
Courcelle’s Theorem

Niclas Gey

Seminar Logic, Complexity, Games:

Algorithmic Meta-Theorems and Parameterized Complexity

Mathematical Foundations of Computer Science
RWTH-Aachen University

Germany

14 January 2022

1 INTRODUCTION

1 Introduction

There exist many NP-complete graph problems, like 3-Colorability, which under nor-
mal circumstances cannot be computed efficiently. Most of those NP-complete problems
are not always equally hard, their difficulty depends on the properties of graph they are
solved on. If we now restrict these properties of the input graph, we can find ways to
efficiently compute NP-complete problems on specific classes of graphs. One commonly
used graph property is tree width, which is a parameter that describes how similar a given
graph is to a tree. By restricting our inputs to graphs of bounded tree width we can
not only solve specific problems but whole classes of problems particularly all problems
expressible in monadic second order logic. These types of algorithms that define a way
to compute whole range of problems are called algorithmic meta-theorems. This paper
constructs an easy to understand proof of Courcelle’s theorem and the proofs leading up
to it focusing only on the class of undirected graphs. This proof is based on the approaches
by Flum and Grohe in [4] and Kreutzer in [5].

1.1 Tree Width

The tree width of an undirected graph is a integer value, which informally tells us how
similar a graph is to a tree. Formally it is the width of a graphs tree decomposition.

Definition 1.1. [2] A tree decomposition of a graph G = (V,E) is a tuple
D = (T , (Bt)t∈T) in which T = (T, F) is a undirected tree and for each vertex t ∈ T the
bag Bt is a subset of V . Every tree decomposition fulfils the following conditions:

1. The union of all bags is V ,
⋃
t∈T

Bt = V .

2. If a v ∈ V is contained in Bi and Bj , then it is contained in every Bk on the path
form i to j.

3. For every edge (v, w) ∈ E there exists a bag Bt with v, w ∈ Bt.

The width of a tree decomposition is defined, by the size of the largest bag:

width(D) := max{|Bt| − 1 | t ∈ T}

The tree width tw(G) of a graph G is the smallest width of all its tree decompositions. We
subtract one from the width of a decomposition to assure that trees have a tree width of
one.

For the rest of this paper we focus on ordered tree decompositions [4, Chap. 11],
D = (T , (b̄t)t∈T). These are a slight variation of ordinary tree decompositions. We con-
vert T to be a directed graph with the edges starting in the root and ending in the leaves
of the tree. Furthermore, we change the representation of bags from subsets Bt to k + 1-
tuples b̄t where k is the width of the decomposition. In case a bag contains less than k
elements we duplicate the last element until the bag is ’full’.

When given an upper bound k and a graph G it is possible to effectively compute a
tree decomposition of G of at most width k if it exists, as proven in Bodlaender’s Theorem
[1].

1.2 Courcelle’s Theorem

Theorem 1.2. [3] Every problem definable in monadic second order logic (MSO) can be
decided in linear time on graphs when parametrized by the length of the MSO-sentence and
the tree width of the graph.

1

2 MODEL-CHECKING ON TREES

We will be referring to the tree width of our graph as k and to the length of the MSO-
sentence as l. Thus the problem can be written as: k-l-MC(GRAPH, MSO)

What are simple graph properties we can express in MSO?
We can easily express 3-Colorability, a NP-complete problem:

∃F1∃F2∃F3

(
∀v(F1v ∨ F2v ∨ F3v)∧
∀u∀w

(
(F1u ∧ F1w) → ¬Euw

)
∧

∀u∀w
(
(F2u ∧ F2w) → ¬Euw

)
∧

∀u∀w
(
(F3u ∧ F3w) → ¬Euw

))
Besides 3-Colorability we can also express problems like VertexCover, Dominat-
ingSet or many other common NP-complete graph problems. All of those problems can
be computed in linear time on graphs of bounded tree width.

1.3 Overview of the Proof

The proof of Courcelle’s Theorem consists of a series of reductions. We start by using tree
language and nondeterministic tree automaton (NTA) to prove that l-MC(TREElob, MSO),
the model checking for MSO on labeled ordered binary trees, is fixed parameter tractable
when parametrized by the length of the MSO-sentence. Next we expand this algorithm
to work on the class of labeled ordered unranked trees.

The main part of the proof is the following reduction,

k-l-MC(GRAPH, MSO) ⩽ l-MC(TREElo, MSO).

