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Dagstuhl Seminar on Semirings in Databases, Automata, and Logic, February 2025

Erich Grädel The Model Theory of Semiring Semantics



Semiring provenance

Val Tannen has explained to us the semiring framework for database provenance

Idea: Annotate the facts of a database by values of a commutative semiring (S,+, ·,0,1).

Propagate these annotations through a query, keeping track of whether pieces of information are
used jointly or alternatively.
• + interprets alternative use of information (∨, ∃, unions)
• · interprets joint use of information (∧, ∀, joins)
• 0 ∈ S interprets false assertions and elements s ̸= 0 provide annotations for true assertions.
• untracked information is interpreted by 1 ∈ S.

In this way, we compute for a query ψ a valuation π[[ψ]] ∈ S.
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Information provided by semirings valuations

Depending on the semiring, such valuations can give us detailed insights, beyond truth or falsity.

Which combinations of the atomic facts are responsible for the result of the query?

What is the number number and shape of the successful evaluation strategies or, equivalently,
the proof trees for the query?

Confidence: How much can we trust the output, assuming different levels of confidence
to the input items?

Access control: What clearance level is required for computing the output, assuming we know
required access levels for not publicly available facts?

Cost: How to minimize the cost for obtaining the output based on prizes for input items?
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From provenance to semiring semantics

Provenance analysis aims to explain how a particular result depends on the specific input items.
The explanations provided by semiring provenance and the applications to cost calculations,
confidence scores, clearance levels, repairs, etc. are interesting not only for databases.

Such investigations are relevant for any kind of computational process with a complex input,
consisting of a large number of input items.

- Evaluation of a logical statement on a finite, but large mathematical structure
- Verifying a specification on a transition system
- Determine the winner of a game and compute winning strategies

Our research project: Extend semiring provenance to a general semiring semantics for full
first-order logic and other logical systems.

This also provides a general method for the strategy analysis in finite and infinite games.
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Developing semiring semantics: some challenges

Negation: not an algebraic semiring operation, and in general not compositional. For a long time,
semiring provenance had essentially been confined to positive query languages.

Fixed points: It was known how to treat Datalog, using ω-continuous semirings. But it had been
unclear, how to deal with greatest fixed points (or interleavings of least fixed points and negation).

Infinity: Is semiring semantics confined to finite domains, or can it be extended to infinite ones?
The obvious problem is the treatment of quantifiers

π[[∃xϕ(x,b)]] := ∑
a∈A

π[[ϕ(a,b)]] and π[[∀xϕ(x,b)]] := ∏
a∈A

π[[ϕ(a,b)]]

Model theory: To what extend do standard logical results and model-theoretic methods survive in
semiring semantics, and how does this depend on algebraic properties of the underlying semiring.
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Semirings

There are many kinds of semirings, with different algebraic properties, which are used for many
different purposes.

I have used these here for baking onion tarts.

Red Semirings White Semirings
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Semirings: from simpler to more complicated ones

We are only interested in commutative semirings that are naturally ordered by addition:
a ≤ b :⇐⇒ ∃c(a+ c = b) is antisymmetric, and therefore a partial order.

In particular, this excludes rings.

- The Boolean semiring B= ({0,1},∨,∧,0,1) is the standard habitat of logic.

Fully idempotent semirings:

- Min-max semirings (S,max,min,0,1), induced by a total order (S,<). Relevant examples are
F= ([0,1],max,min,0,1) and the security semiring induced by A= {0 < T< S< C< P= 1}
where P is “public”, C is “confidential”, S is “secret”, T is “top secret”.

- Lattice semirings (S,⊔,⊓,0,1), induced by a bounded distributive lattice (S,≤).
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Semirings: from simpler to more complicated ones

Absorptive semirings: s+ s · t = s. This implies that multiplication is decreasing: s · t ≤ s.

- The tropical semiring T= ([0,∞],min,+,∞,0) for cost interpretations.

- The Viterbi semiring V= ([0,1],max, ·,0,1) for confidence scores.

- The Łukasiewicz semiring L= ([0,1],max,⊗,0,1) with a⊗b := max(a+b−1,0) is popular in
the study of many-valued logics, and gives a different notion of confidence or degrees of truth.

- The semiring of doubt D= ([0,1],min,⊕,1,0) with a⊕b := min(a+b,1).

Semirings that are neither absorptive nor idempotent:

- The natural semiring N= (N,+, ·,0,1) for counting proofs and strategies.
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Provenance semirings: tracking atomic facts

Fundamental question: Which combinations of atomic facts are responsible for the truth of a
statement, and how often is a fact used in the evaluation ?

