
Treewidth

Sven Driessen

January 13, 2022

Introduction

While many important algorithmic problems on graphs are NP-hard and therefore not computa-
tionally tractable, instances that arise in real world problems often have a certain structure. For
example, the vertices in street maps mostly have a relatively small degree. This structure may be
used to build algorithms with an improved running time. A particularly well-structured class of
graphs are trees. Therefore, it may be desirable to find a way of measuring how much a graph
is structered “like” a tree. One approach is to decompose a given graph into a tree, where the
nodes of the tree are sets of graph vertices that fulfill certain properties. The “tree-ness” of the
graph can then be measured by the minimum size of the nodes of its tree-decompositions, which
we call its tree width. With these tools, we can now restrict classes of problem-instances in their
tree-width, which proves to be very beneficial to the complexity of the given problem, while at the
same time not restricting the problem instances so much that the resulting algorithms lose their
usefulness in real-world applications. The main result here is Courcelle’s theorem, which can be
found e.g. in [Flum and Grohe(2006)]. It roughly states that problems on graphs with bounded
treewidth can be solved in polynomial time. Of course, in order for the tool of treewidth and
tree-decompositions to be useful in practice, we need to find a method of computing them efficiently.
In the following sections we formally introduce the notion of tree-decompositions and treewidth,
give some important examples and characterizations, and finally present the basics of a well-known
linear-time algorithm for computing treewidth, which is based on reductions to smaller graphs
using contraction along maximum matchings and deletion of suitable vertices.

1 Tree-Decompositions

Definition 1.1 (tree decomposition). Let G = (V,E) be a graph. A tree-decomposition of G is a
pair T = (T,X), where T = (I, F) is a tree and X = (Xi)i∈I ⊆ P(V) is a family of subsets Xi of
V (also called bags), such that the following properties hold:

(i)
⋃

i∈I Xi = V .

(ii) For all {u, v} ∈ E, there exists an i ∈ I with {u, v} ⊆ Xi.

(iii) For all v ∈ V , X−1(v) := {i ∈ I|v ∈ Xi} is connected in T .

Note that for any two nodes i, j ∈ I, the last property is equivalent to Xi ∩Xj ⊆ Xk for all k on
the unique path between i and j in T . Intuitively, vertices of G correspond to subtrees in T , which
intersect if (but not only if) the corresponding vertices are adjacent in G. In this way, the structure
of G is “preserved” in the tree-decomposition. The size of the bags Xi in T are an indication of the
structural complexity of G, although they only provide an upper bound, since tree decompositions
can contain arbitrarily large (up to |V |) bags, even if the graph G has a very low complexity. For
example, there is always the trivial tree-decomposition, consisting of only one bag that contains all
vertices of G. To formalize this idea, we intruduce the notion of treewidth:

Definition 1.2 (treewidth). Let G be a graph and T = (T,X = (Xi)i∈I) a tree-decomposition of
G. The width of T is defined as

width(T) := max {|Xi| | i ∈ I} − 1.

1

Then we define the treewidth of the graph G as

tw(G) := min ({width(T) | T tree-decomposition of G}) .

We will now look at a few important examples. 1

Example 1.3 (treewidth of trees). A tree T can always be decomposed into a tree-decomposition
with width 1 which is isomorphic to T . It is obtained by starting with T itself (i.e. every node of T
becomes a bag of size one) and then adding the predecessor of every node to its corresponding bag.
This construction is illustrated in the following example:

G :

1

2 3

4 5 6 7

(T,X) :

{1}

{1, 2} {1, 3}

{2, 4} {2, 5} {3, 6} {3, 7}

In this sense, every tree “is” its own tree-decomposition. Therefore, the treewidth of a tree is
always 1. In fact, the graphs with treewidth 1 are exactly the forests, i.e. the acyclic graphs
([Flum and Grohe(2006)]).

Example 1.4 (treewidth of cycles). The treewidth of cycles is 2.
From the last example we already know that the treewidth of cycles can not be less than two.
Conversely, the following example gives an idea how we can always construct a tree-decomposition
with width 2:

G :

1 2 3

456

(T,X) :

{1, 2} {1, 2, 3} {1, 3, 4}

{1, 4, 5}{1, 5, 6}{1, 6}

In general, the tree-decomposition is constructed by moving along the cycle and adding a bag for
every visited edge as well as an edge connecting the previous and the current bag. Aside from the
two vertices of the corresponding edge, every bag also contains the start-vertex (here vertex 1) in
order to satisfy condition (3) of tree-decompositions.

