices are succinctly encoded by
objects, which we call hyperterms.
An important special case are structures of colour class size two. In this

case the automorphism group of every colour class is trivially abelian. Hence,
our algorithm yields a CPT-definable canonisation procedure for structures of
colour class size two. As multipedes are structures of colour class size two,
the multipedes query is definable in CPT, which refutes a conjecture of Blass,
Gurevich and Shelah [11].
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2 Preliminaries

Throughout this work I will assume that the reader posses a certain back-
ground knowledge in logic and theoretical computer science. This chapter is
therefore not intended to give a comprehensive overview of all concepts needed
to understand this work. Rather, this chapter is used to recall some key ideas
and to fix notation. For more information on the subjects the reader is directed
to appropriate literature in the respective sections.

2.1 Logic and Structures

2.1.1 Basic Notations

A signature τ is a set of relation and function symbols together with a function
ar that assigns an arity to every symbol. We usually denote relation symbols
with (possibly indexed) capital letters like R1 and function symbols with lower
case letters like f1. As a convention we denote the arity of a relation symbol Ri

by ri if the context prohibits any danger of confusion with a function symbol.
For a relation R ⊆ A1×· · ·×An, k < n, and a ∈ A1×· · ·×Ak we write aR for
the set {b ∈ Ak+1 × · · · × An | (a, b) ∈ R} and if X ⊆ A1 × · · · × Ak we write
XR for

⋃
a∈X aR. Similarly we define for b ∈ Ak+1 × · · · × An the set Rb =

{a ∈ A1 × · · · ×Ak | (a, b) ∈ R} and RY =
⋃
b∈Y Rb for Y ⊆ Ak+1 × · · · ×An.

A τ-structure is a tuple A = (A, (RA)R∈τ , (f
A)f∈τ ) where A is a set, called

the universe of A, RA ⊆ Ar is a r-ary relation over A, and fA : Aar(f) → A
is an ar(f)-ary function over A. By convention, we denote the universe of a
structure A by A, the universe of a structure B by B, and so on. The class of
all τ -structures is denoted by Str(τ) and the class of all finite τ -structures is
denoted by finStr(τ).
For a signature τ , First-Order Logic over τ (FO[τ ]) is build up from

• a denumerable set of individual variables,

• the symbols of τ ,
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• the boolean connectives ∧,∨,¬, . . .,

• the quantifiers ∃ and ∀, and

• the bracket symbols (, ).

The atomic formulae are of the form R(x) or f(x) = y, where R is a relation
symbol, f is a function symbol, y is an individual variable, and x is a tuple
of individual variables matching the arity of R and f , respectively. Formulae
can be connected with the boolean connectives and variables can be bound by
the quantifiers Qx : ϕ with Q ∈ {∃,∀}. We will speak simply of first-order
logic (FO) whenever the signature is clear from the context or whenever the
specific signature does not matter for the consideration. The free variables
of a formula are the variables that are not bound by a quantifier. We write
ϕ(x1, . . . , xn) to denote that all free variables of ϕ are among x1, . . . , xn. A
sentence of first-order logic is a formula without free variables. The quan-
tifier rank qr(ϕ) is the maximal nesting depth of quantifiers inside ϕ. The
semantics of first-order logic is defined as usual and we will skip the formal
definition here. For more information we refer the reader to [34]. We write
(A, a1, . . . , an) |= ϕ(x1, . . . , xn) (or in short form A |= ϕ(a1, . . . , an)) to express
that the structure A satisfies the formula ϕ if the free variable xi is interpreted
by ai for all 1 ≤ i ≤ n. We write ϕ(x1, . . . , xn)A = {ā ∈ An | A |= ϕ(ā)} for
the relation that is defined by ϕ in A. We use the shorthand notation

(∃x1∃x2 . . . ∃xn).δ(x1, . . . , xn) : ϕ(x1, . . . , xn) and
(∀x1∀x2 . . . ∀xn).δ(x1, . . . , xn) : ϕ(x1, . . . , xn) for
∃x1∃x2 . . . ∃xn : (δ(x1, . . . , xn) ∧ ϕ(x1, . . . , xn)) and
∀x1∀x2 . . . ∀xn : (δ(x1, . . . , xn)→ ϕ(x1, . . . , xn)),

respectively, to emphasize that the quantification is relativised to tuples sat-
isfying δ(x1, . . . , xn). We say two τ structures A and B are elementary
equivalent (A ≡ B) if no sentence of first-order logic can distinguish between
A and B, that is A |= ϕ ⇔ B |= ϕ for all sentences ϕ ∈ FO[τ ]. We write
A ≡k B if A |= ϕ ⇔ B |= ϕ holds for all sentences ϕ ∈ FO[τ ] of quantifier
rank at most k.

Monadic second-order logic (MSO) augments first-order logic by the pos-
sibility to quantify over monadic relation variables. In order to make a nota-
tional distinction we use lower case letters x, y, z, . . . for individual variables

22
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and capitals X, Y, Z, . . . for relation variables. The notations introduced in the
previous paragraph are adopted for MSO accordingly.

Fixed Point Logic (with Counting) (FP(C)) augments first-order logic by
a fixed point operator [fpRx : ϕ(R, x, y)], with free variables ȳ. For every
structure A and every interpretation ā of the free variables [fpRx : ϕ(R, x, y)]
defines a relation where the arity r matches the arity of x̄ and it is defined as
the limit of the sequence (Ri)i∈|A|+ given by

R0 = ∅
Rα+1 = Rα ∪ ϕ(Rα, x̄, ā)A

Rγ =
⋃
α<γ

Rα for limit ordinals γ.

Fixed point logic with counting augments FP by operators #xϕ(x, ȳ), where
x is bound by the operator #x. We define the semantics of FPC only on the
class of all finite structures. In order to evaluate the counting terms, a formula
of FPC is evaluated in a two sorted expansion of a finite structure A. More
precisely, for a finite structure A = (A,R1, . . . , Rn, f, . . . , fk) one considers
the two-sorted expansion (A, {0, . . . , |A|}, R1, . . . , Rk, f1, . . . , fk, <), where <
is the natural linear order on {0, . . . , |A|}. Then #xϕ(x, ȳ) (where x and ȳ
might contain variables that range over the first and the second sort) is a term
which is evaluated to an element of the second sort by

(#xϕ(x, ȳ))(A,b̄) = |ϕ(x, b̄)A|.

The Härtig quantifier H has the syntactic build rule Hx̄ȳϕ(x̄, z̄)ψ(ȳ, z̄)
where x̄, ȳ, and z̄ are disjoint tuples of variables. A structure A together
with an interpretation ā of the variables in z̄ is a model of Hx̄ȳϕ(x̄, z̄)ψ(ȳ, z̄) if
|ϕ(x̄, ā)A| = |ψ(ȳ, ā)A|. The extension of first-order logic by the Härtig quan-
tifier is denoted FO + H.

2.1.2 Model Theoretic Interpretations

Model theoretic interpretations are a well known and powerful tool of mathe-
matical logic. The idea is to use formulas to define a copy of a structure inside
another one. The existence of such an interpretation is particularly useful to
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transfer definability, decidability, and complexity results from one structure to
another.
While the basic structure of interpretations is rather invariant between the

different flavours of interpretations that we consider, the objects that represent
the elements of the interpreted structure may vary between different kinds of
interpretations. We summarize here the sorts of interpretations that are used
in this thesis.

Definition 2.1. Let L be a logic and τ , as well as σ, be signatures, where
σ = {R1, . . . Rn} is finite and relational. An n-ary L[τ, σ] interpretation (in
first order variables) is a tuple I = (δ, ε, ϕR1 , . . . , ϕRn), where δ has n free
variables, ε has 2n free variables, and every ϕRi has ri · n free variables, for
i ∈ {1, . . . , n}. If L, τ and σ are clear from the context we will just speak of
an interpretation rather then of an L[τ, σ] interpretation.
The tuple I interprets B in A (or I(A) = B) if there exists a surjective

mapping h : δA → B such that

• for all x, y ∈ δA, h(x) = h(y) if, and only if, (x, y) ∈ εA and

• for all i ∈ {1, . . . , n} and all x1, . . . , xri ∈ δA, (x1, . . . , xri) ∈ ϕRi if, and
only if, (h(x1), . . . , h(xri)) ∈ RB

i .

Analogously we obtain the notion of an L[τ, σ] interpretation in set vari-
ables by replacing the term variable by set-variable in the above definition.
In this case we distinguish between full and weak set semantic.

In this dissertation we consider the following instances of interpretations

• FO[τ, σ] interpretations, where the formulas and free variables are first
order,

• MSO[τ, σ] interpretations in set variables (set-interpretations), where we
use MSO formulas and free set variables, and

• WMSO[τ, σ] interpretations in finite set variables, which are syntactically
identical to MSO[σ, τ ] interpretations in set variables, but all occurring
set variables range over finite sets.

Remark 2.1. By definition, the target signature of an interpretation is always
relational. This is not a severe restriction since we can replace a function
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f : An → A by its graph Rf = {(a1, . . . , an, f(a1, . . . , an)) | a1, . . . , an ∈ A}.
Whenever we talk about interpreting a structure A over a signature σ which
contains functions symbols we implicitly mean that we interpret the relational
version of A where every function is replaced by its graph.
For L ∈ {FO,MSO} every ϕ ∈ FO[σ], an L[τ, σ] interpretation I in-

duces a L-formula ϕI ∈ L[τ ] where every quantification Qx is translated to
Qx1 . . . Qxn.δ(x), equalities x = y are replaced by ε(x, y), and R(x, y, z, . . .) is
replaced by ϕR(x, y, z, . . .). As a consequence First-order interpretations allow
us to transfer the first order theory of structures.

Lemma 2.1 (Interpretation Lemma [56]). For every FO[τ, σ] interpretation
I over a structure A and every FO-sentence ϕ ∈ FO[σ] , we have that

A |= ϕI ⇔ I(A) |= ϕ.

Similarly, For every ψ ∈ FO[σ], an MSO[τ, σ] interpretation in set variables
I induces a MSO-formula ψI ∈ L[τ ] where every quantification Qx is trans-
lated to QX1 . . . QXn.δ(X), equalities x = y are replaced by ε(X,Y ), and
R(x, y, z, . . .) is replaced by ϕR(X,X,Z, . . .). Hence, an MSO interpretation
I in set variables allows to reduce the first order theory of I(A) to the MSO
theory of A.

Lemma 2.2. For every MSO (WMSO) interpretation in I in (finite) set vari-
ables over a structure A and an FO-sentence ϕ it holds that

A |= ϕI ⇔ I(A) |= ϕ.

Model theoretic interpretations form a nice formalism to describe structures
by formulas. From a class of interpretations over a fixed structure A one
naturally obtains a class of finitely representable structures. Indeed, we can
present (the isomorphism type of) a structure B by an interpretation I with
I(A) = B.

Definition 2.2. For a structure A the class SI(A) (FSI(A)) is the class of all
structures B such that there is a MSO-interpretation (WMSO-interpretation)
I over (finite) sets with I(A) = B.

With Lemma 2.2 we get that the decidability of the first order theory of
a structure in SI(A) (FSI(A)) reduces to the decidability of the MSO-theory
(WMSO-theory) of A.
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Corollary 2.1. Let A be a structure with decidable MSO-theory (WMSO-
theory). Then every structure in SI(A) (FSI(A)) has a decidable first order
theory.

So far we have fixed a formalism to describe structures by formulas that
yields an effective decision procedure for the first-order model checking problem
given that the MSO-theory of the underlying structure is decidable. Now we
need to find good candidates for such underlying structure which are rich
enough to encode interesting structures by interpretations. Probably the most
prominent structures with decidable MSO-theory are the natural numbers with
the successor relation N = (N, S) and the infinite binary tree with left and
right successor relation Tω = ({0, 1}∗, S0, S1). The decidability is due to the
seminal works of Büchi and Rabin [21,87]. Their results also establish the deep
connection between (weak) monadic second-order logic and finite automata,
which connects logic and theoretical computer science.

2.2 Automata and Formal Languages

Let Σ be an alphabet. A word over Σ is a function w : {0, . . . , n − 1} → Σ
for some n ∈ N. In this case |w| := n is the length of w. We will often use
the notation w = w0w1w2 . . . wn−1, where wi = w(i) and for 0 ≤ i < j ≤ |w|
we write w[i, j) = wiwi+1 · · ·wj−1. We denote the set of all finite words over
Σ of length n by Σn, Σ≤n for

⋃
0≤i≤n Σi, and Σ∗ for the set of all finite words

over Σ. The class of all words is naturally equipped with the concatenation
product, which we write multiplicatively vw. Formally for v ∈ Σn and w ∈ Σm

the word vw ∈ Σn+m is defined as

(vw)(i) =

{
v(i) if i < n

w(j) if i = n+ j.

We say a word u ∈ Σ∗ is a prefix of a word w ∈ Σ∗ if w = uv for some v ∈ Σ∗.
We denote the prefix relation by u � w. For w ∈ Σ∗ and a ∈ Σ we denote by
|w|a number of occurrences of the letter a in w.
An infinite word is a function α : N→ Σ. We denote the set of all infinite

words over Σ by Σω. As it was the case for finite words, there is a natural
concatenation operation between finite and infinite words. For w ∈ Σ∗ and
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α ∈ Σω we define

(wα)(i) =

{
w(i) if i < |w|
α(j) if i = |w|+ j.

2.2.1 Regular Languages

Regular languages play a crucial role in many areas of computer science. One
reason for this is certainly that they form a very robust class of languages
which is also algorithmically quite well manageable. In this section we will give
a short overview over several formalisms that characterize regular languages
on finite and infinite words, as well as finite or infinite trees.

Regular Expressions We introduce regular languages by means of regular
expressions.

Definition 2.3 (Regular Expression). Let Σ be a (usually) finite alphabet.
The regular expressions over Σ are defined inductively by the following rules.

1. ε is a regular expression

2. Every letter a ∈ Σ is a regular expression.

3. If α and β are regular expressions than so are α∗, (α + β), and (αβ).

A regular expression is ε-free if it is build up using only the rules (2) and (3).
With every regular expression α over Σ we associate a language L(α) ⊆ Σ∗.
the language L(α) is defined by

L(α) =


{a} if α = a ∈ Σ

L(β) ∪ L(γ) if α = (β + γ)

L(β)L(γ) if α = (βγ)

{ε} ∪ {v1v2 · · · vn | n ≥ 1, v1, . . . , vn ∈ L(β)} if α = β∗

For the sake of simplicity of notation, we will not distinguish between a regular
expression and the language that it represents in the following. We call a
language L ⊆ Σ∗ regular if, and only if it can be represented by a regular
expression.
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The class of ω-regular languages consists of languages L ⊆ Σω. This class
of languages can be defined by a similar formalism.

Definition 2.4 (ω-Regular Expression). An ω-regular expression if an expres-
sion of the form α1(β1)ω ∪ . . . ∪ αn(βn)ω for some n ∈ N, where αi is a regular
expressions and βi is an ε-free regular expression. The associated language
L(α1(β1)ω ∪ . . . ∪ αn(βn)ω) is

{w ∈ Σω | ∃i ∈ {1, . . . , n} ∃(vj)j∈N :

w = v0v1v2 . . . ∧ v0 ∈ L(αi) ∧ vj ∈ L(βi) for j > 0}

A language L ⊆ Σω is ω-regular if it can be represented by an ω-regular
expression.

Automata Besides regular expressions, automata are probably the most
common way to represent regular languages.

Definition 2.5. A finite automaton is a tuple A = (Q, q0,Σ,∆, F ) where Q is
a finite set of states with initial state q0 ∈ Q and accepting states F ⊆ Q. The
alphabet Σ is a finite set of letters and ∆ ⊆ Q×Σ×Q is the transition relation.
A run of A on a word w = w1w2 . . . wn ∈ Σ∗ is a word ρ = ρ0ρ1 . . . ρn ∈ Q∗
such that

• the first letter ρ0 is q0,

• for all 0 ≤ i < n we have (ρi, wi+1, ρi+1) ∈ ∆.

Such a run is called accepting if ρn ∈ F . The language accepted by A, denoted
L(A), is the set of all w ∈ Σ∗ such that there exists an accepting run of A on
w. In the case that |∆∩ {q} × {a} ×Q| = 1 for all (q, a) ∈ Q×Σ we say that
A is deterministic. In this case we interpret ∆ as a function δ : Q × Σ → Q.
We extend δ in a natural way to Q× Σ∗ by

δ(q, ε) = q and
δ(q, wa) = δ(δ(q, w), a).

Thus we can characterise the language accepted by a deterministic automaton
via w ∈ L(A)⇔ δ(q0, w) ∈ F .
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Fact 2.1. Let A = (Q, q0,Σ,∆, F ) be a finite automaton. Then the is a
deterministic finite automaton B with at most 2|Q| states such that L(A) =
L(B)

Fact 2.2. Let Σ be an alphabet. A language L ⊆ Σ∗ is regular if and only if
L = L(A) for some deterministic finite automaton.

Definition 2.6. A deterministic Muller automaton (or ω-automaton) is a
tuple A = (Q, q0,Σ, δ,F). The components Q, q0,Σ, and δ are defined in the
same way as for finite word automata. The acceptance is defined by the set
F ⊆ P(Q). For w ∈ Σω and m ∈ N we write δm(q, w) := δ(q, w[0,m)]) for the
state that is reached by A from q if the first m symbols of w are read. We
further extend to function δ to infinite words by

δ(q, w) = {q′ | |{m ∈ N | δm(q, w) = q′}| =∞}

for all w ∈ Σω. The language accepted by A is {w ∈ Σω | δ(q0, w) ∈ F}.
Sometimes we allow for an even further condensed nation by defining δ(w) =

δ(q0, w) for w ∈ Σ∗ and also w ∈ Σω.

Fact 2.3. Let Σ be an alphabet. A language L ⊆ Σω is ω-regular if and only
if L = L(A) for some deterministic Muller automaton A.

Semigroups Besides automata we will also use the characterization of reg-
ular languages via homomorphisms to finite semigroups. A semigroup is a
structure S = (S, ·), where · : S × S → S is associative. A monoid is a
semigroup that contains a neutral element.

Example 2.1. The structure (Σ+, ·), where · is the concatenation product, is
the free semigroup over the generators Σ and (Σ∗, ·) is the free monoid over
the generators Σ.

The following theorem gives a characterization of regular languages in terms
of semigroup homomorphisms.

Theorem 2.1 ( [88]). A language L ⊆ Σ+ is regular if, and only if, there
exists a finite semigroup S = (S, ·) and a homomorphism f : Σ∗ → S such
that f−1(f(L)) = L or equivalently there is a subset X of S with f−1(X) = L.
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In the study of finite semigroups idempotence and absorption play an im-
portant role. An element e of a semigroup (S, ·) is idempotent if e · e = e, and
e absorbs d from the left if e · d = e. For every element s of a finite semigroup
(S, ·) there is a k ∈ N such that sk is idempotent. The smallest number k
such that sk is idempotent for all elements s ∈ S is called the exponent of the
semigroup.
For ω-regular languages, there is an analogous characterisation theorem. In

this setting, however, semigroups have to be replaced by ω-semigroups. Since
the notion of ω-semigroups is not as widespread as the notion of semigroups,
we give a short overview based on Perrin and Pin [86].
An ω-semigroup is a two-sorted structure S = (Sf , Sω, ·, ∗, π) with the

following properties.

• The structure (Sf , ·) is a semigroup.

• The mixed product ∗ : Sf × Sω → Sω satisfies

x ∗ (y ∗ z) = (x · y) ∗ z

for all x, y ∈ Sf , z ∈ Sω.

• The infinite product π : (Sf )
ω → Sω satisfies the equation

x0 ∗ π(x1, x2, x3, . . .) = π(x0, x1, x2, . . .)

for every sequence (xi)i∈N of elements from Sf .

• The function π is associative in the sense that for every strictly increasing
sequence of positive integers (ki)i∈N it holds that

π(x1, x2, x3, . . .) = π((xi)[0,k0), (xi)[k0,k1), (xi)[k1,k2), . . .).

Here we use the expression (xi)[n,m) as abbreviation for xn·xn+1· · · · ·xm−1.

Because of the last two properties we can present a mixed product x0 ∗
π(x1, x2, x3, . . .) without ambiguity as x0x1x2 · · · . For reasons of readability
we sometimes denote with (xi)i∈N not only the sequence of elements, but also
their infinite product x0x1x2 · · · .

Example 2.2. For an alphabet Σ, the free ω-semigroup over Σ is the structure
Σ∞ = (Σ+,Σω, ·, ∗, π), where ·, ∗ and π are interpreted as the usual concate-
nation products.
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As mentioned above, we introduced ω-semgigroups to give an algebraic char-
acterisation of ω-regular languages. Similar to the characterisation of reg-
ular languages, this will be done by homomorphisms from Σ∞ to finite ω-
semigroups. We state the definition of a homomorphism between ω-semigroups
explicitly to avoid confusion because of the two sorted nature of ω-semigroups.

Definition 2.7. Let S and T be ω-semigroups. A homomorphism g : S→ T
between S and T is a pair g = (gf , gω) such that

(1) the function gf : Sf → Tf is a homomorphism from (Sf , ·) to (Tf , ·) and

(2) the function gω : Sω → Tω preserves the mixed and the infinite product,
i.e.

gω(x1x2x3 . . .) = gf (x1)gf (x2)gf (x3) . . .

for every sequence (xi)i∈N, xi ∈ Sf and

gω(x ∗ y) = gf (x) ∗ gω(y)

for x ∈ Sf and y ∈ Sω.

If we have given a homomorphism g : S→ T, we usually omit the subscripts
of the mappings gf and gω whenever this cannot lead to any confusion. The
way we recognise languages by homomorphisms directly transfers from the
finite word case.

Definition 2.8. Let L ⊆ Σω be a language and g : Σ∞ → S a morphism into
some finite ω-semigroup S. We say that L is recognised by S via g if, and only
if, g−1(g(L)) = L or, in other words, g−1(X) = L for some subset X of Sω.

Let us take a short look on representation issues for ω-semigroups and ho-
momorphisms before we state the main theorem of this paragraph.

First, because of property (2) of Definition 2.7, every ω-semigroup homomor-
phism g = (gf , gω) is completely determined by the semigroup homomorphism
gf . Therefore we can represent every such homomorphism in a finite way. A
bit more tricky is the situation for the ω-semigroups. Even in the case where
Sf and Sω are finite sets, the ω-semigroup (Sf , Sω, ·, ∗, π) is not a finite object,
since the domain of π is still uncountable for |Sf | ≥ 2. But, as Wilke showed
in [101], the class of all finite ω-semigroups is in one to one correspondence to a
class of finite structures where all functions have finite arity. These structures
are called Wilke-algebras.
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Definition 2.9. A Wilke-algebra is a two sorted structure (Sf , Sω, ·, ∗, ω)
with the following properties.

(1) The structure (Sf , ·) is a semigroup.

(2) The mixed product ∗ : Sf × Sω → Sω satisfies

x ∗ (y ∗ z) = (x · y) ∗ z.

for all x, y ∈ Sf , z ∈ Sω.

(3) The power operation ω : Sf → Sω fulfils the equations

x(yx)ω = (xy)ω and
(xn)ω = xω for all n ≥ 1.

for all x, y ∈ Sf .

From a given ω-semigroup one naturally obtains a Wilke-algebra by restrict-
ing the infinite product π to the products of the form π(a, a, a, . . .) for a ∈ Sf .
But also the converse is true.

Theorem 2.2 (Wilke [101]). Every finite Wilke-algebra can be uniquely ex-
tended to a finite ω-semigroup.

The key to prove this theorem is the theorem of Ramsey. We state it here
since we will make use of it in Chapter 3.

Theorem 2.3 (Ramsey’s Theorem [89]). Let G = (N,
(N

2

)
) be the complete

countable undirected graph and f :
(N

2

)
→ C a coloring of the edges with some

finite set of colors C. Then there is an infinite set N ⊆ N such that every edge
in
(N

2

)
∩ (N ×N) has the same color.

At last, we state the main theorem of this paragraph.

Theorem 2.4 (cf. [86]). A language L ⊆ Σω is ω-regular if, and only if,
it is recognisable by a homomorphism into a finite ω-semigroup. Moreover,
from a finite ω-semigroup S, given by its corresponding Wilke-algebra, and a
homomorphism g : Σ∞ → S that recognises the language L one can effectively
compute a Muller-automaton that recognises L and vice versa.
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Regular Tree-Languages Besides words we will also consider Σ-labelled
trees. A tree is a mapping t : domt → Σ where the domain domt is a subset of
N∗ with two additional properties:

• for all w ∈ domt, if v � w then also v ∈ domt and

• for all w ∈ N∗ and n,m ∈ N, if wn ∈ domt and m < n then also
wm ∈ domt.

For w ∈ {0, . . . ,m}∗ the elements w0, . . . , wm are called the successors of w.
A tree is finite if its domain is finite. A tree t is finitely branching if for all

w ∈ domt there exists a maximal n ∈ N with wn ∈ domt. A tree t has bounded
degree if domt ⊆ {0, . . . , d− 1}∗ for some d ∈ N and in this case the rank or
maximal degree of t is the minimal d ∈ N such that domt ⊆ {0, . . . , d− 1}∗.
A complete infinite tree of rank d is a mapping t : {0, . . . , d − 1}∗ → Σ. A
ranked alphabet is an alphabet Σ with an associated rank function rkΣ that
maps every a ∈ Σ to a finite set of natural numbers. We sometimes give rkΣ

implicitly by writing Σ =
⋃

0≤i≤m Σi, where Σi = {a ∈ Σ | i ∈ rkΣ(a)}. With
rk(Σ) we denote the maximal rank among the ranks of the letters in Σ. A
(finite, Σ-labelled) tree is a mapping t : domt → Σ, where domt is a tree-
domain and if w ∈ domt has exactly k successors in domt then t(w) ∈ Σk. The
set of all trees over Σ is denoted by TΣ.

Example 2.3. Let Σ be an alphabet. The set Σ∗ of all words over Σ can be
identified with TΣ with rank funktion rk(a) = {0, 1} for all a ∈ Σ.

For a tree t : domt → Σ, w ∈ domt and a ∈ Σ with rank(a) = rank(t(w)) we
define t[w → a] to be the tree with t[w → a](v) = t(v) for v ∈ dom(t)\{w} and
t[w → a](w) = a. If t is a Σ-labelled tree and v ∈ domt then (t � v) denotes the
tree with domt�v = {w ∈ {0, . . . ,m}∗ | vw ∈ dom(t)} and (t � v)(w) = t(vw).

Definition 2.10. Let Σ =
⋃

0≤i≤m Σi be a ranked alphabet. A (deterministic
bottom up) tree-automaton is a tuple A = (Q,Σ, δ, F ), where Q is a finite set
of states, δ :

(⋃
0≤i≤mQ

i × Σi

)
→ Q is the transition function, and F ⊆ Q is

the set of accepting states.

For a tree t ∈ TΣ the unique run ofA on t is the Q labelled tree ρ : domt → Q
with ρ(v) = δ(t(v)) if v is a leaf of t and if v has as successors v0, . . . , vr−1 in t
then ρ(v) = δ(ρ(v0), . . . , ρ(vr−1), t(v)). The run ρ is accepting if ρ(ε) ∈ F . The
language L(A) is the set of all trees t such that the run of A on t is accepting.
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The extended transition function δ∗ : TΣ → Q is defined inductively by

δ∗(t) =

{
δ(t(ε)) if domt = {ε}
δ(δ∗(t � 0), . . . , δ∗(t � (k − 1), t(ε)) the root of t has k successors.

That is δ∗(t) = ρ(ε) for the unique run ρ of A on t.

Definition 2.11. A Σ-context (or just context if Σ is clear) is a (Σ ] {x})-
labelled tree c such that all inner nodes are labelled by symbols from Σ and
there is exactly one leaf that is labelled with x. We denote this leaf by x(c). The
class of all Σ-contexts is denoted by CΣ. For a Σ-context c and a tree t ∈ TΣ

the composition c ◦ t is a Σ-labelled tree with domc◦t = domc ∪ {x(c)}domt

and labelling

(c ◦ t)(w) =

{
c(w) ;w ∈ domc − {x(c)}
t(v) ;w = x(c)v, v ∈ domt

The Myhill-Nerode Theorem for tree-languages is build upon the following
equivalence.

Definition 2.12. For a tree-language T ⊆ TΣ the relation ≡T⊆ TΣ × TΣ is
defined by

t ≡T t′ ⇔ c ◦ t ∈ T iff c ◦ t′ ∈ T , for all c ∈ CΣ.

The relation ≡T allows us to formulate an analogue to the Myhill-Nerode
Theorem for regular tree-languages.

Theorem 2.5 (Brainerd, [18]). For T ⊆ TΣ the following are equivalent:

1. the language T is regular,

2. there exists a finitely generated left congruence of finite index with respect
to composition with contexts, which respects T , and

3. the relation ≡T has finite index.

In some situations, especially in Chapter 4, we will need a more general
notion of context. More precisely we want to be able to plug several trees
simultaneously into one schema.

34



2 Preliminaries

Definition 2.13. Let Σ be a ranked alphabet. A n-Σ-context is a Σ ]
{c1, . . . , cn} labelled tree x such that all inner nodes are labelled by symbols
from Σ and for every i ∈ {1, . . . , n} there is exactly one ci labelled leaf. We
denote the ci labelled leaf of x with ci(x).
For t1, . . . , tn ∈ TΣ we denote with x[c1/t1, . . . , cn/tn] ∈ TΣ the tree with

domain domx ∪
⋃

1≤i≤n ci(x)domti and labelling

x[c1/t1, . . . , cn/tn](w) =

{
x(w) w ∈ domx \ {c1(x), . . . , cn(x)}
ti(v) w = ci(x)v, v ∈ domti

Convention. If we do not state explicitly otherwise we will always assume
that for a ranked alphabet Σ =

⋃
0≤i≤m Σi we have Σ0 = Σ1 = · · · = Σm.

Automatic Relations Automata can also be used to recognise relations of
higher arity. Actually the automata do not recognise the relation itself but the
language of convolutions of the tuples in the relation. The convolution maps
two words to a single word by putting the words "on top of each other". For
the case that the two words have a different length a new padding symbol �
is introduced and the shorter word is padded to the length of the other word.
More precisely, for two words v, w ∈ Σ∗ the convolution v ⊗ w is a word over
the alphabet (Σ ] {�})2 of length max(|v|, |w|) with

(v ⊗ w)(i) =


(v(i), w(i) if i < min(|v|, |w|)
(�, w(i)) if |v| < i < |w|
(v(i),�) if |w| < i < |v|.

The convolution of two ω-words is defined analogously with the difference that
we don’t need to introduce a padding symbol.
The convolution of trees follows the same idea. Let Σ be a ranked alphabet.

For two trees s, t ∈ TΣ the convolution s ⊗ t is the (Σ ] {�})2-labelled tree
with doms⊗t = doms ∪ domt and the labelling

t(w) =


(s(w), t(w)) if w ∈ doms ∩ domt

(�, t(w)) if w ∈ domt \ doms

(s(w),�) if w ∈ doms \ domt.

Instead of w1 ⊗ w2 ⊗ · · · ⊗ wn we will often write 〈w1, w2, . . . , wn〉 and for a
language L we write L⊗n for L⊗ · · · ⊗ L︸ ︷︷ ︸

n times

= {〈w1, . . . , wn〉 | w1, . . . , wn ∈ L}.
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Definition 2.14. Let R ⊆ (Σ∗)n ((Σω)n, (TΣ)n, or (T ωΣ )n, respectively).
The relation R is (ω-)[tree-]regular, if the language {x1 ⊗ x2 ⊗ · · · ⊗ xn |
(x1, x2, . . . , xn) ∈ R} is (ω-)[tree-]regular.

2.2.2 Automatic Structures

One of the most important notions throughout this thesis are automatic pre-
sentations. The rough idea is to present a possibly infinite object by automata
in such a way that the elementary properties of the object under consideration
are effectively retrievable from the presentation. This idea was already present
in the early works of Büchi and Rabin, where it was used to show the de-
cidability of certain first-order theories like the theories of (N,+),(R,+), and
(N, ·). A systematic study of automatic presentations was, however, initiated
much later by Khoussainov and Nerode [72] for word automatic structures and
later generalised to (infinite) words and trees by Blumensath and Grädel [13],
leading to ω-automatic, tree-automatic, and ω-tree-automatic structures, re-
spectively. For an overview we refer the reader to [20,93].

Definition 2.15. Let τ = {R1, . . . , Rn} be a finite relational signature with
≈ 6∈ τ . A τ -structure A is (ω-)[tree-]automatic if there is a τ ∪ {≈}-structure
B = (L,≈B, RB

1 , . . . , R
B
n ) and a surjective mapping π : L→ A such that

1. L is a regular (ω-)[tree-]language,

2. the relations ≈B, RB
1 , . . . , R

B
n are (ω-)[tree-]regular,

3. for all v, w ∈ L we have v ≈Bw ⇔ π(v) = π(w), and

4. for all v ∈ Lk it holds that v ∈ RB ⇔ π(v) ∈ RA.

An (ω-)[tree-]automatic presentation of A is given by a tuple of (ω-)[tree-
]automata d = (AL,A≈,AR1 , . . . ,ARn) that recognize the universe and the
relations of B.
The class of all (ω-)[tree-]automatic is denoted by (ω-)[tree-]AutStr.

All these classes of automatic structures have equivalent descriptions as (fi-
nite) set interpretable structures

Fact 2.4. [12]

• FSI(N<) = AutStr,
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Figure 2.1: The automaton A′+

• SI(N<) = ω-AutStr,

• FSI(Tω) = tree-AutStr, and

• SI(Tω) = ω-tree-AutStr.

Examples We review a few classical examples of various types of automatic
presentations in order to get acquainted to the concept.

Example 2.4. The natural numbers with addition N+ = (N,+) are word
automatic. We represent a number n ∈ N in reverse binary representation, that
is least significant bit first, and use the school algorithm that adds numbers bit
wise while storing the necessary carry to perform the operation. From this idea
we get a presentation with L = {0, 1}∗{1} ∪ {ε} and addition is performed by
an automaton that recognises L(A′+)∩ (L⊗L⊗L), where A′+ given in Figure
2.4.

In contrast, it is well known that the natural numbers with multiplication
N× are not word-automatic [13]. However, N× is tree automatic. This is shown
in the following example, which also nicely demonstrates the possibility the use
parallelism in tree-automatic presentations.
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bin R
(β

1 )bin R
(β

2 )
· · ·

bin R
(β
k )

Figure 2.2: Encoding of n = pβ1

1 p
β2

2 · · · p
βk
k

We quickly recall the definition of a direct sum of monoids. Let I be some
index set and (Mi)i∈I with Mi = (Mi, ◦Mi , 1Mi) be a family of monoids. The
direct sum ⊕i∈IMi is the monoid({

(ai)i∈I ∈
∏
i∈I

Mi | ai = 1Mi for all but finitely many i ∈ I

}
, ◦,1

)
with (ai)i∈I ◦ (bi)i∈I = (ai ◦Mi bi)i∈I and 1 = (1Mi)i∈I .

Example 2.5. The natural numbers with multiplication N× = (N,×) are
tree-automatic. We make use of the fact that N× is isomorphic to the infinite
direct sum ⊕n∈NN+ for example via the isomorphism n = pβ1

1 p
β2

2 · · · p
βk
k 7→

(β1, β2, . . . , βk, 0, . . .), where {p1, p2, . . .} = P are the prime numbers in their
natural enumeration. This is reflected in the presentation of a number n =
pβ1

1 p
β2

2 · · · p
βk
k as depicted in Figure 2.5. The exponents β1, β2, . . . are encoded

in reverse binary on the right branches of a left-growing comb. It is a simple
task to check that the trees of this form are recognisable by a tree-automaton.
For the multiplication we can now use the idea of Example 2.4 for every right
branch separately. Note that (pβ1

1 p
β2

2 . . .)(pγ1

1 p
γ2

2 . . .) = pβ1+γ1

1 pβ2+γ2

2 . . ., which
establishes the correctness of our construction.

Because there are only countably many finite words or trees, every word- or
tree-automatic structure must also be countable. If we want to represent an
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uncountable structure we need to switch to automata that read infinite words
or trees.
So far all structures in the examples had injective presentations. The follow-

ing example gives a structure with a non-injective ω-automatic presentation.

Example 2.6. First observe that the Boolean Algebra over the power set of
the natural numbers (P(N),∪,∩, ¯ ) is ω-automatic. Every word w ∈ {0, 1}ω
represents a set of numbers in probably the most natural way, i.e. π(w) = {n ∈
N | w(n) = 1}. The operations ∪,∩, and ¯ then correspond to taking bitwise
the maximum, minimum, and complement, respectively. Define an equivalence
relation on P(N) by X ∼ Y ⇔ |X∆Y | < ∞, where ∆ is the symmetric
difference. One can verify that ∼ is a congruence on (P(N),∪,∩, ¯ ). The
Boolean Algebra (P(N),∪,∩, ¯ )/ ∼ is atomless. Moreover the congruence ∼
is automatic in our presentation because it corresponds to the relation ∼e=
{(v, w) | |{i ∈ N | v[i] 6= w[i]}| <∞}.

The relation ∼e is known as the equal-ends relation which will also play an
important role later on.

2.3 Logic and Complexity

2.3.1 Parametrised Complexity

Parametrised complexity theory aims to measure the complexity of a problem
in terms of functions that may depend on several parameters of the input. The
idea is to capture the phenomenon that many presumably hard problems are
computable in time that grows only polynomially in the size of the input, but
exponential or worse in another parameter of the input. The framework was
introduced by Downey and Fellows [32].

Definition 2.16. A parametrised problem is a set L ⊆ Σ∗ × N, where Σ
is some finite alphabet.

Definition 2.17. A parametrised problem L is fixed parameter tractable
(FPT) if (w, k) ∈ L can be decided in time f(k)|w|c for some computable
function f : N→ N and some constant c ∈ N. We also denote the class of all
fixed parameter tractable problems with FPT.
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a b c

d e

f g h

b, c, e b, d, g

b, e, g

e, g, h

a, b, d d, f, g

Figure 2.3: A graph of treewidth 2 together with a proper tree decomposition

Often we consider problems in a parameter that is only given implicitly.
A good example for this are structural properties of graphs. An important
structural parameter of a graphs is its treewidth

Definition 2.18. A tree decomposition of a finite graph G = (V,EG) is a
tree T = (T,ET ) with T ⊆ P(V ) such that the following conditions hold:

•
⋃
T = V , i.e. every v ∈ V is contained in some X ∈ T ,

• the set T � v := {X ∈ T | v ∈ X} forms a connected subtree in T for all
v ∈ V , and

• if (v, w) ∈ EG then T � v ∩ T � w 6= ∅.

The width of a tree decomposition is width(T ) = max{|X| | X ∈ T}− 1. The
treewidth of a graph G is the smallest width of a tree decomposition of G,
that is

tw(G) = min{width(T ) | T is a tree decomposition of G}.

Example 2.7. Figure 2.3 shows a graph G with a tree decomposition of width
3. It can be shown that this is optimal, hence tw(G) = 2.
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Figure 2.4: The tree-depth of a path with seven nodes

A related, but more restrictive parameter of graphs is the tree-depth

Definition 2.19. The tree-depth of a graph G = (V,E) is recursively defined
as

td(G) :=


1, if |V | = 1

min{td(G � V \ {v}) | v ∈ V }+ 1 if G is connected and |V | > 1

max1≤i≤n td(Gi) G has components G1, . . . , Gn

An equivalent characterisation is the minimal height of a rooted forest such
that G is isomorphic to a subgraph of the symmetric closure of the ancestor-
descendant graph of that forest.

Example 2.8. The tree-depth of a single path with n vertices is blog nc + 1.
Figure 2.4 shows an optimal embedding of a path with seven vertices.

Logic plays an important role in parametrised complexity theory. An im-
portant area of application are algorithmic meta-theorems. Intuitively, an
algorithmic meta-theorem states that a whole class of problems is efficiently
solvable on a certain class of instances. This is exactly where logic enters the
game. If the model checking problem for a logic L is FPT in the size of the
formula on a class C, then this means that all L definable problems can be
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efficiently solved on C. The prototype of such an algorithmic meta-theorem is
the theorem of Courcelle for MSO and graphs of bounded treewidth.

Theorem 2.6 (Courcelle [26]). MSO model checking is FPT on every class of
graphs of bounded treewidth. There is a function f such that for a graph G of
treewidth at most d and an MSO sentence ϕ one can decide in time

f(d, |ϕ|) · |G|

whether G |= ϕ.

For a comprehensive overview with a special emphasis on the connections
to logic we refer to [42].

2.3.2 Descriptive Complexity

In descriptive complexity theory one tries to characterise the complexity of
a problem in terms of the expressiveness of the language that one needs to
describe the problem. A major goal is to identify logics that exactly capture
classical complexity classes such as NP or PTIME. In order to make sense,
we need to clarify what we mean by a logic capturing a complexity class.
Indeed, complexity classes are usually defined in terms of resource bounds to
a Turing machine. But a Turing machine operates on strings, while logics
describe properties of abstract structures. However, the input string is often
just a presentation of a mathematical structure, say for instance a graph, and
the Truing machine rather checks a property of the graph than a property of
the presentation. In this situation we can say very well that a formula and
a Turing machine describe the same property. For instance, a graph may be
given by an adjacency matrix, which is written line-wise on the tape of the
Turing machine. Then the actual string that we obtain naturally depends on
the order that we choose on the vertices, but the property that the graph is
Hamiltonian will be invariant among all possible presentations. In this section
we want to make this notion precise. For a short historical overview to the
field we refer to Chapter 6 and for a broader introduction to the topic we refer
to [66] and [55].

Definition 2.20. For a class of Turing machines (possibly nonderterministic
or alternating) T , the complexity class C(T ) is the class of languages {L |
∃M ∈ T : M decides L}.
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Note that most of the usual complexity classes such as PTIME, PSPACE,
etc. can be seen as C(T ) for suitable classes of Turing machines T . In all
these cases the class of Turing machines is defined via bounds on the resources
(computation steps, tape cells, number of alternations, etc.) that the machine
may use on an input of size n. Usually one demands that the consumed
resources are bounded by some function from a certain class F ⊆ NN.

Definition 2.21. The Berman complexity class
⋃
c∈N STA(∗, 2cn, n), is the

class of languages accepted by alternating Turing machines running in time 2cn

for some constant c and making at most n alternations on inputs of length n.

The algorithmic complexity of a property might vary under different ways
to encode structures. Hence, we need to fix a generic way to present arbitrary
structures.

Definition 2.22. Let τ = {R1, . . . , Rn} be a finite relational signature and
A be a τ -structure. For every linear order ≤ on A we define the function
π< : {0, . . . , |A| − 1} → A, which maps i ∈ {0, . . . , |A| − 1} to the i-th element
of A with respect to the order < (starting to count from 0). π< naturally
extends to a function πk< : {0, . . . , |A|k − 1} → Ak, where the elements of Ak
are ordered lexicographically with respect to <.
For 1 ≤ i ≤ n we define code(RA

i ,≤) to be the string w ∈ {0, 1}|A|ri with
w[j] = 1 if, and only if, πri<(j) ∈ RA

i for all 0 ≤ j < |A|ri . Finally we define

code(A,≤) = 1|A|# code(RA
1 ,≤)# · · ·# code(RA

n ,≤),

code(A) = {code(A,≤) |≤ linear order on A}, and code(C) =
⋃

A∈C code(A)
for every class of finite τ -structures C.