Let X be a set of indeterminates, which are used to label the facts that we want to track:
α 7→ Xα (untracked atoms are mapped to 0 or 1).

N[X ]: semiring of multivariate polynomials in X with coefficients from N.
This is the commutative semiring freely generated by the set X .

Universality: Any function f : X → S into an arbitrary semiring S extends uniquely to a semiring
homomorphism h : N[X ]→ S.

This justifies a general strategy for computing semiring valuations:
- Compute valuations in the universal semiring N[X ]

- Specialize via homomorphisms to other semirings
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Other provenance semirings

Simpler and “less informative” semirings with specific algebraic properties:

N[X ]
2x2y+ xy+5y2 + xz

B[X ]
x2y+ xy+ y2 + xz

Trio[X ]
3xy+5y+ xz

S[X ]
xy+ y2 + xz

W[X ]
xy+ y+ xz

PosBool[X ]
y+ xz

Which[X ]
xyz

drop coeff. drop exponents

absorb drop exp.
drop coeff.

drop exp.
absorb

+= ·
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Negation

Val Tannen (2016): “Divergent approaches and unsatisfactory state of affairs for queries with
negation or difference of relations."

With Val Tannen, we have proposed a new approach based on the following ideas:

Negation is handled via transformation to negation normal form.

New semirings of polynomials with dual indeterminates N[X ,X ] := N[X ∪X ]/(XX) based on
a bijection X ↔ X .

Provenance for logic is intimately connected to provenance analysis for games.

New kinds of applications: Missing answers, repairs, etc.
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Semiring interpretations

Fix a commutative semiring S.

Let A be a finite universe and τ = {R1, . . . ,Rm} be a finite relational vocabulary.

LitA(τ): all fully instantiated literals Ra and ¬Ra with R ∈ τ and a ∈ Ak.

A S-interpretation for A and τ is a function π : LitA(τ)→ S.
Further, let π map equalities a = b and a ̸= b to their truth values 0 or 1.

We call π : LitA(τ)→ S model-defining if, for all atoms Ra, precisely one of the values π(Ra) and
π(¬Ra) is zero. Then π specifies a unique structure Aπ .
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Semiring semantics for first-order logic

We can extend any S-interpretation π : LitA(τ)→ S to a S-valuation π : FO(τ)→ S giving values
π[[ϕ]] ∈ S to all ϕ ∈ FO(τ).

π[[ϕ ∨ψ]] := π[[ϕ]]+π[[ψ]] π[[ϕ ∧ψ]] := π[[ϕ]] ·π[[ψ]]

π[[∃xϕ(x)]] := ∑a∈A π[[ϕ(a)]] π[[∀xϕ(x)]] := ∏a∈A π[[ϕ(a)]]
π[[¬ϕ]] := π[[nnf(¬ϕ)]].
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Semirings of dual-indeterminate polynomials

Annotate atoms by indeterminates in X , and negated atoms by indeteminates in X , with a bijection
X ↔ X mapping x ∈ X to its complementary token x ∈ X .

N[X ,X ] := N[X ∪X ]/(XX) is the quotient semiring of N[X ∪X ] by the congruence generated by
the equations x · x = 0. Corresponds to polynomials in N[X ∪X ] such that no monomial contains
complementary tokens.

Universality. Any map h : (X ∪X)→ S into a semiring S, with h(x) ·h(x) = 0 for x ∈ X , extends
uniquely to a semiring homomorphism h : N[X ,X ]→ S.

Also the other provenance semirings can be extended by dual indeterminates to get semirings like
B[X ,X ],W[X ,X ],S[X ,X ] etc.
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Proof trees and evaluation strategies

An evaluation tree for a sentence ψ ∈ FO and a semiring interpretation π : LitA(τ)→ S is the same
thing as a strategy in the associated evaluation game.

Let #α(T ) denote the number of leaves of the tree T labelled by the literal α .

Valuation of T :
π[[T ]] := ∏

α∈LitA(τ)
π(α)#α (T ).

A proof tree for ψ ∈ FO and π : LitA(τ)→ S is an evaluation tree with π(T ) ̸= 0

Theorem. For every semiring interpretation π : LitA(τ)→ S and every ψ ∈ FO

π[[ψ]] = ∑

{
π[[T ]] : T is a proof tree for ψ and π

}
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Proof trees and dual-indeterminate polynomials

Consider a model-defining semiring interpretation π : LitA(τ)→ N[X ,X ] that maps each literal to
either an indeterminate in X ∪X or to a truth value 0 or 1 ,

What does the provenance polynomial π[[ψ]] tell us about the model-checking problem Aπ |= ψ ?