Example 1.5 (treewidth of grids). The (m,n)-grid Gm,n with m rows and n columns has treewidth
tw(Gm,n) = min(m,n) ([Flum and Grohe(2006)]). To see this, consider the following example:

G :

1

2

3

4

5

6

7

8

9

10

11

12

(T,X) :

{1, 2, 3, 4}

{2, 3, 4, 5}

{3, 4, 5, 6}

{4, 5, 6, 7}

{5, 6, 7, 8}

{6, 7, 8, 9}

{7, 8, 9, 10}

{8, 9, 10, 11}

{9, 10, 11, 12}

1While always having minimal width, the given tree-decompositions are always chosen such as to best convey the
idea of the construction, and are therefore generally not minimal in the number of nodes.

2

The important oberservation in this tree-decomposition is that it is a single path such that every
bag Xk seperates

⋃
i<k Xi from

⋃
j≥k Xj in G, guaranteeing a certain “independence” of vertices

in G whose corresponding subtrees do not intersect in T .

Example 1.5 hints at a connection between tree-decompositions and seperators in G. This connection
is formulated in the following theorem. For a tree-decomposition T = (T = (I, F), X) of a graph G
and a subset J ⊆ I, we define X(J) :=

⋃
j∈J Xj .

Theorem 1.6 ([Flum and Grohe(2006)]). Let G = (V,E) be a graph with a tree-decomposition
T = (T,X) and let {i, j} be an edge in T . Deleting the edge {i, j} splits T into two disconnected
subtrees, which we denote by Ti and Tj . Then the set S = Xi ∩Xj seperates X(Ti) from X(Tj) in
G, i.e. any path from X(Ti) to X(Tj) leads through S.

Proof. Let p be a path from X(Ti) to X(Tj). Then p includes an edge {u, v} with u ∈ X(Ti) and
v ∈ X(Tj). We have {u, v} ⊆ Xk for some bag Xk, and let w.l.o.g. k ∈ Tj . But then u ∈ X(Tj),
and therefore we have both X−1(u) ∩ Ti ̸= ∅ and X−1(u) ∩ Tj ̸= ∅. Since X−1(u) is connected, it
follows that {i, j} ⊆ X−1(u) and thus u ∈ X(Ti) ∩X(Tj) = S.

Using this theorem, we can prove the following result about cliques, which will be useful in section
3.2:

Corollary 1.7. Let T = (T,X) be a tree-decomposition of a graph G = (V,E) and C ⊆ V be a
Clique in G. Then there exists an i ∈ I with C ⊆ Xi. In particular, if G contains a Clique of size
k, then tw(G) ≥ k − 1.

Proof. For |C| = 1 the statement clearly holds. Now let |C| = n and assume per induction that the
statement holds for all Cliques C ′ with |C ′| ≤ n− 1. In particular, for any fixed v ∈ C there exist
an i ∈ I with C ′ = C \ {v} ⊆ Xi. Therefore, TC′ := {i ∈ I|C ′ ⊆ Xi} is a nonempty subtree.
Assume X−1(v) ∩ TC′ = ∅, i.e. no bag in TC′ contains v.
There is a unique edge {i, j} in T connecting TC′ and the connected component in T \TC′ containing
X−1(v). Theorem 1.6 yields that S = Xi ∩Xj seperates X(Ti) ⊇ C ′ and X(Tj) ⊇ {v} (where Ti

and Tj denote the corresponding subtrees as in the theorem). But since C is a clique, for every
w ∈ C ′ there is an edge {w, v} connecting X(Ti) and X(Tj), so either w ∈ S or v ∈ S. Since
i ∈ TC′ , per assumption we have v /∈ S ⊆ Xi, so we get C ′ ⊆ S = Xi ∩Xj ⊆ X−1(v) and therefore
X−1(v) ∩ TC′ ≠ ∅, contradicting our assumption that this is false. Therefore X−1(v) ∩ TC′ ̸= ∅, i.e.
there exist an i ∈ I with Xi ⊇ C ′ ∪ {v} = C.