Definition 2.23. A Turing machine M decides a property of τ -structures
if there is a class of finite τ -structures C such that M decides the language
code(C).

We can now define what it means that a logic L captures a complexity class
C.

Definition 2.24. A logic L captures the complexity class C(T ) (where T is a
class of Turing machines) if

1. L has a decidable syntax,
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2. there is an algorithm, which computes for every ϕ ∈ L a Turing machine
M ∈ T that decides the language code({A | A finite, A |= ϕ}) and

3. for every M ∈ T that decides a property of structures over some fixed
vocabulary τ there is a sentence ϕ ∈ L such that for all finite τ -structures
A the Turing machine M accepts all codes of A if, and only if, A |= ϕ.
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One line of research in the field of automatic structures is the incorporation
of increasingly powerful automata models into the family of automatic pre-
sentations. Especially automata that operate on linear orders were extensively
investigated, see for instance [41,69,70,95]. In all these cases automatic presen-
tations correspond to set-interpretations in the respective linear order. One
can hope that through the consideration of a richer spectrum of structures
with a decidable MSO-theory we obtain a better understanding of what can
actually be achieved by set-interpretations in general.
We also aim to enrich the class of structures where the set-interpretations

are applied to while maintaining useful correspondences to automata based
presentations. However, we walk on a path that is somewhat orthogonal to
the one described above. More precisely, we consider the expansions of N and
Tω by unary predicates, say P1, . . . , Pn. From the automata theoretic point
of view, the sets P1, . . . , Pn can be seen as a fixed advice that the automaton
reads while it processes the input. This model of automata with advice is
known in the literature as referenced automata [8].
The goal of this chapter is to sharpen our techniques that allow us to deter-

mine when a structure cannot have an automatic presentation of some sort.
Our main results in this direction address a question of Rabin. In his classical
paper [87] he asked whether the decidability of the first order theory of certain
fields, like the field of reals, can be reduced via interpretations to the decidabil-
ity of the MSO-theory of Tω. In other words, he asked whether, for instance,
the field of reals is ω-tree-automatic. For the restricted case of ω-automatic
presentations we can answer this question negatively.

Theorem 3.1. The field of reals is not ω-automatic with advice.

Theorem 3.2. An integral domain is ω-automatic if, and only if, it is finite.
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3.1 Automata, Advices and Interpretations

We start by giving a formal definition of advice automatic presentations and
state some basic properties about them. We need to clarify first what a param-
eterised automaton is. Formally, parameterised automata are just the usual
automata over a composed alphabet. The difference is only in the semantics
that we impose on them.

Definition 3.1. A parameterised automaton is a finite state automaton
A, such that L(A) ⊆ Γ∗ ⊗ Σ∗. The language that A recognizes with advice
α ∈ Γ∗ is L(A[α]) = {w ∈ Σ∗ | α⊗w ∈ L(A)}. A language L is called regular
with advice α if there is a parameterised automaton A with L = L(A[α]).

Definition 3.2. A parameterised Muller automaton is a Muller automa-
ton A , such that L(A) ⊆ Γω ⊗ Σω. the language that A recognizes with
advice α ∈ Γω is L(A[α]) = {w ∈ Σω | α⊗w ∈ L(A)}. A language L is called
ω-regular with advice α if there is a Muller automaton A with L = L(A[α]).

The definitions of parameterised tree-automata und ω-tree-automata are
analogous and we omit them here.

Definition 3.3. Let τ be a finite relational signature. A paramerterised
(ω-)[tree-]automatic presentation is a tuple d = (A,A≈, (AR)R∈τ ) of pa-
rameterised (Muller) [tree-]automata. If for a given parameter α the recognised
relations are compatible in the sense that if

• Aα := L(A[α]),

• ≈α:= R(L(A≈[α])) ⊆ Aα × Aα, and

• Rα := R(L(AR[α])) ⊆ Arα for R ∈ τ with arity r,

then d induces the structure S≈(d[α]) = (Aα,≈α, (Rα)R∈τ ). Moreover, if ≈α is
a congruence on S≈(d[α]), we say that d[α] presents the structure S(d[α]) =
(Aα, (Rα)R∈τ )/ ≈α. Being a bit more permissive, we say that d[α] presents a
structure A ∈ Str[τ ] if there is a surjective function π : Aα → AA such that

1. v ≈α w implies π(v) = π(w) for all v, w ∈ Aα, and

2. (v1, . . . , vr) ∈ Rα ⇐⇒ (π(v1), . . . , π(vr)) ∈ RA for all v1, . . . , vr ∈ Aα.
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Hence the function π fixes an encoding of the elements of A by mapping every
x ∈ L(A[α]) to the element a ∈ AA that is encoded by x. If we want to fix
such an encoding, we say that A is presented by (d[α], π). Note that π is in
general not uniquely dertermined by d[α] and A. Indeed, A might have non-
trivial automorphisms. In the case that ≈α is just the identity we say that
the presentation is injective and omit A≈ in our notation.
A structure A is (ω-)[tree-]automatic with advice α, or simply α-automatic, if

there is a parameterised (ω-)[tree-]automatic presentation d with A ∼= S(d[α]).
If we do not want to specify the advice we say that a structure is (ω-)[tree-
]automatic with advice or advice (ω-)[tree-]automatic.
The class of (ω-)[tree-]automatic structures over an advice from some advice

set P is denoted (ω-)[tree]AutStr[P ] or (ω-)[tree]AutStr[α], if P = {α} is a
singleton set.

We adopt the convention from Remark 2.1 and say that a structure A which
might contain functions is automatic with advice if this is true for the structure
that is obtained by replacing every function f of A by its graph Rf .
We also want to point out that the classes AutStr[Γ∗] and tree-AutStr[TΓ]

simply coincide with the classes AutStr and tree-AutStr, respectively. Indeed,
if the advice is finite, it can be incorporated into the states of the automata and
therefore effectively be dropped. However, the corresponding presentations will
become relevant in Chapter 4 & 5 when we consider classes of structures with
a uniform presentation.
Fact 2.4 has an obvious analogue in the advice setting. For α ∈ Γω we

define the corresponding word structure Nα = (N<, (P
α
γ )γ∈Γ), where Pα

γ =
{n ∈ N | α[n] = γ}. Similarly, for α ∈ T ωΓ over a ranked alphabet Γ we
define the tree structure Tα = (domα, S0, . . . , Srk(Γ)−1, (P

α
γ )γ∈Γ) with Si =

{(w,wi) | w ∈ {0, . . . , rk(Γ) − 1}∗, wi ∈ domα} for all i ∈ {1, . . . , rk(Γ) − 1}
and Pα

γ = {w ∈ domα | α(w) = γ}. With these definitions in mind we will
sometimes speak about the MSO-theory of an advice. In such cases we always
mean the MSO-theory of the corresponding structure.

Fact 3.1. Let A be a structure over a finite relational signature. Then

• A ∈ SI(Nα) if, and only if, A is ω-automatic with advice α,

• A ∈ SI(Tα) if, and only if, A is ω-tree-automatic with advice α.
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The classification of the automatic models inside restricted classes of struc-
tures is one of the main directions of research in the field of automatic struc-
tures. This is especially interesting for classes of structures where we already
know that the subclass of automatic models is relatively rich. One such class
is certainly the class of abelian groups. Therefore there was a great interest
in whether addition on the rationals is automatic. This question was finally
answered negatively by Tsankov [98]. However, it was noted before that the
additive group of rationals is almost automatic in the sense that there is a
presentation, based on the factorial expansion of rational numbers, in which
addition is automatic. The only flaw of this presentation is that the domain is
not a regular set. It was later noted by Kruckman et al. [76] that the domain
becomes regular if the automaton has access to a fixed advice string. The next
example explains the presentation in a bit more detail. The idea goes back to
Stephan and independently Miller.

Example 3.1 (See also [82]). We use the fact that every rational r ∈ Q has a
unique factorial expansion r = z +

∑∞
i=2 ai/(i!), where z ∈ Z, 0 ≤ ai ≤ i, and

only finitely many ai are different from 0. Every rational number q can thus
be represented by an integer z and a sequence (ai)i≥2 that satisfies the above
conditions. The addition of two rationals r and q, represented by (z, a) and
(s, b) can be performed by a carry procedure. The sum

(r + q) = (z + s) +
∑
i≥2

ai + bi
i!

is equal to t +
∑

i
ki
i!

(where k satisfies the above conditions) if, and only if,
there exists a sequence of carry bits (ci)i≥1, such that

ci =


0 if ∀j > i(aj = bj = 0)

0 if ai+1 + bi+1 + ci+1 < i+ 1

1 otherwise.

ki = ai + bi + ci mod i, and
t = z + s+ c1.

The correctness is obtained by the equality

a+ b+ c

n!
=

1

(n− 1)!
+
a+ b+ c− n

n!
.
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We convert the factorial expansions of a rational r = z +
∑∞

i=2 ai/(i!) to an
infinite string (written on two tapes). On the first tape we write binR(z) and
write

f(a2, 2)#f(a2, 3)#f(a4, 4)# . . .

on the second tape, where f(a, i) is the string of the form 0n bin(a) with
|0n bin(a)| = dlog2(i)e+ 1 (remember we assume ai < i and hence | bin(ai)| ≤
dlog2(i)e+ 1). Consider

α = bin(2)# bin(3)# bin(4)# . . .

as a parameter. We can construct an automaton A that verifies this encoding
when α is given as advice. Indeed, A can read bin(i) as reference in the ith cell
and therefore check whether the given string is a valid encoding of a rational
number. For the same reason, the carry procedure described above can be
implemented by an automaton with advice α.
Note that the advice α is a veriation of the Champernowne-Smarandache

string. Strings of this kind belong to the class of k-lexicographic strings, a
class of infinite words that was introduced in [19] where it was also shown that
these words have a decidable MSO-theory.

The fact that the advice α = bin(2)# bin(3)# · · · in Example 3.1 has a de-
cidable MSO-theory is particularly interesting. Indeed, Example 3.1 together
with Fact 2.4 allows us to reduce the FO-theory of (Q,+) to the MSO-theory
of Nα and therefore yields an effective decision procedure.

One of the main reasons why the various flavours of automatic presentations
have drawn so much attention is that the existence of an automatic presenta-
tion directly yields a decision procedure for the first-order theory of the struc-
ture. Analogously the existence of an advice automatic presentation directly
yields a reduction of the first-order theory of the structure to the MSO-theory
of the advice. We state the fundamental theorem that first-order formulae can
be translated into corresponding automata.

Theorem 3.1. Given a parameterised (ω-)[tree-]automatic presentation d and
an FO-formula ϕ(x) with m free variables over the signature of d one can
effectively construct an (ω-)[tree-]automaton Aϕ with

L(Aϕ) = {〈α, a〉 | S(d[α]) |= ϕ(a)}.
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Since there is no technical difference to the proof of the corresponding theo-
rem for ordinary automatic structures, we omit it here. A detailed description
of the algorithm is given in Chapter 5. For more information on the classical
case without advice the reader is referred to [13].

Corollary 3.1.

1. The class of (ω-)[tree-]automatic structures with advice α is effectively
closed under FO-interpretations.

2. If a structure A is (ω-)[tree-]automatic with advice α and the MSO-theory
of α is decidable then A has a decidable FO-theory.

Theorem 3.1 shows that we can extend every advice automatic presentation
of a structure to a presentation of the expansion by a first-order definable
relation. This motivates to notion of inherent regularity. Let A be (ω-)[tree-
]automatic with advice. We say that a relation R on A is inherently (ω-
)[tree-]regular if every (ω-)[tree-]automatic presentation d with some advice
α can be extended to a presentation of (A, R). If the automaton model under
consideration is clear from the context then we will just say that R is inherently
regular.

MSO Model Checking We want to remark here that under certain con-
ditions automatic presentations can be used beyond first-order model check-
ing. Obviously, automatic structures do in general not have a decidable MSO-
theory. A simple example is the N × N grid, which is word automatic, even
without advice, but has an undecidable MSO-theory. However, depending on
the presentation, we can sometimes encode also sets of elements by words or
trees and employ them to obtain an automata based decision procedure for
the MSO-theory. Simple examples are presentations where the elements are
encoded in unary.

Definition 3.4. Let d = (A,AR1 , . . . ,ARn) be a parameterised (ω-)automatic
presentation and α be some advice. We say that d[α] uses a unary encoding
if L(A[α]) ⊆ {0}∗{1} ({0}∗{1}{0}ω, respectively).

Definition 3.5. Let d = (A,AR1 , . . . ,ARn) be a parameterised (ω-)tree-
automatic presentation and α be some advice. We say that d[α] uses a unary
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encoding if for all t ∈ L(A[α]) it holds that domt = domα and there is a
v ∈ domt such that

t(w) =

{
0 w 6= v

1 w = v
.

That is all t ∈ L(A[α]) are completely labelled with 0s except for exactly one
position.

It is an easy exercise to show that the ω-(tree-)automatic structures with
a unary presentation over an advice α are exactly the structures that are
interpretable by a unary MSO-interpretation in Nα (Tα).
If an (ω-)[tree-]automatic presentation d uses a unary encoding with advice

α, then we can enrich the presentation to present also all sets.

Definition 3.6. Let A = (A,R1, . . . , Rn) be a τ -structure. The power set
structure P(A) is the (τ ]{⊆})-structure (P(A), R

P(A)
1 , . . . , R

P(A)
n ,⊆), where

(P(A),⊆) is the powerset lattice on A and

R
P(A)
i = {({a1}, . . . , {ari}) ∈ P(A)ri | (ai, . . . , ari) ∈ Ri}

for all i ∈ {1, . . . , n}.

Corollary 3.2. If a structure A has an (ω-)[tree-]automatic presentation d
with advice α and d[α] uses a unary encoding then the structure P(A) is also
(ω-)[tree-]automatic with advice α.

Clearly the MSO-theory of A is reducible to the FO-theory of P(A) and vice
versa.

Corollary 3.3. Let A be a structure. If P(A) is (ω-)[tree-]automatic with
advice α, then the MSO-theory of A is reducible to the MSO-theory of α.

3.2 Model Theoretic Properties of Advice Automatic
Structures

As we have argued in the previous chapter, adding an advice to the presentation
is only interesting for automata over infinite words or trees (as long as we are
only interested in presenting a single structure). While presentations over finite
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words have been quite intensively studied in the literature, there is much less
known about their counterparts over infinite words. One major obstacle is
that not every ω-automatic structure has an injective presentation. But even
in the case of ω-automatic presentations with advice of countable structures,
where (as we will see later in this chapter) injective presentations exist, we
still cannot employ the techniques that have been developed for automatic
presentations. Indeed, most of these techniques rely on the pumping lemma,
which we can no longer apply once an advice is present. In this section we aim
therefore to develop new techniques that overcome both of these hurdles. In
the second part of this chapter we apply these techniques to prove that certain
structures cannot have an ω-automatic presentation (with advice).
On the technical side we follow two paths. First, we perform a combinato-

rial analysis of equal-end-classes of regular languages. Secondly, we investigate
transitive relations by means of ω-semigroups which recognise their presenta-
tion.

3.2.1 Bounding the End-Index

In this section we want to develop some technical tools to show that certain
structures are not advice automatic. For our investigations we will make heavy
use of the equal-ends relation ∼e for infinite words.

Definition 3.7. For m ∈ N two words v, w ∈ Σω are m-end-equivalent (v ∼me
w) if, and only if, v[m,∞) = w[m,∞). That is v and w are equal except for
possibly the first m symbols. We say v and w are end-equivalent if, and only
if, v ∼me w for some m ∈ N.

Clearly the equivalence relation∼me partitions any language into finite classes,
each of size at most |Σ|m.
End-equivalence plays a crucial role in the study of ω-regular languages. We

first observe that every infinite ω-regular language has an infinite ∼e-class.
In the following we examine which elements of a structure can be encoded by

words from the same ∼e-class. To this end it is convenient to lift the notion of
end-equivalence from words in a given presentation to elements of the encoded
structure.

Definition 3.8. Let ∼ be an equivalence relation on Σω and A be a structure
with advice automatic presentation d[α]. Fix a witness π : L(A[α]) → AA for
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d[α] presenting A as in Definition 3.3. The ∼-index of a set B ⊆ A in (d[α], π),
I∼(d[α],π)(B), is the least ∼-index of a set X ⊆ L(A[α]) with π(X) = B. That is

I∼(d[α],π)(B) = min
{X|π(X)=B}

|{[x]∼ | x ∈ X}|.

We are mostly interested in the equivalence relations ∼e and ∼me for m ∈ N,
hence we introduce the shorthand notations I(d,π)(B) and Im(d,π)(B) for I∼e(d,π)(B)

and I∼
m
e

(d,π)(B), respectively. We will also omit (d, π) in the subscript whenever
the presentation under consideration is clear from the context.

We turn our attention to the refined relations ∼me . These relations are
especially interesting as they relate, in some sense, to the concept of same
length for finite words. Indeed for finite words one can consider the mapping
w 7→ w�ω (where � is a fresh symbol), then all words of length at mostm form
a ∼me -class. Our aim is to provide a property of ω-automatic functions that is
in the spirit of the Growth-Rate Lemma for automatic functions. Remember
that for an automatic function f there is always a constant c such that |f(x̄)| ≤
maxi |xi| + c. Or in other words: for all sets X ⊆ Σ≤m, the image f(Xk) is
a subset of Σm+c. However, a direct translation of this result fails already
without advice. In general even if f is an ω-automatic function and X a
∼me -equivalent set, the set f(Xk) is not necessarily ∼e-equivalent.

Example 3.2. Consider the function f(x, y) realised by the following Büchi-
automaton:

0start 1

(
0
1
1

)

(
1
0
0

)

(
0
0
0

)
,
(

1
1
0

)
,
(

1
0
1

) (
0
0
1

)
,
(

1
1
1

)
,
(

0
1
1

)

Then 0ω ∼1
e 10ω, but f(0ω, 10ω) = 0ω 6∼e 1ω = f(10ω, 0ω).

Although the function f , given in Example 3.2, produces outputs which are
not ∼e-equivalent, one might notice that the set f(X2) is distributed only over
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a constant number of ∼me -classes (in this case two) for all ∼me -equivalent sets
X. This is indeed a general property of automatic presentations with advice,
which is formulated in the following lemma.

Lemma 3.1. Let A = (Q, q0,Γ × (Σ)k+`+1, δ, F ) be a parametrised Muller
automaton. Then there is a constant c such that for every α ∈ Γω, ā ∈ (Σω)k,
and every m ∈ N the following holds:
Let R ⊆ (Σω)k+`+1 be recognised by A with advice α. Then for every set X ⊆

Σω with Im(X) = n there is a partition of X` into cn` many sets Y1, . . . , Ycn`
with the property:

x̄, x̄′ ∈ Yi ⇒
{

[y]∼me | y ∈ ax̄R
}

=
{

[y]∼me | y ∈ ax̄
′R
}
.

Proof. We carry out the proof for the case k = 0. The general case is com-
pletely analogous. Let q be the number of states of A. For every x̄ ∈ X` we
consider the set

δm(x̄, ·) := {δm(α⊗ x̄⊗ y) | (x̄, y) ∈ R} ⊆ P(Q).

The number c of possible sets δm(x, ·) is bounded by 2q. We claim that the
partition of X` with respect to the equivalence relation

x̄ ∼ x̄′ :⇔
∧

1≤i≤`

xi ∼me x′i ∧ δm(x̄, ·) = δm(x̄′, ·)

is suitable for our purpose.
First observe that ∼ partitions X into at most cn` many equivalence classes.

Now suppose that δm(x̄, ·) = δm(x̄′, ·) for some x̄, x̄′ ∈ X`. We need to show
that if x̄ ∼ x̄′ then {

[y]∼me | y ∈ x̄R
}
⊆
{

[y]∼me | y ∈ x̄
′R
}

or, in other words, that for every y ∈ xR the set [y]∼me ∩ x
′R is not empty.

Because of δ(x̄, ·) = δ(x̄′, ·) there is for every y ∈ x̄R a y′ ∈ x̄′R with

δm(α⊗ x̄⊗ y) = δm(α⊗ x̄′ ⊗ y′).
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Consider y′′ := y′[0,m)y[m,∞). The element y′′ is in x′R because

δ(α⊗ x̄′ ⊗ y′′) x̄∼me x̄′= δ((α⊗ x̄′ ⊗ y′)[0,m)(α⊗ x̄⊗ y)[m,∞)

= δ(δm(α⊗ x̄′ ⊗ y′), (α⊗ x̄′ ⊗ y)[m,∞))

= δ(δm(α⊗ x̄⊗ y), (α⊗ x̄⊗ y)[m,∞))

= δ(α⊗ x̄⊗ y) ∈ F.

This establishes the claim since y ∼me y′′.

Lemma 3.2. Let τ be a signature with a (k + `)-ary function symbol f and d
be a parametrised ω-automatic presentation. Then there is a constant c such
that for every τ -structure A with presentation (d[α], π) for some α ∈ Γω we
have

Im(f(a,X`)) ≤ c · (Im(X))`

for all m ∈ N, a ∈ Ak, and all finite X ⊆ A.

Proof. The graph of f is regular with advice α in the presentation (d[α], π).
We apply Lemma 3.1 and obtain c ∈ N. For every finite X ⊆ A we can fix
a witness Y ⊆ Σω for the m-index of X, i.e. π(Y ) = X and |Y/ ∼me | =
Im(X) =: n. We partition Y ` = T1 ] · · · ]Tcn` according to Lemma 3.1, which
ensures that for 1 ≤ i ≤ cnk there exists a class [yi]∼me such that f(a, π(Ti)) ⊆
π([yi]∼me ∩ L(A[α])). Consequently f(a,X`) ⊆ π

(⋃
1≤i≤cn` [yi]∼me ∩ L(A[α])

)
,

thus Im(f(a,X`)) ≤ cn` = cIm(X)`.

Intuitively one could say that if in some α-automatic presentation d of a
structure A the elements of some finite X ⊆ A are not distributed too widely
in L(A[α]), then no function f of A will distribute the image f(Xk) to widely
in L(A[α]). This property is especially useful to bound the size of the image
of certain sets under f .

Lemma 3.3. Let τ be a signature with a (k + `)-ary function symbol f and d
be a parametrised ω-automatic presentation. Then there is a constant c such
that for every τ -structure A with presentation (d[α], π) for some α ∈ Γω, every
substructure B ⊆ A, every m ∈ N, and every finite set X ⊆ B there is a finite
set Y with X ⊆ Y ⊆ B and

|f(ā, Y `)| ≤ c(Im(X) + 1)` · |Y |

for all ā ∈ Bk.
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Proof. By Lemma 3.2, there is a constant c such that Im(f(ā, S`)) ≤ c(Im(S))`

for all for all m ∈ N, a ∈ Ak, and all finite S ⊆ A. Let B ⊆ A be a
substructure of A and X ⊆ B some finite subset. Choose y ∈ L(A[α]) such
that Y ′ := π([y]∼me ∩L(A[α]))∩B is of maximal cardinality among all possible
choices for y and set Y := X ∪ Y ′. Then Im(Y ) ≤ Im(X) + 1.
Now, consider ā ∈ B`. Let W ⊆ L(A[α]) be a witness for the m-index of

f(ā, Y `). Then |{[w]∼me | w ∈ W}| ≤ c(Im(X) + 1)`. By the maximality of Y ′
it holds that

|π([w]∼me ∩ L(A[α])) ∩B| ≤ |Y ′| ≤ |Y |

for all w ∈ W and because f is closed on B we can bound the size of f(a, Y `)
by

|f(ā, Y `)| ≤ |
⋃
w∈W

(π([w]∼me ∩ L(A[α])) ∩B)| ≤ c(Im(X) + 1)`|Y |.

An important special case is when the end-index of a set is one in an advice-
automatic presentation.

Corollary 3.4. Let τ be a signature with a (k+ `)-ary function symbol f and
d be a parametrised ω-automatic presentation. Then there is a constant c such
that for every τ -structure A with presentation (d[α], π) for some α ∈ Γω, every
substructure B ⊆ A and every finite set X ⊆ B with I(X) = 1 there is a finite
set Y with X ⊆ Y ⊆ B and

|f(ā, Y `)| ≤ c · |Y |

for all ā ∈ Bk.

Proof. If I(X) = 1 then there is also an m ∈ N with Im(X) = 1. The claim
follows from Lemma 3.3 with c = c′2k, where c′ is the constant from Lemma
3.3.

3.2.2 Injective Presentations

Our investigation of the end-index in the previous section turns out to be
especially useful if the underlying presentation is injective. Indeed, injective
advice automatic presentations enforce large sets with small end-index.
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Lemma 3.4. Let L ⊆ Σω be infinite and ω-regular with advice α. Then L has
an infinite ∼e-equivalence class.

Proof. We consider two cases. If X := L/ ∼e is finite then obviously there
must be an infinite x ∈ X. In the other case X is infinite. Fix a parametrised
Muller automaton A = (Q,Γ× Σ,∆,F) that recognises L with advice α and
let k := |Q|2 +1. There are v1, . . . , vk ∈ L such that vi 6∼e vj for 1 ≤ i < j ≤ k.
Let ρi be the accepting run of A on α⊗ vi. We define c` :

(N
2

)
→ Q×Q by

c`({i, j}) := (ρ`[i], ρ`[j])

for 1 ≤ ` ≤ k and i < j ∈ N. Combine all c` to a colouring c of all two element
subsets X ∈

(N
2

)
by c(X) = (c1(X), . . . , ck(X)).

Observe that the range of c is finite and therefore we can apply Ramsey’s
Theorem to c. There exists an infinite set N = {n1 < n2 < · · · } ⊆ N such that
c is monochromatic on

(
N
2

)
. By definition of c this means c`(X) = c`(X

′) for
every X,X ′ ∈

(
N
2

)
and every ` ∈ {1, . . . , k}. Further k > |Q×Q| and therefore

there must be 1 ≤ i < j ≤ k such that ci �
(
N
2

)
= cj �

(
N
2

)
. Assume w.l.o.g.

this holds for i = 0 and j = 1. Additionally, since v0 6∼e v1, we can assume
that N is coarse enough to ensure v0[ni, ni+1) 6= v1[ni, ni+1) for all i ∈ N.
To complete the proof define vji := vi[nj, nj+1) and consider the language

L′ = {v(w) = v0[0, n1)v1
w1
. . . vmwmv0[nm+1,∞) | w = w1 . . . wm ∈ {0, 1}∗}.

Obviously L′ is an infinite end-equivalent set. We show that the language L′
is contained in L. By a simple induction one shows that

δ(α[0, nm+1)⊗ v0[0, n1)v1
w1
. . . vmwm) = δ((α⊗ v0)[0, nm+1))

for all w1 . . . wm ∈ {0, 1}∗. Hence

δ(α⊗ v(w)) = δ(δnm+1(α⊗ v(w)), (α⊗ v0)[nm+1,∞))

= δ(δ((α⊗ v0)[0, nm+1), (α⊗ v0)[nm+1,∞))

= δ(α⊗ v0) ∈ F

for all w ∈ {0, 1}∗.

Lemma 3.5. For α ∈ Γω let A be an infinite structure with injective advice
automatic presentation (d[α], π). Then there is an infinite set B ⊆ A with
I(B) = 1.
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Proof. Since A is infinite, L = L(A[α]) must also be infinite and therefore by
Lemma 3.4 there must be an infinite class X ∈ L/ ∼e. By assumption, the
mapping π is injective whence π(X) is infinite and I(π(X)) = 1.

However, this is not true for non-injective ω-automatic presentations with
advice. Indeed, Example 2.6 provides an ω-automatic presentation where
I(X) = |X| for every subset X.
The above observations enforce that the images of finite sets under a injec-

tively presentable function cannot always be large. This is captured via the
notion of the minimal image size.

Definition 3.9. For every function f : Ak → A over an infinite set A we
define the minimal image size MISf : N→ N by

MISf (n) = min{|f(Xk)| : X ⊆ A, |X| = n}.

We now show that for injectively presentable structures the minimal image
size of every function grows at most linearly with n.

Lemma 3.6. Let A be an infinite structure with injective automatic presen-
tation with advice. Then for every inherently regular function f of A it holds
that MISf (n) = O(n).

Proof. We proceed similar to the proof Lemma 3.3 but this time we have to
ensure that the set which we choose has the correct size. Fix an injective
automatic presentation (d[α], π) (over some alphabet Σ) of A and suppose
f : Ak → A is an inherently regular function on A where MISf grows super-
linearly. We can extend d by a Muller automaton Af that recognises π−1(Rf ).
Let q be the constant from Lemma 3.2 with respect to f and ((d,Af ), π). Now
choose n such that MISf (n) > |Σ| · q · n. This is possible since MISf grows
super-linearly. By Lemma 3.5 there is an infinite set M ⊆ A with I(M) = 1.
Therefore there is also a smallest m such that there is a set N ⊆ A with
Im(N) = 1 of size at least n. Let N ⊆ A be a set with Im(N) = 1 of maximal
cardinality.
The size of N is bounded from above by |Σ|·n. Otherwise we could partition

N into the |Σ| many sets (Na)a∈Σ with Im−1(Na) = 1 for all a ∈ Σ. But then,
because |N | > |Σ| · n, one set Na must contain more than n elements, which
contradicts the choice of m.
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Now let N0 be some subset of N of size exactly n. By Lemma 3.2, the set
f(Nk

0 ) can be partitioned into q many ∼me -equivalent sets. One of these sets
has size at least

|f(Nk
0 )|

q
>
|Σ| · q · n

q
= |Σ| · n ≥ |N |.

But this contradicts the maximality of N among all ∼me -equivalent sets.

3.2.3 Transitive Automatic Relations

It is well-known that from every word or tree-automatic presentation one can
effectively construct an injective presentation. Indeed, every (tree-)automatic
equivalence relation has a (tree-)automatic system of representatives. In con-
trast, the class of injectively presentable ω-automatic structures is strictly in-
cluded in the class of all ω-automatic structures [63]. This remains true in the
presence of an advice string [91]. The problem that we face when we want to
apply the results of the previous section to non-injective presentations is that,
in general, large sets with small ∼e-index do not need to exist. As seen in
Example 2.6, the relation ∼e is an ω-automatic equivalence relation and thus
an automatic presentation might indeed identify all end-equivalent words.
In this section we continue our investigation of the interplay between advice

automatic relations and the ∼e relation. The goal is to obtain a better under-
standing of how the regularity of the presentation restricts the way in which
the elements are encoded. In particular we will examine transitive relations,
especially the equality relation ≈ and linear orders.
The main technical result is that every advice ω-automatic presentation of

an uncountable linear order contains an injective ω-automatic sub-presentation
of the lexicographic order on all infinite binary strings ({0, 1}ω, <lex). Note
that for ω-automatic structures without advice Kuske has already shown that
({0, 1}ω, <lex) is embeddable into any ω-automatic uncountable linear order
[77]. More specifically, he constructs from a given ω-automatic presentation
of such an order a sub-presentation that is a presentation of ({0, 1}ω, <lex).
This sub-presentation is not ω-automatic but its domain is the complement
of a language

⋃
i≤n ViU

ω
i where the Vi are context free and the Ui are regular.

Our result strengthens Kuske’s result in two ways. First we extend the result
to presentations with advice and second the sub-presentation is much simpler.
This will be an essential property for the application in the following sections.
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Our construction is to a large part inspired by [68]. The proof makes
heavy use of the algebraic characterisation of ω-regular languages by finite
ω-semigroups. The key is to show that every ω-semigroup that recognises
an uncountable transitive relation contains a certain sub-semigroup with nice
algebraic properties. These properties can, in turn, be translated into mean-
ingful properties of the recognised relation. Moreover the presentation maps a
regular sub-language into all of these semigroups in a "synchronised" way.

Theorem 3.2. For every α ∈ Γω and every ω-automatic presentation with
advice α, d[α] = ((α,AL,A≈,A<), π), of an uncountable linear order there is
an α-automatic subset L′ of L(AL[α]) such that the restriction of d[α] to L′,
is an injective α-automatic presentation of ({0, 1}ω, <lex).

Proof. We fix ω-semigroups Sδ = (Sδf , S
δ
ω), for δ ∈ {L,≈, <} such that there

are ω-semigroup homomorphisms

hL : (Γ× Σ)∞ → SL,

h≈ : (Γ× Σ× Σ)∞ → S≈, and
h< : (Γ× Σ× Σ)∞ → S<,

which recognise the languages L(AL), L(A≈), and L(A<), respectively. Note
that we treat the automata of d here as ordinary Muller-automata, that means
hL recognises the language {α⊗w ∈ (Γ×Σ)ω | w ∈ L(A[α])} and so on. We will
use this convention whenever we speak about an ω-semigroup homomorphism
recognising an α-automatic relation. For δ ∈ {L,≈, <} we set Fδ := hδ({α}⊗
L(Aδ[α])) ⊆ Sδω. Accordingly, an ω-word v ∈ Σω (v ∈ Σω×Σω, respectively) is
in L(Aδ[α]) if, and only if, hδ(α⊗v) ∈ Fδ. We define C := |SL| · |S≈| · |S<| and
k as the least common multiple of the exponents of the semigroups SL, S≈, S<.

We break down the remaining proof into several parts. Our intermediate
goal is to find words and an α-automatic factorisation such that the morphisms
behave in a manageable fashion with respect to this factorisation. First we give
an automatic version of Ramsey’s Theorem for α-automatic languages.

Definition 3.10. Let h : (Σ)∞ → S = (Sf , Sω) be an ω-semigroup homo-
morphism, v ∈ Σω, and G = {g1 < g2 < g3 < . . .} ⊆ N . We say that G
is an h-homogeneous factorization of v if, and only if, for some e ∈ Sf the
homomorphism h maps v[gi, gj) to e for all 1 ≤ i < j. Making the element e
explicit we also say that G is an h, e-homogeneous factorisation of v.
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Note that if G is an h, e-homogeneous factorisation then e is necessarily
idempotent. Hence we could equivalently demand that e is idempotent and
h(v[gi, gi+1)) = e for all i ≥ 1.

In the following we will use the notion of being α-automatic in a slightly
more permissive way than just for infinite words. In all the cases we mean
that a suitable encoding of the object under consideration as an infinite word
is α-automatic. In particular, a set G ⊆ N is α-automatic if the characteristic
string wG, that is the infinite {0, 1}-string with wG[i] = 1 if, and only if, i ∈ G,
is α-automatic. Further a sequence (wi)i∈N of (non-empty) finite words is α-
automatic if the word w0w1w2 . . . and the set

{∑
i<m |wi| | m ∈ N

}
, which is

the set of positions where some wi starts in w0w1w2 . . ., is α-automatic .

Lemma 3.7. For α ∈ Γω let Φ = {R1, . . . , Rn} be a finite set of α-automatic
relations where Ri is recognised by a morphism hi : (Γ×Σri)∞ → Si for some
finite ω-semigroup Si. Then for every finite set V = {v1, . . . , vk} ⊆ Σω there
is an automaton A(Φ,V ) that recognises

hfac(Φ, V ) = {wG ∈ {0, 1}ω |∀1 ≤ i ≤ n∀v ∈ V ri :

G is an hi-homogeneous factorisation of α⊗ v}

with advice (α, v1, . . . , vk).

Proof. Fix the sets Φ = {R1, . . . , Rn} and V = {v1, . . . , vk}. We describe the
behaviour of a non-deterministic automaton A(Φ,V ) that recognises hfac(Φ, V ).
In the beginning A(Φ,V ) guesses for every Ri ∈ Φ and every v ∈ V ri an idem-
potent element e(i, v) ∈ Sfi and then checks for all possible pairs (i, v) simul-
taneously that hi((α ⊗ v)[gj, gj+1)) = e(i, v) for each j ∈ N. This can be
implemented by an automaton with advice (α, v1, . . . , vk) because the images
of (α ⊗ v)[gj, gj+1) under hi can clearly be computed while reading the input
on the intervals [gj, gj+1) which are explicitly distinguished by wG.

Ramsey’s Theorem ensures that hfac(Φ, V ) is never empty.

Lemma 3.8. Let Φ = {R1, . . . , Rn} be a finite set of α-automatic relations
with associated morphisms h1, . . . , hn into finite ω-semigroups S1, . . . , Sn. Fur-
ther let V ⊂ Σω be a finite set of words. Then hfac(Φ, V ) 6= ∅.
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Proof. We need to show that there is a factorisation G that is hk-homogeneous
for v for all 1 ≤ k ≤ n and all v ∈ V rk . In order to apply Ramsey’s Theorem
we colour every {i, j} ∈

(N
2

)
, where i < j, with the set

{(k, v, hk((α⊗ v)[i, j))) | 1 ≤ k ≤ n, v ∈ V rk} ⊆
⋃

1≤k≤n

{k} × V rk × Sfk .

There are only finitely many colours and hence Ramsey’s Theorem implies
that there is an infinite set G = {n1 < n2 < · · · } ⊆ N such that every
{i, j} ∈

(
N
2

)
have the same colour, say {(k, v, ek) | 1 ≤ k ≤ n, v ∈ V rk}. That

is hk((α ⊗ v)[i, j)) = ek for all 1 ≤ k ≤ n, v ∈ V rk , and all i < j ∈ N . Hence
G has the intended property.

We use the Uniformisation Theorem to obtain two α-automatic words v0

and v1 and an α-automatic factorisation H that is homogeneous for all possible
combinations of v0 and v1 in the relations under consideration.

Lemma 3.9. There are α-automatic v0, v1 ∈ L(A[α]) with [v0]∼e ∩ [v1]≈ = ∅
and an α-automatic factorisation G = {g1 < g2 < g3 < . . .} ⊆ N such that for
δ ∈ {<,≈}, the set G is

• an hL, eL-homogeneous factorisation of v0 and v1,

• an hδ, eδ-homogeneous factorisation of (v0, v0) and (v1, v1),

• an hδ, e01
δ -homogeneous factorisation of (v0, v1), and

• an hδ, e10
δ -homogeneous factorisation of (v1, v0)

for idempotent elements eL, eδ, e01
δ , and e10

δ in the respective semigroups.

Proof. Since d is a presentation of an uncountable structure, there is an infinite
set {w0, w1, w2, . . .} ⊆ L(A[α]) such that for all i < j: [wi]∼e ∩ [wj]≈ = ∅. To
see this, note that every ∼e-class contains only countably many elements.
The relations ∼e and ≈ are α-automatic and hence the (C + 1)-ary relation

defined by ψ(x0, . . . , xC) =
∧

0≤i<j≤C [xi]∼e ∩ [xj]≈ = ∅ is also α-automatic.
With the previous argument we also see that ψS(d) is non-empty. We apply
the Uniformisation Theorem to the relation defined by ψ and obtain an α-
automatic tuple (v0, . . . , vC) such that for 0 ≤ i < j ≤ C the end-class of vi
does not intersect the ≈-class of vj.
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Let Φ consist of the relations defined by A[α],A≈[α], and A<[α] and V =
{v0, . . . , vC}. Then the relation hfac(Φ, V ) is (α, v0, . . . , vC)-automatic and
hence α-automatic. As hfac(Φ, V ) is not empty, we can again by applying the
Uniformisation Theorem conclude that there is an α-automatic factorisation
G that is homogeneous for all possible combinations of elements from V under
the morphisms hL, h≈, and h<.
For each v ∈ V let the profile of v be the unique tuple (eL, e≈, e<) ∈ SL×S≈×

S< such that G is a hL, eL-homogeneous factorisation of v and for δ ∈ {≈, <}
a hδ, eδ-homogeneous factorisation of v. Because |V | = C+1 is larger than the
number of possible profiles, there must be two distinct elements with the same
profile. Without loss of generality assume this is true for v0 and v1. Then it is
easily verified that v0,v1, and G have the postulated properties.

Since v0 6∼e v1, we may also assume, without losing the property of G being
α-automatic, that G is coarse enough such that α0[g`, g`+1) 6= α1[g`, g`+1) for
all ` ∈ N. From v0, v1 we define two α-automatic sequences (w0i)i∈N and
(w1i)i∈N of finite words, which will be the “templates” for the language that is
constructed hereinafter.

Lemma 3.10. There are α-automatic sequences (w0i)i∈N and (w1i)i∈N and an
α-automatic factorisation H = {h0 < h1 < · · · } ⊆ N such that:

• w00 = w10, w0i 6= w1i, and |w0i| = |w1i| for all i > 0,

• hi =
∑

j<i |w0j| =
∑

j<i |w1j| for all i ∈ N, and

• for δ ∈ {≈, <} there is an element →δ∈ Sδf and idempotent elements
�δ, ↑δ, ↓δ ∈ Sδf such that

hδ(α[0, h1)⊗ w00 ⊗ w00) = hδ(α[0, h1)⊗ w10 ⊗ w10)

= hδ(α[0, h1)⊗ w00 ⊗ w10)

= hδ(α[0, h1)⊗ w10 ⊗ w00)

=→δ

and for every i > 0

– hδ(α[hi, hi+1)⊗ w0i ⊗ w0i) = hδ(α[hi, hi+1)⊗ w1i ⊗ w1i) = �δ,

– hδ(α[hi, hi+1)⊗ w0i ⊗ w1i) = ↑δ,
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v0 · · · · · ·
v1 · · · · · ·

w0i

(w0i)i∈N · · ·

w1i

(w1i)i∈N · · ·

g2k(i−1)+2

g2k(i−1)+3g2k(i−1)+4 g2ki g2ki+1g2 g2ki+2

. . .

Figure 3.1: Definition of (w0i)i∈N and (w1i)i∈N

– hδ(α[hi, hi+1)⊗ w1i ⊗ w0i) = ↓δ, and
– →δ, ↑δ and ↓δ absorb �δ from the right.

Proof. Let us first define the sequences (w0i)i∈N and (w1i)i∈N. We define w00 =
w10 = v1[0, g2) and for i > 0 we define

w0i = v0[g2k(i−1)+2, g2ki+2) and
w1i = v1[g2k(i−1)+2, g2k(i−1)+3)v0[g2k(i−1)+3, g2k(i−1)+4)

· · · v1[g2ki, g2ki+1)v0[g2ki+1, g2ki+2).