π[[ψ]] = ∑

{
π[[T ]] : T is a proof tree for ψ and π

}
is a sum of monomials mxe1

1 · · ·xek
k . Each such monomial tells us that there are precisely m proof

trees establishing that Aπ |= ψ which
- use among the tracked literals only those labelled by x1, . . . ,xk,
- use literals labelled by xi precisely ei times,
- and may use true untracked true literals (that have value 1) arbitrarily.

In particular Aπ |= ψ if, and only if, π[[ψ]] ̸= 0.
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Provenance information for classes of structures

Model-compatible interpretations π : LitA(τ)→ N[X ,X ]. For every atom Ra, either
(1) π(Ra) = x and π(¬Ra) = x, for some x ∈ X , or
(2) π(Ra) = 1 and π(¬Ra) = 0, or vice versa.

A model-compatible interpretation is consistent with at least one τ-structure on A, but in general
with a larger set of such structures.

Mustπ := {ϕ ∈ LitA(ϕ) : π(ϕ) = 1} (true in all models of π)
Mayπ := {ϕ ∈ LitA(ϕ) : π(ϕ) ∈ X ∪X} (true in some models of π)

Conclusion. For the resulting valuation π : FO(τ)→ N[X ,X ], the provenance polynomial π[[ψ]]

describes all proof trees for ψ whose leaves are in Mustπ ∪Mayπ . Every monomial corresponds to
one proof tree, and gives precise information about the literals on which the proof tree depends,
giving a complete description of all models of ψ that are compatible with π .
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Fixed-point logics

We have extended semiring semantics beyond FO to logics with fixed points. The most interesting
challenges are provided by fixed-point logics LFP and the modal µ-calculus Lµ .

Semiring provenance for Datalog had already been done in papers by Green, Karvounarakis,
Tannen 2007 and Deutch, Milo, Roy, Tannen 2014, based on ω-continuous semirings. The
universal one are semirings N∞[[X ]] of formal power series.

With dual indeterminates, this leads to semirings N∞[[X ,X ]] which provide semiring semantics for
semipositive Datalog and the positive fragment posLFP of fixed-point logic.

However the general fixed-point logics LFP and Lµ may have arbitrary interleavings of least and
greatest fixed points, and ω-continuous semirings are not adequate for these.
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Semiring semantics for fixed-point logic

What are the algebraic conditions required for semirings for fixed-point logics?

Full continuity: each chain C ⊆ S has a supremum
⊔

C and an infimum
d

C in S, with
a+

⊔
C =

⊔
(a+C), a ·

⊔
C =

⊔
(a · C) and analogously for

d
C.

Fully continuous semirings suffice to get a well-defined semantics for LFP, but for a meaningful
semantics that provides insights why a formula holds, an additional condition is necessary.

Absorption: a+ab = a for all a,b ∈ S. This makes multiplication decreasing: a ·b ≤ a and a ≤ 1.

Theorem. (Dannert-G.-Naaf-Tannen 2021)
In absorptive, fully chain-continuous semirings S, each monotone function f : S → S has a least
fixed point lfp( f ) and a greatest fixed point gfp( f ). Together with the semiring semantics for FO,
this provides meaningful semiring semantics for LFP.
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Semirings for LFP

Many common application semirings are fully continuous and absorptive such as the tropical
semiring, min-max semirings, the Lukasiewicz semiring. However, the general provenance
semirings N[X ] and N∞[[X ]] are neither fully continuous nor absorptive.

Instead, the general semirings for LFP are the semirings S∞[X ] of generalized absorptive
polynomials

f = x2y3z + x∞y + z∞

- no coefficients
- exponents in N∪{∞}.
- absorption among monomials (those with larger exponents are absorbed).

Semirings S∞[X ] and S∞[X ,X ] have universality properties that make them the “right” general
semirings for fixed-point logics. (Dannert, G., Naaf, Tannen, CSL 21)
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Semirings with Infinitary Operations

A priori, semirings only provide addition and multiplication operations over finite sets of values.

Semiring valuations for infinite axiom systems and semiring interpretations for quantifiers over
infinite domains require the expansion of semirings by infinitary operations

∑
i∈I

si and ∏
i∈I

si for arbitrary index sets I.