Finally, the following similar result will also be important in 3.2:

Corollary 1.8 ([Bodlaender(1992)]). Let T = (T,X) be a tree-decomposition of a graph G = (V,E).
If W1,W2 ⊆ V induce a complete bipartite subgraph in G, i.e. W1 ×W2 ⊆ E then there exists an
i ∈ I with either W1 ⊆ Xi or W2 ⊆ Xi.

2 A Game-Characterization of Treewidth

In example 1.5 we constructed a tree-decomposition by (intuitively speaking) moving along the
graph and seperating the already visited vertices from the unvisited ones. This idea can be further
developed into a characterization of treewidth by a Cops-and-Robber game:

There are k cops searching the graph. Every cop either occupies a vertex of the graph or is
in a helicopter (and therefore currently removed from the graph.) In every step, cops on the graph
can choose to enter a helicopter, and cops in a helicopter can choose to fly to an arbitrary vertex
of the graph, leave the helicopter and occupy that vertex (in particular, they can only move in a
helicopter.) The robber can move arbitrarily fast along the edges of the graph (in particular he can
elude cops before they land on the graph,) but he cannot pass vertices occupied by a cop. The cops
are always aware of the current position of the robber. The goal of the cops is then to catch the
robber, i.e. to corner him such that a cop can be placed on his vertex without him being able to
elude.
More formally, a state of the game is a tuple (Ci, Ri), i ∈ N, where Ci ⊆ V with |Ci| ≤ k (rep-
resenting the placement of the cops) and Ri ⊆ V is a connected component of the graph G \ Ci

3

obtained by deleting Ci from G (representing the location of the robber, whose exact position in the
component is not relevant.) The starting state is (C0, R0) = (∅, V). To ensure correct transitions,
for any i ∈ N, we require Ci ⊆ Ci+1 or Ci+1 ⊆ Ci and accordingly Ri+1 ⊆ Ri or Ri ⊆ Ri+1. Then
the cops have won if Ri ⊆ Ci+1 or Ri+1 = ∅. We say that a graph can be searched by k cops if
they have a winning strategy for the game.
The following result shows that the game is indeed a characterization of treewidth:

Theorem 2.1 ([Seymour and Thomas(1993)]). Let G be a graph and k ∈ N. Then the following
are equivalent:

• tw(G) ≤ k − 1

• G can be searched by k cops

The following example gives an idea for the strategy of the cops if tw(G) ≤ k − 1:

Example 2.2 (Trees). Let T = (V,E) be a tree. Then T can be searched by two cops, but not by
one. If we have two cops, we can always leave one on the graph and move the other one edge into
the component occupied by the robber, then remove the first cop and repeat until the robber is
caught. If we only have one cop, the robber can always escape while the cop is removed from graph.

In genereal, if T = (T,X) is a tree-decomposition of G with width ≤ k − 1, we can use the same
strategy as in Example 2.2 using T to show that k cops can search G: First place cops on the
vertices of a bag Xi, i.e. C1 = Xi. Then there is a connected component J of T \ {i} containing
the robber, i.e. R1 ⊆ X(J). Let {i, j} be the edge from i to the component J . By Theorem 1.6, we
know that Xi ∩Xj seperates R1 ⊆ X(J) from G \X(J). Therefore, if we choose C2 = Xi ∩Xj and
C3 = Xj ⊇ Xi ∩Xj , the robber is forced to choose R2 ⊆ X(J) and R3 ⊆ X(J) (and is therefore
being “cornered” in X(J).) Now it is easy to see that if we move along T , repeating this strategy,
the cops will eventually win: If the robber reaches a leaf j of T , i.e. Ri ⊆ Xj , the cops win by
setting Ci+1 = Xj ⊇ Ri (which is possible because width(T) ≤ k − 1).

This proves one direction of Theorem 2.1. The second, more difficult direction can be found
in [Seymour and Thomas(1993)].