Using that v0 and v1 are α-automatic, we see that both sequences are α-
automatic. Indeed, the word w00w01 . . . differs only in finitely many posi-
tions from v0 and the word w10w11 . . . coincides, from position g2 onward,
with v0 on intervals of the form [g2`, g2`+1) and with v1 on intervals of the
form [g2`+1, g2(`+1)). Therefore from automata that recognise v0, v1, and G
with advice α we are able to define automata that recognise w00w01w02 . . . and
w10w11w12 . . . with advice α, respectively. Similarly, we can recognise the set
H = {

∑
i≤n |w0i| | n ∈ N } = {g2kn+2 | n ∈ N} = {

∑
i≤n |w1i| | n ∈ N}

with advice α because G is α-automatic and k is constant. The assertion that
w0i 6= w1i for all i > 0 follows from the fact that v0[g`, g`+1) 6= v1[g`, g`+1) for
all ` ∈ N.
Let us now compute the values →δ, ↑δ, ↓δ and �δ for δ ∈ {≈, <} and verify
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their properties:

→δ = hδ(α[0, h1)⊗ w00 ⊗ w00)

= hδ(α[0, g2)⊗ v1[0, g2)⊗ v1[0, g2))

= hδ(α[0, g1)⊗ v1[0, g1)⊗ v1[0, g1)) · hδ(α[g1, g2)⊗ v1[g1, g2)⊗ v1[g1, g2))

= hδ(α[0, g1)⊗ v1[0, g1)⊗ v1[0, g1))eδ

We use the fact that hδ(α[gj, gj+1)⊗vi[gj, gj+1)⊗vi[gj, gj+1)) = eδ for i ∈ {0, 1}
and all j > 0 and compute

hδ(α[hj, hj+1)⊗ wij ⊗ wij) = (eδ)
2k = eδ =: �δ

for i ∈ {0, 1}, j > 0. Similar computations reveal ↑δ= (e01
δ eδ)

k and ↓δ=
(e10
δ eδ)

k.
Finally the elements �δ, ↑δ and ↓δ are idempotent and→δ, ↑δ and ↓δ absorb
�δ because eδ is idempotent and k is a multiple of the exponent of Sδf .

With Lemma 3.10 we are prepared to set up our sub-presentation. Let
L′ := {wj00wj11wj22 . . . | jk ∈ {0, 1} for all k ∈ N}. Having established that
the sequences (w0i)i∈N and (w1i)i∈N are α-automatic, we can conclude that L′
is also α-automatic. We use wi as a shorthand for wi0wi1wi2 . . . ∈ L′ where i
ranges over {0, 1}.
Our ultimate goal is to show that the restriction of S(d[α]) to L′ is isomorphic

to ({0, 1}ω, <lex) and hence we need to show that < behaves accordingly on
L′. In fact we claim that there is a bijection function ρ : {0, 1} → {0, 1} such
that the function πρ : L′ → {0, 1}ω;wj00wj11wj22 . . . 7→ ρ(j0)ρ(j1)ρ(j2) . . . is
an isomorphism between the two structures. The key to establish this is two
exploit the transitivity of < and ≈ in combination with the properties stated
in Lemma 3.10. To ease the notation in this process we will omit the subscript
for the semigroup elements mentioned in Lemma 3.10. The context in which
they are used should prevent any danger of confusion.

Lemma 3.11. The language L′ is contained in L.

Proof. We compute hL(α⊗ w) for every w ∈ L′:

hL(α⊗ (wjii)i∈N) = hL(〈α[0, h1), wj00〉)
=eL︷ ︸︸ ︷

hL(〈α[h1, h2), wj11〉)
=eL︷ ︸︸ ︷

hL(〈α[h2, h3), wj22〉) . . .
= hL(α[0, h1)⊗ v1[0, h1))(eL)ω

= hL(α⊗ v1) ∈ FL.
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We define a convolution for the semigroup elements ↑, ↓ and � (with respect
to < and ≈). We define � : {↑, ↓,�} × {↑, ↓,�} → {↑, ↓,�,⊥} by

x� y =


↑ if (x = � and y =↑) or (x =↑ and y = �)

↓ if (x = � and y =↓) or (x =↓ and y = �)

� if x = y = � or (x =↑ and y =↓) or (x =↓ and y =↑)
⊥ else.

For two sequences (xi)i≥1, (yi)i≥1 ∈ {↑, ↓ �}ω we apply the convolution element-
wise, i.e. (xi)i≥1�(yi)i≥1 = (xi�yi)i≥1. The reason for this definition is that we
want to argue about the transitivity of the relations on the level of the corre-
sponding semigroup-morphisms. This is stated more precisely in the following
lemma.

Lemma 3.12. For δ ∈ {<,≈} let (xi)i≥1, (yi)i≥1 ∈ {↑, ↓ �}ω ⊆ (Sδf )
ω be two

sequences of ω-semigroup elements such that xi � yi ∈ {↑, ↓,�} for all i ≥ 1.
If → (xi)i≥1 ∈ Fδ and → (yi)i≥1 ∈ Fδ then → (xi � yi)i≥1 ∈ Fδ.

Proof. Define words

u0 = w00wj011wj022 . . . ,

u1 = w00wj111wj122 . . . , and
u2 = w00wj211wj222 . . . ,

where

j0i =

{
0 xi =↑ or (xi = � and yi =↑)
1 else

j1i =

{
0 (xi =↓ or yi =↑)
1 else

j2i =

{
0 yi =↓ or (yi = � and xi =↓)
1 else
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Note that j0i, j1i, and j2i are defined so that

hδ(α[hi, hi+1)⊗ wj0ii ⊗ wj1ii) = xi, hδ(α[hi, hi+1)⊗ wj1ii ⊗ wj2ii) = yi,

and hδ(α[hi, hi+1) ⊗ wj0ii ⊗ wj2ii) = xi � yi. Hence, if hδ(α ⊗ u0 ⊗ u1) =→
(xi)i≥1 ∈ Fδ and hδ(α⊗ u1 ⊗ u2) =→ (yi)i≥1 ∈ Fδ then, by the transitivity of
δ, it must also be true that hδ(α⊗ u0 ⊗ u2) =→ (xi � yi)i≥1 ∈ Fδ.

We claimed that L′ induces an injective presentation and hence we want
to show that all words in L′ represent distinct elements. We do so by first
showing that at least some words cannot encode the same element. For this
step it is crucial that we have chosen v0 and v1 such that [v0]∼e ∩ [v1]≈ = ∅.

Lemma 3.13. The ω-semigroup elements →↑ω and → (↑↓)ω are not in F≈.

Proof. Observe that hδ(α,w0, w1) =→↑ω and also

→↑ω = h≈(〈α, v1, v1〉[0, g2)(h≈(h≈(〈α, v0, v1〉[g2i, g2i+1)〈α, v1, v1〉[g2i+1, g2i+2))i>1

= h≈(〈α, v1, v1〉[0, g1)e11(e01e11)ω

= h≈(〈α, v1, v1〉[0, g1)e11e11(e01e11)ω

= h≈(〈α, v1, v1〉[0, g1)e11(e11e01)ω

= h≈(〈α, v1, v1〉[0, g2)(h≈(〈α, v1, v1〉[g2i, g2i+1)〈α, v0, v1〉[g2i+1, g2i+2))i>1

= h≈(w1, v1).

So, if→↑ω∈ F≈ then w0 ≈ w1 and also w1 ≈ v1 and therefore by transitivity
w0 ≈ v1. But w0 ∼e v0 which means →↑ω∈ F≈ implies [v0]∼e ∩ [v1]≈ 6= ∅.
Because we have chosen v0 and v1 such that [v0]∼e∩ [v1]≈ = ∅ we may conclude
that →↑ω 6∈ F≈.
Now suppose → (↑↓)ω ∈ F≈. Observe that

→ (↑↓)ω =→ (↑↑↓)ω =→↑ (↑↓↑)ω =→ (↑↓↑)ω

and also
→ (↑↓)ω =→ �(↑↓ �)ω =→ (� ↑↓)ω.

But → (↑↓↑)ω� → (� ↑↓)ω =→ (↑ ��)ω =→↑ω whence with Lemma 3.12
we conclude that →↑ω∈ F≈. Contradiction!
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We will use similar arguments as in the proof of Lemma 3.13 to characterise
the elements in → {↑, ↓,�}ω ∩F< to complete the proof of the main theorem.
In the next lemma we establish a normal form for the elements of→ {↑, ↓,�}ω
in order to ease this task.

Lemma 3.14. The set → {↑, ↓,�}ω is equal to the union of the sets

1. → {(↑↓)ω, (↓↑)ω},

2. → {(↑↓)<2k, (↑↓)<2k ↑, (↓↑)<2k, (↓↑)<2k ↓}{↑ω, ↓ω,�ω}

Proof. The containment from right to left is trivial and hence we only need to
show the containment in the other direction. Let us first remark that every
finite product → x1x2 · · ·xn, where xi ∈ {↑, ↓,�} for 1 ≤ n, is equal to an ele-
ment in the set→ {(↑↓)<2k, (↓↑)<2k, (↑↓)<2k ↑, (↓↑)<2k ↓}. Indeed, the element
� can be eliminated because it is absorbed by ↑, ↓, and →. The elements
↑, ↓ are idempotent whence consecutive occurrences of the same element can
be eliminated. Finally, k is a multiple of the exponent of the semigroup (i.e.
(↑↓)2k = (↑↓)k and (↓↑)2k = (↓↑)k).
Let (xi)i≥1 be any sequence from {↑, ↓,�}ω. Consider the set P = {i ≥ 1 |

xi 6= �}. We distinguish two cases.
Case P is finite. In this case (xi)i≥1 = x1x2 · · ·xn�ω for some n and with

our initial remark we conclude that → x1x2 · · ·xn�ω is equal to some element
in the set → {(↑↓)<2k, (↓↑)<2k, (↑↓)<2k ↑, (↓↑)<2k ↓}�ω.
Case P is infinite. Let p1, p2, . . . be the elements of P in ascending order.

Define yi := (xpixpi+1 · · ·xpi+1−1) = xpi�
pi+1−pi−1 = xpi . By the associativity of

the infinite product→ (xi)i≥1 =→ (yi)i≥1 ∈→ {↑, ↓}ω. If both sets {i | yi = ↑}
and {i | yi = ↓} are infinite then we can again utilise the associativity of the
infinite product and the idempotence of ↑ and ↓ to see that → (yi)i≥1 ∈
→ {(↑↓)ω, (↓↑)ω}. Otherwise exactly one of the sets is finite and we can argue
analogously to the first case that

→ (yi)i≥1 ∈→ ({↑↓}<2k ∪ {↓↑}<2k ∪ {↑↓}<2k{↑} ∪ {↓↑}<2k{↓}) ↑ω or
→ (yi)i≥1 ∈→ ({↑↓}<2k ∪ {↓↑}<2k ∪ {↑↓}<2k{↑} ∪ {↓↑}<2k{↓}) ↓ω,

respectively.

Lemma 3.15. The structure S(d[α]) � L′ is isomorphic to ({0, 1}ω, <lex).
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Proof. Because → (↑↓)ω 6∈ F≈ we know that the words x0 := w10w01w12 . . .
and x1 := w00w11w02 . . . encode distinct elements. Therefore either

h<(〈α, x0, x1〉) =→ (↑↓)ω ∈ F< or h<(〈α, x1, x0〉) =→ (↓↑)ω ∈ F<.

We carry out the proof for the case→ (↑↓)ω ∈ F<. For the other case one just
has to interchange the roles of ↑ and ↓ in the following.
Recall that we claimed w00wj11wj22 . . . < w00wj′11wj′22 . . . if, and only if,

j1j2 . . . <lex j
′
1j
′
2 . . ., which is with our previous observations equivalent to the

claim that→↑ {↑, ↓,�}ω ⊆ F<. With Lemma 3.14 it is sufficient to consider el-
ements of the form→xγ, where x ∈ {(↑↓)<2k, (↑↓)<2k ↑} and γ ∈ {↑ω, ↓ω,�ω}.
We make a case distinction with respect to the value of γ.
Case γ =↑ω. In this case we can assume that x = (↑↓)c, for some 0 ≤ c < 2k.

We observe that

→ (↑↓)ω =→ (↑↓)c�(↑↓ �)ω

=→ (↑↓)c(� ↑↓)ω

but also

→ (↑↓)ω =→ �2c(↑↑↓)ω

=→ �2c ↑ (↑↓↑)ω

=→ �2c(↑↓↑)ω.

Further

→ ((↑↓)c(� ↑↓)ω ��2c(↑↓↑)ω) =→ (↑↓)c(↑ ��)ω

=→ (↑↓)c ↑ω

=→ xγ.

Lemma 3.12 allows us to conclude →xγ ∈ F<.
Case γ =↓ω. Here we can assume that x = (↑↓)c ↑, for some 0 ≤ c < 2k.

Again we compute suitable identities for → (↑↓)ω.

→ (↑↓)ω =→ �2c+2(↑↓ �)ω

=→ �2c+1(� ↑↓)ω and
→ (↑↓)ω =→ (↑↓)c ↑ (↓↑)ω

=→ (↑↓)c ↑ (↓↓↑)ω.
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We compute the convolution

→ (�2c+1(� ↑↓)ω � (↑↓)c ↑ (↓↓↑)ω) =→ (↑↓)c ↑ (↓ ��)ω

=→ (↑↓)c ↑ (↓)ω

=→ xγ

and get that →xγ ∈ F<.
Case γ = �ω. Here either x = (↑↓)c, for some 1 ≤ c < 2k, or x = (↑↓)c ↑,

for some 0 ≤ c < 2k. We split this case into sub-cases with respect to the
value of x.
Subcase x = (↑↓)c.

→ (↑↓)ω =→ �2c(↑↓)ω and
→ (↑↓)ω =→ (↑↓)c−1 ↑↓ (↑↓)ω

=→ (↑↓)c−1 ↑↓↓ (↑↓)ω

=→ (↑↓)c(↓↑)ω

→ (�2c(↑↓)ω � (↑↓)c(↓↑)ω) =→ (↑↓)c(��)ω

=→ (↑↓)c(�)ω

Subcase x = (↑↓)c ↑.

→ (↑↓)ω =→ �2c+1(↑↓)ω and
→ (↑↓)ω =→ (↑↓)c ↑↓ (↑↓)ω

=→ (↑↓)c ↑ (↓↑)ω.

For the last time we compute the convolution

→ (�2c+1(↑↓)ω � (↑↓)c ↑ (↓↑)ω) =→ (↑↓)c ↑ (��)ω

=→ (↑↓)c ↑ (�)ω

and conclude that also in this case →xγ ∈ F<.

Taking all together we get that d restricted to L′ is an injective ω-automatic-
presentation of ({0, 1}ω, <lex).
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Corollary 3.5 (Kuske [77]). ({0, 1}ω, <lex) is embeddable into every uncount-
able ω-automatic linear order.

Another important consequence is that our end-index analysis from Section
3.2.1 can be usefully applied to uncountable structures with a linear order.

Corollary 3.6. Let d be an α-automatic presentation of an uncountable lin-
early ordered structure A. Then there is an infinite set B ⊆ A with Ie(B) = 1.

Corollary 3.7. Let f be an inherently regular function on a linearly ordered
advice ω-automatic structure. Then MISf (n) ∈ O(n).

But even without the linear order, we learn something about the encoding
of elements from our construction. Note that for defining u,w0, w1 we did not
make use of the linear order, but only of the equivalence relation ≈. Indeed,
the semigroup elements found in the previous lemmas for ≈ still have all the
stated properties independent of the presence of a linear order, which allows
us to re-prove the following theorem, already mentioned in [68] in a slightly
different context.

Theorem 3.3. Let d = (A,A≈, . . .) be a parametrised ω-automatic presenta-
tion, which presents an uncountable structure with advice α ∈ Γω. Then there
are α-automatic sequences (w0i)i∈N, (w1i)i∈N of finite words with

• w00 = w10,

• |w0i| = |w1i| and w0i 6= w1i for i > 0,

• L′ := {wj00wj11wj22 . . . | j0j1j2 . . . ∈ {0, 1}ω} ⊆ L(A[α]), and

• v0 6∼e v1 ⇒ v0 6≈ v1 for all v0, v1 ∈ L′.

Proof. Let (w0i)i∈N and (w1i)i∈N be constructed as before. By Lemma 3.13
→ (↑)ω 6∈ F≈ and → (↑↓)ω 6∈ F≈.
It is easy to calculate that for all v0, v1 ∈ L′ with v0 6∼e v1

h≈(α⊗ v0 ⊗ v1) ∈→{(↑↓)ω, (↓↑)ω}
∪ → {(↑↓)<2k, (↑↓)<2k ↑, (↓↑)<2k, (↓↑)<2k ↓}{↑ω, ↓ω}.
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Because of the symmetry of ≈, it is sufficient to show that

({→ (↑↓)ω}∪ → (↑↓)<2k ↑ω

∪ → {↑↓ (↑↓)<2k−1, (↑↓)<2k ↑} ↓ω) ∩ F≈ = ∅.

We use the same strategy as in Lemma 3.15. We already know that→ (↑↓ )ω 6∈
F≈. The other elements are handeled by case distinction.
Case → (↑↓)n ↑ω, 0 ≤ n < 2k:

→ (↑↓)n ↑ω =→ (↑↓)n(↑ �)ω

→ (↑↓)n ↑ω =→ �(↑↓)n(↑ �)ω.

But also

→ ((↑↓)n(↑ �)ω)� (�(↑↓)n(↑ �)ω) =→↑ �2n ↑ω=→↑ω .

Hence, →↑ω 6∈ F≈ implies → (↑↓)n(↑)ω 6∈ F≈.
Case → (↑↓)n(↓)ω, 1 ≤ n < 2k:
Remember, → (↑↓)n(↓)ω ∈ F≈ if, and only if, → (↓↑)n(↑)ω ∈ F≈. We

compute

→ (↑↓)n(↓)ω =→ (↑↓)n(↓ �)ω,

→ ((↓↑)n(↑)ω � (↑↓)n(↓ �)ω) =→ �2n(� ↑)ω =→↑ω .

Again, we conclude from →↑ω 6∈ F≈ that also → (↑↓)n(↓)ω 6∈ F≈.
The case → (↑↓)n ↑ (↓)ω is completely analogous to the previous one.

3.2.4 ω-Automatic Functions

We present a consequence of Theorem 3.3 for ω-automatic structures without
advice. In this case the sub-presentation, described in the theorem, has an
especially simple form because ω-regular relations always contain ultimately
periodic words.

Lemma 3.16 (See for instance [63, Lemma 3.10]). Let R ⊆ Σω × Γω be an
ω-regular relation recognised by a Büchi-automaton A = (Q,Σ × Γ, q0,∆, F ).
Further let α ∈ Σω be some ultimately periodic word with period length p ∈ N.
Then if αR 6= ∅ then there is a word β ∈ αR with period length at most |Q| · p.
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Corollary 3.8. Let d = (A,A≈, . . .) be an ω-automatic presentation of an
uncountable structure. Then there are words u, v0, v1 ∈ Σ+ with

• |v0| = |v1| and v0 6= v1,

• L′ := {uvj0vj1vj2 . . . | j0j1j2 . . . ∈ {0, 1}ω} ⊆ L(A), and

• w0 6∼e w1 ⇒ w0 6≈ w1 for all w0, w1 ∈ L′.

Proof. Let (w0i)i∈N and (w0i)i∈N be the ω-automatic sequences, which are de-
scribed by Theorem 3.3. Then these two sequences must be ultimately periodic.
Let n and k be such that

wi(n+`k)wi(n+`k+1) · · ·wi(n+(`+1)k−1) = wi(n+(`+1)k)wi(n+(`+1)k+1) · · ·wi(n+(`+2)k−1)

for all i ∈ {0, 1} and ` ∈ N. Define u := w00 and vi := win · · ·wi(n+k−1) for
i ∈ {0, 1}. Then u, v0, and v1 have the properties as stated.

We shall now extend our techniques by considering intrinsically ω-regular
functions on uncountable ω-automatic structures. Our main technical result
shows that there is no ω-automatic structure with a family of intrinsically ω-
regular functions of unbounded arity such that the preimage of every element
is at most countably infinite for all of these functions. Recall that a function
is intrinsically regular, if it is ω-regular in any ω-automatic presentation of A.

Theorem 3.4. Let A be an uncountable ω-automatic structure. Then there is
a k ∈ N such that for every intrinsically ω-regular extension of A by a (k+ 1)-
ary function f(x, y) there exist uncountable sets M ⊆ Ak and N ⊆ A with
f(a, b) = f(a′, b) for all a, a′ ∈M, b ∈ N .

Proof. Fix an ω-automatic presentation (d, π) over the alphabet {0, 1}. Since
A is uncountable, we can apply Corollary 3.8 and obtain a language L′ =
w{v0, v1}ω ⊆ L such that |v0| = |v1| and for all α, β ∈ L′ it holds that α 6∼e β
implies α 6≈ β. Set k = |v0| + 1. Let Af = (Q, {0, 1}k+1, q0,∆, F ) be the
automaton that recognises f in (d, π) and let p denote the number of possible
transition profiles of Af i.e. p = |{∆w : w ∈ ({0, 1}k+2)∗}|, where

∆w = {(p, q, P ) ∈ Q×Q×P(Q) | ∆(p, w) = q, P = {q | ∃v � w : ∆(p, v) = w}}.

We proceed as follows: first we define two languages Lp and Lid of ultimately
periodic words. In Lp and Lid respectively, we will find suitable encodings of
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pairs of distinct tuples which can be combined to encodings of uncountably
many pairwise distinct tuples. These will then be the encodings for our sets
M and N . To ensure that the combinations of tuples from Lp and the com-
binations of tuples from Lid do not interfere with each other, we define these
languages in such a way that the set of positions where the words of Lp “encode
their information” is disjoint from the set of positions where this is the case
for the words in Lid. More precisely we are going to guarantee that whenever
two words of Lp differ at a given position i ∈ N, then all pairs of words in Lid
have the same “dummy letter” at position i, and vice versa. We set

Lp := {wvω : v ∈ {v0, v1}p�} and Lid := {wvω : v ∈ �{v0, v1}2kp+p}

where � := (v0)2kp+p and � := (v0)p. Then Lp, Lid ⊆ L′ and every word in Lp∪
Lid represents a distinct element from the domain A, i.e. for every pair of words
α, β ∈ Lp∪Lid we have α 6≈ β if α 6= β. Furthermore, every word α ∈ Lp∪Lid is
completely determined by the unique finite word v[α] ∈ {v0, v1}p∪{v0, v1}2kp+p

with α = w(v[α]�)ω or α = w(�v[α])ω, respectively. We extend this notation
to tuples of words α ∈ (Lp)

k as words v[α] ∈ ({v0, v1}2kp+p)k in the obvious
way. In particular we have |Lp| = 2p and |Lid| = 22kp+p.
Let us now consider (k+1)-tuples of the form (α, β) with α ∈ (Lp)

k and β ∈
Lid as inputs of the automaton Af . We note that all words in (Lp)

k × Lid are
periodic from position |w| onwards and that the length of their periods divides
r := (2k + 1)p|v0|. Both values |w| and r are independent of the particular
word in (Lp)

k × Lid.
By Lemma 3.16 we can infer that for every α ∈ (Lp)

k, β ∈ Lid the element
f(π(α), π(β)) has an ultimately periodic encoding γ[α, β] with the following
properties:

• the length of the non-periodic prefix of γ[α, β] is s = |w|+ c · r for c ∈ N,
and

• the length of the period of γ[α, β] is ` = d · r for some d ∈ N, and

• both constants c and d are independent of the particular choice of α, β.

We illustrate the situation in Figure 3.2.
By the choice of k, the number of tuples in (Lp)

k is 2pk ≥ 2p|v0| ·2p > 2p|v0| ·p,
hence the number of tuples in (Lp)

k exceeds the number of tuples of words in
Σp|v0| and transition profiles of the automaton Af . Therefore, for every β ∈ Lid
there exist two distinct words α, α′ ∈ (Lp)

k such that for some δ ∈ Σp|v0|
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α
β

γ[α, β]

· · ·
...

...
...

...
...

∈ {0, 1}s
∈ {v0, v1}p

� = v2kp+p
0

� = vp0

∈ {v0, v1}2kp+p ∈ {0, 1}`

Figure 3.2: Construction of the Inputs for Af

• the finite words (v[α],�, δ) and (v[α′],�, δ) occur at the positions s+ i`
for all i ∈ N in (α, β, γ[α, β]) and (α′, β, γ[α′, β]), respectively, and

• these infixes (v[α],�, δ) and (v[α′],�, δ) have the same Af -transition
profiles.

For every β ∈ Lid we fix such a pair (α, α′). Furthermore, we recall that the
number of words in Lid is 22kp+p. Since the number of pairs of (Lp)

k-tuples
is 22pk there are at least 22kp+p/22pk = 2p > p words β ∈ Lid to which the
same pair (α, α′) is assigned. Hence, we can also find two distinct β, β′ ∈
Lid with this property such that for some λ, λ′ ∈ Σ(2kp+p)|v0| the finite words(
�
k
, v[β], λ

)
and

(
�
k
, v[β′], λ′

)
have the sameAf -transition profile, and occur

at positions hi = (s + |v0|p) + i`, i ∈ N in (α, β, γ[α, β]) and (α, β′, γ[α, β′]),
respectively.
The claim follows by examining the properties of α, α′ ∈ (Lp)

k and β, β′ ∈
Lid. Let us consider the input (α, β, γ[α, β]) which is accepted by Af . By the
properties stated above we can replace the infix (v[α],�, δ) in (α, β, γ[α, β])
by (v[α′],�, δ) at infinitely many positions. In this way we can obtain an
uncountably infinite set LM ⊆ (L′)k with

• α0 6≈ α1 if α0 6= α1 (i.e. α0 and α1 encode different elements from Ak)
for all α0, α1 ∈ LM , and

• (α0, β, γ[α, β]) is accepted by the automaton Af for all α0 ∈ LM .

This is done in the following way: choose a set X ⊆ {0, 1}ω of the size 2ω such
that x 6∼e y for all x, y ∈ X. This is possible since ∼e partitions {0, 1}ω into
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countable equivalence classes and {0, 1}ω has continuum many elements. For
every x ∈ X we define αx by

αx[0, s) := α[0, s)

αx[hi, hi+1) :=

{
α[hi, hi+1) if x[i] = 0

α′[hi, hi+1) if x[i] = 1.

We then define LM := {αx : x ∈ X}. It is easy to check that LM has the
claimed properties: αx, αx′ ⊆ L′ and αx 6∼e αx′ for all αx 6= αx′ ∈ LM and
therefore αx 6≈ αx′ . Since ∆((v[α],�,δ)) = ∆((v[α′],�,δ)), (αx, β, γ[α, β]) is accepted
by Af . In particular, we can still interchange the infixes (�

k
, v[β], λ) and

(�
k
, v[β′], λ′) in every input (αx, β, γ[α, β]) in any way without affecting the

acceptance behaviour of Af . We obtain a set LN ⊆ L′ of uncountably many
different tuples with the following properties

• β 6≈ β′ if β 6= β′ (i.e. β and β′ encode different elements from A), and

• for every β ∈ LN there exists γ ∈ Σω such that (α, β, γ) is accepted by
the automaton Af for all for all α ∈ LM .

Altogether for M = π(LM) ⊆ Ak and N = π(LN) ⊆ A, we have f(m,n) =
f(m′, n) for all m,m′ ∈M and n ∈ N . Since both sets M and N are uncount-
able, the claim follows.

Sometimes it is convenient to apply Theorem 3.4 in the following simplified
version.

Corollary 3.9. Let A = (A,R1, . . . , Rn) be an uncountable ω-automatic struc-
ture. Then there is an ` ∈ N such that for every definable `-ary function f(x)
there is an uncountable set M ⊆ A` with f(a) = f(a′) for all a, a′ ∈M .

Proof. Let k be the constant from Theorem 3.4. We set ` = k + 1. Let
f be an `-ary function that is definable in A. Then by Theorem 3.4 there
exist uncountably infinite sets M ′ ⊆ Ak, N ′ ⊆ A with f(a, b) = f(a′, b) for
all a, a′ ∈ M ′, b ∈ N ′. Hence, we can simply choose any of the uncountably
infinite sets Mb = {(a, b) : a ∈M ′} for some b ∈ N ′ to satisfy the claim.
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3.3 Structures Without Automatic Presentation

In this last section we apply our results to identify structures, which cannot
have an ω-automatic presentation (with advice). We start with the main
theorems of this chapter.

3.3.1 Integral Domains and the Field of Reals

To illustrate the applications of our results, consider the case of an integral
domain. Recall that an integral domain is a commutative ring that has no zero
divisors.

Lemma 3.17. Let d be an α-automatic presentation of an infinite integral
domain A for some α ∈ Γω. Then there is no infinite set B ⊆ A with finite
index Ie(B) in d.

Proof. Suppose otherwise. Then we could extend d to a presentation d′ of
the extension of A by the first-order definable function f(x, a, b) = ax + b,
which defines a linear polynomial for every fixed a, b ∈ A. The structure A is
an integral domain and hence for two distinct pairs (a, b), (a′, b′) the equation
ax + b = a′x + b′ has as most one solution. This implies that for every finite
set B ⊆ A and every set X with |X| > |B|4 there must be an x ∈ X such
that |f(x,B,B)| = |B|2. Otherwise we could fix for every x ∈ X a tuple
(ax, bx, a

′
x, b
′
x) ∈ B4 with (ax, bx) 6= (a′x, b

′
x) and x is a solution for the equation

axx+bx = a′xx+b′x. But |X| > |B4| and consequently there would be x 6= y ∈ X
with (ax, bx, a

′
x, b
′
x) = (ay, by, a

′
y, b
′
y), that is x and y would be two distinct

solutions of the same equation, which is impossible.
However, (A, f) contains an infinite set with end-index one in d′ and, con-

sequently, there are arbitrarily large finite sets B ⊆ A with I(B) = 1. Ac-
cording to Corollary 3.4 there are arbitrarily large finite sets B ⊆ A with
|f(x,B,B)| ≤ c · |B| for some constant c and all x ∈ A, which contradicts the
above calculations.

Corollary 3.10. No infinite integral domain has an injective ω-automatic
presentation with advice.

Proof. If the presentation d is injective then Lemma 3.4 gives us directly an
infinite set with end-index 1 in d.
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With all that we have learned so far, Theorem 3.1 also becomes an easy
corollary.

Theorem 3.1. The field of reals is not ω-automatic with advice.

Proof. The linear order on the reals is first order definable in (R,+, ·) and
therefore every presentation d of (R,+, ·) would induce an infinite set with
end-index 1 in contradiction to Lemma 3.17.

Of course we would like to generalise this result to all infinite integral do-
mains. But for now we are only able to generalise the theorem for ω-automatic
presentations without advice.

Theorem 3.2. An integral domain is ω-automatic if, and only if, it is finite.

Proof. One direction is trivial since all finite structures are ω-automatic. For
the other direction, we recall from [73] that the (finite word) automatic integral
domains are exactly the finite ones. Hence, by [68], there are no countably
infinite ω-automatic integral domains.
Suppose now that A = (A,+, ·) is an uncountable ω-automatic integral

domain. Fix a presentation of A and let k be the constant from Theorem 3.4
with respect to this presentation. Consider the family of polynomials of degree
k. This family can be presented by the function (a0, . . . , ak, x) 7→

∑k
i=0 aix

i

with k parameters a0, . . . , ak−1 ∈ A and input x. It is obvious that this function
is first-order definable.
On one hand, it is a well-known fact from algebra that, on an integral

domain, two different polynomials of degree at most k − 1 agree on at most
k− 1 inputs. On the other hand, A is uncountable and therefore Theorem 3.4
implies that there are a 6= b ∈ Ak such that

∑k−1
i=0 aix

i =
∑k−1

i=0 bix
i for even

uncountably many x ∈ A.

We close this section with a few applications concerning other types of al-
gebraic structures.

Theorem 3.5. There is no infinite ω-automatic structure with pairing func-
tion.

Proof. Towards a contradiction, suppose there is an ω-automatic structure A
in which a pairing function f is definable. First we note that A cannot be
countable. Otherwise, by [68], A would have an injective presentation. But
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MISf (n) = n2 in contradiction to Lemma 3.9. Therefore A must be uncount-
able. In this case we obtain a contradiction to Corollary 3.9 by constructing a
family of definable injective functions of unbounded arity. We let

f1(x, y) := f(x, y) and
fn+1(x1, . . . , x2n , y1, . . . , y2n) := f(fn(x1, . . . , x2n), fn(y1, . . . , y2n)).

Then fn is injective and FO-definable in A for every n ≥ 1.

Another example to which we can apply our techniques are lattices.

Lemma 3.18. Every uncountable ω-automatic lattice contains an element
such that uncountably many elements are smaller than this element, and con-
tains an element such that uncountably many elements are greater than this
element.

Proof. Let A = (A,<,∧,∨) be an uncountable ω-automatic lattice. Fix an
ω-automatic presentation and let c be the constant from Lemma 3.9. We
consider the definable functions f(x1, . . . , xc) :=

∧
1≤i≤c xi and g(x1, . . . , xc) :=∨

1≤i≤c xi. By Corollary 3.9 there must be elements a, b ∈ A such that f−1(a)
and g−1(b) are uncountable. But this is only possible if the sets

{x : x appears in some (x1, . . . , xc) ∈ f−1(a)} ⊆ {x : x ≤ a}

and
{x : x appears in some (x1, . . . , xc) ∈ g−1(b)} ⊆ {x : x ≥ b}

are uncountable.

As a consequence we can reprove Kuske’s theorem that no uncountable or-
dinal is ω-automatic.

Theorem 3.6 (Kuske [77]). There is no uncountable ω-automatic ordinal.

Proof. First note that Lemma 3.18 directly implies that ω1, the first uncount-
able ordinal, is not ω-automatic. Every ordinal is a lattice (∧ and ∨ can be
defined) and for every element of ω1 the number of elements below it is count-
able. But this implies that no larger ordinal α can be automatic either, since
ω1 is definable in all of these ordinals by the formula ϕ(x) := ∃≤ℵ0y(y < x).
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3.3.2 Countable Structures

This section is devoted to advice automatic presentations of countable struc-
tures. It turns out that our findings of the Sections 3.2.1 and 3.2.2 are especially
well suited for the analysis of countable structures. The reason for this is that
countable advice automatic structures have presentations where the end-index
of the whole domain is one. We say that a parametrised ω-automatic presen-
tation has a finite word encoding over the advice α, if Σ = Σ′ ] {�} and
L(A[α]) ⊆ Σ′∗{�ω}.
Theorem 3.7. A countable structure A has an ω-automatic presentation d =
(A,A≈, (AR)R∈τ ) with advice α, if, and only if, it has an injective ω-automatic
presentation d′ = (A′, (A′R)R∈τ ) with advice α over finite words. Moreover, d′
can be effectively constructed from d.

Proof. Since A is countable, it follows from [68, Proposition 3.1] that there is
a constant c computable from d such that Ie(A) ≤ c. Hence, the formula

ϕ(x1, . . . , xc) := ∀y(
∨

1≤i≤c

∃z(z ≈ y ∧ z ∼e xi))

is satisfiable in the structure (S≈(d[α]),∼e). This in turn means that ϕ defines
an ω-automatic relation Rϕ ⊆ Γω×(Σω)c with αR 6= ∅. By the Uniformisation
Theorem for ω-automatic relations [24], there is an ω-automatic function fR :
R(Σω)c → (Σω)c with fR(α) ∈ αR for all α ∈ R(Σω)c.
We are now prepared to construct d′. Intuitively we are going to use fR

to pick x1, . . . , xc from the original representation such that all elements are
encoded in L := L(A[α]) ∩

⋃
1≤i≤c[xi]∼e . Then for every y ∈ L we just cut y

from the point where it coincides with some xi and annotate the resulting string
with the respective end-class. More formally we first expand the alphabet Σ
by new symbols {1, . . . , c}. The domain automaton is constructed from the
formula:

ϕA(α, x) := ∃y ∈ Σ∗, i ∈ {1, . . . , c}(x = yi�ω ∧ (y(fR(α)i[|y|,∞)) ∈ L(A[α])).

Similarly for S ∈ {≈} ∪ τ we construct an automaton by the formula

ϕS(α, y1i1�
ω, . . . , ykik�

ω) := S(y1(fR(α)i1 [|y1|,∞)), . . . , yk(fR(α)ik [|yk|,∞))).

The corresponding relations can easily be implemented by Muller automata.
As always, the resulting presentation can be made injective by taking the
length-lexicographic smallest representative of any ≈-class.
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For ω-automatic structures, it has been shown that Theorem 3.1 remains
true for the extension FOC of first-order logic by the quantifiers ∃∞/∃>ℵ0/∃(k,m),
meaning “there exists infinitely / uncountably / k mod m many”. Theorem 3.1
thus also remains valid for FOC over automatic structures with advice.
The k-Ramsey quantifier ∃k-ram is defined by A |= ∃k-ramxϕ(x, c) , iff there

is an infinite X ⊆ A so that A |= ϕ(a1, . . . , ak, c) for all pairwise different
a1, . . . , ak ∈ X, where ϕ(x, p) is a τ -formula with |x| = k.

Lemma 3.19. Let S ⊆ (Σ∗)k+l be a regular relation with advice α and P =
{p ∈ (Σ∗)l | ∃k-ramxSxp}. There are infinite sets (Ap)p∈P with (a1, . . . , ak, p) ∈
S for all pairwise different a1, . . . , ak ∈ Ap so that A = {(a, p) | a ∈ Ap, p ∈ P}
is regular with advice α.

Proof. Consider ω-words of the form s ⊗ t with s = s0s1 . . . and t = t0t1 . . .
such that |si| = |ti| and si ∈ Σ∗{ȧ | a ∈ Σ}, ti ∈ Σ∗. Say that a word x ∈ Σ∗ is
on s⊗ t, if there is an i so that x = π(s0 . . . siti+1), where π is the projection
of the alphabet, which maps ȧ to a for all a ∈ Σ and leaves all other symbols
unchanged. It is not hard to construct a Muller automaton B, so that L(B)[α]
consists of those s⊗t⊗p, so that (x1, . . . , xk, p) ∈ S for all (x1, . . . , xk) such that
x1, . . . , xk are pairwise different words on s ⊗ t. Applying the Uniformisation
Theorem to B, we get a Muller automaton B′ so that for every p ∈ P there is
at most one s⊗ t with s⊗ t⊗ p⊗α ∈ L(B′). Using B′ we can easily construct
another Muller automaton that recognizes with advice α the set of all words
that are on this unique s⊗ t.
It remains to show that for each p ∈ P there is at least one s⊗t with s⊗t⊗p ∈

L(B)[α]. Let p ∈ P and X ⊆ Σ∗ be an infinite set with (x1, . . . , xk, p) ∈ S
for all pairwise distinct x1, . . . , xk ∈ X. Consider the subtree of T|Σ| that is
generated by the prefix-closure of X. According to König’s Lemma there is an
infinite path γ in this tree so that from every node on the path a node in X is
reachable. We define words si, ti ∈ Σ∗ with the following properties:

1. |si| = |ti| for all i ∈ N

2. s0 . . . si is a prefix of γ for all i ∈ N.

3. s0 . . . siti+1 ∈ X for all i ∈ N.

For this define recursively s0, t0 := ε, ti+1 as a shortest path from s0 . . . si to
a node in X and si+1 as the path of length |ti+1|, so that s0 . . . si+1 remains a
prefix of γ for all i ∈ N.
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Corollary 3.11. If α ∈ Γω has a decidable MSO-theory then the FOC+∃k-ram-
theory of any countable α-automatic structure with advice α is decidable.

Richness and Limitation Revisited While it is known that the countable
ω-automatic structures are exactly the automatic structures [68], Example 3.1
describes an important and natural example of a structure that is not auto-
matic but α-automatic for some suitable advice α ∈ Γω. In the light of this fact,
there is a natural need to reexamine the classical examples of non-automatic
structures with a decidable theory. Indeed, an inspection of the corresponding
proofs reveals that most of them rely on applications of the pumping lemma
for finite automata. This is, however, no longer an option in the presence of
an advice string because such an application of the pumping lemma would
also alter the advice string. Note that the only interesting parameters α are
the non ultimately periodic ones. But for such α there is no factorisation
α = uwβ such that α = uwnβ with w 6= ε and n 6= 1. As mentioned before,
the methods developed in this chapter provide a suitable replacement for the
pumping lemma, which leads to alternative non-automaticity proofs for many
of the known examples of non-automatic structures, which also apply in the
presence of an advice. In this sence all of these structures are far from being
automatic.

Corollary 3.12. No countably infinite integral domain A is ω-automatic with
advice.

Proof. Countable advice automatic structures have presentations with finite
word encodings, as stated by Theorem 3.7. For such presentations Ie(A) =
1.

In the following, we want to give a collection of structures which cannot be
substructure of any countable structure advice ω-automatic presentation.

Corollary 3.13. Let A be a countable advice ω-automatic structure with binary
function f . Then there is a constant c such that for every substructure B ⊆ A
and every finite set C ⊆ B there is a finite set D ⊆ B such that |f(C,D)| ≤
c · |D|.
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Proof. This is a direct consequence of Lemma 3.4. First, because A is countable
there is an advice α ∈ Γω and an α-automatic presentation d such that I(A) =
1 with respect to d. By Corollary 3.4 there is a constant c such that for every
finite set C ⊆ B there is a finite set D ⊇ C with c · |D| ≥ |f(D,D)| ≥
|f(C,D)|.

Lemma 3.20. No countable advice automatic structure contains the free semi-
group with two generators as substructure.

Proof. Suppose A = (A, ·) contains the free semigroup ({a, b}+, ·) over the
generators a, b. Consider the sets Bn = {a, b}n for n ∈ N. For every finite set
C ⊆ {a, b}+ the product Bn · C has size |Bn| · |C| = 2n · |C| because for every
v ∈ {a, b}n the mapping fv : c 7→ vc is obviously injective and also for v 6= v′

it is clear that fv(c) 6= fv′(c
′) for all c, c′ ∈ C. Therefore A can not be advice

automatic since this clearly violates the property given in Corollary 3.13.

Corollary 3.14. The free group with at least two generators is not advice
automatic.

Next we will show that the same holds for (N, ·). For this last application
recall Freiman’s Theorem. Let (G,+) be an abelian group. A generalised
arithmetic progression of rank d is a set P = {a0+

∑d
i=1 ziai | 0 ≤ zi ≤ ki}

for some a0, . . . , ad ∈ G, k1, . . . , kd ∈ N.

Theorem 3.8 (Freiman [46]). Let G be a torsion-free abelian group. For
every constant c > 0 there are k, d ∈ N such that for all subsets A ⊆ G with
|A + A| ≤ c|A| there is a generalized arithmetic progression P of rank d that
contains A with |P | ≤ k · |A|.

Theorem 3.9. The structure (N, ·) is not a substructure of a countable advice
automatic structure.

Proof. Suppose (N, ·) ⊆ A. We want to apply Freiman’s Theorem to sub-
sets of (N, ·). For this purpose we consider the embedding ι from (N, ·)
to Z<ω := ⊕n∈N(Z,+) given by ι(pn1

1 p
n2
2 · · · pnmm ) = (n1, n2, . . . , nm, 0, 0, . . .),

where {p1, p2, p3, . . .} = P is the canonical enumeration of all primes. The
application of Freiman’s Theorem to Z<ω yields a function k(r) such that
every finite set X ⊆ Z<ω with |X + X| ≤ r · |X| is is contained in a sub-
group with rank at most k(r). Consider the sets Pn := {p1, . . . , pn}. The

83



3 Advice Automatic Structures

group generated by ι(P) is isomorphic to Zn. Therefore we can conclude
that if n > k(r) then rank(〈ι(X)〉) > k(r) for every finite set X ⊆ N with
Pn ⊆ X, because Zn ∼= 〈ι(Pn)〉 ≤ 〈ι(X)〉 and rank(Zn) = n > k(r). Here
we use that rank(G′) ≤ rank(G) for every subgroup G′ of a torsion free
abelian group G. Using the contraposition of Freiman’s theorem we get that
|ι(X) + ι(X)| > r · |ι(X)| and hence |X · X| > r · |X|. It follows that A can
not be ω-automatic with any advice because Corollary 3.4 is not fulfilled for
the sets Pn.