This reduction is achieved with a MSO-Interpretation [5, pp. 8-9]. We firstly define a
coding, which maps G and D, an ordered tree decomposition of G to T (G,D), a labeled
tree, without loosing any information about G. In the next step we translate the MSO-
sentence φ over the graph G into a MSO-sentence φ∗ over the labeled tree T (G,D), with
G |= φ, if and only if T |= φ∗.

k-l-MC(GRAPH, MSO) ⩽ l-MC(TREElo, MSO) ⩽ l-MC(TREElob , MSO)

Fig. 1. Overview of the proof

2 Model-Checking on Trees

We start by defining the kind of tree we work with in this section. First we look at labeled
ordered binary trees (TREElob). These are binary trees, in which we differentiate between
the first and second child. Each of those childes is referred to by its own relation E1vw
and E2vu. Here v is the parent node, w the first and u the second child.

Theorem 2.1. [4, Chap. 10] A tree language is regular if and only if it can be expressed
in MSO.

Proof Sketch. Every regular tree language can be decided by a nondeterministic tree au-
tomaton (NTA). An NTA is like an NFA but it checks labeled ordered binary trees instead
of strings. The transition relations of an NFA consist of a starting-state, an ending-state
and a symbol from the alphabet. In an NTAs transition relation, we add a second starting-
state to check trees from the bottom up.

2

2 MODEL-CHECKING ON TREES

”⇒” For the first part of the proof we simulate an NTA with an MSO-sentence. This is
done by using one existentially quantified relation for each state in the NTA. These
relations specify for which input node the NTA is in which state. The following
conditions are also checked: The NTA can only be in one state at a time. It starts
in an initial and ends in an accepting state and it only uses existing transitions.

”⇐” For the backward direction we firstly translate our MSO-sentence φ into an equiva-
lent sentence φ∗. We start by replacing all variables in φ with new unary relations in
φ∗. Next we define new atomic formulas, which when using unary relations instead
of variables are equivalent to the atomic formulas of MSO. For example, one of these
new atomic formulas is subset(X,Z) = ∀z(Xz → Y z), which replaces the atomic
formula Zx. Now we inductively construct φ∗ by replacing all atomic formulas in φ
with the new ones. Our translated formula φ∗ now only contains free relation sym-
bols but no free variables. This makes the construction of the matching automata
easier by encoding the quantifiers into a larger alphabet.

To create a equivalent automaton to φ∗ we first construct an automaton, equiva-
lent to every new atomic formula. This is achieved by encoding all free relations
symbols into a larger alphabet. Let X1, . . . , Xk be the free relations of φ∗. The
new alphabet is Σ′ = Σ× {0, 1}k, where each (a, b1, . . . , bk) ∈ Σ′ encodes a ∈ Σ and

bi =

{
1, if a ∈ Xi

0, else
. Using this alphabet we construct an automaton, equivalent to

every new atomic formula and inductively combine those automata to be equivalent
to φ∗.

Corollary 2.2. The model checking for labeled ordered binary trees parametrized by l, the
length of the sentence φ, l-MC(TREElob, MSO) is fixed-parameter tractable and can be
decided in linear time.

Proof. We have just proven, that for each φ we can compute a nondeterministic tree
automaton, which decides if a given tree satisfies φ. This NTA can be converted into a
DTA (deterministic tree automaton), that decides the problem for a given tree in linear
time. This conversion results in a exponential blow-up relative to l, the length of the
sentence φ.

To extend the model checking algorithm to work on all labeled trees we define a
way to convert a labeled ordered unranked tree (TREElo) with its MSO-sentence φ into a
labeled ordered binary tree (TREElob) with the accordingly translated MSO-sentence φ∗.
A labeled ordered unranked tree can be viewed as a tree with arbitrarily many children,
where E is the usual edge relation and every child is connected to the previous child by a
binary relation N .

T :

1

2 3 4

5 6 7

E
E

E

E E E

N N

N B:

1

2

3

4

5

6

7

E1

E1

E1

E2

E2E2

Fig. 2. Conversion from TREElo to TREElob

3

3 MODEL-CHECKING ON GRAPHS OF BOUNDED TREE WIDTH

Let T be a labeled ordered unranked tree and B its translated labeled ordered binary
tree. To translate the MSO-sentence φ we define a new sentence φ∗ with T |= φ if and
only if B |= φ∗. We first replace all instances of Nvw in φ with E2vw in φ∗. To replace
Evw in φ we need to define a new formula edge(v, w).

edge(v, w) = ∃u
(
E1vu ∧ ∀U

((
Uu ∧ ∀x∀y

(
(E2xy ∧ Ux) → Uy

))
→ Uw

))
We define this formula by checking if either w is the first child of v or if w is part of a
series of ”next children”, which starts with a first child of v.