3 Computing Treewidth

As mentioned in the Introduction, our goal is to utilize the notion of treewidth to develop efficient
algorithms for certain classes of structures. Therefore is desirable to have an algorithm that
computes the treewidth and a corresponding tree-decomposition of a given graph in polynomial
time. While the problem in general is NP-complete ([Flum and Grohe(2006)]), it becomes tractable
if we fix the treewidth k. In this section, we present the basics of one such algorithm, proposed by
Hans Bodlaender in 1992. Bodlaenders main result states:

Theorem 3.1 ([Bodlaender(1992)]). For all k ∈ N, there exists a linear time algorithm that tests
whether a given Graph G = (V,E) has treewidth at most k, and if so, outputs a tree-decomposition
of G with width at most k.

The main idea of the algorithm is to recursively reduce the problem to smaller graphs. In each
step, they are either constructed by contracting the graph along the edges of a maximal matching,
or by deleting certain vertices. In this section we will develop these two sub-algorithms, which are
both already correct algorithms for our problem. To achieve a linear running time, they will finally
be combined into the full algorithm by Bodlaender.

From here on, let always G = (V,E) be a graph and k ∈ N.

The following observation shows that graphs with bounded tree-width are “sparse” in the sense
that the number of edges is linearly bounded by the number of vertices, already hinting at the
linear running time of the final algortihm. Furthermore, it provides a first necessary condition that
allows us to easily identify graphs that are “too dense” to have treewidth at most k.

Lemma 3.2. If tw(G) ≤ k, then |E| ≤ k|V | − 1
2k(k + 1).

4

Proof. W.l.o.g., let tw(G) = k. Every graph of treewidth k can be expanded (by adding edges) into
a k-tree, which is a graph constructed by starting with a k+ 1-Clique and then adding new vertices
that are made adjacent to an already existing k-Clique (and therefore forming a (k + 1)-Clique
with their neighbourhood.) This can be seen as follows:
First, given a tree-decomposition T ′ of G with width k, we can expand T to a smooth tree-
decomposition T = (T,X) of the same width with the properties that |Xi| = k+ 1 for all i ∈ I and
|Xi∩Xj | = k for all edges {i, j} in T (see [Bodlaender(1992)]). Given the smooth tree-decomposition
T , the graph G′ obtained by adding edges {u, v} to G for all u, v ∈ V with {u, v} ⊆ Xi for some
i ∈ I (i.e. by turning the vertices of every bag Xi into a clique in G′) is a k-tree.
Therefore, the k-trees are exactly the edge-maximal graphs (with n vertices) of treewidth k, and
their number of edges is given by

|E| =
(
k + 1

2

)
︸ ︷︷ ︸

edges of the first clique

+ k(n− (k + 1))︸ ︷︷ ︸
remaining edges

=
1

2
k(k + 1) + kn− k(k + 1) = k|V | − 1

2
k(k + 1)

as desired.

3.1 Reduction by Contraction

Recall that a matching is a set M ⊆ E of pairwise disjoint edges. Given a matching M in G, we
obtain a new graph G/M by contracting G along the edges in M , i.e. merging all pairs u, v of
vertices that are matched by M (i.e. e = {u, v} ∈ M) into a single new vertex we that is incident
to all vertices that were incident to u or v. G/M is called the contraction of G along M . Given a
matching M , we obtain a natural surjection fM : G → G/M defined by fM (u) = fM (v) = we if
e = {u, v} ∈ M and fM (v) = v otherwise.
The following observation gives a lower and upper bound for the treewidth of G given the treewidth
of G/M :

Lemma 3.3. tw(G/M) ≤ tw(G) ≤ 2 tw(G/M) + 1

Proof. Every tree-decomposition T = (T,X) of G yields a tree-decomposition T ′ = (T,X ′ =
fM (X)) of G/M which satisfies width(T ′) ≤ width(T). Likewise, if T ′ = (T,X ′) is a tree-
decomposition of G/M with width k, then T = (T,X = f−1

M (X ′)) is a tree-decomposition of G,
and for every i ∈ I,

|Xi| = |f−1
M (X ′

i)| ≤
∑

v′∈X′
i

|f−1(v′)| ≤
∑

v′∈X′
i

2 ≤ 2(k + 1).

Therefore, the width of T is at most 2(k + 1)− 1 = 2k + 1.