Corollary 3.15. The following structures have no ω-automatic presentation
with advice:

• (N, ·),

• (Q, ·), and

• any countable torsion-free abelian group of infinite rank.

Note that Theorem 3.9 does no longer hold if one considers uncountable
structures. For instance, the multiplication over the reals (R, ·) is ω-automatic
and clearly contains (N, ·) as substructure. This is possible because an ω-
automatic presentation of (R, ·) can and also must scatter the encodings of the
natural numbers across infinitely many end-classes.

3.4 Discussion

In this chapter we developed an algebraical and combinatorial toolbox, which
allows us to show that certain structures do not have an ω-automatic presen-
tation with advice. As stated before, one of our higher-order motivations is to
become a broader understanding of set-interpretations by successively enrich-
ing the structures to which the interpretation is applied. A good benchmark
for our progress is that we could give a negative answer to a weakened version
of a question by Rabin. The field of reals is not set-interpretable in N. We
showed that this is not the case, even if we consider expansions with arbitrary
unary predicates. However the original question remains unsolved.

Open Problem 3.1. Is the field of reals set-interpretable in Tω or, equiva-
lently, is the field of reals ω-tree-automatic?
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While we do not expect that it is, our methods still seem to be insufficient
to settle this problem. The fact that this question was first raised in 1968 [87],
demonstrates how challenging these kind of questions tend to be.
Working with automatic presentations has proven to be a powerful method-

ological approach. However, in order to make the theory more independent
of specific structures, it would be desirable to have a framework in which
the characterisation of MSO is even more uniform. An interesting approach
towards such a framework was recently proposed by Bojańczyk [15]. He de-
scribes the concept of regularity in the language of category theory. It turns
out that many theorems which have their respective variants for almost all
kinds of automata models can be proven uniformly in this setting. Most in-
terestingly MSO appears in this context as some kind of algebra, similar to
the ω-semigoups, which we have already worked with. It would therefore be
very interesting to see to which extend concepts like set-interpretations can be
studied in this abstract framework.
Another possibility is to consider hierarchies of structures, which are gener-

ated by operations that go along well with MSO. Probably the most prominent
such hierarchy is the Caucal Hierarchy [23]. It is constructed by iterating the
application of unfolding and reverse rational mappings, starting from the class
of all finite graphs. Most notable, all structures in the Caucal Hierarchy have
a decidable MSO-theory. Further, one could hope that the inductive definition
also allows some kind of uniform handling of all structures in this hierarchy.
One should, however, observe that the structures N and Tω are already in the
first level of the Caucal Hierarchy. This means that in order to make progress
along this route we probably still have to be able to analyse set-interpretation
in Tω. Nevertheless, Colcombet and Löding considered finite set-interpretation
on structures of the Caucal hierarchy and coined the term higher order tree-
automatic structures. They were able to show that the corresponding hierarchy
of interpretable structures is strict [25].
In summary, although our understanding has significantly increased over

the last decades, there is still an infinite path (or even infinite tree of possi-
bilities) ahead. Hence, this branch of algorithmic model theory offers exciting
possibilities for future research.
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In the previous chapters we investigated which structures can (or cannot) be
presented by automata that have access to a fixed advice. As the reader
might have already noticed, the advice is not part of the finite presentation
itself, although the underlying advice is essential for the mechanics of the
presentation (nevertheless, in order to obtain an effective decision procedure,
one needs an algorithm that decides the MSO-theory of the advice string).
Henceforth, the same presentation is capable of presenting several structures
by changing the underlying advice. If one considers a whole set of possible
advices, we naturally obtain a presentation of a class of structures. Let us
formulate this idea more precisely.

Definition 4.1. Let c be a parametrised (ω-)[tree-]automatic presentation and
let P ⊆ Γ∗ (P ⊆ Γω, P ⊆ TΓ, or P ⊆ T ωΓ , respectively) be a set of advices.
The tuple (P, c) is a uniform (ω-)[tree-]automatic presentation of a class C if
for all A ∈ C there is an α ∈ P with S(c[α]) ∼= A and vice versa.
A class of structures C is uniformly (ω-)[tree-]automatic, if there exists an

uniform (ω-)[tree-]automatic presentation of C. We denote by (ω-)[tree-]AutCl
the class of all uniformly (ω-)[tree-]automatic classes.

In order to obtain effective decision procedures for the first-order or monadic
second-order theory of presentable classes, we need to refine the notion of
uniformly automatic with respect to the complexity of the advice set P .

Definition 4.2. Let C be a uniformly (ω-)[tree-]automatic class. We say that

• C is strongly (ω-)[tree-]automatic (C ∈ (ω-)[tree-]SAutCl), if it has an
(ω-)[tree-]automatic presentation over an advice set P with decidable
MSO-theory.

• C is regularly (ω-)[tree-]automatic (C ∈ (ω-)[tree-]RAutCl), if it has an
(ω-)[tree-]automatic presentation over a regular advice set P . If the
advice set P of a given presentation is indeed regular, we will usually
assume that P is given by an automaton AP .
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This definition generates 12 classes of presentations that are all interesting
in their own right. Because of this vast combinatoric explosion and to keep
the language concise, we will adopt the convention to speak only of uniformly
automatic classes or presentations whenever we want to express a thought
that might apply to several kinds of presentations and only make the exact
distinction clear in the formal statements.

Examples We give a few motivating examples, which also demonstrate the
variety of possible applications. The first example is due to Reinhardt [91].
Here we apply the idea formulated in the beginning of the chapter to the advice
automatic presentation of (Q,+) from Example 3.1.

Example 4.1. The class of all torsion-free abelian groups of rank 1 is reg-
ularly ω-automatic. By the famous characterisation of Baer [7], the torsion-
free abelian groups of rank 1 are, up to isomorphism, exactly the subgroups
of (Q,+). Moreover, every subgroup of (Q,+) is isomorphic to a subgroup
of (Q,+) that contains the element 1. Every such subgroup G ≤ (Q,+) is
characterised by the number of times 1 can be divided by each prime. More
precisely, the isomorphism type of G is completely determined by the charac-
teristic sequence c = (cp)p∈P with

cp =

{
n if n = max{n ∈ N | pn

∣∣1 in G} exists
∞ otherwise.

For any characteristic sequence c the canonical subgroup Gc with characteristic
sequence c is the subgroup generated by the set⋃

p∈P

{
1

pn
| n ∈ N, n ≤ cp

}
.

To any sequence k = (ki)i∈N we assign the characteristic sequence c(k) =
(c(k)p)p∈P with

c(k)p =

{∑m
i=0 max{n ∈ N | pn

∣∣ki in Z} if m = max{i ∈ N | p
∣∣ki} exists

∞ otherwise.

It can be shown that every element x in Gc(k) has a presentation

x = e ·

(
m+

n∑
i=0

ai∏i
j=0 ki

)
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with e ∈ {1,−1}, m,n ∈ N, and 0 ≤ ai < ki for all 0 ≤ i ≤ n.
Now let d be the presentation given in Example 3.1 and let αk be the ω-word

that consists of the binary expansions of the sequence k, that means the advice
is αk = bin(k0)# bin(k1)# bin(k2)# · · · . With the above facts, one can verify
that S(d[αk]) ∼= Gc(k). Hence together with the ω-regular set

P = {bin(k0)# bin(k1)# bin(k2)# · · · | (ki)i∈N ∈ Nω}

we obtain the regularly ω-automatic presentation (P, d) of the torsion-free
abelian groups of rank 1.

From Rabin’s proof of the decidability of the MSO-theory of the class of all
linear orders we extract the following example.

Example 4.2. The class C = {P((A,<)) | (A,<) is a countable linear order}
is regularly ω-tree-automatic. We use the fact that every countable linear order
is embeddable into (Q, <) and that there is an automatic order on the nodes
of the infinite binary tree that is isomorphic to the order on Q.
Let <in be the in-order on {0, 1}∗, that is

v <in w :⇔(v 6≺ w ∧ w 6≺ v ∧ v <lex w)

∨ (v ≺ w ∧ ∃x : w = v1x)

∨ (w ≺ v ∧ ∃x : v = w0x, )

where ≺ is the prefix relation and <lex is the lexicographic order. A back
and forth argument shows ({0, 1}∗, <in) ∼= (Q, <) (Cantor). Note that <in

is an ω-tree-automatic relation on the nodes of the infinite binary tree (i.e.
on the {0, 1}-labelled trees that have the label 1 on exactly one position).
Hence there is an injective set-interpretation I = (δ(X), ϕin(X, Y ), ϕ⊆(X, Y ))
of P(Q, <) in the infinite binary tree Tω2 where the singleton sets over Q are
exactly the singleton subsets of {0, 1}∗. We modify I to obtain a uniform
set-interpretation I ′ of the class of all powerset structures of countable linear
orders in {(Tω2 , P ) | P ⊆ {0, 1}∗}. The interpretation I ′ is defined as follows:

δ′(X) = ∀y : y ∈ X → y ∈ P,
ϕ′<in

(X, Y ) = δ′(X) ∧ δ′(Y ) ∧ ϕ<in(X, Y ), and
ϕ′⊆(X, Y ) = δ′(X) ∧ δ′(Y ) ∧ ϕ⊆(X, Y ).
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In other words I ′ interprets in (Tω2 , P ) the powerset structure of the sub-
structure of ({0, 1}∗, <in) that is induced by P . Then I ′ is a uniform set-
interpretation of C in the class of all labelled infinite binary trees and therefore
the class C is regularly ω-tree-automatic.

The last example connects our concept with the celebrated theorem of Cour-
celle.

Example 4.3. Fix some d ∈ N and let C be the class of all finite graphs with
treewidth at most d. Then the class {P(G) | G ∈ C} is regularly automatic.
A bit of preparation is necessary to define a suitable set of advice trees.

Let G be a graph of treewidth at most d and T a tree decomposition of G
with width(T ) ≤ d. We fix a root for T and a colouring f : V → {0, . . . , d}
such that all distinct u, v ∈ V that appear together in some bag of T get
distinct colours assigned. Such a colouring exists and can easily be computed
by traversing T from top to bottom and assign a colour to a node v when it
first appears in some bag X. The colour can be chosen as the first colour that
is not already occupied by another node from X.
To every node X of T we associate the structure AX = (f(X), PAX , EAX )

where PAX = {f(v) | no ancestor of X in T contains v} is the set of all
colours f(v) such that v appears in X for the first time in the tree and EAX is
such that f restricted to X is an isomorphism between the subgraph of G in-
duced by X and (f(X), EAX ), that is EAX = {(f(u), f(v)) | u, v ∈ X, (u, v) ∈
EG}.
We construct an advice tree for G from T and f . Our advice trees will

have unbounded degree in general, but, of course, we can encode these trees
with standard techniques by trees of bounded degree. The alphabet consists
of all {P,E}-structures whose universe is a subset of {0, . . . , d}: Γ = {A ∈
Str[{P,E}] | AA ∈ P({1, . . . , d})}. The shape of the advice tree α is isomorphic
to T and the labelling is defined by α(w) := AX , where X is the node of T
that corresponds to w. To illustrate this construction recall the graph G from
Example 2.7. Figure 4.1 shows an advice for the tree decomposition given in
Figure 2.3.
The set of trees that originate from a proper tree decomposition is regular

because one only has to check that the labelling is consistent with the edge
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relation of a graph. This is expressed by the formula

∀x � y ∈ dom(α)∀i, j ∈ {1, . . . , d} :

NoChange(i , j , x , y)→ ((i, j) ∈ Eα(x) ↔ (i, j) ∈ Eα(y)),

where NoChange(i , j , x , y) states that both i and j represent the same vertices
of G in x and y:

NoChange(i, j, x, y) = ∃zi, zj � x : i ∈ Pα(zi) ∧ j ∈ Pα(zj)

∧ ∀x ≺ w � y : i 6∈ Pα(w) ∧ j 6∈ Pα(w).

Having fixed the advice α, the elements of the structure are encoded over
the alphabet Σ = P({1, . . . , d}) by trees over the same domain as α. The
singleton sets are encoded by trees t : dom(α)→ Σ such that

• all nodes w ∈ dom(α) with t(w) 6= ∅ have the same label {i} for some
i ∈ {1, . . . , d},

• there is a node v with t(v) = {i} and i ∈ Pα(v), and

• the other nodes w with t(w) = {i} are exactly the nodes with v ≺ w and
i 6∈ Pα(u) for all v ≺ u � w.

Intuitively, the singleton set {v} ⊆ V is encoded by the colour f(v) and the
subtree of bags of T that contain v.
Let tU and tH be trees that encode sets U and H, respectively. Then the

set U ∪ H is represented by the tree t with t(w) = tU(w) ∪ tH(w) for all
w ∈ dom(α). Note that, by the properties of the colouring function f , every
tree that can be derived in this way from the representations of the singleton
sets encodes exactly one set U without any ambiguity. The construction of the
automata for the domain and the relations of the power set structure is left as
an exercise for the reader.

Remark 4.1. In our examples we used presentations of power set structures
P(A) to translate MSO-sentences over A first to FO-sentences over P(A) and
then, via the interpretation, back to MSO-sentences. It would also be possible
to go the direct way of using MSO interpretations instead of set-interpretations.
As we already mentioned in Chapter 3, MSO-interpretations correspond to
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f(v) =


1 v = b, f, h

2 v = d, e

3 v = a, c, g

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

1

2 3

Figure 4.1: An advice tree derived from Figure 2.3

unary automatic presentations. This means elements are encoded by {0, 1}-
labelled trees, which are labelled with 1 on exactly one position. We remark
here that it does not matter which way we choose in terms of which classes
can be presented. In fact, Colcombet and Löding have proved that P(A) is
set-interpretable in a tree T if, and only if, A is MSO-interpretable in T [25].
Also the translation from one interpretation to the other is uniform. While the
direction from right to left is trivial, the other direction is a deep and technical
result.

4.1 Decision Problems

Let us first state the fundamental decidability theorem for the theory of strongly
automatic classes.

Corollary 4.1. Every class C ∈ (ω-)[tree-]SAutCl has a decidable first-order
theory.

Proof. Let C ∈ (ω-)[tree-]SAutCl and ϕ be a first-order sentence in the lan-
guage of C. Then there is an (ω-)[tree-]automatic presentation (P, c) of C such
that P has a decidable MSO-theory. Using the algorithm in Theorem 3.1 we
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construct an (ω-)[tree-]automaton Aϕ that recognises the set {α | S(c[α]) |=
ϕ}. By Büchi’s [Rabin’s] Theorem we can construct an MSO-formula ψ that
is true in the advice structure if and only if the advice is accepted by Aϕ. At
last we use the decision procedure for the MSO-theory of P to decide whether
ψ ∈ ThMSO(P ).

A classical problem in model theory is to determine the number of non-
isomorphic models of a formula within a certain class of structures. Due to the
fact that we can decide many kinds of cardinality queries for regular languages
this can easily be handled if the presentation of the class fulfills the following
uniqueness condition: A uniform (ω-)[tree-]automatic presentation (P, c) of a
class C has the unique presentation property, if for any A ∈ C there is
exactly one advice α ∈ P such that S(c[α]) ∼= A.

Lemma 4.1. If a class C has a regularly (ω-)automatic presentation (P, c) with
the unique presentation property then the following questions are uniformly
decidable given ϕ ∈ FO, k,m ∈ N:

1. Is the number of pairwise non-isomorphic models of ϕ in C a finite num-
ber n with n ≡ k mod m?

2. Is the number of pairwise non-isomorphic models of ϕ in C at most count-
ably infinite?

3. Is the number of pairwise non-isomorphic models of ϕ in C uncountable?

Proof. We can construct from (P, c) an automatic presentation of

AC = ((]α∈PS(c[α])) ∪ {S(c[α]) | α ∈ P},∼),

where S(c[α]) ∼ a holds if a ∈ AS(c[α]). Let ψ be the formula obtained from
ϕ by relativising all quantifiers Qx by a ∼ x. Because of the unique repre-
sentation property the Questions 1 - 3 reduce to checking whether AC fulfils
∃(k mod m)a(ψ), ∃≤ℵ0a(ψ), or ∃>ℵ0a(ψ), respectively. The extension of first-
order logic by the quantifiers ∃(k mod m),∃≤ℵ0 (, and ∃>ℵ0a(ψ)) is decidable for
(ω-)automatic structures [68,74,79].

Unfortunately even in the simplest possible case, i.e. uniformly automatic
classes of finite sets, the unique presentation property is undecidable.
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Theorem 4.1. Let σ be a finite relational signature. The problem to decide
whether a regularly automatic presentation of a class of σ-structures has the
unique presentation property is

1. complete for the class Π0
1 if σ contains only monadic predicates (even for

classes of finite structures) and

2. hard for the class Π1
1 if σ contains a predicate of arity at least two.

Proof. Proposition 2 follows directly from the fact that the isomorphism prob-
lem for automatic structures is Σ1

1-complete [73]. Obviously, given automatic
presentations d0, d1, one can construct a parametrised presentation c over the
advice set {0, 1} such that S(c[0]) = S(d0) and S(c[1]) = S(d1). Then c has
the unique presentation property if, and only if, S(d0) 6∼= S(d1).
In order to establish proposition 1 we adopt a technique used by Kuske et al.

to show that the isomorphism problem for automatic equivalence relations is
Π0

1-complete. More precisely we use encodings of polynomials by automata to
reduce Hilbert’s 10th problem to the uniqueness problem. The problem can be
formulated as follows: given polynomials p, q ∈ N[x1, . . . , xk] decide whether
p(a) = q(a) for some a ∈ Nk. In [78, Lemma 2] it is shown that for every
polynomial p with non-negative coefficients one can construct an automaton
Ap such that on input 1n1⊗. . .⊗1nk the automatonAp has exactly p(n1, . . . , nk)
accepting runs. Given such an automaton Ap we can construct the following
automatic presentation cp of the class {({0, . . . ,m − 1}) | ∃n(p(n) = m)}.
The advice language of c is {1n1 ⊗ . . . ⊗ 1nk | n ∈ Nk}. For a advice α the
domain language is {w ∈ Q∗p | w is an accepting run of Ap on α}, which is
uniformly automatic since an automaton can check while reading α⊗w if w is
an accepting run of Ap on α. To complete the proof we consider the injective
polynomial C(x, y) = 2y+(x+y)(x+y+1). By nesting C with different inputs,
we obtain injective polynomials Ck for any arity k. For p, q ∈ N[x1, . . . , xn]
define

p′ := Ck+1(x1, . . . , xk, p(x1, . . . , xk))

q′ := Ck+1(x1, . . . , xk, q(x1, . . . , xk)).

Observe that p′ and q′ are both injective and p′(a) = q′(b) holds if, and only
if, a = b and p(a) = q(b). Now let c be the advice disjoint union of cp′ and
cq′ . By the aforementioned properties of p′, q′, c has the unique representa-
tion property if, and only if, p(a) 6= q(a) for all a ∈ Nk. This establishes the
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hardness for Π0
1. Further, the isomorphism problem is decidable for automatic

structures over purely monadic signatures. This holds because two such struc-
tures are isomorphic if and only if all atomic 1-types have the same number
of realisations in both structures. The elements of a structure which realise
a specific atomic 1-type are definable by a first-order formula and hence form
a regular set in the presentation. As the number of atomic 1-types depends
only on the signature σ we can compare the number of realisations for each
type individually. Hence the uniqueness problem is in Π0

1 since we can just
enumerate all pairs of distinct advices (α, β) from the regular advice set and
check if S(c[α]) ∼= S(c[β]).

4.2 Closure Operators

Automatic structures and their variants are effectively closed under disjoint
unions and direct products. In this section we ask whether these constructions
can be made uniform. In other words, if a class C is uniformly automatic is also
the closure of C under disjoint unions and the closure under direct products
uniformly automatic? We will see that the picture becomes quite diverse.

Definition 4.3. Let C be a class of τ -structures. Then C× denotes the closure
of C under direct products and, in case that τ is relational, C] denotes the
closure of C under disjoint unions. That is

C× = {A1 × · · · × An | n ≥ 1,A1, . . . ,An ∈ C} and
C] = {A1 ] · · · ] An | n ≥ 1,A1, . . . ,An ∈ C}.

It is not hard to see that uniformly (ω-)tree-automatic classes behave very
well under the two closure operators that we defined above.

Lemma 4.2.
1. Let C be a uniformly (ω-)tree-automatic class of structures. From a given

(ω-)tree-automatic presentation (P, c) of C one can effectively construct
an (ω-)tree-automatic presentation (P×, c×) of C×. Moreover, regularity
of the advice set is preserved.

2. Let C be a uniformly (ω-)tree-automatic class of structures. From a given
(ω-)tree-automatic presentation (P, c) of C one can effectively construct
an (ω-)tree-automatic presentation (P], c]) of C]. Moreover, regularity
of the advice set is preserved.
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· ·
·

α1

...
α2

...
α3

...

Figure 4.2: The Parameters for the class C×

Proof. Proof of (1): Suppose C is presented by the uniform (ω-)tree-automatic
presentation c over the advice set P . As the construction is rather straightfor-
ward we only give the advice set for the presentation and the idea for the encod-
ing. The advice set consists of all trees where the right child of every node in
the left-most branch induces a subtree which is in P . This is depicted in Figure
4.2 . Such an advice presents the structure S(c[α1])×S(c[α2])×· · ·×S(c[αn]).
Let t1, . . . , tn be elements of S(c[α1]), . . . ,S(c[αn]), respectively. Then the ele-
ment (t1, . . . , tn) is put together in the same way as the advices.
Proof of (2): We use the same advice set as in (1). The elements are encoded

by trees where all except one node 0n1 of the form {0}∗1 are leafs labelled with
a new dummy symbol and 0n1 induces a subtree t such that t ∈ L(A[αn]). The
construction of the automata that recognise the relations in the class is now
straight forward.

Next we consider uniformly automatic classes. While the closure under
disjoint unions can be treated by a rather simple construction, we have to
restrict our attention to classes of finite structures in order to handle the
closure under direct products. For the case of uniformly automatic classes of
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finite structures we can ensure that there is a presentation where for every
structure of the class the length of the encodings of the elements match the
length of the respective advice. This is formulated in the following lemma.

Lemma 4.3. Let C be a uniformly automatic class of finite structures. Then
there is a uniformly automatic presentation c = (A, (AR)R∈τ ) of C with advice
set P such that |w| = |α| for all α ∈ P and all w ∈ L(A[α]). Further if C is
regularly automatic then P is a regular set.

Proof. Let c′ = (A′, (A′R)R∈τ ) be an injective uniform automatic presentation
of C with advice set P ′. Let Q′ ⊇ P be the set of all advices α such that
S(c[α]) is a finite structure. Note that presenting a finite structure under a
fixed presentation is a regular property and hence Q′ is a regular set. Then
L(A′[α]) is finite for all α ∈ Q′. Consider the injective mapping π : Q′ → Q′#∗

given by α 7→ α#k with k = max{0,max{|w| − |α| | α ⊗ w ∈ L(A′p)}}. The
language Q := π(Q′) is also regular. Similarly we can construct automata
A, (AR)R∈τ with

L(A) = {α#n ⊗ w#k | α⊗ w ∈ L(A′) ∧ α#n ∈ Q ∧ |α#n| = |w#k|} and
L(AR) = {α#n ⊗ w1#k1 ⊗ . . .⊗ wr#kr |

α⊗ w1 ⊗ . . .⊗ wr ∈ L(A′R) ∧ α#n ∈ Q ∧ |α#n| = |wi#ki |}

for all R ∈ τ . These automata together with the advice set P = {π(α) | α ∈
P ′} form the presentation we are looking for. At last observe that if P ′ is a
regular set then so is P .

Lemma 4.4.

1. Let C be a uniformly automatic class of finite structures. From a given
automatic presentation (P, c) of C one can effectively construct an auto-
matic presentation (P×, c×) of C×. Moreover, regularity of the advice set
is preserved.

2. Let C be a uniformly automatic class of structures. From a given auto-
matic presentation (P, c) of C one can effectively construct an automatic
presentation (P], c]) of C]. Moreover, regularity of the advice set is
preserved.
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Proof. Let c = (A, (AR)R∈τ , π) be an automatic presentation of C over the
advice set P .
Proof of (1): By Lemma 4.3, we might assume that for all α ∈ P and

all w ∈ L(A[α]) we have |α| = |w|. As advice set for C× we take (P#)∗P ,
where α1# . . .#αn is an advice for S(c[α1])×· · ·×S(c[αn]). The construction
of a uniform presentation c× of C× from c is straight forward. On reading
α1# . . .#αn as advice, the automaton A× should accept exactly the words
w1# . . .#wn with wi ∈ L(A[αi]) for all i ∈ {1, . . . , n}. This can obviously be
done by an automaton since all words in L(A[αi]) have the same length as αi.
The same idea allows us to construct automata that recognise the relations
R ∈ τ .
Proof of (2): We construct a presentation over the advice set (P#)∗P ,

where α1# · · ·#αn should be an advice for
⊎

1≤i≤n S(c[αi]). For an advice
α1# · · ·#αn we encode the elements of S(αi), 1 ≤ i ≤ n, by the language
Li = #|α1#···#αi−1#|L(A[αi]). Intuitively we shift the encodings of the ele-
ments in the copy of the i-th summand so that they match with the beginning
of the i-th advice. Obviously one can construct a parametrised automaton
with L(A[α]) =

⋃
1≤i≤n Li for all α = α1# · · ·#αn ∈ (P#)∗P . It is an easy

exercise to construct the rest of the presentation.

At last we show that Proposition (1) of Lemma 4.4 cannot be extended to
arbitrary uniformly automatic classes.

Theorem 4.2. The class of all free abelian groups of finite rank is not uni-
formly ω-automatic.

Proof. The statement is a consequence of the following two propositions.

Lemma 4.5. There exists an increasing function f : Q → N such that for
every free abelian group of finite rank (G,+) the following is true: For every
finite set X ⊆ G the rank of the subgroup generated by X is bounded by

rank(〈X〉) ≤ f

(
|X +X|
|X|

)
.

Proof. Consider the torsion-free abelian group (Zω,+). By Freiman’s Theorem
there is a increasing function g : Q→ N such that every finite subset X ⊆ Zω

the following holds: Let n := g
(
|X+X|
|X|

)
. Then 〈X〉 is contained in an n-

dimensional generalised arithmetical progression P = {a0 + k1a1 + · · ·+ knan |
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k1, . . . , kn ∈ Z} for some a0, a1, . . . , an ∈ Zω. Hence, 〈X〉 ⊆ 〈{a0, a1, . . . , an}〉
and therefore rank(〈X〉) ≤ rank(〈{a0, a1, . . . , an}〉) ≤ n+ 1.
Now every free abelian group G of finite rank is isomorphic to (Zn,+)

for some n ∈ N. Fix some isomorphism ι : G → (Zn,+) and let κ be
the natural embedding of (Zn,+) into (Zω,+) given by κ : (z1, . . . , zn) 7→
(z1, . . . , zn, 0, 0, . . .). Then λ := κ ◦ ι is an embedding of G into (Zω,+) and
for all finite subsets X of G we can bound the rank of 〈X〉G by rank(〈X〉G) =

rank(〈λ(X)〉(Zω ,+)) ≤ g
(
|λ(X)+λ(X)|
|λ(X)|

)
+ 1 = g

(
|X+X|
|X|

)
+ 1 =: f

(
|X+X|
|X|

)
.

Next we observe that Corollary 3.13 is uniform in the following sense.

Corollary 4.2. For every uniformly ω-automatic class of countable τ -structures
C and every (k + `)-ary function f ∈ τ there exists a constant c such that for
every A ∈ C and every finite set X ⊆ AA there exists a finite set Y ⊇ X such
that for every a ∈ (AA)k it holds that |f(a, Y `)| ≤ c|Y |.

Proof. It suffices to observe that the constant c in Corollary 3.13 does not
depend on the advice α

To complete the proof of Theorem 4.2 we show that every uniformly ω-
automatic class C of free abelian groups of finite rank has in fact bounded rank.
As there are free abelian groups of arbitrary finite rank, we conclude that the
class of all free abelian groups of finite rank is not uniformly ω-automatic.
Now let C be such a class a free abelian groups and let c be the constant from

Lemma 4.2 with respect to C. We claim that the rank of every group G ∈ C
is bounded by f(c) where f is the function from Lemma 4.5. For every group
G ∈ C there is a finite set X with 〈X〉 = G and hence rank(〈Y 〉) = rank(G)
for every Y ⊇ X. But Lemma 4.2 implies that there is a finite set Y ⊇ X with
|Y + Y | > c|Y |. From Lemma 4.5 we get rank(G) = rank(〈Y 〉) ≤ f( |Y+Y |

|Y | ) ≤
f(c).

Corollary 4.3. There is a regularly automatic class C such that the closure
under direct products C× is not uniformly ω-automatic.

Proof. The free abelian groups of finite rank are up to isomorphism the finite
direct products of the automatic structure (Z,+).

Corollary 4.4. The class {(Nn,+) | n ≥ 1} is not uniformly ω-automatic.
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Proof. The free abelian groups of finite rank are first-order interpretable in C.
Since ω-AutCl is closed under first-order interpretations, {(Nn,+) | n ≥ 1}
cannot be uniformly ω-automatic.

Another natural witness for Corollary 4.3 is the class of all finite direct
products of the interval algebra on ω, Bω. Note that this is also the class of
all automatic infinite boolean algebras: in [73] it was shown that an infinite
boolean algebra is automatic if and only if it is isomorphic to Bn

ω for some n ≥
1. In the following we will identify Bω with the set algebra over all finite and
co-finite sets of natural numbers, Pfc(N) = {X ⊆ N | |X| <∞∨|N\X| <∞}.
Indeed, these two boolean algebras are isomorphic.

Lemma 4.6. There exists an FOC-interpretation I such that the following
holds: If A = (Bn

ω, P,�) is (isomorphic to) the n-fold cartesian product of the
interval algebra Bω expanded by the unary relation

P = {(N, ∅, . . . , ∅), (∅,N, ∅, . . . , ∅), . . . , (∅, . . . , ∅,N)}

and a linear order � of order-type ω then I(A) ∼= (Nn,+).

Proof. It is not too hard to see that (N,+) is FOC-interpretable in (Bω, P,�).
Without loss of generality we can assume that � orders the atoms in the
natural way, that is {0} ≺ {1} ≺ · · · . The idea is to identify the finite sets in
Bω with the binary expansions of natural numbers. Accordingly, a finite set
X presents the number n(X) =

∑
i∈X 2i. The domain formula has to express

that x is a finite set. This can be done by the formula ϕN(x) := ¬∃∞y(y ⊆
x). Addition can be performed by quantifying carry-bits and checking the
correctness using the linear order on the atoms. This is done by the following
formula

add(x, y, z) ≡ ∃c(0 6∈ c ∧ ϕcarry(c) ∧ ∀i ∈ N(i ∈ z ↔ (i ∈ x⊕ i ∈ y ⊕ i ∈ c))),

where ϕcarry(x, y, c) expresses that the carry bit are set correctly:

ϕcarry(x, y, c) ≡ ∀i ∈ N \ {0} : i ∈ c↔
∨

a6=b∈{x,y,c}

(i− 1) ∈ a ∧ (i− 1) ∈ b.

Obviously add can be formulated in the language of Boolean algebras expanded
by the linear order.

99



4 Uniformly Automatic Classes

We describe how to transform the interpretation into a uniform interpreta-
tion of {(Nn,+) | n ≥ 1} in (Bn

ω, P,�). The idea for the general case is to use
the predicate P to perform addition in every component separately. An ele-
ment of (m1, . . . ,mn) is encoded by the tuple (X1, . . . , Xn) ∈ Pfc(N)n of finite
sets with n(Xi) = mi for all 1 ≤ i ≤ n. The correctness of the addition has to
be checked for every component separately. We obtain the interpretation

δ(x) ≡ ∀p ∈ P : ϕ′N(x ∩ p, p)
ϕ+(x, y, z) ≡ ∀p ∈ P : add′(x ∩ p, y ∩ p, z ∩ p, p)

where ϕ′N and add′ are obtained from ϕN and add by restricting all quantifica-
tions to elements below p.

Lemma 4.7. Let (Xij)1≤i,j≤n be a collection of finite subsets of N such that
for all i ∈ {1, . . . , n}:

• Xki ∩X`i = ∅ and all 1 ≤ k < ` ≤ n with k, ` 6= i and

• Xii =
⋃
j 6=iXji.

Then there is an automorphism of Bn
ω which maps the tuple

((Xi1, . . . , Xi(i−1),N \Xii, Xi(i+1), . . . , Xin))1≤i≤n ∈ (Pfc(N)n)n

to the tuple

((N, ∅, . . . , ∅), (∅,N, ∅, . . . , ∅), . . . , (∅, . . . , ∅,N)).

Proof. The automorphism is constructed as follows: For all 1 ≤ i ≤ n fix a
bijection πi between the atoms below (Xi1, . . . , Xi(i−1),N\Xii, Xi(i+1), . . . , Xin)
and the atoms below (∅, . . . , ∅, N︸︷︷︸

position i

, ∅, . . . , ∅). Because of the properties of

(Xij)1≤i,j≤n, every atom appears in the domain and the range of exactly one
πi. Thus, we can combine π1, . . . , πn to a permutation π =

⋃
1≤i≤n πi on the

atoms of Bn
ω. We lift π to a permutation ρ on P(N)n by

ρ((X1, . . . , Xn)) =
⋃

a atom below (X1,...,Xn)

π(a).
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Then ρ is an automorphism on (P(N),∪,∩,N, ∅)n because ρ is derived from a
permutation of the atoms. To see that this is true, note that (P(N),∪,∩,N, ∅)n
is isomorphic to (P(N),∪,∩,N, ∅) via the automorphism

(X1, . . . , Xn) 7→
⋃

1≤i≤n

{na+ (i− 1) | a ∈ Xi}.

Hence every permutation of atoms extends to an automorphism of the boolean
algebra (P(N),∪,∩,N, ∅)n. Further, the restriction of ρ to Pfc(N)n is a permu-
tation on Pfc(N)n, hence ρ is an automorphism on Bn

ω ⊆ (P(N),∪,∩,N, ∅)n.

Lemma 4.8. There is an FOC-interpretation J such that the following is
true: If a structure A is isomorphic to (Bn

ω,≤), where ≤ is a linear order on
Pfc(N)n of order type ω then the structure J (A) is isomorphic to a structure
(Bn

ω, P,�), where P and � are as in Lemma 4.6.

Proof. By Lemma 4.7 it suffices to show that a set of the form

{(Xi1, . . . , Xi(i−1),N \Xii, Xi(i+1), . . . , Xin) | 1 ≤ i ≤ n},

where (Xij)1≤i,j≤n are as described in Lemma 4.7, is definable by an FOC-
formula.
First, we define the elements of Bn

ω that are finite in all but exactly one
component. This is done by the following formula

Comp(x) := ∃∞z(z ⊆ x) ∧ ¬∃y(y ⊆ x ∧ ∃∞z(z ⊆ y) ∧ ∃∞z(z ⊆ x\y)).

The formula Comp states that x is infinite and there is no infinite subset y
of x such that x \ y is also infinite. This ensures that x = (X1, . . . , Xi−1,N \
Xi, Xi+1, . . . , Xn) for some finite sets X1, . . . , Xn ⊆ N and some i ≤ n.
We employ the linear order to preselect n such elements, which are infinite

in pairwise different components.

Sel(x) := Comp(x) ∧ ∀y((Comp(y) ∧ y < x)→ ¬∃∞z(z ⊆ x ∩ y)).

The elements that are defined by Sel might still be not quite of the from that
we want. First the elements might have finite non-empty intersections and
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second there might be finitely many atoms that are not below any element of
Sel(B

n
ω ,≤). Therefore we need a last modification step. We define

Disjoin(x) ≡ ∃y.Sel(y)∀a.Atom(a) :

a ∈ x↔ (a ∈ y ∧ ∀z.(Sel(z) ∧ z < y)→ a 6∈ z)

Uncov(a) ≡ Atom(a) ∧ ¬∃x : Disjoin(x) ∧ a ∈ x

Finally, we define the formula ϕP :

ϕP (x) ≡ (Disjoin(x) ∧ ∃y.Disjoin(y) : y < x)∨
(∃x′.(Disjoin(x′) ∧ ¬∃y.Disjoin(y) : y < x′)∀a.Atom(a) :

a ∈ x↔ a ∈ x′ ∨ Uncovered(a))

Corollary 4.5. The class {Bω}× is not uniformly ω-automatic.

Proof. If {Bω}× would be uniformly ω-automatic then there would be a presen-
tation c with finite word encoding. But then we could extend this presentation
by the length-lexicographic order and use the Interpretations I and J from
Lemma 4.6 and Lemma 4.8 to obtain a uniformly ω-automatic presentation of
the class {(Nn,+) | n ≥ 1}, contradicting Lemma 4.8.

The reader has probably noticed that we have left one case open: the closure
of uniformly ω-automatic classes under disjoint unions. As a matter of fact,
this case is still open. On the one hand there seems to be no simple construction
to obtain a presentation of the disjoint union closure from a given presentation.
But on the other hand we are also not aware of a possible counter example.

Open Problem 4.1. Is there a uniformly ω-automatic class C such that C]
is not uniformly ω-automatic?

Table 4.1 summarises the results of this section.

4.3 Discussion

In this chapter we introduced uniformly automatic presentations. The pur-
pose of this chapter was mainly to establish basic facts and to get the reader
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4 Uniformly Automatic Classes

Table 4.1: Closure Operators on Uniformly Automatic Presentations

Presentation × ]
automatic X X
ω-automatic X ?

tree-automatic X X
ω-tree-automatic X X

acquainted with the concept. We have seen that, at least implicitly, these pre-
sentations have been very successfully applied in various areas of theoretical
computer science. The applications range from automata based decision pro-
cedures, like for the theory of linear orders, to algorithmic meta-theorems on
classes of bounded treewidth or cliquewidth. In the upcoming chapter we will
have a deeper look into the applications in finite model theory. We shortly
comment on a few things that we have seen in the previous sections.
An interesting fact about having automata, which present a whole class of

structures, is that we are able to relate the different models in this class. In Sec-
tion 4.1 we just briefly hinted at one such application. One could ask whether
there are interesting examples of uniformly automatic classes where we could
also express certain relations between two models of the class, for instance that
one model is embeddable into another. Of course, such a presentation might
as well be understood as one large automatic structure. However, the shift in
the semantics might give rise to applications which have not been considered
so far.
With regard to Section 4.2, we want to remark on the fact that we had to

leave the case of closure under disjoint unions open for uniformly ω-automatic
classes. This might actually hint at a complexity restriction inherent to these
kinds of presentations, which is not yet fully understood. We do not want to
rule out that there is always a way to present the closure under disjoint unions
with a uniformly ω-automatic presentation or that there might be a nice and
simple argument why this is not the case. But at least our consideration did
not give a strong indication in either direction.
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While it is not very interesting to ask whether a single finite structure is
automatic (because every finite structure is automatic), the situation changes
when we ask which classes of finite structures admit a uniform automatic
presentation. If we restrict ourselves to finite structures we operate in the
field of finite model theory. Here the question is no longer if one can decide
first-order or monadic second-order properties of a specific structure but rather
how efficient these properties can be decided. Finite model theory has therefore
strong connections to complexity theory. Especially in the field of parametrised
complexity automata based approaches to model checking play an important
role.
We have already seen that uniform tree-automaticity of a class of graphs

is a property that goes beyond bounded treewidth and bounded cliquewidth
with the obvious drawback that we can handle only first-order logic instead
of monadic second-order logic. Still, if computing an advice from a given
structure can be performed efficiently, model checking for first-order logic is
fixed parameter tractable in the size of the formula on the class. Meta-theorems
for first-order logic have a long history on classes of sparse graphs. Starting
with Seese and graphs of bounded degree [96] to the resent result of Grohe,
Kreutzer, and Siebertz for nowhere dense graphs [54]. Automatic presentations
might bring up new and interesting classes of structures with a fixed parameter
tractable model checking problem.
In this chapter, we are concerned with the efficiency of this approach. Note

that the non-elementary worst-case runtime of the automaton construction
leads in general to a non-elementary parameter dependence in the algorithmic
meta-theorems. For the direct application of MSO model-checking on words or
trees this is probably optimal. Frick and Grohe [47] showed, unless PTIME =
NP, there is no algorithm that solves the model checking problem for MSO on
finite words or trees in time

f(|ϕ|) · poly(|t|)
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5 Uniformly Automatic Classes of Finite Structures

for any elementary function f : N → N. The same holds for first-order logic
on words (under the modified assumption FPT 6= AW∗). But what about our
setting? It might be that the class which is given by the automatic presentation
is actually very simple and there are other approaches which lead to FPT-
algorithms with elementary parameter dependence. In this chapter we will
show that runtime of the automata based model checking algorithm scales in
many situations very nicely the the complexity of the class under consideration.

5.1 Model Checking Revisited

It is well known that there are (word-)automatic structures with non-elementary
first-order theory [12]. A common example is the infinite binary tree with two
successor relations and the descendant relation ({0, 1}∗, S0, S1,�). Hence ev-
ery algorithm that solves the model checking problem for structures given by
a (tree-)automatic presentation has an unavoidable non-elementary worst-case
runtime behaviour. On the other hand, for many important examples of au-
tomatic structures the situation is much better. For instance it is known that
the first-order theory of Presburger Arithmetic can be decided in three-fold
exponential time [83]. It is therefore very natural to analyse the runtime of a
given model checking algorithm for automatic structures with respect to some
fixed presentation.
In [33] Durand-Gasselin and Habermehl proposed a method to estimate the

time that the generic automata based model checking algorithm for structures
given by a word-automatic presentation needs when it is used to solve the
first order theory of a single structure. They showed that for certain presenta-
tions of (Z,+) the running time of the algorithm is only triply exponential in
the formula. Similar bounds where established for arbitrary word-automatic
presentations of structures of bounded degree.
In the following we want to extend their method to uniformly tree-automatic

presentations of classes of structures. Fortunately this generalisation goes
through very well because of the nice analogue of the Myhill-Nerode congru-
ence for regular tree-languages (see Theorem 2.5). Nevertheless, we also make
some assumptions about the presentations in order to reduce the number of
necessary case distinctions.

Definition 5.1. Let t be the convolution of trees t1, . . . , tn. a padded con-
volution of t1, . . . , tn is a tree t′ such that dom(t) ⊆ dom(t′), t(w) = t′(w) for
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5 Uniformly Automatic Classes of Finite Structures

all w ∈ dom(t), and t′(w) = (�, . . . ,�) for all w ∈ dom(t′) \ dom(t). In this
case we also say that t′ is a padding of t. Note that t is a padded convolution
of some trees t1, . . . , tn if and only if t is the convolution of some paddings of
t1, . . . , tn. For a tree t ∈ TΣ1�×···×Σn� \ T{�n} let cut(t) denote the unique tree
with minimal domain (with respect to set inclusion) such that

• domcut(t) ⊇ {w ∈ domt | t(w) 6= �n},

• cut(t)(w) = t(w) for all w ∈ domcut(t), and

A padding of a uniformly tree-automatic presentation c = (P,A, (AR)R∈τ )
is a tuple c′ = (P,A′, (A′R)R∈τ ) such that L(B′) is the closure under paddings
of L(B) for all B ∈ {A} ∪ {AR | R ∈ τ}. In this case we also say that c′ is a
padded uniformly tree-automatic presentation.