Is there a reasonable algebraic notion of such infinitary semirings ?

Answers will be given in the talk by Lovro Mrkonjić on Wednesday.
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The model theory of semiring semantics

To what extent do classical results of logic generalise to semiring semantics?

Elementary equivalence versus isomorphism. For finite structures, A≡B⇐⇒ A∼=B.
Every finite structure can be axiomatised, up to isomorphism, by a first-order sentence.

0-1 laws. Every first-order sentence is either almost surely true or almost surely false on
random finite structures.

Ehrenfeucht-Fraïssé games: a sound and complete method for logical equivalences.

Locality. By Theorems of Hanf and Gaifman, first-order formulae can only express local
properties. In fact, every first-order formula is equivalent to one in Gaifman normal form.

Compactness: Φ |= ψ if, and only if, Φ0 |= ψ for some finite Φ0 ⊆ Φ.

The definitions involved in these results generalise to semiring semantics. But what about the
results themselves, and the associated methods?
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Compactness

One of the most important results on first-order logic:

Compactness Theorem: For every class of sentences Φ ⊆ FO and every sentence ψ ∈ FO
- Φ is satisfiable if, and only if, every finite subset Φ0 ⊆ Φ is satisfiable
- Φ |= ψ if, and only if, there exists a finite subset Φ0 ⊆ Φ such that Φ0 |= ψ .

This is a fundamental tool, particularly in model theory. Is it available semiring semantics?

The appropriate setting is provided by absorptive semirings S that admit infinitary operations.

Satisfiability: Φ is S-satisfiable if there is a model-defining S-interpretation π with π[[Φ]] ̸= 0.
Entailment: Φ |=S ψ means that π[[Φ]]≤ π[[ψ]] for every model-defining S-interpretation π .

Sophie Brinke will tell you about semirings for which compactness holds, or fails, in terms of
satisfiablity and in terms of entailment.
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Locality

Hanf’s Theorem: A locality criterion for m-equivalence of two structures based on the number of
local substructures of any given isomorphism type.

Gaifman normal form: Every ψ ∈ FO is equivalent to a Boolean combination of local formulae
and sentences “there exist m disjoint neighbourhoods of radius r satisfying a local property ϕ(r)”.

In semiring semantics, we have the following results (Bizière, G, Naaf 2023):

Hanf’s Theorem generalises to all fully idempotent semirings, but fails for others.

∃y(Uy∧ y ̸= x) does not have a Gaifman normal form over any S ̸= B. Over some semirings,
Gaifman’s Theorem also fails for sentences: ∃z∀x∃y(Uy∨ x = z) in the tropical semiring.

Positive result: Gaifman normal forms for sentences exist over min-max semirings, and even
lattice semirings.

Erich Grädel The Model Theory of Semiring Semantics



Elementary equivalence versus isomorphism

Both notions naturally generalize to semiring interpretations π : LitA(τ)→ S
πA ≡ πB if πA[[ϕ]] = πB[[ϕ]] for all ϕ ∈ FO
πA ∼= πB if . . . .

In Boolean semantics, for finite structures, we have that A≡B⇐⇒ A∼=B.

This fails in semiring semantics, for some semrings.

Theorem (G., Mrkonjic, 2021) There exist finite S-interpretations πA ̸∼= πB (for instance in
min-max semirings with ≥ 3 elements) such that πA ≡ πB.

Indeed, finite semiring interpretations are not always first-order definable up to isomorphism.
And even if they are, they may need an infinite axiom system.
And even if, as in the tropical semiring, a finite axiom system suffices, a single axiom might not.

Erich Grädel The Model Theory of Semiring Semantics



Elementary equivalence versus isomorphism

Both notions naturally generalize to semiring interpretations π : LitA(τ)→ S
πA ≡ πB if πA[[ϕ]] = πB[[ϕ]] for all ϕ ∈ FO
πA ∼= πB if . . . .

In Boolean semantics, for finite structures, we have that A≡B⇐⇒ A∼=B.

This fails in semiring semantics, for some semrings.

Theorem (G., Mrkonjic, 2021) There exist finite S-interpretations πA ̸∼= πB (for instance in
min-max semirings with ≥ 3 elements) such that πA ≡ πB.

Indeed, finite semiring interpretations are not always first-order definable up to isomorphism.
And even if they are, they may need an infinite axiom system.
And even if, as in the tropical semiring, a finite axiom system suffices, a single axiom might not.