3 Model-Checking on Graphs of Bounded Tree Width

We have now completed the first reduction of the proof as seen in the overview in Fig.
1. In this chapter we complete the proof by constructing a MSO-Interpretation to reduce
k-l-MC(GRAPH, MSO) to l-MC(TREElo, MSO).
This can be divided into two parts. First we generate a coding for G as a labeled tree Then
we translate the MSO-sentence φ to work on that coding.

G:

a

b

c

d

e

f

g

D:

t1
(a, b, c)

t2
(b, c, e)

t3
(c, d, e)

t4
(b, e, g)

t5
(f, g, g)

Fig. 3. Graph G with its ordered tree decomposition D

3.1 Generating a coding for G

To encode G we define D(T , (b̄t)t∈T) to be an ordered tree decomposition of G with k :=
tw(G) = width(D). This can be computed efficiently for a fixed k, recall Bodlaender’s
Theorem. We also define λ(t) to be the labeling of t ∈ T consisting of three parts, where

λ(t) :=
(
λ1(t), λ2(t), λ3(t)

)
.

The first part encodes all edges in the original graph between vertices from the same bag.
We let

λ1(t) :=
{
(i, j) ∈ [k + 1]2 | for all i ⩽ j with (bti, b

t
j) ∈ E

}
.

Duplicate vertices in the same bag are denoted in the second part by

λ2(t) :=
{
(i, j) ∈ [k + 1]2 | bti = btj

}
.

The last part of the encoding,

λ3(t) :=

{
∅, if t is root of T{
(i, j) ∈ [k + 1]2 | bsi = btj

}
, for the parent s of t

marks the same vertices appearing in consecutive bags.
This in linear time computable encoding T (G,D) carries all the information to fully re-
construct the initial Graph G.

4

3 MODEL-CHECKING ON GRAPHS OF BOUNDED TREE WIDTH

Example 3.1. Consider the Graph G and its ordered tree decomposition D(T , (b̄t)t∈T) in
Fig. 3. We will now generate the labeling for t2 ∈ T .

All of the vertices in the second bag are connected in G, thus λ1(t2) = {(1, 2), (1, 3), (2, 3)}.
The second part of the labeling only consists of the tuples with the same number on each
side, due to t2 not having additional duplicated vertices. Comparing t2 to its parent node
t1 we see that the vertices b and c are contained in both. Therefore λ3(t2) = {(2, 1), (3, 2)}.
Now combining all three parts of the labeling we end up with

λ(t2) =
(
{(1, 2), (1, 3), (2, 3)}, {(1, 1), (2, 2), (3, 3)}, {(2, 1), (3, 2)}

)
.

3.2 Translating the MSO-sentence φ

Now that we have defined a way to map G, our graph of bounded tree width, onto a ordered
labeled tree T (G,D) we proceed by translating φ. To complete the MSO-Interpretation
we translate φ into a new MSO-sentence φ∗ with G |= φ if and only if T |= φ∗. The
translation of φ can be divided into four steps. First we define a way to represent subsets
of V in T . In the next step we give five conditions, which define the existence of subsets
and elements in this new representation of subsets. These conditions get translated into
MSO-formulas and are used to replace the quantifier in φ∗. At last we inductively translate
our MSO-sentence by using those formulas.

Encoding subsets

We encode subsets of V as (k + 1)-tuples of subsets of T , where k + 1 is the size of the
bags in D. We denote which bag contains a element from the subset at which position.
For every W ⊆ V and i ∈ [k + 1] we let

Ui(W) := {t ∈ T | bti ∈W} and

Ū(W) :=
(
U1(W), . . . , Uk+1(W)

)
.

We also write Ui(v) := Ui({v}) and Ū(v) := Ū({v}).

Example 3.2. Recall G and D from Fig. 3 again. The encoding of {c, e} ⊆ V is
Ū({c, e}) = ({t3}, {t2, t4}, {t1, t2, t3}).

Defining five conditions for existence

Lemma 3.3. Let Ū = (U1, . . . , Uk+1) be a tuple of subsets from T . Then there exists a
W ⊆ V with Ū = Ū(W) if and only if the following conditions are satisfied:

(1) (i, j) ∈ λ2(t) =⇒ (t ∈ Ui ⇔ t ∈ Uj).