A padding of an injective presentation is no longer injective in the sense that
every padding of a tree t will encode the same element as t. However, it is still
the case that equality is simply the identity relation.

Definition 5.2. An injective parametrised tree-automatic presentation c =
(A,AR1 , . . . ,ARn) is good if for all α ∈ TΓ either L(A[α]) = L(AR1) = · · · =
L(ARn) = ∅ or c[α] presents a structure. We say that a good parametrised
tree-automatic presentation presents the class {S(c[α]) | L(A[α]) 6= ∅} and
denote the corresponding advice set with P c = {α ∈ TΓ | L(A[α]) 6= ∅}.

Since presenting a structure under a given tree-automatic presentation is a
regular property of advice-trees, a class C is presented by a good presentation
if and only if C is regularly tree-automatic. In the remainder of this chapter we
will always work with padded good uniformly tree-automatic presentations.
We start with a detailed description of the model checking algorithm on

structures given by an advice α from a uniform tree-automatic presentation c.
Up to small optimisations it resembles the standard algorithm that constructs
from c and an FO-formula ϕ an automaton Aϕ such that α ∈ L(Aϕ) ⇔
S(c[α]) |= ϕ and then checks whether α is accepted by Aϕ. The automaton Aϕ
is constructed recursively using standard constructions to compute automata
for the intersection, complement, and projection of tree-automatic languages.
The exact procedure is given by Algorithm 1. Analogous to [33], the only
crucial optimisation is to construct only the reachable part of every automaton
that appears in the process (see procudures Intersect and Determinise).
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Algorithm 1 Modelchchecking on Uniformly Tree-Automatic Classes
Input: Padded good tree-automatic presentation c = (A, (AR)R∈τ ), FO-formula ϕ
Output: Tree-automaton Aϕ
1: procedure Compose(c, ϕ)
2: if ϕ(x1, . . . , xm) = R(xi1 , . . . , xik ), R ∈ τ ∪ {=} then

.
Construct the minimal automaton that accepts a tree t iff t = 〈(α, t1, . . . , tr)〉 with
(ti1 , . . . , tik ) ∈ S(d[α])m

3: A′R ← Extend(AR, r, i1, . . . , ik)
4: AD ← Domain(A, m)
5: Aϕ ← Intersect(A′R, AD)
6: minimise Aϕ
7: return Aϕ
8: else if ϕ(x1, . . . , xm) = ψ(x1, . . . , xm) ∧ θ(x1, . . . , xm) then

. Recursively construct Aψ ,Aθ and build the intersection automaton

9: Aψ ← Compose((A, (AR)R∈τ ), ψ)
10: Aθ ← Compose((A, (AR)R∈τ ), θ)
11: return Intersect(Aψ , Aθ)
12: else if ϕ(x1, . . . , xm) = ¬ψ(x1, . . . , xm) then

. Construct the complement automaton of Aψ and build the intersection automaton with
the minimal domain automaton

13: Aψ ← Compose((A, (AR)R∈τ ), ψ(x1, . . . , xm))
14: AD ← Domain(A, r)
15: return Intersect(Aψ , AD)
16: else if ϕ(x1, . . . , xm) = ∃xm+1 : ψ(x1, . . . , xm+1) then

. Construct Aψ , apply the projection (σ1, . . . , σm+1) 7→ (σ1, . . . , σm) to the alphabet, and
determinise the result

17: Aψ ← Compose((A, (AR)R∈τ ), ψ(x1, . . . , xm))
18: A′ϕ ← Project(Aψ)
19: Aϕ ← Determinise(A′ϕ)
20: return Aϕ
21: end if
22: end procedure
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The subroutine Domain constructs the minimal tree-automaton that recog-
nises exactly those trees in TΓ�×(Σ�)m that are padded convolutions of trees
t0 ∈ TΓ and t1, . . . , tm ∈ TΣ such that t1, . . . , tm ∈ S(d[t0]).

Algorithm 2 Adjust the arity of a relation
Input: Tree-automaton A = (Q,Γ� × Σk�, δ, F ), m ∈ N, 1 ≤ i1, . . . , ik ≤ m
Output: A′ s.t. L(A′)={〈tp, t1, . . . , tm〉|〈tp, ti1 , . . . , tik 〉∈L(A)}
1: procedure Extend(A, r, i1, . . . , ik)
2: for a = (γ, σ1, . . . , σm) ∈ Γ� × (Σ�)m, ` ∈ rk(a), q1 . . . , q` ∈ QA do
3: δ′(q1, . . . , q`, a) := δA(q1, . . . , q`, (γ, σi1 , . . . , σik ))
4: end for
5: A′ ← (Q,Γ� × Σm� , δ

′, F )
6: return A′
7: end procedure

Algorithm 3 Constructing a Domain Automaton
Input: Parametrised tree-automaton A, m ∈ N
Output: Tree-automatonAD s.t. L(AD)={〈tp, t1, . . . , tm〉 | t1, . . . , tm∈S(d[tp])}
1: procedure Domain(A,m)
2: for (γ, σ1, . . . , σm) ∈ Γ× Σm, k ∈ rk((γ, σ1, . . . , σm)) do
3: for ((q11, . . . , q1m), . . . , (qk1, . . . , qkm)) ∈ (Qm)k do
4: δD((q11, . . . , q1m), . . . , (qk1, . . . , qkm), (γ, σ1, . . . , σm)) :=

(δ(q11, . . . , q1k, (γ, σ1)), . . . , δ(qm1, . . . , qmk, (γ, σm)))
5: end for
6: end for
7: AD ← (Qm,Γ× Σm, δD, F

m)
8: return AD
9: end procedure

In order to analyse Algorithm 1 with respect to the given presentation,
we observe the following runtime bounds for the subroutines. We omit the
proofs here as they are easily obtainable by a straight forward analysis of the
respective routines.

Lemma 5.1. The procedure Intersect(A1,A2) computes a tree-automaton
A with s states and L(A) = L(A1) ∩ L(A2) in time O(|Σ| · rk(Σ) · srk(Σ)),
where s is the number of states reachable from the initial state in the product
automaton A1 ×A2.

Lemma 5.2. The procedure Determinise(A) computes a deterministic tree-
automaton A′ with s states and L(A′) = L(A) in time O(|Σ| · rk(Σ) · srk(Σ)),
where s is the number of states reachable from the initial state in the power set
automaton of A.
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Algorithm 4 Intersection
Input: Tree-automata A1 = (Q1,Σ, δ1, F1), A2 = (Q2,Σ, δ2, F2)
Output: Tree-automaton (Q,Σ, δ, F ) that recognises L(A1) ∩ L(A2)
1: procedure Intersect(A1, A2)
2: Q← ∅
3: Q′ ← {(δ1(a), δ2(a)) ∈ Q1 ×Q2 | a ∈ Σ :}
4: while Q 6= Q′ do
5: Qlast ← Q
6: Q← Q′

7: for a ∈ Σ, k ∈ rk(a) do
8: for ((q1

1 , q
2
1), . . . , (q1

k, q
2
k)) ∈ Qk \Qklast do

9: Q′ ← Q′ ∪ {(δ1(q1
1 , . . . , q

1
k, a), δ2(q2

1 , . . . , q
2
k, a))}

10: end for
11: end for
12: end while
13: for a ∈ Σ, k ∈ rk(a) do
14: for (q1

1 , q
2
1), . . . , (q1

k, q
2
k) ∈ Q do

15: δ((q1
1 , q

2
1), . . . , (q1

k, q
2
k), a) := (δ1(q1

1 , . . . , q
1
k, a), δ2(q2

1 , . . . , q
2
k, a))

16: end for
17: end for
18: F ← Q ∩ (F1 × F2)
19: return (Q,Σ, δ, F )
20: end procedure

Algorithm 5 Projection
Input: Tree-automaton A = (Q,Γ� × Σm+1

� , δ, F ),
Output: NTA A′ s.t. L(A′)={〈tp, t1, . . . , tm〉 |∃tm+1 :〈tp, t1, . . . , tm+1〉∈L(A)}
1: procedure Project(A)
2: ∆← {((γ, σ1, . . . , σm), p) | ∃t ∈ TΣ�

: δ(γ ⊗ σ1 · · · ⊗ σm ⊗ t) = p}
3: for q1, . . . , qk ∈ Q do
4: for a = (γ, σ1, . . . , σm)∈(Γ� × (Σ�)m) do
5: for 0 6= k∈rk(γ, σ1, . . . , σm) do
6: ∆← ∆ ∪ {(q1, . . . , qk, a, p) | ∃σ : δ(q1, . . . , qk, (a, σ))=p}
7: end for
8: end for
9: end for

10: let q� 6∈ Q be a fresh state
11: q ← δ(�m+1)
12: ∆← ∆ ∪ {(�m+1, q�)}
13: for ā ∈ (Γ� × Σm� ), k ∈ rk(ā), ` ≤ k do
14: for q1, . . . , q` ∈ Q do
15: ∆← ∆ ∪ {(q1, . . . , q`, q

(k−`)
� , ā, p) | (q1, . . . , ql, ā, p) ∈ ∆}

16: end for
17: for q̄1, . . . , q̄k−`+1 with q̄1q̄2 . . . q̄k−`+1 ∈ Q` do
18: ∆← ∆ ∪ {(q̄1, q�, q̄2, . . . , q�, q̄k−`+1, ā, p) | δ(q̄1, q, q̄2, . . . , q, q̄k−`+1, ā) = p}
19: end for
20: end for
21: A′ ← (Q ∪ {q�},Γ� × (Σ�)m,∆, F )
22: return A′
23: end procedure
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Algorithm 6 Determinisation
Input: Non-deterministic tree-Automaton A = (S,Σ,∆, T )
Output: Deterministic tree-automaton A′ with L(A) = L(A′)
1: procedure Determinise(A)
2: Q← ∅
3: Q′ ← {s ∈ S | ∃a ∈ Σ : (a, p) ∈ ∆} ⊆ P(S)
4: while Q 6= Q′ do
5: Qlast ← Q
6: Q← Q′

7: for a ∈ Σ, k ∈ rk(a) do
8: for (S1, . . . , Sk) ∈ Qk \Qklast do
9: Q′ ← Q′ ∪ {s∈S |∃s̄∈S1 × . . .× Sk : (s̄, a, s) ∈ ∆}

10: end for
11: end for
12: end while
13: for a ∈ Σ, k ∈ rk(a), S1, . . . , Sk ∈ Q do
14: δ(S1, . . . , Sk, a) :={s∈S |∃s̄∈ S1 × . . .× Sk : (s̄, a, s)∈∆}
15: end for
16: F ← Q ∩ {V ⊆ S | V ∩ T 6= ∅}
17: return (Q,Σ, δ, S0, F )
18: end procedure

Lemma 5.3. Let A = (Q,Γ� × (Σ�)m+1, q0, δ, F ) be a deterministic tree-
automaton. The set S := {q ∈ Q | ∃t ∈ TΣ : δ(ε⊗ ε⊗ · · · ⊗ ε︸ ︷︷ ︸

r times

⊗t) = q} can be

computed in time
O(|Σ| · rk(Σ) · |S|rk(Σ)).

5.2 A Presentation Aware Runtime Analysis

The main ingredient to the runtime analysis of Algorithm 1 is the marriage
of the Ehrenfeucht-Fraïssé relations (EF-relations) on the presented class of
structures and the Myhill-Nerode congruences on the languages which form
the presentation. Ehrenfeucht-Fraïssé relations were introduced by Fraïssé in
his seminal work [44] as a purely combinatorial characterisation of elementary
equivalence. His ideas were later popularised by the appealing game-theoretic
presentation given by Ehrenfeucht in [35]. Even the possibility to bound the
complexity of certain logical theories using EF-relations was already present in
these early works. This technique was later systematically studied by Ferrante
and Rackoff (see [39]). They used EF-relations to give upper bounds on the
complexity of first-order theories like Presburger Arithmetic or the theory of
one-to-one functions.
Klaetke used in [75] the ideas of Ferrante and Rackoff to bound the size of
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the automata for linear arithmetic (R,+, <). Eisinger picked up the techniques
and showed in [36] similar bounds for a certain automata based presentation of
mixed integer and mixed real addition, respectively (we remark here that his
way of presenting the structures by automata differs slightly from our defini-
tion of an automatic presentation). Durand-Gasselin and Habermehl recently
showed that if a refinement of the EF-relations for a structure A is compatible
with an automatic presentation of A in the sense that these relations are con-
gruences on the encodings of the elements (with respect to concatenation) then
the runtime of the standard algorithm for solving the theory of an automatic
structure can be bounded in terms of the index these relations. In this section
we build upon their work and generalise their result to classes with a uniform
tree-automatic presentation. Therefore it is necessary to develop a suitable
notion of EF-congruences for our purposes. Besides switching from automatic
presentations to uniform tree-automatic presentations, there are a few subtle
differences to the definition in [33] in order to make the technique applicable
for more presentations.
Let Γ be an advice alphabet and Σ be an input alphabet. In the following

we write Σ̂m for Γ� × (Σ�)m

Definition 5.3. Let c = (A, (AR)R∈τ ) be a padding of a good parametrised
tree-automatic presentation of a class C ⊆ Str(τ). An Ehrenfeucht-Fraïssé con-
gruence (EF-congruence) for c is a collection of equivalence relations (Er

m)r,m∈N,
where Er

m ⊆ TΣ̂m
× TΣ̂m

and for all r,m ∈ N:
1. The set T{�m+1} forms a single equivalence-class in Er

m.

2. If t is a padding of t′ then tEr
mt
′.

3. All trees t ∈ TΣ̂m
that are not a padding of a convolution of a tuple

(α, t1, . . . , tm) ∈ TΓ × (TΣ)m \ T{�m+1} form a single equivalence class in
Er
m.

4. The relation Er
m separates the trees in TΣ̂m

that are a padded convolu-
tion of a tuple (α, t1, . . . , tm) such that (t1, . . . , tm) represents a tuple of
elements in S(c[α]) from those trees in TΣ̂m

that are not the convolution
of such a tuple.

5. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉E0
m〈β, t

′〉 then
(t1, . . . , tm) and (t′1, . . . , t

′
m) satisfy the same atomic formulas in S(c[α])

and S(c[β]), respectively.
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6. If sEr+1
m s′ for some s, s′ ∈ TΣ̂m

then for all t ∈ TΣ�
there exists a t′ ∈ TΣ�

such that 〈s, t〉Er
m+1〈s′, t′〉.

7. The relation Er
m respects contexts, i.e. if tEr

mt
′ for some t, t′ ∈ TΣ̂m

then
for all Σ̂m-contexts c the trees c ◦ t and c ◦ t′ are also related by Er

m.

For a function f : N→ N we say that an EF-congruence (Er
m)r,m∈N is f(r+m)

bounded if the index of Er
m is bounded by f(r +m) for all r,m ∈ N.

The EF-congruence (Er
m)r,m∈N for a presentation c refines the indistinguish-

ably relations (≡r)r∈N on the presented class C. This can be shown using
standard game theoretic arguments. We give the proof here for the sake of
completeness.

Lemma 5.4. Let c be a uniform tree-automatic presentation of a class C and
(Er

m)r,m∈N an EF-congruence with respect to c. Then for all α, α′ ∈ P c and
t1, t

′
1 . . . , tm, t

′
m with t1, . . . , tm ∈ S(c[α]) and t′1, . . . , t′m ∈ S(c[α′]) the following

is true:
〈α, t1, . . . , tm〉Er

m〈α′, t′1, . . . , t′m〉

implies
(S(c[α]), t1, . . . , tm) ≡r (S(c[α′]), t′1, . . . , t

′
m).

Proof. We prove the claim by induction on r. For r = 0 the claim follows
directly from Item 5 of Definition 5.3.
Now suppose the claim has been established for all m ∈ N and some r ∈

N and consider α, α′ and t1, t
′
1 . . . , tm, t

′
m such that the trees ti and t′i are

elements of S(c[α]) and S(c[α′]), respectively, for all 1 ≤ i ≤ m. We only
need to consider tuples with 〈α, t1, . . . , tm〉Er+1

m 〈α′, t′1, . . . , t′m〉. In this case we
show that Duplicator has a winning strategy in the r + 1 round EF-game on
A := (S(c[α]), t1, . . . , tm) and B := (S(c[α′]), t′1, . . . , t

′
m). W.l.o.g. assume that

Spoiler chooses an element tm+1 ∈ A. Then because of Item 6 of Definition 5.3
Duplicator can choose a t′m+1 ∈ B with 〈α, t1, . . . , tm+1〉Er

m〈α′, t′1, . . . , t′m+1〉
and, by the induction hypothesis, there is a winning strategy for Duplicator
in the r-round EF-game on (A, tm+1) and (B, t′m+1), which he can follow from
this point onwards.

As mentioned before, an EF-congruence with respect to some parametrised
tree-automatic presentation connects the Myhill-Nerode-congruences of the
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languages involved in the presentation with the EF-relations on the presented
class. We want to show that the runtime of Algorithm 1 largely depends on
how well these relations play along with each other.

Lemma 5.5. Let Σ be a ranked alphabet, ∼ an equivalence relation on TΣ,
and A1 = (Q1,Σ, δ1, q01, F1), A2 = (Q1,Σ, δ1, q01, F1) tree-automata. Suppose
t ∼ t′ implies δ∗i (t) = δ∗i (t

′) for all i ∈ {1, 2} and for all t, t′ ∈ TΣ. Then the
number of reachable states from the initial state in A1 ×A2 is bounded by the
index of ∼.

Proof. Let n be the index of ∼ and Q ⊆ Q1 × Q2 be the reachable states in
A1×A2. Suppose |Q| > n. For every q = (q1, q2) ∈ Q there exists a tree tq such
that δi(tq) = qi for i ∈ {1, 2}. As |Q| > n there are q 6= q′ ∈ Q with tq ∼ tq′ .

But then q = (δ∗1(tq), δ
∗
2(tq))

tq∼tq′
= (δ∗1(tq′), δ

∗
2(tq′)) = q′. Contradiction!

Theorem 5.1. Let c = (A, (AR)R∈τ ) be a padding of a good parametrised tree-
automatic presentation of a class of τ -structures. Suppose there is an f(r+m)
bounded EF-congruence (Er

m)r,m∈N for c. Then for every ϕ(x1, . . . , xm) ∈ FO of
quantifier rank r Algorithm 7 computes the automaton Aϕ in time O(|ϕ|(|c|m+r·
f(m+ r))c) for some constant c.

Proof. We prove the claim by induction over the structure of ϕ. Actually we
prove an extended claim, namely that the procedure computes the automaton
Aϕ in the given time andAϕ has the property δ∗Aϕ(t) = δ∗Aϕ(t′) for all t, t′ ∈ TΣ̂m

with tEr
mt
′.

Case ϕ = R(xi1 , . . . , xik): Obviously |Aϕ| ≤ |c|m and therefore there is a
fixed polynomial p such that Aϕ is constructed in time p(|c|m). Further, by
construction, the automaton Aϕ is minimal. Let s, s′ be two trees from TΣ̂m

with sE0
ms
′. If s, s′ ∈ T{�r+1} then for all contexts c we have that c ◦ s ∈

L(Aϕ) ⇔ c ◦ s′ ∈ L(Aϕ). In order to see this recall that c is a padded
presentation. Hence from the Myhill-Nerode Theorem for tree-languages (cf.
[18]) we can infer that δ∗Aϕ(s) = δ∗Aϕ(s′) Then by Property 7 also (c◦s)E0

m(c◦s′)
for all Σ̂m-contexts. If c ◦ s is not a padded convolution of a tuple (α, t̄) with
t̄ ∈ S(c[α]) then because of the first two properties of E0

m the same holds for
c ◦ s′. Hence c ◦ s 6∈ L(Aϕ) and c ◦ s 6∈ L(Aϕ). Otherwise c ◦ s = 〈α, t̄〉
and c ◦ s′ = 〈β, t̄′〉 and Property 5 yields 〈α, t̄〉 ∈ L(Aϕ) ⇔ 〈β, t̄′〉 ∈ L(Aϕ).
Again we obtain from Myhill-Nerode Theorem for tree-languages that δ∗Aϕ(s) =
δ∗Aϕ(s′).
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Case ϕ = ψ(x1, . . . , xm) ∧ θ(x1, . . . , xm): Let Aψ and Aθ be the automata
constructed by Compose in the recursion step. By the induction hypothesis,
we know that all pairs of tuples t, t′ that are related by Er

m the computation
of Aψ and Aθ reach the same state. Lemma 5.5 tells us that the number of
reachable states in Aϕ ×Aψ is bounded by f(m + r). The automata Aψ and
Aθ are computed in at most

d|ψ|(|c|m+r · f(m+ r))c + d|θ|(|c|m+r · f(m+ r))c

many steps and, according to Lemma 5.1, the computation of Aϕ takes at most

d′|Σ̂m| rk(Σ̂m)f(m+ r)rk(Σ̂m).

But rk(Σ̂m) = rk(Γ × Σ) is constant, |c|m+r is an upper bound for |Σ̂m| an
rk(Σ̂m) ≤ c. Hence the overall runtime is bounded by

d(|ψ|+ |θ|+ 1)(|c|m+r · f(m+ r))c = d|ϕ|(|c|m+r · f(m+ r))c.

The property tEr
mt
′ ⇒ δ∗Aϕ(t) = δ∗Aϕ(t′) follows directly from the induction

hypothesis and the fact that δ∗(t) = (δ∗Aψ(t), δ∗Aθ(t)).

Case ϕ = ¬ψ(x1, . . . , xm): By the induction hypothesis the automaton Aψ
is constructed in time d|ψ|(|c|m+r · f(m+ r))c. The automaton AD is the min-
imal automaton that recognises exactly the words of the form 〈α, t1, . . . , tm〉,
where α ∈ P c and t1, . . . , tm are elements of S(c[α]). Using the properties 3,
4, and 7 of Definition 5.3, we see that for all t, t′ ∈ TΣ̂m

with tEr
mt
′ and all

Σ̂m-contexts c it is the case that c ◦ t ∈ L(AD) ⇔ c ◦ t′ ∈ L(AD). Therefore
we can once again apply the lemmata 5.5 and 5.1 to establish that also Aϕ is
constructed in the right amount of time and has the proclaimed property.

Case ϕ = ∃xm+1ψ(x1, . . . , xm, xm+1): Let Aψ be the automaton that is
constructed in the recursion step. Then Aϕ is essentially the reachable part of
the power-set automaton of the projection automaton derived from Aψ under
the projection (γ, σ1, . . . , σm+1) 7→ (γ, σ1, . . . , σm). Now suppose sEr+1

m s′ for
some s, s′ ∈ TΣ̂m

. If s, s′ ∈ T{�m+1} then δ∗Aϕ(s) = {q�} = δ∗Aϕ(s′). Otherwise
consider the trees cut(s), cut(s′). Because of Property 2 and the transitivity
of Er+1

m we see that cut(s)Er+1
m cut(s′) and by the construction of Aϕ we have

δ∗(cut(s)) = δ∗(s) and δ∗(cut(s′)) = δ∗(s′). Further, q ∈ δ∗Aϕ(cut(s)) if and
only if there is a t ∈ TΣ�

such that δ∗Aψ(〈cut(s), t〉) = q. But then, by Property
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6 of Definition 5.3, there is also a t′ ∈ TΣ�
with 〈cut(s), t〉Er

m〈cut(s′), t′〉.
By the induction hypothesis δ∗Aψ(〈cut(s′), t′〉) = q and thus q ∈ δ∗Aϕ(cut(s′)).
This shows that sEr

ms
′ implies δ∗Aϕ(s) = δ∗Aϕ(s′). Consequently the number

of reachable states in the aforementioned power set automaton is bounded by
f(m+r). We can now apply the induction hypothesis, Lemma 5.3, and Lemma
5.2 to conclude that the algorithm takes at most d|ϕ|(cm+rf(m + r))c many
steps to compute Aϕ.

In the following section we will be concerned with classes of finite structures
that arise as the closure under direct products. In the previous chapter we
have already seen how to construct a presentation of the closure under direct
products from a presentation of the original class (see Lemma 4.4). We close
this section by showing that also the EF-congruences can (with a certain blow
up of the index) be lifted from the original presentation to the presentation of
the direct product closure given in the previous section.
In order to ease the process of analysing the complexity of these presen-

tations, we introduce some notations. Let Σ be an alphabet with # 6∈ Σ.
A tree t ∈ TΣ�

is well-formed if v ∈ domt the following holds: t(v) = �
implies t(vw) = � for all w with vw ∈ domt and if v = ui then t(uj) = �
for all j ≥ i with ui ∈ domt. The n-context-tree t#n is the tree with domain
dom(t#n ) = {0k | k < n} ∪ {0k1 | k + 1 < n} and labelling

t#n (w) =


# ; if w ∈ {0}<n

ci+1 ; if w = 0i1, with 0 ≤ i < n− 1

cn ; if w = 0n−1.

With T#,n
Σ we denote the set of all trees that are obtained from t#n by re-

placing all contexts with trees from TΣ, that is T#,n
Σ = {t#n [c1/t1, . . . , cn/tn] |

t1, . . . , tn ∈ TΣ}. Finally let T#
Σ be the union of all sets T#,n

Σ with n ≥ 1. For
natural numbers `,m, n we write m =` n if m = n or m,n ≥ `.

Theorem 5.2. Let c be a good tree-automatic presentation of a class C with
associated f(r + m) bounded EF-congruences (Er

m)r,m∈N. Then there is a
parametrised tree-automatic presentation of C× with associated

2O((r+m)f(r+m) log(f(r+m)))

bounded EF-congruences.
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Proof. Let c× be the presentation of C× that is derived from c by the con-
struction from Lemma 4.2. Recall that if P is the set of advice trees for the
presentation c and α1, . . . , αn ∈ P , then the structure S(c[α1])×· · ·×S(c[αn])
is presented by the advice t#n [c1/α1, . . . , cn/αn] and an element (t1, . . . , tn) ∈
S(c[α1])× · · · × S(c[αn]) is represented by the tree t#n [c1/t1, . . . , cn/tn], where
# is a newly introduced letter.
For all r,m ∈ N we define a relation ∼rm on T(Γ�∪{#})×(Σ�∪{#})m , where

t ∼rm t′ if, and only if, one of the following conditions is true:

i) There are no n, n′ such t and t′ are the convolution of well-formed trees
α ∈ T#,n

Γ�
, t1, . . . , tm ∈ T#,n

Σ�
and α′ ∈ T#,n′

Γ�
, t′1, . . . , t

′
m ∈ T#,n′

Σ�
, respec-

tively.

ii) There are n, n′ such t and t′ are the convolution of well-formed trees α ∈
T#,n

Γ�
, t1, . . . , tm ∈ T#,n

Σ�
and α′ ∈ T#,n′

Γ�
, t′1, . . . , t

′
m ∈ T#,n′

Σ�
, respectively.

That is

t = 〈t#n [c1/α1, . . . , cn/αn], t#n c1/t1,1, . . . , cn/t1,n], . . .

. . . , t#n [c1/tm,1, . . . , cn/tm,n]〉

and

t′ = 〈t#n′ [c1/α
′
1, . . . , cn′/α

′
n′ ], t

#
n′ [c1/t

′
1,1, . . . , cn′/t

′
1,n′ ], . . .

. . . , t#n′ [c1/t
′
m,1, . . . , cn′/t

′
m,n′ ]〉.

Then t ∼rm t′ if for all Er
m equivalence classes κ

|{i | 1 ≤ i ≤ n, [〈αi, t1,i, . . . , tm,i〉]Erm = κ}|
=f(r+m)r |{i | 1 ≤ i ≤ n,′ [〈α′i, t′1,i, . . . , tm,i〉′]Erm = κ}|.

One easily checks that ∼rm is an equivalence relation with index bounded by

(f(r +m)r+m + 1)f(r+m) + 1 ∈ 2O((r+m)f(r+m) log f(r+m))

for all r,m ∈ N. What is left is to verify is that (∼rm)r,m∈N is indeed an EF-
congruence of c×. Therefore we check that the collection (∼rm)r,m∈N has the
Properties 3 - 7 described in Definition 5.3. This is done in the lemmata below.

Lemma 5.6. T{�m+1} forms a single equivalence class in ∼rm.
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Proof. All trees t, t′ ∈ T{�m+1} fulfil the prerequirement for Condition ii) for
n = n′ = 1. For such trees the requirement of Condition ii) reduces to tEr

mt
′.

Hence t ∼rm t′. On the other hand, if t′′ 6∈ T{�m+1} then in order for t ∼rm t′′ to
hold there must be an n′′ such that t′′ is the convolution of well-formed trees
α′′ ∈ T#,n′′

Γ�
, t′′1, . . . , t

′′
m ∈ T

#,n′′

Σ�
. But if n′′ = 1 then t 6∼rm t′′ because t 6Er

mt
′′ and

if n′′ > 1 then there must be a Er
m-class κ such that the counting property of

Condition ii) is violated (observe that f(r +m) ≥ 2). Hence t 6∼rm t′′.

Lemma 5.7. If t is a padding of t′ then t ∼rm t′.

Proof. Let t be a padding of t′. If t′ is not a padding of a convolution of well-
formed trees from T#,n

Γ�
and T#,n

Σ�
then t is also not of this form and therefore

t ∼rm t′ by Condition i). Finally, if

t′ = 〈t#n [c1/α
′
1, . . . , cn/α

′
n], t#n [c1/t

′
1,1, . . . , cn/t

′
1,n], . . .

. . . , t#n [c1/t
′
m,1, . . . , cn/t

′
m,n]〉.

then

t′ = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . .

. . . , t#n [c1/tm,1, . . . , cn/tm,n]〉,

where every αi is a padding of α′i and every ti,j is a padding of t′i,j. Then
〈αi, t1,i, . . . , tm,i〉Er

m〈α′i, t′1,i, . . . , t′m,i〉 for all i ≤ n. Hence we get t ∼rm t′ by
Condition ii).

Lemma 5.8. All trees t 6∈ T{�m+1} that are not a padding of a convolution of
a tuple (α, t1, . . . , tm) form a single equivalence class in ∼rm.

Proof. Condition i) ensures that all such trees are in a single equivalence class.

Lemma 5.9. The relation ∼rm separates the trees that are the convolution of
a tuple (α, t1, . . . , tn) such that (t1, . . . , tm) represents a tuple of elements in
S(c×[α]) from those trees that are not the convolution of such a tuple.
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Proof. Suppose t = 〈α, t1, . . . , tm〉 is a padded convolution of a tuple with
α ∈ P c× and (t1, . . . , tm) ∈ S(c×[α]) and suppose t′ is not the convolution of
such a tuple. If t′ is not a padded convolution, then none of the two conditions
holds for t and t′ and they are not equivalent. Otherwise there are n, n′ ≥ 1
such that

t = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉

and

t′=〈t#n′ [c1/α
′
1,. . . , cn′/α

′
n′ ],t

#
n′ [c1/t

′
1,1, . . . , cn′/t

′
1,n′ ], . . . ,t

#
n′ [c1/t

′
m,1, . . . , cn′/t

′
m,n′ ]〉.

From our assumption about t and t′ we know that αi ∈ P c and t1,i, . . . tm,i ∈
S(c[αi]) for all 1 ≤ i ≤ n and there is a 1 ≤ j ≤ n′ with α′j 6∈ P c or α′j ∈ P c

but t′`,j 6∈ S(c[αi]) for some 1 ≤ ` ≤ m.
But then 〈αi, t1,i, . . . , tm,i〉 6Er

m〈α′j, t′1,j, . . . , t′m,j〉, since the relation Er
m fulfils

Property 4 of Definition 5.3. Hence t and t′ do not fulfil condition ii) and
therefore t 6∼rm t′.

Lemma 5.10. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉 ∼0
m

〈β, t′〉 then (t1, . . . , tm) and (t′1, . . . , t
′
m) satisfy the same atomic formulas in

S(c[α]) and S(c[β]), respectively.

Proof. Suppose

• α = t#n [c1/α1, . . . , cn/αn], β = t#k [c1/β1, . . . , ck/βk] ∈ P c× ,

• ti = t#n [c1/ti,1, . . . , cn/ti,n] ∈ S(c×[α]) for i ∈ {1, . . . ,m}, and

• t′i = t#k [c1/t
′
i,1, . . . , ck/t

′
i,k] ∈ S(c×[β]) for i ∈ {1, . . . ,m}.

We show that if (t1, . . . , tm) and (t1, . . . , t
′
m) do not fulfil the same atomic

propositions in S(c×[α]) and S(c×[β]), respectively, then they are not ∼0
m-

equivalent. Consider an arbitrary atomic formula Rxi1 . . . xir and suppose
S(c×[α]) |= Rti1 . . . , tir and S(c×[α′]) 6|= Rt′i1 . . . , t

′
ir . Then by definition

S(c[αj]) |= Rtj,i1 . . . tj,ir for all 1 ≤ j ≤ n but S(c[β`]) 6|= Rt′`,i1 . . . t
′
`,ir

for
some 1 ≤ ` ≤ k. Consequently 〈αj, tj,1, . . . , tj,m〉 6E0

m〈β`, t`,1, . . . , t`,m〉 for all
1 ≤ j ≤ n and therefore 〈α, t1, . . . , tm〉 6∼0

m 〈β, t′1, . . . , t′m〉.
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Lemma 5.11. If s ∼r+1
m s′ then for all t ∈ T(Σ∪{#})� there exists a t′ ∈

T(Σ∪{#})� such that 〈s, t〉 ∼rm+1 〈s′, t′〉.

Proof. Let s, s′ be two trees from T(Γ∪{#})�×(Σ∪{#})m� such that s ∼r+1
m s′ and

t ∈ T(Σ∪{#})� . We distinguish two cases.
If s and s′ are not convolutions of well-formed trees then 〈s, t〉 as well as 〈s′, t〉
are not convolutions of well-formed trees for every tree t. Hence Property 6 is
fulfilled for such trees.
In the other case s and s′ must be convolutions of well-formed trees, that is

s = 〈t#n [c1/α1, · · · , cn/αn], t#n [c1/t1,1, · · · , cn/t1,n], . . . , t#n [c1/tm,1, · · · , cn/tm,n]〉

and

s′ = 〈t#k [c1/α
′
1, · · · , ck/α′k], t

#
k [c1/t

′
1,1, · · · , ck/t′1,k], . . . , t

#
k [c1/t

′
m,1, · · · , ck/t′m,k]〉

for some n, k ≥ 1 and trees αi, α′j ∈ TΓ and ti,j, t
′
s,t ∈ TΣ. Let tm+1 be an

arbitrary tree from T(Σ∪{#})� . If tm+1 6∈ T#,n
Σ�

take some tree t′m+1 that is
not in T#,k

Σ�
. Then 〈s, tm+1〉 ∼rm 〈s′,′ t′m+1〉 because of Condition i). Otherwise

tm+1 = t#n [c1/tm+1,1, . . . cn/tm+1,n]. For every Er
m equivalence class κ let

κ(s) = {i ∈ {1, . . . , n} | [〈αi, si,1, . . . , si,m〉]Erm = κ}.

Let Xκ
1 , . . . , X

κ
`κ

be the partition of κ(s) with respect to the Er
m+1 equivalence

classes of {〈α, t1,i, . . . , tm+1,i〉 | i ∈ κ(t)}. Because s ∼r+1
m s′ it is ensured that

|κ(s)| =f(m+r+1)r+1 |κ(s′)|

and therefore we can find a partition Y κ
1 , . . . , Y

κ
`κ

of κ(s′) with

|Xκ
i | =f(r+m+1)r |Y κ

i |

(if |κ(s)| < f(m+r+1)r+1 partition κ(s′) according to some bijection between
κ(s) and κ(s′). Otherwise, because `κ < f(m+ r+ 1) there is at least one Xκ

i

with |Xκ
i | ≥ f(m+r+1) which also ensures that we can find such a partition).

By construction, 〈α, t1,i, . . . , tm,i〉Er+1
m 〈α′, t′1,j, . . . , t′m,j〉 whenever i ∈ Xκ

k and
j ∈ Y κ

k . Thus 〈α, t1,i, . . . , tm+1,i〉Er
m+1〈α′, t′1,j, . . . , t′m+1,j〉 for some appropri-

ate t′m+1,j. Now choose t′m+1 = t#k [c1/t
′
m+1,1, . . . , ck/t

′
m+1,k]. By construction

〈s, tm+1〉 ∼rm+1 〈s′, t′m+1〉 due to Condition ii).
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In order to show that Property 7 is fulfilled, it is convenient to define a kind
of convolution for contexts. For i ∈ {1, . . . , n} let ci be an Σi-context such such
that x(c1) = x(c2) = · · · = x(cn). Then 〈c1, . . . , cn〉c is the ((Σ1)�×· · ·×(Σn)�)-
context with dom(〈c1, . . . , cn〉c) =

⋃
1≤i≤n dom(ci) and

〈c1, . . . , cn〉c(w) =


(σ1, . . . , σn) if w 6= x(c1)

where σi = ci(w) if w ∈ dom(ci)

and σi = � otherwise
x otherwise

Lemma 5.12. The relations (∼rm)r,m∈N respect contexts.

Proof. Suppose s ∼rm s′ and let c be a ((Γ ∪ {#})� × (Σ ∪ {#})m� )-context.
We can assume that s and s′ are equivalent due to Condition ii) and that

c = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉c

for some n ≥ 1 and 〈αi, t1,i, . . . tm,i〉c is a (Γ� × Σm
� )-context for exactly one

1 ≤ i ≤ n (because in any other case c ◦ t and c ◦ t′ equivalent by Condition
i)). Fix this i and let c′ := 〈αi, t1,i, . . . tm,i〉.
There two cases that we need to consider. First if s, s′ are elements of

T#,1
Γ�
⊗ (T#,1

Σ�
)⊗m (= TΓ�

⊗ (TΣ�
)⊗m). Then the requirement of Condition ii)

reduces to sEr
ms
′. But then c′ ◦ tEr

mc
′ ◦ s′ and hence c ◦ s ∼rm c ◦ s′.

Otherwise we can even assume that

c = 〈t#n [c1/α1, . . . , cn/x], t#n [c1/t1,1, . . . , cn/x], . . . , t#n [c1/tm,1, . . . , cn/x]〉c

(again otherwise we would get equivalence by Condition i)). But then

c ◦ s = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β1, . . . , cn+k−1/βk],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s1,1, . . . , cn+k−1/s1,k],

...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/sm,1, . . . , cn+k−1/sm,k]〉
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and

c ◦ s′ = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β
′
1, . . . , cn+k−1/β

′
k′ ],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s
′
1,1, . . . , cn+k−1/s

′
1,k′ ],

...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/s
′
m,1, . . . , cn+k−1/s

′
m,k′ ]〉

Using that s and s′ are equivalent by Condition ii), it is easy to see that also
c ◦ t and c ◦ t′ are equivalent.

The preceding lemmata show that (∼rm)r,m∈N is an EF-congruence for c×,
which completes the proof of Theorem 5.2.

Another important class of operations under which uniform tree-automatic
presentations are closed are parametrised first-order interpretations. Also in
this case the complexity of the EF-congruence grows rather tamely under these
operations.

Lemma 5.13. Let c be a good tree-automatic presentation of a class C of
τ -structures and I be a parametrised τ -to-σ-interpretation of width ` that in-
terprets for every A ∈ C a structure I(A). Further let c be the maximal quan-
tifier rank of any of the formulas in I. If there is an f(r + m) bounded EF-
congruence for c then there is a uniform tree-automatic presentation Ic of the
class IC = {IA(a) | A ∈ C, a ∈ A} with g(r + m) := f((` + c)(r + m) + c)
bounded EF-congruence.

5.3 FPT Model Checking With Elementary Parameter
Dependence

The runtime analysis from Section 5.1 not only enables us to show that first-
order model checking is fixed parameter tractable on several classes of finite
structures, but also gives us elementary bounds on the parameter dependence.
In the following we write expk(x) for the k-fold tower of twos function applied
to x, that is

exp0(x) = x and

expk+1(x) = 2expk(x).
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Theorem 5.3. Let c be a padded good tree-automatic presentation such that
Algorithm 7 computes in time T (|ϕ|) from c the corresponding automaton Aϕ.
Suppose for a class of finite structures C there is a function f : code(C)→ Σ∗

that computes in time F (|w|) for every w ∈ code(A) with A ∈ C a tree α with
A ∼= S(c[α]). Then FO model checking on C is decidable in time

O(T (|ϕ|) · |f(w)|+ F (|w|)).

Proof. The runtime is achieved by the straight forward method of checking
whether Aϕ accepts f(w).

Boolean Algebras Our simplest application of Theorem 5.2 and Theorem
5.3 is for the class of all finite Boolean algebras. It is well known that every
finite Boolean algebra is isomorphic to a finite direct power of the two element
Boolean algebra. Especially, every finite Boolean algebra contains exactly 2n

elements for some n ≥ 1 and every finite Boolean algebra is uniquely deter-
mined by the number of elements. Because of this simple structure it is natural
to consider succinct encodings of Boolean algebras as inputs. In the following
we will assume that a Boolean algebra is given by the number of atoms, en-
coded in unary. In other words, a finite Boolean algebra B = (B,∩,∪, ,0,1)
is encoded by the string 1log |B|.

Theorem 5.4. First-order model checking is fixed parameter tractable on the
class of all finite Boolean algebras. Given a Boolean algebra B and an FO
sentence ϕ one can decide in time

exp2(poly(|ϕ|)) log |B|

whether B |= ϕ.

Proof. The single element class that contains only the two element Boolean
algebra B2 = ({0,1},∩,∪, ,0,1) has the trivial automatic presentation c
over the advice alphabet Γ = {a} and the alphabet Σ = {0, 1} with rk(a) =
rk(0) = rk 1 = {0}. The advice a (the tree of height 0 where the root is labelled
with a) represents B2 and the elements 0 and 1 are represented by 0 and 1,
respectively. One checks that the relations (Er

m)r,m∈N where

tEr
mt
′ :⇔ ∃t1, . . . , tm ∈ {0, 1}(cut(t) = 〈a, t1, . . . , tm〉 = cut(t′))

∨ ∀t1, . . . , tm ∈ {0, 1}(cut(t), cut(t′) 6= 〈a, t1, . . . , tm〉)
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are an EF-congruence with respect to c and the index of Er
m is bounded by

f(r +m) = 2r+m + 2 for all r,m ∈ N .
As mentioned before, every finite Boolean algebra is a finite direct product

of B2 and hence c× is a uniform presentation of the class of all finite Boolean
algebras. According to Theorem 5.2, c× has an EF-congruence bounded by
f ′(r + m) ∈ 2O((r+m+1)(2r+m+2) log(2r+m+2)) ⊆ 22poly(|ϕ|) . Using Theorem 5.3, we
conclude that for a sentence ϕ of quantifier-rank r Algorithm 1 constructs the
corresponding automaton Aϕ in time

O
(
|ϕ|
(
|c×|m+r · 22poly(|ϕ|)

)c)
⊆ 22poly(|ϕ|)

(because |c×| is constant). Note that the Boolean algebra with n atoms is
represented by the tree t#n [c1/a, . . . , cn/a] in c×. We can therefore transform
the encoding of the Boolean algebra into the tree-representation in linear time.
Finally the claim follows from Theorem 5.3.