As it turns out, having an upper bound for the treewidth of G as provided in Lemma 3.3 is enough
to allow us to decide in linear time if the treewidth of G is at most k:

Theorem 3.4 ([Bodlaender and Kloks(1991)]). Given k ∈ N and an upper bound l ∈ N, there exist
a linear time algorithm that, provided a graph G and a tree-decomposition T of G with width at
most l, determines whether the treewidth of G is at most k and if so, finds a tree-decomposition of
G with width at most k.

The results of this chapter finally allow us to formulate the first sub-algorithm for our problem:

Algorithm 1. Input: G = (V,E), k ∈ N

• Find a maximal matching M and compute G/M .

• Compute the treewidth of the smaller graph G/M .

• If tw(G/M) > k, return tw(G) > k.

• If T ′ is a tree-decomposition of G/M with width at most k, compute a tree-decomposition

T̃ of G with width at most 2k + 1 as in the proof of Lemma 3.3 and use the algorithm from
Theorem 3.4 (with l = 2k + 1) to return either tw(G) > k or a tree-decomposition T of G
with width at most k.

5

The algorithm is correct if we assume correctness of the recursive call. A maximal matching
can be computed in time O(|V |+ |E|) using a greedy algorithm. The contraction G/M and the

tree-decompositions T̃ and T (by Theorem 3.4) can be computed in O(|V |), so the overall running
time of this sub-algorithm (excluding the recursive call) is O(|V |+ |E|).

3.2 Reduction by Deletion

The second approach to reduce our problem to a smaller instance is to delete vertices that do not
affect the treewidth of G. First, we have to introduce some terminology.

Definition 3.5 (improved graph). The improved graph of G is the graph GI = (V,E′) obtained
by adding an edge between every pair of vertices with at least k + 1 common neighbours, i.e.
E′ = E ∪ {{u, v}| |NG(u) ∩NG(v)| ≥ k + 1}.

In terms of treewidth, G and GI are equivalent:

Lemma 3.6. tw(G) ≤ k if and only if tw(GI) ≤ k, and every tree-decomposition T of G with
width at most k is a tree-decomposition of GI with width at most k and vice versa.

Proof. Let T = (T,X) be a tree-decomposition of G with width at most k and let u, v ∈ V have at
least k+ 1 common neighbours. Then {u, v} and W := NG(u)∩NG(v) induce a complete bipartite
subgraph in G. By Corollary 1.8 there exists an i ∈ I with {u, v} ⊆ Xi or W ⊆ Xi. First assume
W ⊆ Xi. Then T is still a tree-decomposition after adding an edge {w1, w2} for every w1, w2 ∈ W
to G. But then W ∪ {v} forms a Clique of size at least k + 2, and therefore T has to contain
a bag of size at least k + 2, contradicting width(T) ≤ k. Therefore {u, v} ⊆ Xi, so T is still a
tree-decomposition of G if we add an edge between u and v.
Furthermore, any tree-decomposition of GI is also a tree-decomposition of G, since G is a subgraph
of GI .

We will now define the vertices that will be deleted in the algorithm:

Definition 3.7 (simplicial, I-simplicial). A simplicial vertex is a vertex v whose neighbours NG(v)
form a Clique in G. An I-simplicial vertex is a vertex v that is simplicial in the improved graph GI .

Note that if there exists an I-simplicial vertex v with deg(v) ≥ k + 1, then by Lemma 3.6 and
Corollary 1.7 it follows that tw(G) ≥ k + 1.

Lemma 3.8. Let S be a set of pairwise non-adjacent I-simplicial vertices with degree ≤ k in G
and let G′ be the graph obtained by deleting S from the improved graph GI . Then tw(G) = tw(G′),
and from a given tree-decomposition T ′ of G′, we can compute a tree-decomposition T of G with
equal width.

Proof. Let T ′ = (T ′, X ′) with T ′ = (I ′, F ′) be a tree-decomposition of G′ with width k. For
every s ∈ S, NG(s) forms a clique in G′, so by Corollary 1.7 there exists an is ∈ I ′ such that
NG(s) ⊆ X ′

is
. Since Xjs := NG(s)∪{s} forms a clique of size at most k+1 in G, we can construct a

tree-decomposition TS = (T,X) of G with width k, where T = (I ′∪{js|s ∈ S}, F ′∪{{is, js}|s ∈ S})
and X := X ′ ∪ {Xjs |s ∈ S}.
Therefore, tw(G) ≤ tw(G′). Since we also have tw(G′) ≤ tw(GI) = tw(G), it follows that
tw(G) = tw(G′).