(2) s is a parent of t and (i, j) ∈ λ3(t) =⇒ (t ∈ Ui ⇔ s ∈ Uj).

Furthermore, Ū = Ū(v) for an element v ∈ V iff additionally to (1) and (2) the following
statements are satisfied.

(3) t ∈ Ui and t ∈ Uj =⇒ (i, j) ∈ λ2(t).

(4) s is a parent of t, t ∈ Ui and s ∈ Uj =⇒ (i, j) ∈ λ3(t)

(5)
⋃

i∈[k+1]

Ui is nonempty and connected.

5

3 MODEL-CHECKING ON GRAPHS OF BOUNDED TREE WIDTH

Proof. Let Ū = (U1, . . . , Uk+1) be a tuple of subsets from T and W ⊆ V with Ū = Ū(W).
Then they satisfy (1) and (2) per definition of λ.

Know let Ū be a tuple of subsets of T satisfying (1) and (2) and W ⊆ V . Suppose
Ū ̸= Ū(W). Then there exists s, t ∈ T and i, j ∈ [k + 1] such that bsi = btj , s ∈ Ū and

t /∈ Ū . Due to all bags containing the same vertex being connected, there remain two
possible cases, which are s = t or either s is a parent of t or the other way around. The
first case would imply (i, j) ∈ λ2(t), contradicting (1). The second case contradicts (2),
by implying (i, j) ∈ λ3(t).

For the second part of the proof the forward direction is again trivial.
Let Ū be a tuple of subsets of T satisfying (1) to (5) and W ⊆ V . Because of (5) |W | > 0.
Suppose |W | > 1. Then there exists s, t ∈ T and i, j ∈ [k + 1] such that bsi ̸= btj , s ∈ Ui

and t ∈ Uj . Due to
⋃

i∈[k+1] Ui being connected (5), we can find i, j, s, t such that s = t,
or either s is a parent of t or the other way around. However this would contradict (3) or
(4).

Translating the existential conditions

In this section we define five new MSO-formulas, which each express one of the five con-
ditions from Lemma 3.3. Our goal is to combine these five formulas into the formulas set
and element, which for all tuples Ū = (U1, . . . , Uk+1) of subsets of T ,

T (G,D) |= set(U1, . . . , Uk+1) ⇐⇒ There is a W ⊆ V with Ū = Ū(S),

T (G,D) |= element(U1, . . . , Uk+1) ⇐⇒ There is a v ∈ V with Ū = Ū(v).

set and element can later be used to encode the existential quantifier for unary relations
and vertices in the translated MSO-sentence φ∗.

Translating (1) into the MSO-formula φ1,

φ1(U1, . . . , Uk+1) := ∀v
∧

i,j∈[k+1]

(
(

∨
t∈T

(i,j)∈λ2(t)

v = t) → (Uiv ↔ Ujv)
)
.

Again k + 1 is the size of the bag and is fixed. The formula itself is a straight forward
translation of the condition (1). The conditions (2) to (4) are translated into φ2 to φ4 in
a similar way.

To translate (5), we first define the formula connected(U), which expresses that the
set U ⊆ T is connected. We do that by defining that no proper nonempty subset W ⊂ U
can be closed under E in U :

connected(U) := ∀W
(W is a proper nonempty subset of T︷ ︸︸ ︷
∀w(Ww → Uw) ∧ ∃v(Uv ∧ ¬Wv) ∧ ∃w(Ww)

→¬∀w∀u
(
(Ww ∧ Uu ∧ (Ewu ∨ Euw)) →Wu

)︸ ︷︷ ︸
W is not closed under E

)
.

By replacing every instance of a atomic formula of the form Ux in connected(U) with∨
i∈[k+1]

Uix we obtain connected(
⋃

i∈[k+1]

Ui). Using this formula the rest of the translation

in straight forward we obtain

φ5(U1, . . . , Uk+1) := ∃v(
∨

i∈[k+1]

Uiv) ∧ connected(
⋃

i∈[k+1]

Ui).

6

3 MODEL-CHECKING ON GRAPHS OF BOUNDED TREE WIDTH

The conjunction of either the first two formulas or all five results in the replacements for
the existential quantifier,

set(U1, . . . , Uk+1) :=
∧
i∈[2]

φi(U1, . . . , Uk+1) and

element(U1, . . . , Uk+1) :=
∧
i∈[5]

φi(U1, . . . , Uk+1).