With respect to the height of the tower of twos in the parameter dependence
this result is probably optimal, as stated by the following theorem.

Theorem 5.5. There is no algorithm that solves the model checking problem
for finite Boolean algebras in time

2poly(|ϕ|) · log |B|

unless
⋃
c∈N STA(∗, 2cn, n) = EXP.

Proof. It is known that the theory of all finite Boolean algebras is complete for
the class

⋃
c∈N STA(∗, 2cn, n). Further, using Lemma 5.4 and the computations

of Theorem 5.4, we see that there is a constant c such that if B and B′ are
two Boolean algebras with at least 2r

c many atoms then B ≡r B′. To check
that a sentence ϕ of quantifier rank r belongs to the theory of finite Boolean
algebras it is sufficient to check whether every finite Boolean algebra with at
most 2r

c many atoms models ϕ. If we could perform model-checking in time
O(2poly |ϕ| · log |B|) we could hence solve the theory of finite Boolean algebras
in time O

(
2poly(|ϕ|) ·

∑2r
c

i=1 i
)
⊆ 2poly(|ϕ|), which implies

⋃
c∈N STA(∗, 2cn, n) =

EXP.
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Remark 5.1. Needless to say than an analogue of Theorem 5.4 also holds if
the Boolean algebra is encoded traditionally by the multiplication tables of
the operators. Obviously one can compute the succinct encoding from the
traditional encoding efficiently by simply counting the number of atoms.
However, one could also argue that our encoding for the Boolean algebras

is not even optimal. Indeed a finite Boolean algebra B can be encoded by a
word of length dlog log |B|e when we encode the number of atoms by its binary
expansion. In this case our algorithm would not have a polynomial runtime
in the size of the encoding of the structure because the advice would be of ex-
ponential size. However we could slot in a kernelisation procedure ahead. As
we already explained in the proof of Theorem 5.5, there is a fixed polynomial
p such that all finite Boolean algebras with at least 2p(k) atoms are indistin-
guishable by a first-order Formula of quantifier rank at most k. In turn we
can compute for a given finite Boolean Algebra B and a natural number k an
advice α of size O

(
22p(k)

)
such that S(c[α]) ≡k B (where c is the presentation

of the finite Boolean algebras constructed in Theorem 5.4). Because we are
more interested in the application of automata based presentations than on
encoding issues we will not work out the details here.

Finite Groups Probably a bit more interesting is the class of all finite groups.
In [43], Grohe posed the question on which classes of finite groups first-order
model checking is fixed parameter tractable. In order to tackle this question
we propose a structural parameter on finite groups. The Remak-Krull-Shimidt
Theorem [64] states that a factorization of G = G1 ⊗ G2 ⊗ · · · ⊗ Gn into
indecomposable subgroups Gi is unique up to permutation and isomorphism
of the occurring subgroups for any finite group G. Therefore the size of the
largest non-abelian subgroup in such a factorisation is uniquely determined.
This leads to the following parameter.

Definition 5.4. Let G be a finite group. The non-abelian decomposition width
of G is

dw(G) = max({|G′| | G′ is non-abelian,
indecomposable, and G ∼= G′ ⊕G′′})

the size of a maximal non-abelian indecomposable factor of G.

124



5 Uniformly Automatic Classes of Finite Structures

Note that the finite abelian groups are exactly the groups with non-abelian
decomposition width one. As for the case of Boolean algebras, finite abelian
groups have a quite simple structure. By the classification of finitely generated
abelian groups every finite abelian group G is isomorphic to a finite sum of
finite cyclic groups. That isG ∼= Zn1⊕· · ·⊕Znk for some k ≥ 1 and n1, . . . , nk ≥
1. Hence, a finite abelian group can be encoded by a sequence of natural
numbers (n1, . . . , nk). Bova and Martin have independently shown in [17] that
first-order model-checking is FPT on the class of all finite abelian groups. Their
algorithm uses a quantifier elimination procedure. However, their analysis of
the algorithm only yields a non-elementary parameter dependence. We will
show that the automata based approach yields an algorithm with elementary
parameter dependence.

Theorem 5.6. FO-model-checking is FPT on the class of all finite abelian
groups. More precisely one can decide, given a finite abelian group G and a
formula ϕ ∈ FO, in time

O (exp4(poly(|ϕ|)) · log |G|))

whether G |= ϕ.

Proof. Durand-Gasselin and Habermehl gave in an automatic presentation d
of Presburger arithmetic and proved that there is a f(m+ r) = exp3(c(m+ r))
bounded EF-congruence with respect to d for some c ∈ N [33, Lemma 15].
We construct a uniform presentation of all finite cyclic groups from d by a

parametrised first-order interpretation I = (δ(n, x), ϕ◦(n, x, y, z)). It is a well
known fact that such an interpretation exists. For instance, we might choose
the formulas in I such that

δ(n, x) ≡ ∃c(c+ c 6= c ∧ x+ c = n)

ϕ◦(n, x, z) ≡ (x+ y < n ∧ x+ y = z) ∨ (x+ y > n ∧ x+ y = n+ z).

Then I(N,+)(n) ∼= Zn for all n ∈ N and therefore Id is a uniform presentation
of the class of all finite cyclic groups. By Lemma 5.13 there is a constant
c′ such that Id has a g(r + m) = exp3(c′(r + m)) bounded EF-congruence.
Further (Id)× is a uniform presentation of the class of all finite abelian groups
and Theorem 5.2 tells us that it has a (g(r + m)r)g(r+m) ∈ exp4(poly(|ϕ|))
bounded EF-congruence. Note that in (Id)× a group G ∼= Zn1 ⊕ · · · ⊕ Znk is
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represented by the tree t#k [c1/ binR(n1), . . . , ck/ binR(nk)]. Of course this tree
can trivially be computed in linear time from the encoding (n1, . . . , nk) of G.
By applying Theorem 5.3 we conclude that our algorithm solves the model-
checking problem for finite abelian groups in time O (exp4(poly(|ϕ)) · log |G|).

Remark 5.2. Although the encoding of an abelian group by the orders of its
cyclic factors makes it trivial to compute the tree-presentation because it makes
the relevant structural properties of the group explicit, it is still true that an
analog of Theorem 5.6 holds if the group is encoded by its multiplication
table. Indeed Algorithm 7 provides a simple procedure to compute the cyclic
factors of the group in linear time. To see this, note that if g is an element

Algorithm 7 Decomposing a Finite Abelian Group into Cyclic Factors
Input: Finite abelian group G
Output: String bin(n1)# · · ·# bin(nk) such that G ∼= Zn1 ⊕ · · · ⊕ Znk
procedure Decompose(G)

Compute g with |g| maximal in G
if 〈g〉 = G then

return bin(|g|)
else

w ← Decompose(G/〈g〉)
return bin(|g|)#w

end if
end procedure

of maximal order in a finite abelian group G then G ∼= 〈g〉 ⊕ G/〈g〉. The
Algorithm 7 therefore computes a representant of a decomposition of G into
cyclic factors. The computation of an element with maximal order can be done
in time O(|G|2) by computing the order of every element. The group G/〈g〉
can also be computed in time O(|G|2) by computing the multiplication table
on the cosets of 〈g〉. Finally the procedure Decompose(G) is called at most
log2(|G|) times because |G/〈g〉| = |G|/|g|. Together this gives a running time
of O(|G|2 · log(|G|)), which is linear in the size of the multiplication table.
Finally, we turn out attation to encoding issues. As it was the case for

Boolean algebras, there is an encoding of finite abelian groups, which in some
cases allows for a considerably more succinct presentation. More precisely an
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abelian group G ∼= (Zn1)k1 ×· · ·× (Zn`)k` can be encoded by the tuple of pairs
((n1, k1), . . . , (n`, k`)). Again, using this encoding we would not directly obtain
an FPT-algorithm from our method. However, using the same argument as for
the Boolean algebras, for some fixed polynomial p we can turncate the second
components of each pair to exp3(p(r)) in a preprocessing step, where r is the
quantifier rank of the formula under consideration. Again we will leave the
details of this approach to the reader.

We extend our ideas from abelian groups to groups of bounded non-abelian
decomposition width.

Theorem 5.7. First-order model checking is FPT on the class of all finite
groups with bounded non-abelian decomposition width. More precisely there
exists a constant c such that we can decide in time

O(exp4(poly(|ϕ|)) · log |G|+ |G|c)

whether G |= ϕ.

Proof. First we build a trivial presentation for the groups of order at most d.
Let G1, . . . ,Gn be an enumeration of the non-abelian groups of size at most
d (up to isomorphism). The advice alphabet is Γ = {g1, . . . , gn}. The input
alphabet Σ is extended by new letters a1, . . . , ad also with rk(a1) = · · · =
rk(ad) = {0}. For every 1 ≤ i ≤ n we choose a bijection πi : {a1, . . . , a|Gi|} →
Gi and construct the automata that recognise the languages {〈gi, aj〉 | 1 ≤ i ≤
n, j ≤ |Gi|} and

{〈gi, ax, ay, az〉 | 1 ≤ i ≤ n, 1 ≤ x, y, z ≤ |Gi|, πi(ax) ◦Gi πi(y) = πi(az)}.

Note that the trivial EF-congruence for d is g(m + r) = G(d)dr+m bounded,
where G(d) is the number of groups of size at most d.
Let c be the uniform presentation of the cyclic groups as described previously.

We build automata that recognize the alphabet-disjoint union of the languages
in d and corresponding languages from c and obtain a presentation e of all cyclic
groups and groups of order at most d. It is not hard to see that this presentation
is also exp3(poly(|ϕ|)) bounded. Basically the union of the EF-congruences for
d and c (where the "is not a tuple of the presentation” equivalence class of d
is merged with the "is not a convolution"’ equivalence class of c) is an EF-
congruence for e. Then e× is a presentation of the class of all finite groups
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with bounded abelian decomposition width at most d. By Theorem 5.2, e× is
exp4(poly(|ϕ|)) bounded.
A decomposition of G = G1 ⊕ · · · ⊕Gk ⊕ Zn1 ⊕ · · · ⊕ Zn` with non-abelian

indecomposable factors G1, . . . ,Gk can be computed in polynomial time [71].
From the decomposition we can compute in linear time an advice that rep-
resents G. Note that such an advice has logarithmic size in |G|. Applying
Theorem 5.3 completes the proof.

Graphs of bounded Tree-Depth and MSO Model Checking Algorithmic
meta-theorems for MSO are particularly interesting because MSO is capable
of defining many NP-complete problems such as 3-colourability. The most
famous result of this kind is probably the theorem of Courcelle that every
MSO-definable query can be decided in linear time on the class of all graphs
with treewidth at most c for any given constant c ∈ N [26]. Because trees
have treewidth one, it is immediately clear that the parameter dependence in
Courcelle’s Theorem must be non-elementary.
Tree-depth is another parameter on graphs that has recently drawn quite

some attention. Tree-depth is a more restrictive parameter than treewidth. In-
deed, every class of graphs of bounded tree-depth has also bounded treewidth
but there are classes of graphs of bounded treewidth that have unbounded tree-
depth. It was shown by Gajarský and Hliněný that, in terms of the param-
eter dependence, MSO-model-checking can be performed significantly faster
on graphs of bounded tree-depth [48]. Their algorithm relies on kernelisation
to perform fast MSO-model-checking on trees of bounded depth. However,
transferring their arguments into our framework reveals that no specialised
algorithm is needed to achieve this runtime.
In the following we need to make a distinction between trees that serve as an

input to a tree automaton and an unordered rooted tree in the graph theoretic
sense. A finite unordered labelled tree-structure T is a tuple (V,E, P1, . . . , Pn, r)
where

• V is a finite set of nodes,

• E ⊆
(
V
2

)
such that (V,E) is connected and cycle free,

• Pi ⊆ V for all 1 ≤ i ≤ n, and

• r ∈ V is the root of the tree.
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Figure 5.1: Decomposition of a Simple Graph

There are standard techniques to encode a finite unordered tree-structures of
unbounded degree by trees of bounded degree.

Definition 5.5. For a finite unordered tree-structure T = (V,E, P1, . . . , Pn, r)
the set of tilts of T, tilt(T) ⊆ TP({1,...,n}), is inductively defined by the following
rules.

• if T = ({v}, P1, . . . , Pn, v) then tilt(T) = {t}, where dom(t) = {ε} and
t(ε) = {i | v ∈ Pi}

• if T = (V, P1, . . . , Pn, r) is of depth h > 1 then t ∈ tilt(T) if, and only
if, there is an enumeration T0, . . . ,Tk of the subtrees induced by the
children of the root r of T such that there are trees t0, . . . , tk with

– ti is a tilt of Ti,

– dom(t) =
⋃

0≤i≤k{1i0}dom(ti),

– t(w) =


{i | w ∈ Pi} w = ε

X w ∈ {1}i, 1 ≤ i ≤ k

ti(w
′) w = 1i0w′, 0 ≤ i ≤ k

Note that if t is a tilt of a tree-structure T and v ∈ dom(t) with t(v) 6= X then
v corresponds to a node of depth |v|0 + 1 in T.

Lemma 5.14. Let h ∈ N be some fixed number. Then the class Ch of all power
set structures of graphs of tree-depth at most h is regularly tree-automatic.
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Proof. The advice set consists of all tilts of unordered labelled tree-structures
(V,E, P1, . . . , Ph−1) of depth at most h + 1 such that every node of depth
` appears only in sets Pi with i + 1 < `. This is obviously a regular set.
Such a tree α presents (the isomorphism type of) the graph G = (V,E) with
V = dom(α) ∩ ({0, 1}∗{0}) and E = {{v, w} | v � w and |v|0 ∈ α(w)}. If α is
a tilt of an optimal decomposition of G then the subtrees induced by the nodes
in domα ∩ {1}∗{0} correspond to the connected components of G. Building
a good tree-automatic presentation c = (A,AE,A⊆) is then straight forward.
The automaton A is chosen such that

L(A[α]) = {t ∈ T{0,1,X} | dom(t) = dom(α)∧
∀w ∈ dom(α) : α(w) = X → t(w) = X}.

A tree t ∈ L(A[α]) represents the set {v ∈ dom(α) | t(v) = 1}. Then the
relation ⊆ is trivially regular and the relation E can also be recognised with
the advice α, because the prefix relation is regular on the domain of a tree and
|w|0 ≤ h for every w ∈ dom(t) and every t ∈ L(A[α]), so an automaton can
check whether w is the first ancestor with |w|0 = i of a node v with i ∈ t(v).

Figure 5.1 shows a decomposition of a simple graph G and Figure 5.3 shows
an advice for G.

Theorem 5.8. The MSO model checking problem for graphs of tree-depth at
most h is fixed parameter tractable. Given an MSO sentence ϕ and a graph G
of tree-depth at most h one can decide in time

O
(
exp(h+2)(poly(|ϕ|)) · poly(|G|)

)
whether G |= ϕ.

Proof. Fix some h ∈ N and let c be the presentation constructed in Lemma
5.14. Since for every advice α of c all elements of S(c[α]) have the same domain
as α, we don’t need a padding symbol to represent tuples but can interpret
m-tuples simply as P({1, . . . , h − 1, h, . . . , h + m − 1})-labelled trees. It is a
simple exercise to check that Theorem 5.1 is still valid in this case and that
we need only the properties 3 - 7 of Definition 5.3.
We define the EF-congruence on the basis of equivalence relations (∼hr,k)r,k∈N

on (P1, . . . , Pk)-labelled tree-structures of depth h:
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{1, 2} X

{1, 2}

Figure 5.2: An advice for the Graph in Figure 5.1

• For tree-structures S,T of depth 1 we define S ∼1
r,k T :⇔ S ∼= T.

• Let S,T be trees of depth h + 1 and let Si
1, . . . ,S

i
ni

be the subtrees of
depth i rooted in a child node of the root in S for all i ≤ h and let
Ti1, . . . ,T

i
n′i

be the corresponding trees with respect to T. Then S and T

are ∼h+1
r,k -equivalent if, and only if, the roots of T and S share the same

labels and for all i < h and all ∼ir,k-equivalence classes κ

|{j ∈ N | j ≤ ni,S
i
j ∈ κ}| =index(∼ir,k)r+1 |{j ∈ N | j ≤ n′i,T

i
j ∈ κ}|

The proof of [48, Theorem 3.1] can be easily adapted to show that no FO-
formula with r quantifiers can distinguish between two power set structures of
two ∼hr,(r+k)-equivalent (P1, . . . , Pk)-labelled tree-structures of depth h.
Moreover, a straightforward induction shows that whenever two such tree-

structures S,T of depth h are ∼h0,k-equivalent then the following two observa-
tions hold for every path v0v1 . . . vn in S starting from the root:
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1. There is a path w0w1 . . . wn in T starting from the root of T such that
for all 0 ≤ i ≤ n the nodes vi and wi share the same labels, that is
vi ∈ PS

j ⇔ wi ∈ P T
j for all 1 ≤ j ≤ k.

2. If for some subsets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , k} the nodes vi with i ∈ I
are unique in the sense that for every path v′0v′1 . . . v′n with vi ∈ PS

j ⇔
v′i ∈ PS

j for all i ∈ I and j ∈ J implies vi = v′i for all 1 ≤ i ≤ n then
there is also a unique path w0w1 . . . wn T with wi ∈ P T

j ⇔ vi ∈ PS
j for

all i ∈ I, j ∈ J .

Let ∼≤hr,k :=
⋃

1≤i≤h ∼ir,k. We define an EF-congruence for the presentation
in Lemma 5.14 from ∼≤hr,k . Let h be fixed.
In a first step, we partition the set of all (P({1, . . . , h + m − 1}) ] {X})-

labelled trees into 2h+ 1 classes Tm1 , . . . , Tmh , Qm
1 , . . . , Q

m
h , F .

• A tree t is in Tmi if, and only if, t is a tilt of a tree of depth i.

• A tree t is in Qm
i if, and only if, t is not a tilt of a tree of depth i

but t[ε → ∅] is a tilt of a tree of depth i (this is exactly the case if
t = t′[ε→ X] for some tilt t′ of a tree of depth i).

• All other trees are in F .

The EF-congruence is then defined by

tEr
mt
′ :⇔∃0 ≤ i ≤ h : (t ∈ Tmi ∧ t′ ∈ Tmi ∧

∃S,S′ : t ∈ tilt(S) ∧ t′ ∈ tilt(S′) ∧S ∼ir,(r+m+k) S
′)

∨ ∃0 ≤ i ≤ h : (t ∈ Qm
i ∧ t′ ∈ Qm

i ∧
∃S,S′ : t[ε→ ∅] ∈ tilt(S) ∧ t′[ε→ ∅] ∈ tilt(S′′) ∧S ∼ir,(r+m+k) S

′)

∨ t, t′ ∈ F

From the definition and the remarks about convolutions it is immediately
clear that (Er

m)r,m∈N fulfils Property 3 of Definition 5.3.

For Property 4 let us consider under which circumstances a tree t does not
present a graph of tree-depth at most h. First of all t might not be a tilt of a
tree-structure of depth at most h + 1. In this case t ∈ F or t ∈ Qi for some
i ≤ h + 1. In this case Er

m seperates t from all trees that represent a graph
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from Ch. Otherwise t might be the tilt of a tree-structure T of depth at most
h+ 1 but there is a note v ∈ T of depth i with v ∈ P T

i and i+ 1 ≥ j. But then
by Observation 1 every Er

m-equivalent tree-structure contains also a node of
depth j which is contained in Pi and therefore does also not present a graph
from Ch.
We use Observation 2 to show that Property 5 is fulfilled. Let s and t

be (P({1, . . . , h + m − 1}) ∪ {X})-labelled trees that present Structures in c
with sEr

mt. Let S,T be the tree-structures with s ∈ tilt(S) and t ∈ tilt(T),
let (Gs, V1, . . . , Vm) be the tuple presented by s, and (Gt,W1, . . . ,Wm) be the
tuple presented by t. If Gs |= E(Vi, Vj) for some i, j ≤ m then Vi and Vj
are singletons and therefore there are unique nodes vi, vj with vi ∈ PS

h+i−1

and vj ∈ PS
h+j−1. Further vi and vj are ordered by the ancestor-relationship.

Without loss generality assume that vi is an ancestor of vj and let d be the
depth of vi in S. Then vj ∈ PS

d−1. By Observation 2 there must be unique
nodes wi, wj with wi ∈ P T

h+i−1 and wj ∈ P T
h+j−1. Further wi has depth d, is

an ancestor of wj, and wj ∈ P T
d−1. Hence Gt |= E(Wi,Wj). If Gs 6|= Vi ⊆ Vj

then there is node v ∈ doms such that i ∈ s(v) but j 6∈ s(v). Using similar
arguments as in the previous case we can follow that there is also a w ∈ domt

with i ∈ s(v) and j 6∈ s(v). Hence Gt 6|= Wi ⊆ Wj. The case of Gs 6|= Vi = Vj
is analogous.

In order to establish Property 6 suppose sEr+1
m t. Let s′ be any tree that can

be derived from s by adding the label (h + m) to some nodes w ∈ dom(s) ∩
{0, 1}∗{0}. We distinguish three cases.
Case s, t ∈ F : then t′ ∈ F and we can extend the labelling of t in an arbitrary
way to obtain an Er

m+1-equivalent t′.
Case s, t ∈ Tmi for some 1 ≤ i ≤ h: then there is a (P1, . . . , Ph+m−1)-labelled
tree-structuresS,T of depth i with s ∈ tilt(S) and t ∈ tilt(T). Further there is
a set XS ⊆ S such that s′ is a tilt of (S, XS). Because S ∼h(r+1),((r+1)+h+m) T

there must be a set XT ⊆ T such that (S, XS) ∼hr,(r+h+(m+1)) (T, XT). Finally
choose the extension t′ of the labelling of t such that t′ ∈ tilt((T, XT)). Then
t′Er

m+1s
′.

Case s, t ∈ Qm
i for some 1 ≤ i ≤ h: the case follows analogously to the

previous one by considering s[ε→ ∅] and t[ε→ ∅].
At last, we see that Property 7 holds. Indeed, if t ∈ F then (c ◦ t) ∈ F for

every context c. For the case s, t ∈ Tmi for some 1 ≤ i ≤ h one can distinguish
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two cases based on the structure of the context c.
Case x(c) ∈ {0, 1}∗{1}∪({1}∗{0})>(h−i): then (c◦s) and (c◦ t) do not present
trees of depth at most h and hence s, t ∈ F .
Case x(c) ∈ ({1}∗{0})≤(h−i): there are three subcases that might occur.
It might be that (c ◦ t) ∈ F and (c ◦ s) ∈ F (because c is a “template” of

a tree of depth larger than h or c contains an inconsistent labelling). in this
case equivalence is guaranteed by definition.
It is also possible that (c ◦ t) ∈ Tmj and (c ◦ s) ∈ Tmj for some i ≤ j ≤ h.

Then let S,T be trees of depth j such that (c◦t) ∈ tilt(S) and (c◦s) ∈ tilt(T).
By induction over j − i one shows that S ∼jr,r+h+m T. For j − i = 0 this is
the case by definition. For j − i = k + 1 let S1, . . . ,S` and T1, . . . ,T` be
the subtrees of S and T that are rooted in the children of the roots S and
T, respectively. Without loss of generality assume that S1 and T1 are the
subtrees which resulted from adding s and t into the context c. Then by the
induction hypothesis S1 ∼hr,r+h+m T1 and also Sn

∼= Tn for all 1 < n ≤ `.
But then for all n < j and all ∼nr,r+h+m-equivalence classes τ the number of
τ -children of the root in S is equal to the number in T, hence S ∼jr,r+h+m T
and therefore (c ◦ s)Er

m(c ◦ t).
The last case that might happen is (c ◦ t) ∈ Qm

j and (c ◦ s) ∈ Qm
j for some

i ≤ j ≤ h. In this case we might again argue analogously to the previous cases
by considering (c ◦ t)[ε→ ∅] and (c ◦ s)[ε→ ∅].
Next, let us estimate the index of Er

m. By the definition of Er
m,

index(Er
m) ≤ 1 + 2

h+1∑
i=0

index(∼ir,r+m+h+1)

An inductive analysis of index(∼ir,r+m+h+1) (see [48, Lemma 3.1 c)]) shows

index(∼ir,r+m+h+1) ∈ exp(i+1)(poly(r +m+ h+ 1)).

Applying this to the above estimation yields

index(Er
m) ∈ exp(h+2)(poly(r +m)).

In order to fulfil the prerequisites of Theorem 5.3 we can apply textbook
methods to compute the decomposition of a graph of fixed tree-depth (see for
instance [90]). From the decomposition the construction of an advice for the
presentation in Lemma 5.14 can be performed efficiently.
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5 Uniformly Automatic Classes of Finite Structures

Corollary 5.1. Let h ∈ N be fixed and let Ch be the class of finite graphs
with tree-depth at most h. Suppose for a class of finite structures C ∈ USI(Ch)
there is an FO-interpretation I such that one can compute from every A ∈ C
in polynomial time a graph G ∈ Ch with I(G) ∼= A. Then first order model
checking is fixed parameter tractable on C For every sentence ϕ ∈ FO and
A ∈ C one can decide in time

O
(
exp(h+2)(poly(|ϕ|)) · poly(|A|)

)
whether A |= ϕ.

Note that in the extended version [49] of the above mentioned paper, Ga-
jarský and Hliněný show a similar result that bounds the size of an automaton
for certain presentations of structures that are uniformly MSO-interpretable
in a class of trees of bounded depth. However, they only prove the existence
of small automata.

5.4 Discussion

In this chapter we investigated the application of uniformly tree-automatic
presentations in finite model theory. We observed that once a presentable
class of structures allows an efficient transformation from (an encoding of)
the structure to a corresponding advice one naturally obtains fixed parameter
tractability of the model checking problem in the size of the formula for first-
order (or monadic second-order) logic on this class. This in turn is absolutely in
line with Courcelle’s approach to obtain algorithmic meta-theorems for graphs
of bounded treewidth or bounded cliquewidth. Indeed, as we have pointed out,
the work of Courcelle is actually a special case, were the class that is presented
is simple enough to represent even the class of power set structures. It seems
very conceivable that the use of set-interpretations opens this technique for
much broader classes of graphs (while simultaneously restricting the logic, of
course).
However, in these first investigations we were more concerned with the ques-

tion of how efficient this approach really is. Indeed, the classes that we con-
sidered here are rather simple instances and should be understood as proof of
concept examples. In fact, all these classes are even uniformly word automatic.
The reason why we gave tree-automatic presentations is that this allowed us
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to express Theorem 5.2 without having to restrict the classes to finite struc-
tures. Additionally the analysis of the EF-congruences would probably be a bit
more tedious for the word automatic presentations. The catch is that although
we used straightforward presentations for the respective classes, our analysis
shows that the worst-case runtime of this generic approach is either optimal
or at least matches or even beats all other known approaches. Our findings
should therefore also be considered as a praise to this, nowadays simple look-
ing, automata based approach to solve the MSO-theory of trees. This is also
reflected in the fact that it goes along so well with the composition operators
we considered.
A natural next step would be to consider under which circumstances the

existence a uniform (tree-)automatic presentation leads to fixed parameter
tractability of the respective model checking problem. All that we need in
order to apply Theorem 5.3 is that we can compute from the structure an cor-
responding advice efficiently. Recall that FPT-algorithms for computing tree
decompositions are a major cornerstone of Courcelle’s Theorem [14]. Therefore
the following question arises: has every uniformly automatic class C of finite
structures a presentation c (that possibly presents a class that contains C) such
that we can efficiently compute from a given structure A ∈ C an advice α with
S(c[α]) ∼= A? If we could answer this question positively then this would lead
to a wealth of new classes where first-order model checking is fixed parameter
tractable.
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6 Extending Fixed-Point Logic by
Interpretations

In the first part of this thesis we used interpretations to reduce algorithmic
problems, like solving the theory of a given structure or model checking to
deciding certain properties of finite automata. This is the classical application
for interpretations. In the second part of this thesis, however, we will take a
different attitude towards interpretations. Namely we consider interpretations
as the description of the behaviour of an abstract machine. Roughly speaking,
we regard a structure to be the representation of a machine state and the
interpretation to describe the transition from one state to another. By applying
this transition over and over again we obtain a computation. On the one hand
this is a model of computation but on the other hand, since all ingredients are
formulated in purely logical terms, it is also a logic. Therefore it is natural to
investigate this idea in the context of descriptive complexity.

6.1 Is PTIME a Logical Concept?

Descriptive complexity theory is the branch of finite model theory that tries to
characterise complexity classes by the type of logic that is needed to express
exactly the languages inside this complexity class. The initial result of this field
is Fagin’s Theorem that the properties of finite structures that are recognisable
in non-deterministic polynomial time are exactly the properties expressible in
existential second-order logic (see [38]).
Starting from this result, other characterisations of several complexity classes

above NP, like PSPACE, EXPTIME, or elementary time, have been found.
For a survey see [55, 66]. Below NP the situation is more delicate. The most
interesting question, especially in the light of the P versus NP Problem, is
whether there is a logic for polynomial time (and if so can we separate it from
existential second-order logic?). If we assume that a linear order is present,
then fixed-point logic (FP) is the logic we are looking for. This was discovered
independently by Immerman and Vardi [65, 99]. Without the presence of a
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6 Extending Fixed-Point Logic by Interpretations

linear order, however, FP is relatively far from capturing PTIME. For instance
FP cannot even express simple properties that involve counting: the class
of all structures where the universe has even size is not definable in fixed-
point logic. Immerman therefore suggested to extend FP with a mechanism to
count. The formal definition of fixed-point logic with counting (FPC), based
on inflationary fixed points, was given by Grädel and Otto in [57]. Although
Immerman himself, together with Cai and Fürer, proved that FPC does not
capture polynomial time, it turned out to be a very strong logic that captures
a large fragment of polynomial time. Even today there are only a few known
problems in PTIME that are not expressible in FPC. We give a quick overview
over some of the most important ones. A survey on the expressive power of
fixed-point logic (with counting) can be found in [84].

The Cai, Fürer, Immerman Construction The first example of a query that
is decidable in polynomial time but not definable in FPC was given by Cai,
Fürer, and Immerman [22] and is today known as the CFI-query. It involves a
clever construction of a certain class of graphs, the so-called CFI-graphs. We
give a short description of the construction here.
Let G = (V,E,≤) be a finite undirected graph equipped with a linear order

and let f : V → {0, 1} be a function. The CFI-graph

CFI(G, f) =
(
V CFI(G,f), O, I, ECFI(G,f),�

)
over G is the graph where the vertex set is partitioned into the outer nodes
O = (E×{0, 1}), which consist of two nodes for each Edge of G, and the inner
nodes I = {(v,X) ∈ V ×P(vE) | |X| ≡2 f(v)}, which consist of 2|vE|−1 many
nodes for every vertex v of G. The inner nodes correspond to the even sized
subsets of vE if f(v) = 0 and to the odd sized subsets of vE if f(v) = 1. The
edges of CFI(G, f) are

{{(v,X), (e, a)} | e = {v, w} and (a = 1 iff w ∈ X)},

that is each inner node (v,X) is connected to exactly one of the two outer
nodes that correspond to an edge e of G for all e with v ∈ e and the set X
determines which of the two is chosen. The gadget of a node v ∈ V is the
subgraph of CFI(G, f) that is induced by the set

{(e, a) ∈ O | v ∈ e} ∪ {(u,X) ∈ I | u = v}.
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The gadget of v is called even if f(v) = 0 and odd otherwise. The relation �
is the preorder on the inner nodes that is induced by the order on G, that is
(v,X) ≺ (w, Y ) if and only if v ≤ w.
It might seem at first glance that there are many CFI-graphs over a given

graph G. But it turns out, and this is one of the beauties of the CFI-
construction, that if G is connected and every vertex has at least degree 3
then there are up to isomorphism exactly two CFI-graphs over G. Let C be
the class of all finite connected undirected graphs where every vertex has de-
gree at least 3. It can be shown that for every G ∈ C two CFI-graphs CFI(G, f)
and CFI(G, g) are isomorphic if, and only if

|{v ∈ V | f(v) = 1}| ≡2 |{v ∈ V | g(v) = 1}|

or equivalently if the number of odd gadgets has the same parity in CFI(G, f)
and CFI(G, g). If the number of odd gadgets is even we refer to this graph as
the even CFI-graph CFI0(G) and otherwise as the odd CFI-graph CFI1(G).
The CFI-query is to determine whether a given graph G is isomorphic to an

even CFI-graph CFI0(H) for some graph H ∈ C. With the above properties in
mind, it is not hard to see that the CFI-query is solvable in polynomial time.
First, it can easily be checked that G has the structure of some CFI-graph and
the outer nodes that correspond to the same edge can be identified. To each
such pair of outer nodes one arbitrarily assigns a label 0 and a label 1, which
renders every gadget of G either an even gadget or an odd gadget. Now one
can simply count the number of odd gadgets and decide in this way whether
G is an even or an odd CFI-graph.
However Cai et al. could show that this is not expressible in FPC. They

showed that if a graph G ∈ C has no k-separators, then Ck
∞ω, the k-variable

fragment of infinitary logic with counting, cannot distinguish between CFI0(G)
and CFI1(G). Note that for every FPC-sentence ϕ there is a k and a Ck

∞ω-
sentence ψ that is equivalent to ϕ on the class of all finite structures. Further,
they could show that for every k there are graphs of degree three such that the
CFI-construction yields indistinguishable structures. This leads to two major
shortcomings of FPC with respect to expressiveness.

Definition 6.1. Let τ = {R1, . . . , Rk} be a vocabulary. A τ-structure of
colour class size q (or q-bounded structure) is a τ ] {�}-structure H =
(H,RH

1 , . . . , R
H
k ,�) where � is a total preorder on H of width at most q.
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Figure 6.1: An even CFI-gadget obtained from a vertex of degree 3

Observe that for graphs of bounded degree the CFI construction yields
graphs of bounded degree and bounded colour class size.

Theorem 6.1 (Cai, Fürer, Immerman [22]). There are constants c, d such
that FPC fails to capture PTIME on the class of all finite c-bounded graphs of
degree at most d.

An intuitive reason why there is no k such that Ck
∞ω can distinguish be-

tween even and odd CFI-graphs is that the structure of the automorphism
groups of the CFI-graphs allows it to "hide" the odd gadget in the k-pebble
bijection game (a model comparison game for Ck

∞ω similar to EF-games for
first-order logic). Indeed, the property of having an odd gadget is not inherent
in the gadgets when they are considered separately but is only enforced by
the complete interconnection between the gadgets. One might ask whether
the structure of the automorphism group is the only reason why FPC fails
to capture PTIME on this class of graphs. In fact, Dawar conjectured that
fixed-point logic captures PTIME on every finitely axiomatisable class of rigid
structures [28].

Multipedes The conjecture of Dawar was refuted by Blass, Gurevich and
Shelah [11, 59] through a class of structures which they call Multipedes. This
leads us to the next example that separates FPC from PTIME. We describe
their construction here because it will play a role in the following chapter.

A Multipede (in [11] called 3-Multipede with shoes) is a structure

M = (A,F, S, P,E, T,<)
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such that

1. F and S from a partition of A. The elements of F are called feet and
the elements of S are called segments.

2. The relation < is a linear order on the segments S,

3. The relation E ⊆ F × S connects feet to segments in a way that every
foot f is connected to exactly one segment (which we denote s(f)) and
every segment has exactly two feet.

4. The relation T is a set of hyperedges T ⊆
(
S
3

)
∪
(
F
3

)
(called foot and

segment edges) such that

• if x is a segment edge of T then there are exactly four foot edges a
in T with s(a) = {s(f) | f ∈ a} = x,

• if a is a foot edge of T then |s(a)| = 3 (i.e. no two feet in a foot
edge belong to the same segment),

• if a and b are foot edges of T with s(a) = s(b) then a and b are
either identical or |a ∩ b| = 1, and

• if a is a foot edge of T then s(a) is a segment edge of T .

5. P ⊆ F is the set of "feet with shoes" where for every segment at most
one of its feet wears a shoe.

Note that the relation a ∼ b :⇔ |a ∩ b| = 1 is an equivalence relation that
partitions the possible foot edges for every segment edge into two equivalence
classes of size four. The aforementioned properties therefore ensure that for
every foot edge in T exactly one of these equivalence classes is contained in T .
A Multipede is odd if for every set X of segments the intersection with every

segment edge in T has odd cardinality. The Multipede query is to determine,
given the disjoint union of two multipedes M, M′, if M and M′ are isomorphic.
Blass, Gurevich, and Shelah show that every odd Multipede is rigid and that

for every k there is an odd Multipede M such that Ck
∞ω cannot distinguish

between M and an Multipede M′ that differs from M only by the fact that for
one segment the feet have switched shoes. However, the isomorphism problem
for Multipedes is solvable in polynomial time. This is shown by reducing the
problem of finding a suitable bijection between the feet of the two Multipedes
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to finding a solution of a system of linear equations over Z2 (note that the
bijection between the segments is already prescribed by the linear orders on
them).

Theorem 6.2 (Blass, Gurevich, Shelah [11]). The Multipede query is not de-
finable in FPC.

Using the order on the segments of a Multipede one easily defines a total
preorder of width two. Hence, Multipedes can be seen as 2-bounded structures.

Corollary 6.1. FPC fails to capture PTIME on the class of all 2-bounded
structures.

Linear Algebra So far our examples, as beautiful as they are from a math-
ematical point of view, are rather artificial. It would therefore be desirable
to find problems of practical relevance that separate PTIME from FPC. The
reduction of the isomorphism problem for Multipedes to the solvability of a
linear equation system suggests that problems from linear algebra might be
a source for such examples. This is in fact the case. Atserias, Bulatov and
Dawar [6] have shown that several kinds of constraint satisfaction problems,
the solvability of linear equation systems being one of them, are not expressible
in FPC.

Where FPC captures PTIME Besides identifying separating problems, peo-
ple where also interested in what can actually be expressed in FPC. This
direction of research branches further into two parts. First, one tries to find
problems where there is no obvious description of the problem in FPC but
there are still clever ways to express the problem. Second, one tries to find
larger and larger subclasses of structures where FPC is actually capable of ex-
pressing all PTIME properties. On the first branch let us mention two results.
The first one is due to Otto [85], namely that FPC is capable of expressing
every bisimulation invariant PTIME property of graphs (more precisely a frag-
ment, the higher order µ-calculus, captures this fragment of polynomial time).
Another inspiring result, due to Anderson [5], is that FPC can solve linear
programs. An application is that the size of maximum matching is definable
in FPC.
For the second branch the most general result known today is Grohe’s The-

orem that FPC captures PTIME on every class of graphs that excludes a fixed
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minor [53]. Excluding a specific minor is a property that applies to a variety
of classes such as planar graphs or graphs of bounded treewidth. For a more
elaborate survey on recent positive results concerning FPC we refer to [29].

In the light of this history, FPC is currently the benchmark for any logic that
wants to be a candidate for a logic capturing PTIME. In the following we go a
step further and review two logics (which turn out to be of equal expressiveness)
that are at the time of this writing the most promising candidates for a logic
capturing PTIME.

6.2 Interpretation Logic

We continue by formalising the ideas that we broached in the introduction.
The study of the resulting formalism, which we will call interpretation logic,
was suggested by Kaiser and later defined by Schalthöfer [94].

Definition 6.2. Let τ be a signature. A program of interpretation logic
(IL) over τ is a tuple P = (Iinit, Istep, ϕhalt, ϕeval), where Iinit is an FO + H
τ -to-σ interpretation, Istep is an FO + H σ-to-σ interpretation, and ϕhalt as
well as ϕeval are sentences of FO[σ] for some finite relational signature σ.

A program of interpretation logic over τ defines a query on the class of all
τ -structures.

Definition 6.3. Let P = (Iinit, Istep, ϕhalt, ϕeval) be a program of interpretation
logic over the signature τ and let A be a τ -structure. The run of P on A is
the sequence of structures (Bi)i∈N with

B0 = Iinit(A) and
Bi+1 = Istep(Bi)

for all i ∈ N.
If there is no i ∈ N such that Bi |= ϕhalt we say that P diverges on A.

Otherwise P is evaluated to true in A if Bi |= ϕeval and P is evaluated to false
on A if Bi 6|= ϕeval for the minimal i such that Bi |= ϕhalt.
An IL-program P over the signature τ recognises the class

{A ∈ finStr(τ) | P is evaluated to true in A}.

We say that P decides the class C ⊆ finStr(τ) if P recognises C and P never
diverges on a finite τ -structure.
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Example 6.1. The following program recognises the class of all finite sets
whose size is a power of two.

• Iinit = (ϕU(x0, x1), εi(x, y), ϕA(x), ϕE(x, y)) with

ϕU(x0, x1) ≡ (x0 = x0)

εi(x0, x1, y0, y1) ≡ ({x0, x1} = {y0, y1})
ϕA(x0, x1) ≡ (x0 = x1)

ϕE(x0, x1, y0, y1) ≡ (y0 = y1) ∧ y0 ∈ {x0, x1}

• Istep = (ψU(x0, x1), εs(x, y), ψA(x), ψE(x, y)) with

ψU(x0, x1) ≡ (Ax0 ∧ x0 = x1) ∨ (¬Ax0 ∧ ¬Ax1 ∧ x0E ∩ x1E = ∅)
εs(x0, x1, y0, y1) ≡ (x0E ∪ x1E = y0E ∪ y1E)

ψA(x0, x1) ≡ (Ax0 ∧ x0 = x1)

ψE(x0, x1, y0, y1) ≡ y0 ∈ x0E ∪ x1E

• ϕhalt ≡ ∃x, y : A = xE ∪ yE

• ϕeval ≡ ∃x, y : (A = xE ∪ yE) ∧ (xE ∩ yE = ∅)

Indeed, the structure Instep(Iinit(A)) is isomorphic to the structure whose uni-
verse consists of the disjoint union of A and

(
A

2n+1

)
. The edge relation E ⊆(

A
2n+1

)
× A encodes the membership relation, that is (X, a) ∈ E if, and only

if, a ∈ X. The program halts on every finite structure after n = dlogAe − 1
iterations of Istep. Then |A| is a power of twos if there are two disjoint sets
X, Y ∈

(
A
2n

)
with X ∪ Y = A. Hence, P decides the query on the class of all

finite structures.

There is a direct correspondence between programs of interpretation logic
and Turing machines.