Erich Grädel The Model Theory of Semiring Semantics



How to prove elementary equivalence

Let πA,πB be two S-interpretations. We want to prove that πA ≡ πB although πA and πB are quite
different.

Find a separating set of homomorphisms h : S → B such that for all s, t ∈ S we have that
h(s) ̸= h(t) for some h ∈ H. Prove that h◦πA ≡ h◦πB for all h ∈ H. Since these are
B-interpretations we can do this by standard methods.

Claim. This implies πA ≡ πB

Otherwise there exists ψ such that πA[[ψ]] = s ̸= t = πB[[ψ]]. But then

(h◦πA)[[ψ]] = h(πA[[ψ]]) = h(s) ̸= h(t) = h(πB[[ψ]]) = (h◦πB)[[ψ]]

which is impossible since h◦πA ≡ h◦πB.
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Example

Let S = PosBool[X ]. Every Y ⊆ X induces a unique homomorphism hY : PosBool[X ]→ B with
hY (x) =⊤ for x ∈ Y and hY (x) =⊥ for x ∈ X \Y . For p ∈ PosBool[X ], we have that hY (p) =⊤ if,
and only if, p contains a monomial with only variables from Y .

{hY : Y ⊆ X} is a separating set of homorphisms.

Claim. The following two PosBool[x,y]-interpretations πxy,πyx are elementarily equivalent.

πxy :

A P Q ¬P ¬Q
a 0 y x 0
b x 0 0 y
c y x 0 0
d 0 0 y x

πyx :

A P Q ¬P ¬Q
a y 0 0 x
b 0 x y 0
c x y 0 0
d 0 0 x y
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Proof

The separating set of homomorphisms h : PosBool[x,y]→ B consists of h∅,h{x},h{y} and h{x,y}.

For each of these, we have to show that h◦πxy ≡ h◦πyx

For h∅ this is trivial.

h∅ ◦πxy :

A P Q ¬P ¬Q
a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥

h∅ ◦πyx :

A P Q ¬P ¬Q
a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥
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Proof: h = h{x}

πxy :

A P Q ¬P ¬Q
a 0 y x 0
b x 0 0 y
c y x 0 0
d 0 0 y x

πyx :

A P Q ¬P ¬Q
a y 0 0 x
b 0 x y 0
c x y 0 0
d 0 0 x y

h{x} ◦πxy :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊤ ⊥
b ⊤ ⊥ ⊥ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤

h{x} ◦πyx :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊥ ⊤
b ⊥ ⊤ ⊥ ⊥
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥
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Proof: h = h{y}

πxy :

A P Q ¬P ¬Q
a 0 y x 0
b x 0 0 y
c y x 0 0
d 0 0 y x

πyx :

A P Q ¬P ¬Q
a y 0 0 x
b 0 x y 0
c x y 0 0
d 0 0 x y

h{y} ◦πxy :

A P Q ¬P ¬Q

a ⊥ ⊤ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊤
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥

h{y} ◦πyx :

A P Q ¬P ¬Q

a ⊤ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊤ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤
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Proof: h = h{x,y}
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0-1 laws and almost sure valuations in semiring semantics
(Joint work with Hayyan Helal, Matthias Naaf, and Richard Wilke, LICS 2022)

Reminder: the classical 0-1 law for first-order logic

Fix a constant 0 < p < 1.

Gn,p: random graphs with universe [n] = {0, . . . ,n−1} where, independently for each pair i < j,
we decide randomly whether the edge {i, j} exists (with probability p) or not (with probability
1− p)

µn,p(ψ) := Pr[G |= ψ] for random graphs G ∈ Gn,p.

Theorem (0-1 law for FO): (Glebskii et al. 1969, Fagin 1976)
For every ψ ∈ FO, the sequence (µn,p(ψ))n∈ω converges exponentially fast to either 0 or 1.

Informally: Every ψ ∈ FO is either almost surely false or almost surely true.

This holds not just for graphs, but generally for relational structures.
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Proof by extension axioms

Extension axioms: Every configuration of k elements can be extended in every consistent way to
k+1 elements.

For graphs: For all i ≤ k and every collection of nodes v1, . . . ,vk there is a node w with edges to
v1, . . . ,vi but not to vi+1 . . .vk.

Every extension axiom is almost surely true (with exponential convergence).

The theory T of all extension axioms is ω-categorical: it has a unique countable model.