Translating φ

In this last step we use the formulas set and element to inductively translate φ. Let
W1, . . . ,Wn ⊆ V and v1, . . . , vn ∈ V . We want φ∗ to be the translated MSO-formula with

G |= φ(W1, . . . ,Wn, v1, . . . , vn) iff

T (G,D) |= φ∗(Ū(W1), . . . , Ū(Wn), Ū(v1), . . . , Ū(vn))

We will start the induction by translating all atomic formulas. For φ(v, w) = Evw we
use λ1 the part of the labeling were we encoded all edges of the original graph G. We
define

φ∗(V̄ , W̄) := ∃v
(∨
i,j∈[k+1]

(Viv ∧Wjv ∧
∨
t∈T

(i,j)∈λ1(t)

v = t)
)
.

The formula first checks if a bag exists in which v and w are contained. Next it looks for
a edge between the two vertices by looking if the corresponding labeling in contained in
λ1. The translation of φ(v, w) = (v = w) works in a similar way. For the last remaining
atomic formula φ(V,w) = V w we express that there exist a bag containing a element of
V and w at the same spot. We let

φ∗(V̄ , W̄) := ∃v
(∨
i∈[k+1]

(Wiv ∧ Viv)
)
.

For the induction step we have to consider quantifiers and boolean operators. The boolean
operator are kept the same in the translated formula. Let φ = ψ1 ∨ ψ2, then we define
φ∗ = ψ∗

1 ∨ ψ∗
2. The same applies to φ = ¬ψ.

To translate the quantifiers we use set and element. For a formula φ = ∃v(ψ) and
φ = ∀v(ψ) we let

φ∗ = ∃V1 . . . ∃Vk+1

(
element(V1 . . . Vk+1) ∧ ψ∗),

φ∗ = ∀V1 . . . ∀Vk+1

(
element(V1 . . . Vk+1) → ψ∗).

The same formulas can be used for quantifiers over unary relations by replacing element
with set. The translated formula φ∗ is computable in linear time for a given k.

7

4 CONCLUSION

4 Conclusion

Combining the results of all sections of the proof we end up with a single algorithm to
solve Courcelle’s Theorem.

Courcelle(G, φ)

1. Check if φ uses the vocabulary of graphs if not reject.

2. Compute an ordered tree decomposition D = (T , (b̄t)t∈T) of
G with width(D) = tw(G).

3. Compute the labeled tree T (G,D).

4. Compute the translated formula φ∗.

5. Check if T (G,D) |= φ∗.

Fig. 4. Courcelle Algorithm

Taking a look at the running time of Courcelle(G, φ). Let l = |φ|, k = tw(G) and
n = |V |. Step 1 is obviously decidable in time O(l). As proven in Bodlaender’s Theo-
rem [1] the second step can be computed in time O(2p(k) · n) for a suitable polynomial p.
The construction of T (G,D) in step 3 can be computed in O(f(k) · n) for some suitable
function f. Due to the size of G obiously not having an impact on the computation of φ∗,
the fourth step is computable in time O(g(l, k)) for some suitable function g. Lastly the
model-checking on labeled trees can be computed in linear time as proven in section 2.
Thus we end up with a linear runtime forCourcelle(G, φ) when parametrized by l and k.

In this paper Courcelle’s Theorem was only proven for the class of undirected graphs. It
can be generalized to the class of arbitrary structures by computing the tree decomposition
of a structures gaifmangraph. This proof works otherwise identical and can be looked up
in [5, pp. 20-21].

References

[1] Hans L. Bodlaender. “A linear-time algorithm for finding tree-decompositions of small
treewidth”. In: SIAM Journal on computing 25.6 (1996), pp. 1305–1317. doi: https:
//doi.org/10.1145/167088.167161.

[2] Hans L. Bodlaender. “A tourist guide through treewidth”. In: 92 (1992), pp. 2–3.

[3] Bruno Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs”. In: Information and Computation 85.1 (1990), pp. 12–75. doi: https:
//doi.org/10.1016/0890-5401(90)90043-H.

[4] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag Berlin Heidelberg, 2006. doi:
https://doi.org/10.1007/3-540-29953-X.

[5] Stephan Kreutzer. “Algorithmic Meta-Theorems”. In: CoRR abs/0902.3616 (2009).
doi: https://doi.org/10.1007/978-3-540-79723-4_3.

8