Theorem 6.3. Let τ be a finite signature and C be a class of finite τ -structures.
Then C is recognisable by an IL-program if, and only if, it is recursively enu-
merable. Further C is decidable if, and only if, there is an IL-program that
decides C on the class of all finite τ -structures.
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Proof Sketch. The direction from IL-programs to Turing machines is rather
obvious. The iteration process that builds up the run of an IL-program can be
simulated by a Turing machine until at some point the formula ϕhalt is true.
On the other side, from a Turing machine that decides or recognises the

class C we can construct an IL-program that first builds up every possible code
of A and then simultaneously simulates M on all these inputs step by step.
The formula ϕhalt checks if one of these computations has reached a halting
configuration and ϕeval checks if one of these configurations is accepting.

Using the analogy that structures represent the state of a machine and in-
terpretations describe the computation steps, we can bound the resources that
a machine is allowed to use during the computation.

Definition 6.4. Let f, g : N → N be strictly increasing functions. The logic
IL[f, g] consists of all IL-programs such that if (Bi)i∈N is the computation on
a finite structure A then there is an n ≤ f(|A|) such that Bn |= ϕhalt and
|Bi| ≤ g(|A|) for all 1 ≤ i ≤ n.

We define the polynomial time fragment of IL in terms of Definition 6.4.

Definition 6.5. Polynomial time interpretation logic (PIL) is the logic

IL[poly, poly] =
⋃

p,q∈poly

IL[p, q].

As usual we will also write C ∈ PIL for a class of finite structures to indicate
that there is a PIL-program which decides C.

We observe that Example 6.1 does not describe a PIL-program. While the
number of iterations is bounded logarithmically in the size of every finite input
structure, the universe of the interpreted structures becomes exponentially
large during the computation. The next example gives a PIL-program which
also demonstrates the use of the Härtig quantifier.

Example 6.2. The following PIL-program P decides the class of all finite
structures with an even number of elements.

145



6 Extending Fixed-Point Logic by Interpretations

• Iinit = (ϕU(x0, x1), εi(x, y), ϕA(x), ϕL(x), ϕP (x), ϕS(x, y)) with

ϕU(x0, x1) = true
εi(x0, x1, y0, y1) ≡ (x0 = y0 ∧ x1 = y1) ∨ (x0 6= x1 ∧ y0 6= y1)

ϕA(x0, x1) ≡ (x0 = x1)

ϕL(x0, x1) ≡ (x0 6= x1)

ϕP (x0, x1) ≡ false
ϕS(x0, x1, y0, y1) ≡ false

• Istep = (ψU(x0, x1), εs(x, y), ψA(x), ψL(x), ψP (x), ψS(x, y)) with

ψU(x0, x1) ≡ (x0 = x1) ∨ (Lx0 ∧ Ax1)

εs(x0, x1, y0, y1) ≡ (x0 = y0 ∧ x1 = y1) ∨ (Lx0 ∧ Ly0 ∧ Ax1 ∧ Ay1)

ψA(x0, x1) ≡ (Ax0)

ψL(x0, x1) ≡ (Lx0)

ψP (x0, x1) ≡ (x0 = x1 ∧ Px0)∨
(Lx0 ∧ Ax1 ∧ ∃z(Lz ∧ ¬∃z′Szz′) ∧ ¬Pz)

ψS(x0, x1, y0, y1) ≡ (x0 = x1 ∧ y0 = y1 ∧ Sx0y0)∨
(Lx1 ∧ ¬∃z(Sx1z) ∧ Ly0 ∧ Ay1)

• ϕhalt ≡ Hxy(Ax)(Ly)

• ϕeval ≡ ∃x(Lx ∧ ¬∃y(Sxy) ∧ Px)

Every structure Instep(Iinit(A)) is isomorphic to a structure that consists of the
universe of A and a path of length n + 1 where every other node of the path
belongs to the set P . In each interpretation step the path is prolonged by one
node. Using the Härtig quantifier, the program halts as soon as the number
of nodes on the path is equal to the size of the universe of A. To determine
whether this number is even it suffices to check if the last node of the path is
in P .

Note that every class of finite structures C ∈ PIL is also in PTIME: for every
first-order interpretation ϕ there is a fixed polynomial p such that I(A) can
be computed in time p(|A|) for every matching finite structure A. The same
is true for the evaluation of first order formulae (which can be done even in
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logarithmic space). The other direction yields a much more delicate question.
The simulation of a polynomially time bounded Turing machine, like it was
suggested in the proof of Theorem 6.3, does not lead to a PIL-program. In fact,
the program cannot choose an arbitrary code of the structure to simulate the
Turing machine, because every automorphism of the input structure naturally
induces an automorphism of the interpreted structure. The program therefore
simulates the machine on all possible codes simultaneously which exceeds the
polynomial bound for the size of the structures that may appear in a run of
the program.
This, of course, does not necessarily mean that there is no other way to

capture all PTIME properties by PIL-programs, but it reflects the fundamental
difficulty which makes the quest for a logic for PTIME so intriguing.

6.3 Choiceless Polynomial Time

Another prominent candidate for a logic for PTIME is choiceless polynomial
time with counting (CPT). It is defined as BGS logic with additional explicitly
given resource bounds. The logics CPT and BGS where introduced by Blass,
Gurevich, and Shelah [10]. However, the definition that we are about to give
deviates from the original one and rather sticks to the presentation given by
Rossman [92].

Definition 6.6. Let A be a set. Then HF(A) denotes the smallest set such
that A ⊆ HF(A) and if B is a finite subset of HF(A) then also B ∈ HF(A).
The elements of A are called atoms and the elements of HF(A) \A are called
the hereditarily finite sets over A.

Note that HF(A) contains the natural numbers as von Neumann ordinals
independent of the particular set A.
We also need the notion of the hereditarily finite expansion of a structure.

Definition 6.7. Let τ be a signature and A a τ -structure. Then HF(A) is the
τ ∪{In,Atoms,Empty,Pair,Union,TheUnique,Card} Structure with universe
HF(A), where the symbols in τ are interpreted as in A and

• (x, y) ∈ In⇔ x ∈ y,

• Atoms = A,

• Empty = ∅,

• Pair(x, y) = {x, y},
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• Union(x) =
⋃
y∈x y,

• TheUnique(x) =

{
y x = {y}
∅ else

• Card(x) =

{
|x| x is a set
0 else

The signature τ ∪ {In,Atoms,Empty,Pair,Union,TheUnique,Card} is de-
noted by τHF.

Like first-order logic, BGS consists of the two syntactical objects terms and
formulas, which are defined by mutual induction.

Definition 6.8. The BGS terms and formulas over the signature τ are the
smallest sets such that

• every first-order term over τHF is a BGS term,

• every quantifier-free first-order formula over τHF and BGS terms is a
BGS formula,

• if s and t are BGS terms, v is a variable that does not occur free in t,
and ϕ is a BGS formula, then {s(v) : v ∈ t : ϕ(v)} is a BGS term (called
comprehension term). Note that s, t, and ϕ might contain free variables
besides v.

The evaluation of BGS terms and formulas built up from the first two items
coincides with the semantics for first order logic. The comprehension is eval-
uated as

{s(v, x) : v ∈ t(x) : ϕ(v, x)}HF(A,a) =

{sHF(A)(v, a) | v ∈ tHF(A)(a) ∧ HF(A) |= ϕ(v, a)}.

Finally we can define BGS programs.

Definition 6.9. A BGS program is a triple P = (π(x), ϕh(x), ϕo(x)) that
consists of a term π, and two formulas ϕh, ϕo with a single free variable each.
The evaluation PA is defined as follows. Let (ai)i∈N be the sequence with
a0 = ∅ and ai+1 = πA(ai) for all i > 0. If there is no i such that A |= ϕh(ai)
then PA is undefined and we say that the program diverges on A. Otherwise,
let i be the smallest number such that A |= ϕh(ai). Then PA is true if and
only if A |= ϕo(ai) and otherwise it is false.
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The logic BGS without any restrictions is a much too powerful logic to be
used in the context of descriptive complexity theory. In fact, every recursively
enumerable property of finite structures is expressible in BGS. To obtain a
candidate for a logic for PTIME we need to impose certain restrictions on
the resources that are available to a BGS program. The resource bound that
leads to the logic CPT is the number of objects that are created throughout
the execution of the program. These objects are called the active elements.
Roughly an element is active if it is contained in the transitive closure of some
set that is created while the term π is iterated.

Definition 6.10. Let t(x1, . . . , xn) be a BGS term and a1, . . . , an elements of
HF(A). The set 〈t(a1, . . . , an)〉A is inductively defined by

• 〈ai〉 = {ai}

• 〈R(t1, . . . , tm)〉 =
⋃

1≤i≤m〈ti〉 for m-ary relation symbols

• 〈f(t1, . . . , tm)〉 = {f(t1, . . . , tm)A} ∪
⋃

1≤i≤m〈ti〉 for function symbols

• 〈{s(v) : v ∈ t : ϕ(v)}〉 = 〈t〉 ∪
⋃
v∈tA(〈s(v)〉 ∪ ϕ(v))

For a program P = (π, ϕh, ϕo) the active elements are

〈P 〉A =

{⋃
i∈N〈π(ai)〉 ∪ 〈ϕh(ai)〉 if P diverges on A⋃
1≤i≤`(〈π(ai)〉 ∪ 〈ϕh(ai)〉) ∪ 〈ϕo(a`)〉 otherwise

where a0 = ∅, ai+1 = πA(ai) for i ≥ 0, and ` is the smallest number such that
A |= ϕh(a`) (is such an ` exists).

For a function f : N → N, we denote by BGS[f ] the class of all BGS
programs P such that P never diverges on A and 〈P 〉A ≤ f(|A|) for all finite
structures A.

Definition 6.11.

CPT = BGS(poly) =
⋃

p∈poly

BGS[p]

Again, we will take the freedom to write C ∈ CPT for a class of finite structures
C whenever we want to express that there exists a CPT-program that decides
C.
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It turns out that CPT and PIL have the same expressive power.

Theorem 6.4 (Schalthöfer [94]). PIL ≡ CPT

Given that CPT and PIL use quite different mechanics, the results suggest
that these logics capture a natural level of expressibility. The big open question
is how much of PTIME is contained in this level.

Open Problem 6.1. Does PIL (or equivalently CPT) capture PTIME?

We do not actually belief that this is the case, but answering this question in
any direction would probably signify a great progression in our understanding.
Although our original motivation was to study a logic that is based on

iterated interpretation, Theorem 6.4 justifies that for the positive results in
the following chapter we use the logic CPT as our underlying framework. The
reason for this is that CPT is simply the more established logic with this
expressiveness. Since we will refrain from writing down formulae explicitly in
our proofs, this will not make much of a difference anyway.

Remark 6.1. The reader should be aware of the fact that we defined PIL and
CPT directly with an ability to count (in the case of PIL indirectly through
the Härtig quantifier). In the literature there is usually a distinction between
the versions with and without counting. We renounced from this convention
because in this introduction we only wanted to present the actual candidates
for capturing PTIME. However, one should note that we do not make use of
counting for the canonisation procedure in the following chapter.
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There are several examples which show that CPT is indeed more powerful
than FPC. First, because CPT is constrained to use only polynomially many
resources from outside, it is sensible to artificial enlargement of the structure
by padding elements. Hence, any computable query on small enough definable
substructures is expressible in CPT, a property that FPC does not possess.
Even more interesting, Dawar, Richerby, and Rossman [30] showed that the
CFI-query is definable by a CPT-program.
In this chapter we contribute to the exploration of which other shortcom-

ings of FPC are no longer present in CPT. Since we will only consider finite
structures in this chapter we will pick up the convention that whenever we
use the term structure we implicitly mean finite structure. One of the major
restrictions imposed on FPC by the CFI-construction was the failure to cap-
ture PTIME on structures of bounded colour class size. This is quite a strong
result because structures with colour class size bounded by some constant q are
almost linearly ordered. Although it is not obvious that a canonical extension
of the total preorder to a linear order (i.e. a canonisation) can be computed in
polynomial time. The goal of this chapter is to define in CPT a canonisation
procedure for an important subclass of bounded colour class size structures.
This leads to the following theorems.

Theorem 7.1. 2-bounded structures can be canonised in CPT.

Accordingly, CPT captures PTIME on 2-bounded structures. As we already
mentioned Multipedes are 2-bounded structures. Hence our result answers the
question of Blass, Gurevich, and Shelah.

Corollary 7.1. The Multipedes query is definable in CPT.

We further generalise Theorem 7.1 to structures of bounded colour class size
where the automorphism group of every colour class is abelian.

Theorem 7.2. q-bounded structures with abelian colours can be canonised in
CPT.
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7.1 A Generic Canonisation Algorithm for Structures of
Bounded Colour Class Size

We begin with the outline of a generic procedure to define from a given input
structure of bounded colour class size an isomorphic copy over an ordered
universe (a canonical copy or canonisation). The idea is to canonise larger
and larger parts of the structure along the linear order on the colour classes.
Of course it is possible to canonise every colour class individually due to their
constant size, but we also need to take the relations between different colour
classes into account. Since the relations in the signature have a fixed arity we
can partition the relations with respect to their "colour type" and canonise
these parts individually. However, these substructures will have non-disjoint
universes in general and fixing an ordering on the universe of one substructure
clearly constrains the possible choices of orderings on the other substructures.
It is therefore necessary to maintain a data structure that reflects these con-

straints. The information that we want to maintain is the set of isomorphisms
between the canonised part of the input structure and its partial canonisation.
When we proceed to choose a canonisation for the next substructure, we first
check whether, with this choice, some of the old isomorphisms extends to the
new larger part of the structure. If so, we can update our data structure and
proceed.
If we want to implement this approach in CPT the crucial step is to find a

way of representing the sets of isomorphisms in a succinct and CPT-definable
way.

Definition 7.1. Let H = (H,RH
1 , . . . , R

H
k ,�) be a q-bounded structure. We

write H = H1 � · · · � Hn for the canonical enumeration of the colour classes
and denote by qi := |Hi| ≤ q the size of the i-th colour class Hi. We let H<

i be
the ordered set {(i, 0), . . . , (i, qi− 1)} and write O(Hi) to denote the set of bi-
jections between Hi and H<

i , that is O(Hi) = {π : Hi → H<
i , π is a bijection}.

For our procedure it is crucial that the vocabulary is fixed when we speak of
a class of q-bounded structures. In particular, the arity of all relations which
appear in a q-bounded structure is also bounded by a constant, say r.
For a q-bounded structure with n colour classes let P = P(n, r) denote the

set of all non-empty subsets I ⊆ {1, . . . , n} of size ≤ r. We can define the set
P together with a linear order in CPT (since r is fixed).
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7 Canonising Structures of Bounded Colour Class Size

For I ∈ P we set HI =
⋃
i∈I Hi and denote by HI ⊆ H the substructure of

H which is induced on the set HI . Since r bounds the arity of relations in τ
we have H =

⋃
I∈P HI . We set

O(H) = O(H1)× · · · × O(Hn)

and
O(HI) = O(Hi1)× · · · × O(Hi`)

for I = {i1 < i2 < · · · < i`} ∈ P . Given C ⊆ O(HI) the extension of C to
O(H) is the set

ext(C) = {(σ1, . . . , σn) ∈ O(H) : (σi1 , . . . , σi`) ∈ C}.

Every σ = (σ1, . . . , σn) ∈ O(H) can be identified with a bijection between
H and the lexicographically ordered vertex set

H< = {(i, j) : 1 ≤ i ≤ n, 0 ≤ j < qi}.

The preorder � on H translates to the preorder σ(�) on H< in the natural
way, i.e.

(i, j)σ(�)(i′, j′)⇔ i ≤ i′.

Specifically, σ ∈ O(H) defines an isomorphism between the input structure
H and the structure σ(H) = (H<, σ(RH

1 ), . . . , σ(RH
k ), σ(�)). Of course we can

apply σ ∈ O(H) also to substructures of H. In particular for I ∈ P , every
σ ∈ O(HI) defines an isomorphism between HI and the ordered structure
σ(HI) = (H<

I , σ(RHI
1 ), . . . , σ(RHI

k ), σ(�HI )) where H<
I = {(i, j) ∈ H< : i ∈ I}.

Our aim is to construct for a q-bounded structure H a copy of the form σ(H)
in an isomorphism invariant way.

In general, two different σ, τ ∈ O(H) will result in two different canonisa-
tions, that is σ(H) 6= τ(H). Since the structures σ(H) and τ(H) are defined
over an ordered universe we can distinguish them logically in CPT. Moreover,
it is easy to see that σ(H) = τ(H) holds if, and only if, τ−1σ ∈ Aut(H). This
reflects the well known connection between the set of all isomorphisms between
two structures and their automorphism groups:

Remark 7.1. For σ ∈ O(H) we have

{τ ∈ O(H) : τ(H) = σ(H)} = σAut(H) = Aut(σ(H))σ.
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Let I1 < I2 < · · · < Im be the enumeration of P according to the CPT-
definable linear order < on P . We denote by H[1 · · · s] ⊆ H the (not necessarily
induced) substructure of H which consists of the first s components of H, that
is H[1 · · · s] = HI1 ∪ · · · ∪ HIs .

Definition 7.2. For 0 ≤ s ≤ m an s-canonisation of H is a canonisation
of H[1 · · · s], that is a structure σ(H[1 · · · s]) = σ(HI1) ∪ · · · ∪ σ(HIs) for some
σ ∈ O(H).
A non-empty set C ⊆ O(H) witnesses an s-canonisation of H if for all

σ, τ ∈ C we have τ(HIj) = σ(HIj) for j = 1, . . . , s.

Since H =
⋃
I∈P HI , an m-canonisation of H is also a canonisation of H.

We are prepared to describe our generic canonisation procedure for q-bounded
structures. The idea is that we iteratively construct, for all 0 ≤ s < m, (s+1)-
canonisations H<

s+1 of H by extending the previously computed s-canonisation
H<
s . In order to ensure consistence of our choices, we additionally maintain

a set Cs+1 ⊆ O(H) which witnesses this (s + 1)-canonisation of H. A single
iteration step is performed as follows: we start by constructing all ordered
versions of the component HIs+1 and check which of them are consistent with
the set Cs. The first part is easy. Because the size of the component HIs+1 only
depends on q and τ , we can explicitly describe all ordered versions of HIs+1

by a CPT-formula. Secondly, to obtain the (s + 1)-canonisation H<
s+1 of H

we add the lexicographically smallest compatible canonisation of HIs+1 to the
s-canonisation H<

s . Finally, we need to update our presentation of the set Cs
of witnesses for H<

s by describing the new constraints imposed by fixing the
canonisation of HIs+1 .
In order to describe this procedure more formally, let us assume that we

have preselected for each colour class Hi a set of linear orderings σiΓi ⊆ O(Hi)
where Γi ≤ sym(Hi) and σi ∈ O(Hi). The group Γ = Γ1 × · · · × Γn acts on
O(H) in the obvious way and for σ = (σ1, . . . , σn) ∈ O(H) we have σΓ = τΓ
for every τ ∈ σΓ. For an index set I = {i1, . . . , i`} ∈ P we write ΓI to
denote the group ΓI = Γi1 × · · · × Γi` and (σΓ)I to denote the set (σΓ)I =
σi1Γi1 × · · · × σi`Γi` ⊆ O(HI). The extension of a set of partial orderings
C ⊆ (σΓ)I to σΓ is the set

ext(C) = {(σ1, . . . , σn) ∈ σΓ : (σi1 , . . . , σi`) ∈ C} ⊆ σΓ.

The canonisation procedure for q-bounded structures is given below.
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Algorithm 8 CPT-canonisation of q-bounded structures
Input: A q-bounded structure H and sets σiΓi ⊆ O(Hi) for Γi ≤ sym(Hi), σi ∈
O(Hi)

Output: A canonisation H< of H

C0 := σΓ and H<0 := ∅
for s = 1, . . . ,m do

Set I := Is and define ∆ := Aut(HI) ∩ ΓI and D := {τ∆ : τ ∈ (σΓ)I}
Define enumeration D = {d1, . . . , dm} of D . possible by Remark 7.1
Set Cs := ∅ ⊆ σΓ and H<s := ∅
i := 1
while Cs−1 ∩ ext(di) = ∅ do

i := i+ 1
end while
Set Cs := Cs−1 ∩ ext(di) and H<s := H<s−1 ∪ τ ′(HI) for some (all) τ ′ ∈ di

end for
return The canonisation H< := H<m of H

The only obstacle which prevents us from implementing this procedure in
CPT is that we need to find a suitable presentation of the sets Cs. Clearly, it
is not possible to store them explicitly as their size is exponential in the size of
the input structure. In the following sections we identify classes of q-bounded
structures where such a presentation can be based on linear algebra. In the
following definition we describe which requirements must be fulfilled by the
presentations of the sets Cs in order to implement Algorithm 8.

Definition 7.3. Assume that the sets σiΓi ⊆ O(Hi) are given explicitly. A
CPT-definable representation of sets τ∆ with ∆ ≤ Γ and τ ∈ σΓ is suitable
to guarantee CPT-definable canonisation of q-bounded structures if:

(i) Consistency. Given a representation of τ∆, it is CPT-definable whether
τ∆ 6= ∅.

(ii) Intersection. Given two representations of sets τ1∆1 and τ2∆2, a rep-
resentation of the set τ1∆1 ∩ τ2∆2 is CPT-definable.

(iii) Representation of basic sets. Given a set τ∆ with τ ∈ (σΓ)I and
∆ ≤ ΓI for I ∈ P , a representation for its extension ext(τ∆) ⊆ σΓ can
be defined in CPT.
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7.2 The Case of 2-Bounded Structures

Before we present our procedure in its most general form, we take a look at an
important special case. We show that 2-bounded structures can be canonised
in CPT. In this case we can store the sets of witnessing isomorphisms as
solutions of linear equation systems over a finite ring (here over Z2). According
to Definition 7.3, the necessary operations which have to be CPT-definable are
a consistency check which corresponds to deciding the solvability of a linear
equation system, the intersection operation which corresponds to combining
the equations of two linear systems, and the representation of basic sets
which corresponds to constructing a linear equation systems over a small set
of variables.
While the last two operations are easy to implement, the consistency check

is the hard part. Note that it is not known whether the solvability of linear
equation systems over finite rings can be defined in CPT. We only know that it
is not definable in FPC. We show that CPT can at least define the solvability of
special linear equation systems which we call cyclic linear equation systems
(CES). Luckily it turns out that CESs suffice to capture the structure of
witnessing isomorphisms. In this section, we consider CESs over Z2. The
general case of CESs over arbitrary finite rings is handled in Section 7.3.

Definition 7.4. For a set V of variables of size at most we define cyclic
constraint over Z2 as the set of equations {v + v′ = 1 | v 6= v′ ∈ V }. A cyclic
linear equation systems (CES) over Z2 is a triple (V, S,�) where V is a set
of variables, � is a preorder of width two on V = V0 � V1 � · · · � Vn, and S
is a linear equation system which contains for every Vi a cyclic constraint Ci.

Let us make some simple observations. Without loss of generality we can
assume that |Vi| = 2 for all i = 1, . . . , n. Then Ci = {v + v′ = 1, v′ + v = 1}
where Vi = {v, v′}. Moreover, because we work over Z2, we can consider linear
terms t to be subsets t ⊆ V . Also, we can assume that the term t in every linear
equation e = (t, z) ∈ S is simplified meaning that is does not contain two
variables from the same block Vi (otherwise, use Ci to simplify the equation).
We assign to each simplified linear term t its signature sgn(t) ⊆ {1, . . . , n},

which is the set of indices i such that e contains a variable v ∈ Vi, that is
sgn(t) := {i : t ∩ Vi 6= ∅}. In this way we obtain a CPT-definable preorder �
on S which is

(t, z) � (s, z′) if, and only if, sgn(t) < sgn(s) or (sgn(t) = sgn(s) and z ≤ z′).
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We write S = S0 � S1 � · · · � Sm and say that Si is the i-th block of
incomparable equations. Let e = (s, z) and f = (t, z) be equations in Si and
consider the equation e + f = (s + t, 0) which results from adding equation
f to equation e. Since sgn(s) = sgn(t) we can use the cyclic constraints to
simplify the linear term s + t to a constant. Hence, e + f is either equivalent
to the trivial equation 0 = 0 or to the inconsistent equation 1 = 0, and this
only depends on the parity of the number of components i ∈ sgn(s) = sgn(t)
for which s and t disagree. We conclude that we can partition linear terms of
a fixed signature into two equivalence classes T and T ′ such that each block Si
of incomparable equations only contains linear terms from one of these classes
(or is trivially inconsistent).
The problem that we face when we want to implement an algorithm like

Gaussian elimination on CESs in CPT is that we will never be able to pick
a specific equation from a block Si. We will therefore have to find a way to
perform all of these choices simultaneously while avoiding the combinatorial
explosion that would occur when we actually perform every possible choice
individually. The crucial ingredient of our CPT-procedure for solving CESs
over Z2 is the notion of a hyperterm which generalises a data structure used
in the CPT-procedure of Dawar, Richerby and Rossman for deciding the CFI-
query [30]. Intuitively, a hyperterm is a succinct encoding of an equivalence
class of linear terms as described above. Most importantly, the syntactic struc-
ture of a hyperterm, seen as an object in HF(V ), has a very direct connection
with its intended semantics.

Definition 7.5. Let A denote the set of all assignments α : V → Z2 which
satisfy the equations v + v′ = 1 for all Vi = {v, v′}. We inductively define

1. hyperterms T ∈ HF(V ) with associated dual hyperterms S = T̃ such
that S̃ = T ,

2. for assignments α ∈ A the value T [α] ∈ Z2 such that T [α] + T̃ [α] = 1,
and

3. the parity p(Vi, T ) = p(Vi, T̃ ) ∈ Z2 of variable block Vi in the hyperterms
T , T̃ .

• T = 0 and S = 1 are hyperterms with associated dual hyperterms 0̃ = 1
and 1̃ = 0. We set p(Vi, T ) = p(Vi, S) = 0 for all 1 ≤ i ≤ n and T [α] = 0
and S[α] = 1 for all assignments α ∈ A.
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Moreover, for Vi = {v, v′}, T = v and S = v′ are hyperterms, where
T̃ = S and S̃ = T . We set p(Vj, T ) = p(Vj, S) = 1 if, and only if, j = i.
Finally, T [α] = α(v) and S[α] = α(v′).

• Let Q,R be hyperterms. Then T = Q ⊕ R := {(Q,R), (Q̃, R̃)} is a
hyperterm with the associated dual hyperterm T̃ = {(Q̃, R), (Q, R̃)}.
We set p(Vi, T ) = p(Vi, Q) + p(Vi, R) and T [α] := Q[α] +R[α] for α ∈ A.

We need to make sure that the number of active elements does not grow too
fast by constructing new hyperterms. Therefore we analyse the complexity of
hyperterms as objects in HF(V ). Assume that we have already constructed
the hyperterms Q and R together with the corresponding dual hyperterms
Q̃ and R̃. In order to construct the new hyperterms T = Q ⊕ R and T̃ in
CPT we only need to construct the objects (Q,R), (Q̃, R), (Q, R̃) and (Q̃, R̃).
This means |〈T 〉| = |〈Q, Q̃, R, R̃〉| + c for a constant c. Therefore, it is safe
to construct hyperterms T ∈ HF(V ) using the ⊕-operation for a polynomially
bounded number of steps.

We now turn our attention to the connection between the syntax and the
semantics of hyperterms. For every 1 ≤ i ≤ n let πi : V → V denote the
transposition of the two variables in Vi = {v, v′} extended to a permutation
acting on HF(V ). Since hyperterms are objects in HF(V ) we can apply πi
to hyperterms. Interestingly the syntactic switch of the two Vi-variables in
a hyperterm T either preserves T or maps T to its dual T̃ . On the other
hand, applying πi to assignments α ∈ A, that is πi(α)(w) = α(πi(α)), can
be considered as the corresponding semantic switch of the variables in Vi.
The next lemma shows that hyperterms are compatible with respect to these
syntactic and semantic switches, and moreover, a hyperterm is only influenced
by a (semantic or syntactic) switch of variables in Vi, if the block Vi occurs in
T with odd parity. We omit the proof which is a straightforward induction on
the structure of hyperterms.

Lemma 7.1. For every hyperterm T , every 1 ≤ i ≤ n, and every α ∈ A we
have

1. πi(T ) =

{
T, if p(Vi, T ) = 0,

T̃ , if p(Vi, T ) = 1.

2. πi(T )[α] = T [πi(α)].
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As we want to use hyperterms as succinct encodings of linear terms, our next
aim is to define, given a (simplified) linear term t, an equivalent hyperterm Tt
in CPT. Let t be a (simplified) linear term. If t consists of a single variable,
then t already is a hyperterm. Otherwise there exists a maximal i ∈ sgn(t)
such that t = s+ v for v ∈ Vi and a linear term s ( t. Then we recursively set
Tt = Ts⊕v. Since the set of variable blocks Vi is linearly ordered, the mapping
t 7→ Tt is clearly definable in CPT. The next lemma shows that starting from
two equivalent terms we end up with the same hyperterm. Remember that we
want to use hyperterms to present a block of equivalent equations.

Lemma 7.2. Let s and t be linear terms with sgn(s) = sgn(t) Then Ts = Tt
if s and t disagree on an even number of variable blocks. Otherwise Ts = T̃t.
Moreover, for all α ∈ A we have Tt[α] = t[α].

Again we omit the proof, as it goes through by a direct induction. Recall
that every block of incomparable equations Si only contains equations (s, zi)
and (t, zi) such that s and t disagree on an even number of variable blocks
(otherwise, the system is trivially inconsistent). Hence, we can construct in
parallel for each equation (t, zi) ∈ Si the hyperterm Tt and end up with a single
hyperterm Ti for each block Si. The pair (T, z) consisting of a hyperterm T
and a constant z ∈ Z2 is called a hyperequation. Since for all α ∈ A
we have that Tt[α] = t[α], the given linear equation system is solvable, if
and only if, there exists a solution α ∈ A of the system of hyperequations
S∗ := {(T1, z1), . . . , (Tm, zm)}. Note that the preorder � on the blocks Si
induces a linear order on the hyperequations of the system S∗. Our aim is
to use the method of Gaussian elimination for the system S∗ to decide the
solvability of the original system S. We state that the usual properties one
needs for the correctness of the Gaussian elimination method are still valid for
systems of hyperequations.

Lemma 7.3. Let S∗ be a system of hyperequations, and let (T, z), (T ′, z′) ∈ S∗.
Then the system S∗ and the system (S∗ \{(T, z)})∪{(T ⊕T ′, z+ z′)} have the
same set of solutions.

Definition 7.6. Let S∗ be a system of hyperequations. A hyperequation
(T, z) ∈ S∗ contains the variable block Vi if p(Vi, T ) = 1. If p(Vi, T ) = 0 for
all i = 1, . . . , n we say that (T, z) is atomic.
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We say that S∗ is in row echelon form if each non-atomic hyperequa-
tion (T, z) contains a variable block Vi which is not contained in any other
hyperequation in S∗.

If two hyperequations (T, z), (T ′, z′) ∈ S∗ contain the variable block Vi, then
Vi is not contained in the hyperequation (T ⊕ T ′, z + z′). Hence, according to
Lemma 7.3 we may apply the method of Gaussian elimination to obtain, given
S∗, an equivalent system of hyperequations in row echelon form. Because S∗ is
linearly ordered, we can perform this transformation in CPT. The next lemma
tells us that the solvability of systems of hyperequations S∗ in row echelon form
reduces to checking the atomic hyperequations for consistency.

Lemma 7.4. Let S∗ be a system of hyperequations in row echelon form. Then
S∗ has a solution α ∈ A if, and only if, each atomic hyperequation (T, z) ∈ S∗
is consistent.

Proof. Let (T, z) ∈ S∗ be an atomic hyperequation. By Lemma 7.1 we know
that for all α, β ∈ A it holds T [α] = T [β]. Hence, if T [α] 6= z for some (all)
α ∈ A, then clearly the system S∗ has no solution.
Assume on the other hand, that every atomic hyperequation (T, z) ∈ S∗ is

consistent and let α ∈ A be an assignment that violates a minimal number of
hyperequations. Suppose α is not a solution to S∗. Then let (T, z) ∈ S∗ be
such that T [α] 6= z. Because of our assumption, T is not atomic and, since S∗
is in row echelon form, contains a variable block Vi which is not contained in
any other hyperequation in S∗. Let α′ ∈ A be the assignment α′ = πi(α). With
Lemma 7.1 we compute T [πi(α)] = T̃ [α] = 1 + T [α] = z and T ′[πi(α)] = T ′[α]
for all (T ′, z′) ∈ S∗\{(T, z)}. Hence, we have found an assignment that violates
less equations than α, contradicting our initial choice of α.

What is left open is to show that CPT can indeed define the consistency
of atomic hyperequations (T, z) ∈ S∗. From Lemma 7.1 we know that T [α]
is constant for all α ∈ A. For the sake of explanation, assume we could fix
some α ∈ A. Let T ′ be the hyperterm which results from T by syntactically
substituting all occurrences of a variable v ∈ V by its value α(v) ∈ Z2. Then
T ′ is an object in HF(Z2), and clearly, the value of T ′ is T [α].

Lemma 7.5. Let T ′ be a hyperterm with T ′ ∈ HF(Z2). Then we can define
the value of T ′ in CPT.
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Proof. As long as T ′ is different from 0 or 1, we recursively substitute in T ′ all
occurrences of hyperterms {(0, 0), (1, 1)} by 0 and of {(0, 1), (1, 0)} by 1.

It remains to show how we can obtain from an atomic hyperterm T ∈ HF(V )
an equivalent hyperterm T ′ ∈ HF(Z2). To start let us set T ′ := T . Now we
iteratively choose a variable block Vi such that T ′ still syntactically contains
variables from the block Vi = {v, v′}. Restricted to this block, each assignment
α ∈ A might either be the mapping β : (v, v′) 7→ (0, 1) or γ : (v, v′) 7→
(1, 0). Since we cannot choose one of the two assignments β or γ in CPT,
we try both of them in parallel. Let T ′[Vi 7→ β] and T ′[Vi 7→ γ] denote the
hyperterms which result from T ′ by syntactically substituting all occurrences
of the variables v and v′ according to the assignments β and γ, respectively.
The crucial observation is that T ′[Vi 7→ β] = T ′[Vi 7→ γ]. To see this, note that
πi(γ) = β and πi(T ′) = T ′. Moreover, we have T ′[Vi 7→ β] = πi(T

′)[Vi 7→ πi(β)]
which implies that

T ′[Vi 7→ β] = πi(T
′)[Vi 7→ πi(β)] = πi(T

′)[Vi 7→ γ] = T ′[Vi 7→ γ].

Hence, we can continue the process with T ′ := T ′[Vi 7→ β] = T ′[Vi 7→ γ]
and finally we obtain the equivalent hyperterm T ′ ∈ HF(Z2) in CPT and we
conclude:

Theorem 7.3. The solvability of a CES over Z2 can be defined in CPT.

We are now prepared to show that we can canonise 2-bounded τ -structures
H = (H,RH

1 , . . . , R
H
k ,�) in CPT. As in Section 7.1 we write H = H1 � · · · �

Hn to denote the ordered partition of H into colour classes Hi of size qi ≤ 2.
Without loss of generality we assume that qi = 2 for all i = 1, . . . , n.
Using the notation from Section 7.1 we set Γi = sym(Hi) and σiΓi = O(Hi).

For a colour class Hi = {h, h′} this means Γi = {idHi , (hh′)} and O(Hi) =
{(h, h′) 7→ ((i, 0), (i, 1)), (h, h′) 7→ ((i, 1), (i, 0))}.
To obtain a CPT-definable canonisation procedure it remains to specify

CPT-definable representations of sets τ∆ where τ ∈ σ1Γ1 × · · · × σnΓn = σΓ
and ∆ ≤ Γ1 × · · · × Γn = Γ which satisfy the requirements summarised in
Definition 7.3.
To this end we identify each τ = (τ1, . . . , τn) ∈ σΓ with a vector ~τ ∈ ZH2 by

setting ~τ(h) = j where τi(h) = (i, j) for h ∈ Hi. Then for each colour class
Hi = {h, h′} we have ~τ(h) + ~τ(h′) = 1.
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Moreover, we identify each γ = (γ1, . . . , γn) ∈ Γ with the vector ~γ ∈ ZH2
which is defined uniformly on each colour class Hi = {h, h′} as ~γ(Hi) = 1 if
γi = (hh′) and ~γ(Hi) = 0 if γi = idHi . In this encoding, the usual vector
addition of two H-vectors ~γ1, ~γ2 ∈ ZH2 with γ1, γ2 ∈ Γ is compatible with the
group operation of Γ, i.e. we have ~γ1 + ~γ2 = ~γ where γ = γ1 ◦ γ2. Also for any
τ1, τ2 ∈ σΓ and γ ∈ Γ we have

~τ1 + ~τ2 = ~δ where δ = τ−1
1 ◦ τ2 = τ−1

2 ◦ τ1, and,
~τ1 + ~γ = ~ρ where ρ = τ1 ◦ γ.

This means that the action of Γ on elements in σΓ corresponds to the vector
addition of the associated vectors in ZH2 . In particular this shows that the
encoding of a set τ∆ with τ ∈ σΓ and ∆ ≤ Γ is an affine subspace in ZH2 (where
the associated linear subspace is the set of vectors which represent ∆). Now,
since each such affine subspace only contains vectors ~τ with ~τ(h) + ~τ(h′) = 1
for each colour class Hi = {h, h′} and because we have a preorder on the index
set H of width two, every such affine space can be represented as the solution
space of a CES over Z2. Let us check that this representation satisfies the
requirements from Definition 7.3:

1. Consistency. Given a CES over Z2, its solvability is CPT-definable by
Theorem 7.3.

2. Intersection. Given two CESs over Z2, we can combine in CPT the
sets of linear equations to obtain a CES whose solution space is the
intersection of the solution spaces of the two given CESs.

3. Representation of basic sets. Assume we have given for some I ∈ P
a set of the form τ∆ where τ ∈ (σΓ)I and ∆ ≤ ΓI .

Then we can define in CPT a CES which represents ext(τ∆) ⊆ σΓ just by
taking the union of all CESs whose solution space represents τ∆. Here we
only need to consider CESs which contain (besides the cyclic constraints)
only equations with variables in HI (which is a set of constant size).

Theorem 7.1. 2-bounded structures can be canonised in CPT.

162



7 Canonising Structures of Bounded Colour Class Size

7.3 Cyclic Linear Equation Systems

In this section we generalise our notion of cyclic linear equation systems (CESs)
over Z2 to finite rings Zd where d = pk is a prime power. Moreover, we extend
our techniques from Section 7.2 to develop a CPT-procedure to express the
solvability of CESs over finite rings Zd.

Definition 7.7. A cyclic constraint over Zd for a set of variables V is a
consistent set of equations such that for all v, v′ ∈ V there is an equation
v − v′ = z ∈ C for some z ∈ Zd.

Definition 7.8. A cyclic linear equation systems (CES) over Zd, where
d = pk is a prime power, is a triple (V, S,�) where V is a set of variables over
Zd, � is a preorder on V = V0 � V1 � · · · � Vn and S is a linear equation
system which contains for every block Vi a cyclic constraint Ci.

In the definition we did not require that � is of bounded width. However,
given the cyclic constraint Ci ⊆ S we can assume that |Vi| = d for all 1 ≤ i ≤ n.
To see this, consider a constraint Ci for the variable block Vi. For every variable
v ∈ Vi and z ∈ Zm we add the linear term v+z as a (syntactically) new variable.
Let us denote the resulting set of variables by V ∗i . We define an equivalence
relation ∼ on V ∗i as follows: v+ z ∼ w+ z′ if, and only if, v−w = z′− z ∈ Ci.
It is easy to verify that the consistency of Ci implies that ∼ is an equivalence
relation on V ∗i .
We next define a cyclic constraint C∗i on the set V ∗i / ∼ which contains for

every pair [v+ z] 6= [w+ z′] the constraint [v+ z]− [w+ z′] = c+ z− z′ where
c ∈ Zd is chosen such that Ci contains the constraint v − w = c. Again it is
straightforward to show that C∗i is well-defined.
To α : Vi → Zd with α |= Ci we associate an assignment α∗ : (V ∗i / ∼)→ Zd

which is given as α∗([v + z]) = α(v) + z. Then α∗ is well-defined, α∗ |= C∗i
and α∗([v + 0]) = α(v). In the other direction, to every α∗ : (V ∗i / ∼) → Zd
with α∗ |= C∗i we can associate α : Vi → Zd with α(v) = α∗([v + 0]) such that
α |= Ci. We conclude that there exists a one-to-one correspondence between
assignments α : Vi → Zd with α |= Ci and assignments α∗ : (V ∗i / ∼) → Zd
with α∗ |= C∗i which are related via α(v) = α∗([v + 0]).
Finally we observe that the number of ∼-equivalence classes is precisely d.

Indeed for each v ∈ Vi and z, z′ ∈ Zd with z 6= z′ we have that [v+ z] 6= [v+ z′]
and [v + z] − [v + z′] = z − z′ ∈ C∗i . By substituting each occurrence of a
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variable v ∈ Vi in the original linear equation system by the corresponding
∼-equivalence class [v + 0] ∈ (Vi/ ∼), and by replacing each cyclic constraint
Ci by C∗i we obtain an equivalent CES with |Vi| = d for all i = 1, . . . , n.

For z ∈ Zd and v ∈ Vi we denote by v+z ∈ Vi the (unique) variable such that
Ci contains the constraint v+z−v = z. We observe that there exist precisely d
different assignments α : Vi → Zd with α |= Ci and each of these is determined
by fixing the value of a single variable v ∈ Vi. This allows a generalisation of
the notion of hyperterms which we used in Section 7.2 for solving CESs over
Z2.

Definition 7.9. Let A denote the set of assignments which satisfy all cyclic
constraints Ci, that means A := {α : V → Zd : α |= Ci for i = 1, . . . , n}. We
inductively define

(i) hyperterms T together with their associated shifted hyperterms T+z

for z ∈ Zd such that T+(z1+z2) = (T+z1)+z2 for z1, z2 ∈ Zd, and T+d = T ,
and

(ii) for an assignment α ∈ A the value T [α] ∈ Zd such that T+z[α]−T [α] =
z, and

(iii) the coefficient c(Vi, T ) = c(Vi, T
+z) ∈ Zd of variable block Vi in the

hyperterms T, T+1, . . . , T+(d−1).

• For every z ∈ Zd we define the hyperterm T = z and set T+y = z + y
for y ∈ Zd. We let c(Vi, T ) = c(Vi, T

+y) = 0 for each variable block Vi
and all y ∈ Zd and let T [α] = z and T+y[α] = z + y for all assignments
α ∈ A and y ∈ Zd.
Moreover, for v ∈ Vi, T = v is a hyperterm where T+y = v+y for y ∈ Zd.
We set c(Vj, T ) = c(Vj, T

+y) = 1 for y ∈ Zd if j = i and c(Vj, T ) =
c(Vj, T

+y) = 0 otherwise. Finally, we let T [α] = α(v). Then T+y[α] =
α(v+y) = α(v) + y.