We obtain the second sub-algorithm for our problem:

Algorithm 2. Input: G = (V,E), k ∈ N

• Compute the improved graph G′.

• If G contains an I-simplicial vertex with degree at least k + 1, return tw(G) > k.

• Find a maximal set S of pairwise non-adjacent I-simplicial vertices

• Compute the reduced graph G′ by deleting all vertices in S from G

• Compute the treewidth of the smaller graph G′.

• If tw(G′) > k, return tw(G) > k.

6

• If T ′ is a tree-decomposition of G′ with width at most k, compute the tree-decomposition TS
of G as in the proof of Lemma 3.8 and return TS .

The algorithm is correct if we assume correctness of the recursive call. All steps can be computed
in O(|V |) (see [Bodlaender(1992)]), therefore the sub-algorithm has an overall linear running time.

3.3 Linear running time

Finally, we want to combine the algorithms 1 and 2 in a way as to achieve a sufficiently large
reduction in every step. The main idea is to classify the vertices of G into low- and high degree
vertices:

Definition 3.9 (low/high degree vertices, friendly vertices). For a fixed constant d ∈ N, a vertex
v ∈ V is called a low degree vertex if deg(v) ≤ d. Otherwise, v is called a high degree vertex. A low
degree vertex that is adjacent to at least one other low degree vertex is called a friendly vertex.

It can be shown that for the right choice of d and a factor α ∈ (0, 1) (which both depend on k), if
there are “enough” friendly vertices in G (i.e. at least α|V |), then we can find a “large” matching
to contract, and otherwise there are “many” I-simplicial vertice to delete.
Consider the first case: By definition, if we have a maximal matching M , then every friendly vertex
needs to be either matched by M or adjacent to a friendly vertex that is matched by M . Since
friendly vertices are of low degree, at most 2d friendly vertices can be related to a given matching
edge in this way, effectively giving us a lower bound on the size of the maximal matching that is
proportional to the number of friendly vertices. Therefore, every contraction reduces the size of the
graph by factor of at least α

2 . A similar result can be shown for the second case (all these results
can be found in [Bodlaender(1992)].)
This ensures a reduction in the size of G by a constant factor in every step. By using Lemma 3.2
we can further ensure that |E| ∈ O(|V |), so both sub-algorithms 1 and 2 have a linear running time.
Therefore, we obtain an overall linear running time of the final algorithm:

Algorithm 3. Input: G = (V,E), k ∈ N.

• If |V | is small, we can use brute force. Return either tw(G) > k or a corresponding
tree-composition with width at most k.

• If |E| > k|V | − 1
2k(k + 1), return tw(G) > k (see Lemma 3.2).

• If there are at least α|V | friendly vertices, use Algorithm 1.

• Otherwise, use Algorithm 2.

This concludes the chapter on computing treewidth. As mentioned in the Introduction, by Courcelle’s
Theorem we know that problems on classes of graphs with bounded treewidth can be solved in
polynomial time. If we have such a class of graphs with an upper bound k, we can now use
Bodlaenders algorithm to efficiently find a tree-decomposition of every instance. For further reading
on how we can use tree-decompositions to solve specific problems, see e.g. [Flum and Grohe(2006)].

References

[Bodlaender and Kloks(1991)] Hans L. Bodlaender and Ton Kloks. Better algorithms for the
pathwidth and treewidth of graphs. In International Colloquium on Automata, Languages, and
Programming, pages 544–555. Springer, 1991. doi: 10.1007/3-540-54233-7 162.

[Seymour and Thomas(1993)] Paul D. Seymour and Robin Thomas. Graph searching and a min-
max theorem for tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.
doi: 10.1006/jctb.1993.1027.

[Bodlaender(1992)] Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on computing, 25(6):1305–1317, 1992. doi: 10.1145/167088.
167161.

[Flum and Grohe(2006)] J. Flum and M. Grohe. Parameterized complexity theory. Springer, 2006.
doi: 10.1007/3-540-29953-X.

7

	Tree-Decompositions
	A Game-Characterization of Treewidth
	Computing Treewidth
	Reduction by Contraction
	Reduction by Deletion
	Linear running time