Hence T is complete and, by compactness, for every ψ ∈ FO, either T0 |= ψ or T0 |= ¬ψ for
some finite collection T0 ⊆ T . In the first case ψ is almost surely true, in the second case
almost surely false.
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Random semiring interpretations

Random structures naturally generalise to random S-interpretations.

Fix a probability distribution p on S\{0}.

Independently, for each atom Ra ∈ Lit[n](τ):
- decide by coin flip whether Ra or ¬Ra is true
- assign 0 to the false literal
- randomly assign to the true literal a value according to p.

We get probabilities µn,p[π[[ψ]] = j], for each ψ ∈ FO and j ∈ S.

From the classical 0-1 law, we conclude (for semirings without divisors of 0) that for every
ψ ∈ FO, π[[ψ]] = 0 almost surely or π[[ψ]] ̸= 0 almost surely.

But we aim at more informative results.
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Questions

The classical 0-1 law partitions FO into almost surely false and almost surely true sentences.

Do we get partitions (Φ j) j∈S of FO so that sentences in Φ j evaluate to j almost surely?

If yes, are all classes Φ j non-empty, or do the almost sure valuations concentrate on just a few
values.

For which semirings does this work? How does the partition into the classes Φ j depend on the
underlying semiring?

What is the complexity of computing the almost sure valuation of a given ψ ∈ FO?

For simplicity, we first consider finite min-max semirings (S,max,min,0,1), induced by a finite
total order (S,<).
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Extension properties

The k-extension property: If a configuration of k points is realised then all consistent extensions to
k+1 points are also realised.

Litk(τ): τ-literals Rx in the variables x1, . . . ,xk,

Configurations: consistent assignments ρ : Litk(τ)→ S.

Lemma. For finite semirings S, random S-interpretations almost surely have the k-extension
property (for every fixed k).

The proof is simple, and uses the same arguments as in the Boolean case.

Bollobas: “The first-order 0-1 law looks sophisticated but follows from shallow computations”
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Algebraic descriptions

We know: For π : LitA(τ)→ S, the valuations π[[ψ]] can be described by polynomials with
indeterminates from LitA(τ).

ψ := ∀x
(
¬Exx∨ (Exx∧∄=yExy)

)
fψ,A = ∏

a∈A

(
¬Eaa+

(
Eaa · ∑

b∈A\{a}
Eab

))
Problem: This polynomial depends on A = [n]

If ψ ∈ FOk and π has the k-extension property, we can do better:

We find a polynomial fψ with indeterminates in Litk(τ), which only depends on k, but not on n.
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Polynomials for almost sure valuations

Idea: Use polynomials with indeterminates in Litk(τ) rather than LitA(τ).

Indeterminates: X(k) = {Xα ,X¬α : α ∈ Litk(τ)}

Coefficients from the three-element semiring E = {0,e,1} with e+e = e ·e = e and e+1 = 1.

ψ fψ

xi = x j 1 or 0 (depending on whether i = j)
β , ¬β Xβ , X¬β

ϕ ∨ϑ fϕ + fϑ

ϕ ∧ϑ fϕ · fϑ

∄=y ϕ(x,y) ∑t∈T fϕ(X, t(Y)), for consistent t : Y →{0,1}
∀̸=y ϕ(x,y) ∏t∈T fϕ(X,s(Y)), for consistent t : Y →{0,e}
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Polynomials for quantified formulae

Question: how to construct polynomials for ∄=y ϕ(x,y) and ∀̸=y ϕ(x,y)?

For ϕ(x,y) we have a polynomial fϕ(X,Y) where Y contains the indeterminates for the literals
involving y.

If ϕ(a,y) is satisfiable then (by the extension property) we find a b realising a maximal extension:
true literals involving b get the maximal value 1 of the semiring.

ψ(x) = ∄=y ϕ(x,y) 7−→ fψ(X) = ∑
t∈T

fϕ(X, t(Y))

where T is the set of consistent assignments t : Y →{0,1} (which, out of any pair (β ,¬β ) of
complementary literals, map one to 0, the other to 1).
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Example

ψ := ∄=x∄=y
(
(¬Exx∧Exy)∨ (Exx∧¬Exy)

)
Use variables X := XExx, Y := XExy and X ,Y for the negations.

formula polynomial
ϕ := (¬Exx∧Exy)∨ (Exx∧¬Exy) X ·Y +X ·Y

∄=yϕ (X ·0+X ·1)+(X ·1+X ·0) = X +X
ψ := ∄=x∄=yϕ fψ := (0+1)+(1+0) = 1

The sentence ψ evaluates almost surely to the maximal truth value 1.
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∄=yϕ (X ·0+X ·1)+(X ·1+X ·0) = X +X
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Universal quantifiers and small positive values

Existential quantifiers: use sums and consistent assignments to {0,1}

ψ(x) = ∄=y ϕ(x,y) 7−→ fψ(X) = ∑
t∈T

fϕ(X, t(Y))

Recall that 1 is the maximal value in the semiring.