• Let Q,R be hyperterms. Then T = Q⊕R := {(Q+z1 , R+z2) : z1 +z2 = 0}
is a hyperterm with shifted hyperterm T+y = {(Q+z1 , R+z2) : z1+z2 = y}
for y ∈ Zd. We set c(Vi, T ) = c(Vi, T

+y) = c(Vi, Q) + c(Vi, R), T [α] :=
Q[α] +R[α] for α ∈ A.
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• Let Q be a hyperterm, z ∈ Zd. Then T = z � Q := Q ⊕ · · · ⊕ Q
(apply the ⊕-operation z-times to Q) is a hyperterm. The definitions of
T+y, c(Vi, T ) and T [α] follow from the definition of ⊕.

The tight correspondence between the syntactic structure and the intended
semantics for hyperterms generalises from Z2 to Zd.

Definition 7.10. For α ∈ A, 1 ≤ i ≤ n and z ∈ Zd we define the assignment
αi:+z ∈ A which results from a z-shift of variable block Vi as

αi:+z(v) :=

{
α(v) + z, v ∈ Vi,
α(v), else.

Moreover we let πi:+z : Vi → Vi be the cyclic z-shift on the set Vi which is
defined as πi:+z(v) := v+z for v ∈ Vi lifted to a permutation acting on HF(V ).

The following lemma is a generalisation of Lemma 7.1.

Lemma 7.6. Let 1 ≤ i ≤ n, z ∈ Zd, and let T be a hyperterm and let c =
c(Vi, T ) ∈ Zd be the coefficient of variable block Vi in T .

(a) Then πi:+z(T ) = T+c·z. In particular if c = 0 then πi:+z(T ) = T .

(b) For any assignment α ∈ A we have T [αi:+z] = πi:+z(T )[α].

Proof. We first prove (a) by an induction on the structure of hyperterms.

• Let T = x be a hyperterm for x ∈ Zd. Then c = 0 and πi:+z(T ) = x.

• Let T = w for w ∈ Vj, j 6= i. Then c = 0 and πi:+z(T ) = w.

• Let T = v for v ∈ Vi. Then πi:+z(T ) = v+z, c = 1, and T+z = v+z.

• Let Q,R be hyperterms and let T = Q ⊕ R. Then c = cq + cr where
cq = c(Vi, Q) and cr = c(Vi, R). Moreover,

πi:+z(T ) = πi:+z({(Q+y1 , R+y2) : y1 + y2 = 0})
(IH) = {(Q+y1+z·cq , R+y2+z·cr) : y1 + y2 = 0}(= Q+z·cq ⊕R+z·cr)

= {(Q+y1 , R+y2) : y1 + y2 = zcq + zcr = zc} = T+z·c.

In particular this shows that πi:+z(Q⊕R) = πi:+z(Q)⊕ πi:+z(R).
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• Let T = y�Q for y ∈ Zd and a hyperterm Q. Then c = y · cq where cq =
c(Vi, Q). We proceed by induction on y. If y = 1, then the claim follows
from the induction hypothesis for Q. For y > 1, let T = (y−1)�Q⊕Q.
From above and the induction hypothesis we know that

πi:+z(T ) = πi:+z((y − 1)�Q⊕Q) = πi:+z((y − 1)�Q)⊕ πi:+z(Q)

(IH) =
(
(y − 1)�Q

)+(y−1)·cq ·z ⊕Q+cq ·z

= {(
(
(y − 1)�Q

)+y1 , Q+y2) : y1 + y2 = (y − 1) · cq + cq · z = z · c}
= T+z·c.

In particular we have that πi:+z(y �Q) = y � πi:+z(Q).

Using similar arguments, it is easy to show (b).

Definition 7.11. Two linear terms s, t are equivalent (s ≡ t) if s(α) = t(α)
for all α ∈ A. Two linear equations e = (s, zs), f = (t, zt) are equivalent if
s− t ≡ zs − zt.

Lemma 7.7. Let t = zt · vt and s = zs · vs be two atomic linear terms with
vt, vs ∈ Vi. If t ≡ s then zt = zs.

Proof. Obvious, since we can find a (unique) z ∈ Zd such that vt ≡ vs + z.

A linear term t over V can be decomposed into an ordered set of linear
subterms which only contain variables from the blocks Vi. More specifically,
we let t∗i denote the linear subterm of t with variables in Vi, that is t∗i :=
{z · v ∈ t : v ∈ Vi}. Then t =

⋃n
i=1 t∗i.

For CESs over Z2 and a variable block Vi = {v, v′} it was sufficient to
consider the cases where t∗i = {v} and t∗i = {v′}, because the only other
possible (non-trivial) linear subterm t∗i = {v, v′} could be reduced to the
constant 1 using the cyclic constraint v + v′ = 1. Clearly, for CESs over
Zd the set of possible linear subterms for a variable block Vi is can be more
complicated. However, as we show next we can still assume that these linear
subterms are within a certain set of nearly atomic linear terms.

Lemma 7.8. Given a linear term t in which only variables from Vi occur, we
can define in CPT a minimal constant y ∈ Zd, a coefficient z ∈ Zd and a set
W ⊆ Vi such that every linear term s = z · v + y for v ∈ W is equivalent to t.
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Proof. Let v ∈ Vi. For each w ∈ Vi we find a constant zw ∈ Zd such that
w ≡ v + zw. We replace every variable w ∈ Vi in the given term t by the
equivalent term v + zw and simplify the resulting expression afterwards. In
this way we obtain for every v ∈ Vi an atomic linear term zv · v + yv for
yv, zv ∈ Zd, such that t ≡ zv · v + yv.
Assume for v, w ∈ Vi we have that yv = yw. Then zv · v + yv ≡ zw · w + yw

and thus zv · v ≡ zw · w. By Lemma 7.7 we have zv = zw. We fix the
minimal y ∈ Zd and z ∈ Zd such that (y, z) = (yv, zv) for some v ∈ Vi and set
W := {v ∈ Vi : (yv, zv) = (y, z)}. Then y, z and W satisfy the claim.

The previous lemma allows to adapt the notion of signatures for CESs
over Zd. We assign to each linear term t its signature sgn(t) ∈ (Zd × Zd)n
as the sequence of pairs (yi, zi) as in Lemma 7.8 such that t∗i ≡ zi · v + yi for
suitable v ∈ Vi. In this way we obtain a CPT-definable preorder � on S which
is

(t, z) � (s, z′) if, and only if, sgn(t) < sgn(s) or (sgn(t) = sgn(s) and z ≤ z′).

We write S = S0 � S1 � · · · � Sm and say that Si is the i-th block of
incomparable equations. Let (t, z), (s, z) ∈ Si. We claim that either t ≡ s
or the linear system is inconsistent. To see this, first note that t − s = 0 is
a consequence of the linear system, but of course, knowing that t[α] = s[α]
for some α ∈ A does not mean that t[α] = s[α] for all α ∈ A. However,
since sgn(t) = sgn(s) it is easy to see that the linear term t − s is equivalent
to a constant in Zd. Thus either we have that t − s ≡ 0 or the given CES is
trivially inconsistent. Hence from now on we assume that for each pair of linear
equations (s, z), (t, z) ∈ Si the respective linear terms s and t are equivalent.

Our next aim is to translate linear terms t into equivalent hyperterms Tt
such that equivalent terms s, t with sgn(s) = sgn(t) are mapped to the same
hyperterm Ts = Tt.

Lemma 7.9. Let s = z · v and t = z ·w be equivalent linear terms with z ∈ Zd
and v, w ∈ Vi. Then z � w = z � v.

Proof. Let v − w ≡ k ∈ Zd. Then z · k = 0 and z � πi:+k(w) = z � v. From
the proof of Lemma 7.6 we know that z � w = (z � w)+z·k = πi:+k(z � w) =
z � πi:+k(w) which shows the claim.
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We are prepared to describe the CPT-definable translation t 7→ Tt. Given a
linear term t we proceed as follows:

• First of all, for every subterm t∗i we apply Lemma 7.8 to define yi, zi ∈ Zd
and Wi ⊆ Vi such that t∗i ≡ zi · w + yi for all w ∈ Wi. Note that for
two different w,w′ ∈ Wi we have zi · w ≡ zi · w′. Using Lemma 7.9 we
conclude that zi � w = zi � w′. Thus we can set Ti := (zi � w)+y for
some (any) w ∈ Wi to obtain a hyperterm which is equivalent to t∗i.

• Finally we obtain a hyperterm Tt equivalent to t by Tt := T1 ⊕ · · · ⊕ Tn.

Lemma 7.10. Let s, t be a pair of linear terms with sgn(s) = sgn(t). If
t− s ≡ δ for an appropriate constant δ ∈ Zd, then Tt = T+δ

s .

Proof. Let sgn(s) = sgn(t) = ((y1, z1), . . . , (yn, zn)) and let I = {i : (yi, zi) 6=
(0, 0)}. For i ∈ I we have that t∗i ≡ zi · wt + yi and s∗i ≡ zi · ws + yi for
appropriate sets W t

i ,W
s
i ⊆ Vi and wt ∈ W t

i , ws ∈ W s
i . This shows that

t∗i − s∗i ≡ zi · ci =: δi for an appropriate ci ∈ Zd with wt − ws ≡ ci. Hence
t− s ≡

∑
i∈I δi =: δ.

Let Ti and Si be the hyperterms associated to t∗i and to s∗i, respectively.
Using Lemma 7.8 we conclude that Ti = S+δi

i . Since by definition we have
that Tt = S+δ1

1 ⊕ · · · ⊕ S+δn
n and Ts = S1 ⊕ · · · ⊕ Sn it is easy to show that

Tt = T+δ
s .

Lemma 7.10 shows that for all pairs of equations (s, z), (t, z) ∈ Si the trans-
lation defined above yields a unique hyperterm Ti := Tt = Ts. Hence the
given linear equation system is solvable, if and only if, there exists a solution
(in A) for the system of hyperequations S∗ := {(T1, z1), . . . , (Tm, zm)}. We
observe that the preorder � on the blocks Si induces a linear order on S∗.
Again, we can apply elementary operations to this system.

Lemma 7.11. Let S∗ be a system of hyperequations, and let (T, z), (T ′, z′) ∈
S∗. Then the system S∗ and the system (S∗ \{(T, z)})∪{(T ⊕T ′, z+z′)} have
the same solutions in A.

Another important difference to the case of CESs over Z2 is the fact that Zd
is a finite ring rather than a finite field. Consequently, an equivalent system in
row echelon form does not longer exist. Instead we use the Hermite normal
form which turns out to be the appropriate generalisation over finite rings Zd.
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To this end, we associate the m×n-matrix M [S∗] : {1, . . . ,m}×{1, . . . , n} →
Zd with the system S∗ of hyperequations defined as M [S∗](i, j) := c(Vj, Ti).
Note that M [S∗] is a matrix over two ordered index sets. We say that M [S∗]
is in Hermite normal form if for appropriate permutation matrices Q :
{1, . . . ,m} × {1, . . . ,m} → {0, 1} and P : {1, . . . , n} × {1, . . . , n} → {0, 1} we
have that

Q ·M [S∗] · P =



a11 · · · · · · · · · a1n

0
. . . ... · · · ...

0 0 akk · · · akn
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0


,

where k ≤ min{m,n} and a11 | a22 | a33 | · · · | akk and such that for all
1 ≤ i ≤ k and 1 ≤ j ≤ n it holds that aii | aij.

Definition 7.12. Let S∗ be a system of hyperequations. We say that (T, z) ∈
S∗ contains a variable block Vi if c(Vi, T ) 6= 0. We say that the hyperequation
(T, z) is atomic if it does not contain any of the variable blocks Vi. The system
S∗ is in Hermite normal form if M [S∗] is in Hermite normal form.

A very important structural property of the ring Zd is the fact that di-
visibility is a preorder (which is not longer true if d is composed of dis-
tinct primes). Using this property it is easy to see that every matrix M :
{1, . . . , n} × {1, . . . ,m} → Zd can be transformed via elementary row op-
erations into a matrix in Hermite normal form (iteratively select rows with
elements which are minimal with respect to divisibility and eliminate the re-
spective column). Moreover, as we have given a linear order on the set of
hyperequations S∗, Lemma 7.11 shows that we can define from S∗ in CPT an
equivalent system of hyperequations in Hermite normal form. The solvability
of systems of hyperequations in Hermite normal form can be characterised as
follows.

Lemma 7.12. Let S∗ be a system of hyperequations in Hermite normal form.
Then S∗ is consistent if, and only if, both of the following conditions are sat-
isfied.

(i) Each atomic hyperequation (T, z) ∈ S∗ is consistent.
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(ii) For each non-atomic hyperequation (T, z) ∈ S∗, let ` ≥ 1 be minimal
such that p` · c(Vi, T ) = 0 for all variable blocks Vi (e.g. if p` = 0 ∈ Zd
then one non-zero coefficient c(Vi, T ) is a unit in Zd). Then the atomic
hyperequation (p` � T, p` · z) is consistent.

In order to prove Lemma 7.12 we make use of following result which can
easily be obtained by a structural induction on hyperterms.

Lemma 7.13. For each hyperterm T there exists an equivalent linear term t
of the form z1 · v1 + z2 · v2 + · · · + zn · vn + y where zi = c(Vi, T ), y ∈ Zd and
vi ∈ Vi for i = 1, . . . , n.

Proof of Lemma 7.12. Clearly, if S∗ is consistent then the conditions (i) and
(ii) hold.
For the other direction, we use that S∗ is in Hermite normal form. Let S ′ ⊆

S∗ be the subset of non-atomic hyperequations and let (T1, z1), . . . , (Tk, zk) be
an enumeration of S ′ such that for the k×n-coefficient matrixM associated to
S ′ which is defined as M(j, i) = aji = c(Vi, Tj), there is a permutation matrix
P : {1, . . . , n} × {1, . . . , n} → {0, 1} such that

M · P =

a11 · · · · · · · · · a1n

0
. . . ... · · · ...

0 0 akk · · · akn.

 ,

where a11 | a22 | a33 | · · · | akk and for all 1 ≤ j ≤ k and 1 ≤ i ≤ n it holds that
ajj | aji. We use Lemma 7.13 to obtain for every hyperterm Tj an equivalent
linear term

∑n
i=1 aji · vi + yj for appropriate vi ∈ Vi and yj ∈ Zd.

Let 1 ≤ j ≤ k. By condition (ii) we know that (p` � Tj, p` · zj) is consistent
where p` is the minimal power of p which annihilates ajj. We conclude that
p` · (zj − yj) = 0 and thus ajj | (zj − yj) where we use that every element
x ∈ Zd can be written as x = pe ·u for an appropriate power pe of p and a unit
u ∈ Z∗d.
The system of hyperequations S ′ is consistent if, and only if, the system of

linear equations (M · P ) · x̄ = b is consistent where x̄ = (v1, . . . , vn) and

M · P =

a11 · · · · · · · · · a1n

0
. . . ... · · · ...

0 0 akk · · · akn.

 , b =

 z1 − y1
...

zk − yk.

 ,
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so it suffices to verify this. Let α ∈ A be such that for a maximal j ≤ k
all equations with index j′ > j are satisfied under the assignment α. Now
we have j = 0, because ajj | aji for all i = 1, . . . , n and ajj | (zj − yj) thus
ajj |

∑
i>j aji · α(vji)− (zj − yj).

This means that for a system of hyperequations in Hermite normal form,
deciding its solvability reduces to checking the consistency of a set of atomic
hyperequations. Using Lemma 7.6 this can be done as in the case of CESs
over Z2.

Lemma 7.14. Let T ′ be a hyperterm with T ′ ∈ HF(Zd). Then the value of T ′
can be defined in CPT.

Proof. We recursively substitute in T ′ all occurrences of hyperterms {(z1, z2) :
z1, z2 ∈ Zd, z1 + z2 = z} by z ∈ Zd until T ′ is a constant in Zd.

Lemma 7.15. Let T ∈ HF(V ) be an atomic hyperterm. Then we can define
in CPT an equivalent hyperterm T ′ ∈ HF(Z2).

Proof. We start with T ′ := T and choose a variable block Vi such that T ′
syntactically contains variables in Vi. Let β, γ be two (partial) assignments
β, γ : Vi → Zd which satisfy the cyclic constraint Ci. Then γ = βi:+z for an ap-
propriate z ∈ Zd. Let T ′[Vi 7→ β] and T ′[Vi 7→ γ] denote the hyperterms which
result from T ′ by syntactically substituting all occurrences of the variables v by
their values β(v) and γ(v) under the assignments β and γ, respectively. Again,
the crucial observation is that T ′[Vi 7→ β] = T ′[Vi 7→ γ]. First of all, note that
T [Vi → β] = πi:−z(T )[Vi → γ] (in the first case, v ∈ Vi is substituted by β(v)
and in the second case, v ∈ Vi is first mapped to v−z which is then substituted
by γ(v−z) = β(v−z) + z = β(v)). Since Lemma 7.6 shows that T = πi:−z(T ),
the claim follows. Hence, we can continue the process with T ′ := T ′[Vi 7→ β]
for some (all) β : Vi → Zd which satisfy the cyclic constraint Ci. In this way
we finally obtain the equivalent hyperterm T ′ ∈ HF(Z2) in CPT.

Altogether we have shown:

Theorem 7.4. The solvability of CESs over Zd can be defined in CPT.
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7.4 A CPT Procedure for Canonising q-Bounded
Structures with Abelian Colours

In this section we use the CPT-procedure for solving CESs over finite rings Zd
to show that q-bounded structures with abelian symmetries can be canon-
ised in CPT.

Definition 7.13. Let K be a class of q-bounded τ -structures. We say that
K has (CPT-definable) abelian symmetries if there exist CPT-programs
which define, given any H ∈ K, on each colour class Hi ⊆ H a transitive
abelian group Γi ≤ sym(Hi) together with two linear orderings on {σΓi : σ ∈
O(Hi)} and on Γi.

First of all, let us motivate this definition by giving an example of a class
of q-bounded structures with abelian symmetries (up to a CPT-definable re-
duction). Recall that for i = 1, . . . , n we denote by Hi the substructure of H
induced on the colour class Hi.

Definition 7.14. A class K of q-bounded structures has abelian colours if
for all structures H ∈ K and for all colour classes Hi of H the automorphism
group Aut(Hi) is abelian.

Theorem 7.5. Let K be a class with abelian colours. Then there exists a
CPT-program which defines, given H ∈ K, a refinement �H

r of the preorder
�H on H such that the class K′ of all structures H′ = H[�H \ �H

r ] has abelian
symmetries.

Since for the translation H ∈ K 7→ H′ ∈ K′ we only refine the preorder on
the universe H, it is easy to obtain a canonisation of the structure H ∈ K
from a canonisation of the structure H′. In other words, if we can canonise
in CPT classes of q-bounded structures with abelian symmetries, then we can
also canonise classes of q-bounded structures H where Aut(Hi) is abelian for
all colour classes Hi.

To prove Theorem 7.5, let K be a class with abelian colours, and let H ∈ K
with colour classes H = H1 � · · · � Hn. In order to construct the required
groups Γi ≤ sym(Hi), a good starting point is to set Γi := Aut(Hi). Then
Γi is an abelian group which clearly is CPT-definable as its size is constant.
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However, it is not clear whether we can define in CPT, as required by Defini-
tion 7.13, a linear order on Γi and on {σΓi : σ ∈ O(Hi)}. Moreover, Γi might
not be transitive. Let us discuss the first two points first.

Lemma 7.16. If Γi := Aut(Hi) is abelian, then a linear order on Γi and on
{σΓi : σ ∈ O(Hi)} is CPT-definable.

Proof. A linear order on {σΓi : σ ∈ O(Hi)} is CPT-definable, because two dif-
ferent sets τΓi 6= σΓi with τ, σ ∈ O(Hi) induce two different ordered structures
τ(Hi) 6= σ(Hi).
To see that we can define a linear order on Γi, we use that Γi is abelian.

First we fix some set σΓi for σ ∈ O(Hi). Every ordering τ ∈ σΓi induces an
isomorphism ϕτ : Γi → (Γi)

τ , γ 7→ γτ . But (Γi)
τ acts on an ordered set and

hence we can define a linear order on (Γi)
τ . If we could fix an isomorphism ϕτ

we could then transfer the order to Γi. We will show that for all τ, ρ ∈ σΓi we
have that ϕτ = ϕρ, which is sufficient to define the linear order as described
above. Indeed if τ = σγτ ∈ σΓ then we have

τγτ−1 = σγτ γ γ
−1
τ σ−1 Γi abelian= σγσ−1.

Secondly, assume that the action of Γi onHi is not transitive. Again, for each
colour class Hi, we can fix a set σΓi ⊆ O(Hi) with σ ∈ O(Hi). Let X ⊆ Hi

be a Γi-orbit. For every τ, ρ ∈ σΓi we have τ(X) = ρ(X) ⊆ {0, . . . , |Hi| − 1}.
Hence we can define for every colour class Hi in CPT a linear order ≤i on the
set of Γi-orbits by setting X ≤i Y for two Γi-orbits X, Y ⊆ Hi if τ(X) ≤ τ(Y )
for some (all) τ ∈ σΓi. As a result we obtain �H

r as the (CPT-definable)
refinement of �H where for x, y ∈ Hi we only let x �H

r y if Γ(x) ≤i Γ(y).
It remains to show that the class K′ of structures H′ = H[�H \ �H

r ] allows
CPT-definable abelian symmetries. Let ∆j denote the restriction of Γi to
the orbit Xj. Alternatively, ∆j might be viewed as the group Γi/Λ

i
j, where

Λi
j denotes the pointwise stabiliser of Xj in Γi, i.e. Λi

j = {γ ∈ Γi : γ(x) =
x for x ∈ Xj}.
Clearly, ∆j is an abelian group and from the CPT-definable linear order on

Γi we get a CPT-definable linear order on ∆j. Furthermore, let σ, τ ∈ O(Xj)
such that σ∆j 6= τ∆j. If we fix sets σ̄Γi and τ̄Γi for σ̄, τ̄ ∈ O(Hi) such that
the restriction of σ̄Γi and τ̄Γi to the orbit Xj coincides with σ∆j and τ∆j
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respectively, then σ̄Γi 6= τ̄Γi. This shows that the CPT-definable linear order
on {σΓi : σ ∈ O(Hi)} induces a CPT-definable linear order on {σ∆j : σ ∈
O(Xj)} for each Γi-orbit Xj. Altogether this yields Theorem 7.5.

We proceed by showing that every class K of q-bounded structures with
abelian symmetries allows CPT-definable canonisation. Let H ∈ K with colour
classesH = H1 � · · · � Hn and let Γi ≤ sym(Hi) denote the associated abelian
transitive groups. If we want to use our generic CPT-canonisation procedure
from Section 7.1, it suffices to find CPT-definable representations of sets τ∆
where ∆ ≤ Γ1 × · · · × Γn and τ ∈ O(H) which satisfy the requirements of
Definition 7.3.
Analogously to the case of 2-bounded structures in Section 7.2 we encode

the sets τ∆ by CESs over Zd. The crucial step is to find such representations
for the basic sets σ∆ ⊆ O(Hi) with ∆ ≤ Γi and σ ∈ O(Hi) for each colour
class Hi.

Lemma 7.17. Given a set B ⊆ HF(H) with |B| ≤ q and an abelian transitive
group Γ ≤ sym(B) which can be written as the direct sum of k cyclic subgroups
of prime-power order, i.e. Γ = 〈δ1〉 ⊕ · · · ⊕ 〈δk〉 for δ1, . . . , δk ∈ Γ where |δi| =
di = p`ii is a prime-power, and given a set σΓ ⊆ O(B) for σ ∈ O(B)

• we can define in CPT sets W1, . . . ,Wk ⊆ HF(B) together with a linear
ordering W1 < W2 < · · · < Wk such that |Wi| = di, and

• if we set Li := ZWi
di

and let ei ∈ Li denote the Li-unit vector which is
ei(w) = 1 for all w ∈ Wi, then we can define in CPT an embedding
ϕ : σΓ → L1 × · · · × Lk which respects the action of Γ on σΓ in the
following way. For all τ ∈ σΓ and γ = `1 · δ1 ⊕ · · · ⊕ `k · δk ∈ Γ we have
that

ϕ(τ ◦ γ) = ϕ(τ) + (`1 · e1, · · · , `k · ek).

Proof. First of all, as we have given a set σΓ ⊆ O(B) we can define, as in the
proof of Lemma 7.16, a linear order on Γ. Hence it is possible to fix appropriate
δ1, . . . , δk ∈ Γ which yield the decomposition of Γ . We proceed recursively by
induction on k.
If k = 1, then Γ = 〈δ〉 is a cyclic group of prime-power order which acts

transitively on W := B. The proof of Lemma 7.16 shows that we can define
the mapping Γ → Γσ, γ 7→ γσ in CPT. We choose ρ ∈ sym({0, . . . , |B| − 1})
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such that (δσ)ρ = δρσ = (0 1 2 · · · |B| − 1) ∈ sym({0, . . . , |B| − 1}). We let
L = ZWd and denote by e ∈ L the L-unit vector e(w) = 1 for all w ∈ W .
Then the mapping ϕ : σΓ→ L, τ 7→ ϕ(τ) where ϕ(τ)[w] := ρτ(w) for w ∈ W

is CPT-definable. We show that ϕ(τ ◦ δ) = ϕ(τ) + e for for all τ = σδs ∈ σΓ.
To verify this let w ∈ W . Then (ϕ(τ) + e)[w] = ϕ(τ)[w] + 1 = δρσρσδs(w) =
ρσδs+1(w).

Let k > 1. Then Γ = ∆⊕ Λ where ∆ = (δ1) and Λ = (δ2)⊕ · · · ⊕ (δk). Let
X̄ := {X0, . . . , Xt−1} be the set of Λ-orbits and let Ȳ := {Y0, . . . , Ys−1} be the
set of ∆-orbits. Then ∆ and Γ act transitively on X̄ and on Ȳ , respectively.
Note that t = d1 and s = Πk

j=2dj.
As a first step we partition {0, . . . , |B|− 1} into t segments S0 = {0, . . . , s−

1}, S1 = {s, . . . , 2s − 1}, . . . , St−1 = {(t − 1)s, . . . , ts − 1} which are modulo
s just t disjoint copies of the segment {0, . . . , s − 1}. Moreover, we fix ρ ∈
sym({0, . . . , |B| − 1}) such that for every σγ ∈ σΓ the following holds:

(i) for every Λ-orbit Xi ∈ X̄ we have ρσγ(Xi) = Sj for some j = 0, . . . , t−1,
and

(ii) for every ∆-orbit Yi ∈ Ȳ we have

ρσγ(Yi) = {0 + r, s+ r, 2s+ r, . . . , (t− 1)s+ r}

for some 0 ≤ r < s. Hence, for a ∆-orbit Yi and y ∈ Yi we have
ρσγ(y) = r mod s.

To show the existence of such ρ ∈ sym({0, . . . , |B| − 1}) note that we can
find for σ ∈ O(B) an appropriate ρ ∈ sym({0, . . . , |B| − 1}) such that σ ∈ σΓ
satisfies the properties (i) and (ii) for this particular choice of ρ. But then it is
easy to check that for the same ρ indeed each σγ ∈ σΓ satisfies the properties
(i) and (ii).
The action of Γ = ∆⊕Λ on B corresponds to the component-wise action of

∆⊕Λ on X̄×Ȳ . Specifically, we obtain a CPT-definable embedding η : ρσΓ→
O(X̄) × O(Ȳ ), ρσγ 7→ η(ρσγ) if we let η(ρσγ) ∈ O(X̄) × O(Ȳ ) be the linear
order which assigns to every Λ-orbit X ∈ X̄ the position j for 0 ≤ j ≤ t − 1
such that ρσγ(X) = Sj and to each ∆-orbit Y ∈ Ȳ the position 0 ≤ r ≤ s− 1
such that ρσγ(Y ) = {0 + r, s+ r, . . . , (t− 1)s+ r}. For all δ ⊕ λ ∈ ∆⊕Λ and
τ ∈ ρσΓ we have η(τ ◦ (δ ⊕ λ)) = (η(τ) ◦ δ, η(τ) ◦ λ). In particular we have
that η(ρσΓ) = νX∆× νY Λ where νX ∈ O(X̄) and νY ∈ O(Ȳ ).
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Recursively for the smaller groups ∆ = 〈δ1〉 and Λ = 〈δ2〉 ⊕ · · · ⊕ 〈δk〉 that
act on X̄ and Ȳ , respectively, and for νX∆ and νY Λ we obtain two ordered
sequences of CPT-definable sets W1 and W2 < · · · < Wk, and for Li = ZWi

di
the CPT-definable embeddings

ϕX : νX∆→ L1 and ϕY : νY Λ→ L2 × · · · × Lk,

with the appropriate properties stated above. Now we put everything together
to obtain a CPT-definable embedding ϕ : σΓ→ L1 × · · · × Lk via

ϕ(σγ) = ϕX(η(τσγ) � X̄)× ϕY (η(τσγ) � Ȳ ).

It is easy to check that the mapping ϕ has the desired properties.

We fix for all i = 1, . . . , n a set σiΓi with σi ∈ O(Hi) and let σΓ = σ1Γ1 ×
· · ·×σnΓn. By Lemma 7.17 we can write Γi = 〈δi1〉⊕ · · ·⊕〈δiki〉 where |δ

i
j| = dij

is a prime-power and define for each i = 1, . . . , n in CPT

• sets W i
1 < W i

2 < · · · < W i
ki

of size |W i
j | = dij and for Lij := ZW

i
j

dij
embed-

dings
ϕi : σiΓi → Li1 × · · · × Liki ,

• such that for the Lij-unit vectors eij ∈ Lij, each γ = `1·δi1⊕· · ·⊕`ki ·δiki ∈ Γi
and each τ ∈ σiΓi it holds that

ϕi(τ ◦ γ) = ϕi(τ) + (`1 · ei1, . . . , `ki · eiki).

If we let L = L1
1× · · · ×L1

k1
× · · · ×Ln1 × · · · ×Lnkn , then we can combine the

mappings ϕi to obtain a CPT-definable mapping ϕ : σΓ → L, (τ1, . . . , τn) 7→
(ϕ1(τ1), . . . , ϕn(τn)).
Since

Γ = Γ1 × · · · × Γn = 〈δ1
1〉 ⊕ · · · ⊕ 〈δ1

k1
〉 × · · · × 〈δn1 〉 ⊕ · · · ⊕ 〈δnkn〉

we also obtain a definable group embedding ψ : Γ → L as the homomorphic
extension of ψ(δij) = eij for i = 1, . . . , n and j = 1, . . . , ki. For all τ ∈ σΓ and
γ ∈ Γ we have

ϕ(τ ◦ γ) = ϕ(τ) + ψ(γ).
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Let us now consider for some set σiΓi the image under ϕ restricted to one
component Lij, i.e. the set (ϕ(σiΓi) � Lij) ⊆ Lij. If we denote by Ei

j := {` · eij :
0 ≤ ` ≤ dij − 1} ⊆ Lij, then Oi

j := (ϕ(σiΓi) � Lij) = (ϕ(σi) � Lij) + Ei
j.

This means that for two vectors x, y ∈ Oi
j it holds that x − y ∈ Ei

j. This in
turn implies that for all vectors x, y ∈ Oi

j and indices w,w′ ∈ W i
j we have

x(w) − x(w′) = y(w) − y(w′). Consequently we can define a cyclic constraint
Ci
j on the set W i

j such that Oi
j precisely corresponds to the set of assignments

α : W i
j → {0, . . . , dij − 1} with α |= Ci

j.

Let P := {p1, . . . , ps} be the set of all primes pi such that Γ contains elements
of order pi. For p ∈ P let Γpi ≤ Γi denote the subgroup of Γi which consists of
all elements γ ∈ Γi whose order is a power of p. Then Γi = Γp1

i ⊕ · · · ⊕ Γpsi . In
particular we have ψ(Γi) = ψ(Γp1

i ) + · · ·+ ψ(Γpsi ).
Similarly, for any subgroup ∆ ≤ Γ and prime p ∈ P we let ∆p ≤ ∆ denote

the subgroup of ∆ which consists of all elements δ ∈ ∆ whose order is a power
of p. Then ∆ = ∆p1 ⊕ · · · ⊕∆ps and ∆p ≤ Γp1 × Γp2 × · · · × Γpn =: Γp.
Of course we also obtain a corresponding decomposition of L. For p ∈ P we

let L[p] = {(v1
1, . . . , v

1
k1
, . . . , vn1 , . . . , v

n
kn

) ∈ L : if vij 6= 0 then dij is a p-power}.
Then ψ(Γp) ≤ L[p] and L = L[p1]⊕ · · · ⊕ L[ps]. For τ ∈ O(H) and ∆ ≤ Γ we
have

ϕ(τ∆) = ϕ(τ(∆p1 ⊕ · · · ⊕∆ps)) = ϕ(τ)︸︷︷︸
∈L=L[p1]⊕···⊕L[ps]

+ψ(∆p1)︸ ︷︷ ︸
≤L[p1]

+ · · ·+ ψ(∆ps)︸ ︷︷ ︸
≤L[ps]

.

If we write ϕ(τ)L[p] to denote the projection of ϕ(τ) ∈ L = L[p1]⊕· · ·⊕L[ps]
onto the component L[p] then we obtain

ϕ(τ∆) =
(
ϕ(τ)L[p1] + ψ(∆p1)︸ ︷︷ ︸

⊆L[p1]

, . . . , ϕ(τ)L[ps] + ψ(∆ps)︸ ︷︷ ︸
⊆L[ps]

)
⊆ L[p1]⊕· · ·⊕L[ps] = L.

Hence, in order to represent ϕ(τ∆) it suffices to represent the individual
components ϕ(τ)L[p] + ψ(∆p) ⊆ L[p] by CESs. To this end, let us fix the
set of variables as W [p] :=

⊎
{W i

j : dij is a p-power} which is the index set
of vectors in L[p]. Moreover, let d := p` = max{dij : dij is a p-power}. As
a second technical preparation we note that vectors in L[p] may have entries
in different rings Zd1 ,Zd2 for d1 = p`1 6= p`2 = d2. By the choice of d we
know that for every such d′ = dij = pk we have d′ | d. Hence we can use the
embedding ι : Zd′ → Zd, z 7→ (d/d′) · z to identify vectors in ZWd′ with vectors
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in ZWd . Of course, this embedding is not surjective. However, we can add for
each set Lij = ZW

dij
which we lifted via a mapping ι : Lij → ZWd the set of linear

constraints d′ · v = 0 for all v ∈ W . Then precisely the vectors in im(ι) ⊆ ZWd
satisfy these constraints. Of course the cyclic constraints in C have to be lifted
in a similar fashion.
With this preparation we identify L[p] with a subspace of ZW [p]

d and we show
that we can represent ϕ(τ)L[p] +ψ(∆p) ⊆ L[p] as a CES with variable set W [p]
over Zd. Recall from above that we have already defined for every component
Lij a cyclic constraint Ci

j on the set W i
j . If we let C[p] denote the collection of

these constraints for all relevant sets W i
j ⊆ W [p] then the set of L[p]-vectors

which satisfy the cyclic constraints in C[p] is ϕ(τ)L[p] + ψ(Γp). The question
remains whether we can add an appropriate set of linear equations to obtain
a CES which represents ϕ(τ)L[p] + ψ(∆p) ⊆ ϕ(σ)L[p] + ψ(Γp).
To answer this question we analyse the algebraic structure of the set ϕ(τ)L[p]+

ψ(∆p) from a general point of view. Assume for some set W and some prime
power d = p` we have given a subgroup ∆ ≤ ZWd . For an appropriate index
set I, let us consider a W × I matrix A ∈ ZW×Id whose columns generate ∆.
Let us write 〈A〉 ≤ ZWd to denote the smallest subgroup of ZWd which contains
all columns of A. By the choice of A we have 〈A〉 = ∆. By exploiting the
fact that divisibility is a preorder in Zd we can find two invertible matrices
Q ∈ ZW×Wd and R ∈ ZI×Id such that B := Q ·A ·R is a diagonal matrix. Now
for the diagonal matrix B it is straightforward to find a J ×W matrix MB

such that the linear equation system MB · x̄ = 0 has 〈B〉 as its solution space.
We claim that for MA := MB · Q, the linear equation system MA · x̄ = 0 has
〈A〉 as its solution space. To verify this it suffices to check that Q · 〈A〉 = 〈B〉.
Then for every w̄ ∈ ZWd we have that MA · w̄ = 0 if, and only if, Q · w̄ ∈ 〈B〉
if, and only if, w̄ ∈ 〈A〉.
Finally, to capture the algebraic structure of the set ϕ(τ)L[p] + ψ(∆p) we

show how we can represent w̄+∆ ⊆ ZWd for a given vector w̄ ∈ ZWd by a linear
equation system with variables in W over Zd. To this end we first choose an
appropriate I×W -coefficient matrixM such thatM · x̄ = 0 has solution space
∆. Then for w̄ + ∆ we just take as an appropriate linear equation system
M · x̄ = M · w̄ which has w̄ + ∆ as solution space. In particular note that for
any v̄ ∈ w̄ + ∆ we have that M · w̄ = M · v̄.
We conclude that for p ∈ P the set ϕ(τ)L[p] + ψ(∆p) can be represented

as a CES Sp over Zd with variable set W [p]. Putting everything together we
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7 Canonising Structures of Bounded Colour Class Size

obtain an encoding of sets τ∆ with ∆ ≤ Γ and τ ∈ σΓ as a sequence of CESs
(Sp1 , . . . ,Sps) where Sp represents ϕ(τ)L[p] +ψ(∆p). We claim that this encod-
ing is suitable with respect to Definition 7.3 and thus yields a CPT-definable
canonisation procedure for a class of q-bounded structures with abelian sym-
metries.

(i) Consistency. To decide whether (Sp1 , . . . ,Sps) represents a non-empty
set τ∆ we just need to check whether each of the CESs Sp is consistent.
This is CPT-definable by Theorem 7.4.

(ii) Intersection. Assume we have given two representations of sets τ1∆1

and τ2∆2 as sequences of CESs (Sp1 , . . . ,Sps) and (Tp1 , . . . , Tps) such that
the solutions of the CES Sp are ϕ(τ1)L[p] +ψ(∆p

1) and the solutions of Tp
are ϕ(τ2)L[p] + ψ(∆p

2).

Then ϕ(τ1∆1∩τ2∆2) = ϕ(τ1∆1)∩ϕ(τ2∆2) is represented by the sequence
of CESs (Sp1 ∪ Tp1 , . . . ,Sps ∪ Tps) where Sp ∪ Tp is the CES that results
from combining the linear equations of Sp and Tp. This CES clearly is
CPT-definable.

(iii) Representation of basic sets. Given a set of the form ρ∆ with ρ ∈
(σΓ)I and ∆ ≤ ΓI for I ∈ P , we find a representation for the extension
ext(ρ∆) of ρ∆ to σΓ as follows. First we simply represent ϕ(ρ∆) as a
sequence of CESs (Sp1 , . . . ,Sps) over the variable sets W [p] ∩

⋃
{W j

i :
i ∈ I}. Since these sets are of constant size, we can clearly define such
a sequence of CESs in CPT. To represent ϕ(ext(ρ∆)) we just have to
extend these systems by adding the cyclic constraints in C[p] for the
other components W i

j ⊆ W [p].

Theorem 7.6. On every class K of q-bounded structures with abelian symme-
tries there exists a CPT-definable canonisation procedure.

7.5 Discussion

Although structures with bounded abelian colours are an important class with
respect to the constructions which appear in finite model theory there is still
quite some room for improvement. The most obvious question is whether we
can drop the restrictions to the automorphism group. A possibility to proceed
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7 Canonising Structures of Bounded Colour Class Size

would be to consider more general automorphism groups on the colour classes,
such as nilpotent or even polycyclic groups.

Open Problem 7.1. Does CPT capture PTIME on structures of bounded
colour class size?

Looking at the technical part of our construction, another obvious way to
proceed would be to consider more general linear equation systems.

Open Problem 7.2. Is the solvability of linear equation systems over finite
fields definable in CPT?

Solving this question would build a bridge to another candidate for capturing
polynomial time, namely Rank Logic. In its original version Rank Logic is an
extension of FPC by operators to compute the rank of an interpretable linear
equation system for every finite field Fp of prime order. Very recently, Grädel
and Pakusa showed that Rank Logic fails to capture PTIME [58]. They use
a generalised version of the CFI-construction, which yields CFI-like graphs
where automorphism groups can be isomorphic to (Zn)k for arbitrary numbers
n (instead of Zk2 in the original construction). Note that in order to solve
this generalised CFI-query one only needs to solve a definable CES. Hence,
our result implies that this query is solvable in CPT. On the other hand
there is also a stronger version of Rank Logic that has been considered in the
literature, where a uniform rank operator is used. In this case the field is
also given by an interpretation. So far the relationship between this logic and
CPT is completely open. At first glance, it seems like these two logic capture
somewhat different fragments of PTIME. Considering problems from linear
algebra in CPT might help to understand their relationship better.
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8 Conclusion

We want to use this last chapter to briefly sum up the possible directions for
future research that emerge from the results presented in this thesis.

In the Chapter 3 we considered extensions of automatic structures as a
powerful characterisation of set-interpretations. Our main question is how
rich the closure under set interpretations of the class of all structures with
decidable MSO-theory is. While we could make progress for ω-automatic pre-
sentations, many fundamental questions remain unsolved. One way to make
further progress would be to tackle the question whether the field of reals is
ω-tree-automatic.
However, we belief that we should also try to make the investigation more

independent of the underlying structure. Possible ways to go could be the
description of regularity by monads in category theory due to Bojańczyk [15]
or to work along a hierarchy of structures with decidable MSO-theory, like the
Caucal hierarchy. Towards this approach some first steps have been made by
Colcombet and Löding [25].

In Chapter 4 uniformly automatic classes were introduced and in Chap-
ter 5 applications in finite model theory were studied. While similar notions
building on MSO-interpretations have mainly been investigated in the con-
text of algorithmic meta-theorems, this concept might also give new impulses
to the automatic structure community. On the other side, switching from
MSO-interpretations to set-interpretation might open the automata theoretic
approach to algorithmic meta-theorems to broader classes of structures.
For this purpose we need to clarify under which circumstances the existence

a uniform (tree-)automatic presentation leads to fixed parameter tractability of
the respective model checking problem. As we explained earlier in this thesis,
the only obstacle is that we need to be able to compute from the structure a
corresponding advice efficiently. Therefore the following question arises: if we
have fixed uniform (tree-)automatic presentation c of a class of finite structures
C, can we compute from a given A ∈ C an advice α with A ∼= S(C[α])? In
any case, it would be highly desirable to obtain a deeper understanding of the
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structural properties of uniformly automatic classes. Additionally, we would
like to see whether one can draw connections between uniform automaticity
and structural graph theory. Is there a graph parameter that is in a similar
fashion connected to set-interpretations as cliquewidth is connected to MSO-
interpretations?

In Chapter 7 we considered the logic CPT. We have seen that this logic
takes us a large step further to capturing PTIME. However, we still do not
know whether this logic captures PTIME on structures of bounded colour class
size. Similar, we do not know if one can define the solvability of linear equation
systems in CPT.
On the other side, we do not belief that CPT actually captures polynomial

time. Hence, there is also a need to develop techniques that would allow us
to separate logics like CPT from PTIME. Although this task seems to be
technically very challenging, recent advances like the separation of Rank Logic
from PTIME [58] give hope that this question might also be solved in the not
so far future.
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