Universal quantifiers: use products and consistent assignments to {0,e} where e stands for the
smallest positive value min(S\{0}).

ϑ(x) = ∀̸=y ϕ(x,y) 7−→ fϑ (X) = ∏
t∈Te

fϕ(X, t(Y))

where Te is the set of consistent assignments t : Y →{0,e}.
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ψ(x) = ∄=y ϕ(x,y) 7−→ fψ(X) = ∑
t∈T

fϕ(X, t(Y))

Recall that 1 is the maximal value in the semiring.

Universal quantifiers: use products and consistent assignments to {0,e} where e stands for the
smallest positive value min(S\{0}).

ϑ(x) = ∀̸=y ϕ(x,y) 7−→ fϑ (X) = ∏
t∈Te

fϕ(X, t(Y))

where Te is the set of consistent assignments t : Y →{0,e}.

Erich Grädel The Model Theory of Semiring Semantics



Example

ψ := ∀̸=x
(
¬Exx∨ (Exx∧∄=yExy)

)
Use variables X := XExx, Y := XExy and X ,Y for the negations.

formula polynomial
Exy Y

∄=yExy 0+1 = 1
Exx∧∄=yExy X ·1 = X

¬Exx∨ (Exx∧∄=yExy) X +X
ψ := ∀̸=x · · · fψ := (e+0) · (0+ e) = e

The sentence ψ evaluates almost surely to the minimal positive truth value in the given semiring.
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The 0-1 law and the almost sure valuations

Let (S,max,min,0,1) be a finite min-max semiring.
Let ψ(x) ∈ FOk(τ), with associated polynomial fψ(X) ∈ E[X].

Theorem.
If π is a S-interpretation with the k-extension property, and ρ is the atomic type of the tuple a, then
π[[ψ(a)]] = fψ [ρ].

If ψ is a sentence then fψ ∈ {0,1,e} is a constant, with fψ = π[[ψ]].

S-interpretations almost surely have the k-extension property. Thus, every ψ ∈ FO has a unique
almost sure valuation, with only three possible values:

if fψ = 0 then π[[ψ]] = 0 almost surely,

if fψ = 1 then π[[ψ]] = 1 almost surely,

if fψ = e then π[[ψ]] = min(S\{0} almost surely.
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Example: Secret facts

An interpretation π into the security semiring A= ({0 < T< S< C< P= 1} labels facts as
“public” (P), “confidential” (C), “secret” (S), or “top secret” (T).

The valuation π[[ψ]] describes the minimal clearance level that is necessary to verify (by standard
evaluation methods) the truth of ψ in Aπ .

Assume that access restrictions are assigned randomly. The 0-1 law says that, if ψ is almost surely
true, then either

fψ = 1 and ψ can almost surely be verified with public information. This is typically the case
for existential statements ∃xϕ(x). Or

fψ = e and the verification of ψ requires top secret information. Typically this is the case for
a true universal statement ∀xϕ(x).

Thus, clearance for just confidential or secret information is completely useless! :-)
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Complexity

The split of FO(τ) into fψ = 0,1,e is independent of the semiring.

fψ ∈ {1,e} if, and only if, ψ is almost surely true (in the Boolean setting).

The problem of computing the almost sure valuation of first-order sentences is

PSPACE-hard (even just deciding whether fψ = 1 or fψ = e)

PSPACE-complete: evaluate fψ in alternating polynomial time.
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Beyond finite min-max semirings

The 0-1 law extends (with certain variations) to other classes of semirings:

Finite and infinite lattice semirings (S,⊔,⊓,⊥,⊤).
For infinite semirings, different kinds of extension properties must be considered,
realising maximal extensions and “small” extensions of types.

Absorptive semirings, such as the tropical semiring and the Łukasiewicz semiring.

The natural semiring (N,+, ·,0,1), but the proof and the almost sure valuations are different:
Other extensions properties are needed, saying that there are many witnesses realising
types with sufficiently large values.
Instead of polynomials, we have to use ∞-expressions using ∞ as coefficient and exponent.
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Outlook

Our work is just a first step in the study of random semiring interpretations.

We have assumed a fixed probability distribution on the semiring. This corresponds to the
Gn,p-model of random graphs for constant p. The study of logic on random structures has
considered many different scenarios:

probability distributions that depend on the size of the universe

probability distributions on special classes of structures

different logics

0-1 laws and convergence laws imply non-definability results: properties with a different
probabilistic behaviour than the one of formulae are inexpressible. Can we use our results to prove
non-definability results for numerical parameters in semiring semantics?
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Ehrenfeucht-Fraïssé Games

(Joint work with Sophie Brinke and Lovro Mrkonjić, CSL 2024)

Gm(A,B): m-move EF-game on τ-structures A and B

i-th move: Spoiler (I) selects ai ∈ A or bi ∈B, Duplicator (II) answers with bi ∈B or ai ∈ A.
after m moves, II has won if {(a1,b1), . . . ,(am,bm)} is a local isomorphism between A and B.

Theorem. For any two structures A and B, the following are equivalent

(1) A≡m B

(2) Duplicator wins Gm(A,B)

The game G(A,B): I selects m ∈ N. Then Gm(A,B) is played.

II wins G(A,B)⇐⇒ II wins Gm(A,B) for all m ⇐⇒ A≡m B for all m ⇐⇒ A≡B.

Question: What about Gm(πA,πB) versus πA ≡m πB for semiring interpretations πA and πB?
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Soundness and Completeness

The game Gm is sound for ≡m on a semiring S if for all S-interpretations πA and πA:

II wins Gm(πA,πB) =⇒ πA ≡m πB

Gm is complete for ≡m on a semiring S if for all S-interpretations πA and πA:

πA ≡m πB =⇒ II wins Gm(πa,πB)

By the Ehrenfeucht-Fraïssé-Theorem Gm is sound and complete for ≡m on the Boolean semiring B.

It follows that the unrestricted game G is sound and complete for ≡ on B.

However, for other semirings the games need be neither sound nor complete.
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To what extent do the games work for semirings?

Question: For which semirings are the EF-games Gm and G sound, for which are they complete?

There are also other variants of model comparison games. for which we pose the same question;

The m-move bijection game BGm(πA,πB): (Hella, for logics with counting quantifiers)
i-th move: Duplicator selects a bijection h : A → B with h(a j) = b j for j < i
Spoiler selects a new pair (ai,bi) where bi = h(ai).

The parametrised m-counting game CGn
mπA,πB):

i-th move: Spoiler selects a set X ⊆ A or X ⊆ B with |X | ≤ n.
Duplicator answers with Y ⊆ B or Y ⊆ A such that |Y |= |X |.
Spoiler selects an element of Y , Duplicator answers with an element of X .
This gives the new pair (ai,bi).

Note that CG1
m = Gm
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Classification of semirings for model comparison games

The games Gm are sound on S, for all m, if and only if, S is fully idempotent.

But if all games Gm are sound and complete on S, then S = B.

Nevertheless, the game G is sound on more semirings, such as
W[X ],N∞,S∞[X ],N,S[X ],B[X ],N[X ]

But G is unsound on V,T,L,D

The bijection games BGm are sound on every semiring.

The m-counting game CGn
m is sound on n-idempotent semirings.

On N and N[X ], all these games are complete.

All these games are incomplete on V,T,L,D,N∞,W[X ],S[X ],B[X ], and S∞[X ].
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Ehrenfeucht-Fraïssé Games for Application Semirings
S ̸∼= B fully
idempotent

V∼= T L∼= D N N∞

So
un

dn
es

s
of

Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✗ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✗ ✗ ✓ ✓

C
om

pl
et

en
es

s
of Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗
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Ehrenfeucht-Fraïssé Games for Provenance Semirings

PosBool[X ] W[X ] S[X ], B[X ] N[X ] S∞[X ]

So
un

dn
es

s
of

Gm for ≡m ✓ ✗ ✗ ✗ ✗

CGn
m for ≡m ✓ ✓ ✗ ✗ ✗

BGm for ≡m ✓ ✓ ✓ ✓ ✓

G for ≡ ✓ ✓ ✓ ✓ ✓

C
om

pl
et

en
es

s
of Gm for ≡m ✗ ✗ ✗ ✓ ✗

CGn
m for ≡m ✗ ✗ ✗ ✓ ✗

BGm for ≡m ✗ ✗ ✗ ✓ ✗

G for ≡ ✗ ✗ ✗ ✓ ✗
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