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1 Introduction

1.1 Motivation

Idea: Evaluate logical statements not just by true/false, but annotate
them by values from some algebraic structure (S,+, ·, 0, 1).

Motivation: Get additional information beyond the truth/falsity of a
statement

General question: Which combinations of atomic facts are responsible
for the truth of a given statement? (This is not limited to logic:
consider a computational process applied to a complex input con-
sisting of multiple items.)

Example 1.1. Possible scenarios:

• evaluate a logical sentence on a large (finite) structure,

• compute the result of a database query,

• verify a specification on a transition system,

• determine the winner of a game (with a finite but large game
graph). ■

Provenance analysis aims to explain how a particular result depends
on the specific input items. Consider a model checking problem A |=? ψ

or the evaluation of a database query on a large database. The input
items are the atomic facts (of the structure or the database).

• Which facts are actually used in the evaluation?

• Can we derive the result also from different combinations of input
items?

• In how many different ways can this output be computed?

Provenance analysis is also interesting for answering refined questions,
beyond the truth or falsity of a statement:
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1 Introduction

Cost: How to minimize the cost of computing the output, based on
prizes attached to the atomic facts?

Access restrictions: Suppose that atomic facts come with access restric-
tions (secret, top secret, confidential, . . . ). What clearance level is
needed to determine that the statement is true?

Confidence: If atomic facts are labelled by some degree of trust (a value
in the real interval [0, 1]), how to compute a degree of trust to the
statement?

An important distinction is between the joint use of information,
modelled by ·, and the alternative use of information, modelled by +.
Which assumptions on these operations do we need to answer the
questions posed above? In other words, what are appropriate algebraic
structures S = (S,+, ·, 0, 1) for provenance analysis?

1.2 Examples

1.2.1 Access Restrictions

Let ψ(x) = ∃y∃z(Rxy ∧ Syz ∧ Rzx) and consider the structure
A = (A, R, S) with universe A = {a, b, c, d} and relations R =

{(a, b), (a, c), (c, a), (d, a)} and S = {(a, a), (b, c), (b, d)}. Then A |= ψ(a)
and A |= ψ(c). As a diagram (red for R, blue for S):

a

b

c

d

A :

Now consider access restrictions: 0 < T < S < C < P = 1, where 0
stands for false or inaccessible, T for top secret, S for secret, C for confidential,
and P for public. We annotate the relations as follows:
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1.2 Examples

R:

a b P
a c T
c a S
d a P

S:

a a P
b c C
b d P

■

Question: How do we propagate the access restrictions from the
atomic facts to the full sentence?

To prove that A |= ψ(a) we use

either Rab ∧ Sbd ∧ Rda,

or Rab ∧ Sbc ∧ Rca.︸ ︷︷ ︸
joint use of information

}
alternative use of information

Joint use: the access level of φ1 ∧ φ2 is the minimum of the access levels
of φ1 and φ2. That is, πJφ1 ∧ φ2K = min(πJφ1K, πJφ2K). Thus

πJRab ∧ Sbd ∧ RdaK = min(P, P, P) = P (public),

πJRab ∧ Sbc ∧ RcaK = min(P, C, S) = S (secret).

Similarly, for A |= ψ(c) we use Rca ∧ Saa ∧ Rac and obtain

πJψ(c)K = min(S, P, T) = T (top secret).

Alternative use: the access level of φ1 ∨ φ2 is the maximum of the access
levels of φ1 and φ2. Hence

πJφ1 ∨ φ2K = max(πJφ1K, πJφ2K),

πJ∃x φ(x)K = max
a∈A

πJφ(a)K.

Thus

πJψ(a)K = max(πJRab ∧ Sbd ∧ RdaK, πJRab ∧ Sbc ∧ RcaK)

= max(P, S) = P,

πJ∃x ψ(x)K = max(πJψ(a)K, πJψ(b)K, πJψ(c)K, πJψ(d)K)

= max( P , 0 , T , 0 ) = P.
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1 Introduction

Thus, an appropriate structure for reasoning about access levels is

A := ({0 < T < S < C < P}, max︸︷︷︸
+

, min︸︷︷︸
·

, 0︸︷︷︸
0

, P︸︷︷︸
1

).

1.2.2 Number of Evaluation Strategies

We consider the number of “evaluation strategies” or “proofs” showing
that a sentence is true. An appropriate structure here is

N = (N,+, ·, 0, 1).

and we label the true atomic facts by 1 (and non-facts by 0). Let
πJφK := #St(φ) denote the number of strategies for establishing the
truth of φ. Then

• #St(φ) = 0 if φ is false,
• #St(φ) = 1 if φ is a true atomic fact.

For the alternative use of information,

• #St(φ1 ∨ φ2) = #St(φ1) + #St(φ2),
• #St(∃x φ(x)) = ∑a∈A #St(φ(a)),

since every strategy establishing the truth of one alternative can be used
to establish the truth of the compound statement.

For the joint use of information,

• #St(φ1 ∧ φ2) = #St(φ1) · #St(φ2),
• #St(∀x φ(x)) = ∏a∈A #St(φ(a)).

A strategy establishing the truth of a compound statement is any
combination of strategies establishing the individual pieces of informa-
tion. In the example:

#St(ψ(a)) = #St(Rab ∧ Sbd ∧ Rda) + #St(Rab ∧ Sbc ∧ Rca)

= 1 + 1 = 2;

#St(ψ(c)) = 1, hence #St(ψ(a) ∨ ψ(c)) = 3.

4



1.2 Examples

A somewhat unintuitive consequence of this approach is that we
lose the idempotence of ∨ and ∧:

#St(φ ∨ φ) = #St(φ) + #St(φ) = 2 · #St(φ),

#St(φ ∧ φ) = #St(φ) · #St(φ) =
(
#St(φ)

)2.

1.2.3 Bag Semantics

A further twist comes from bag semantics (or multiset semantics) as
used in databases. Here, already the atomic facts may come with a
multiplicity, i.e., occur several times in a database.

Consider the following bag relations:

R:

a b 1

a c 2

c a 1

d a 3

S:

a a 2

b c 3

b d 1

Then,

πJψ(a)K = πJRab ∧ Sbd ∧ RdaK+ πJRab ∧ Sbc ∧ RcaK

= (1 · 1 · 3) + (1 · 3 · 1) = 6,

πJψ(c)K = πJRca ∧ Saa ∧ RacK

= 1 · 2 · 2 = 4,

and the query ψ(x) thus results in the multiset {{a, a, a, a, a, a, c, c, c, c}}.

1.2.4 Cost Analysis

Assume that (true) atomic facts come with a cost value in R+ (or R∞
+ =

{r ∈ R ∪ {∞} | r ≥ 0}). Facts that are free have cost 0 (untracked).
Non-facts (or inaccessible ones) have cost ∞.

In our running example, we can annotate the relations with cost
values:

5



1 Introduction

R:

a b 0

a c 0

c a 1

d a 5

S:

a a ∞

b c 2

b d 1

Then πJφK = cost(φ) ∈ R∞
+ and we distinguish:

• alternative use of information:

cost(φ1 ∨ φ2) = min(cost(φ1), cost(φ2)),

cost(∃x φ(x)) = min
a∈A

cost(φ(a));

• joint use of information:

cost(φ1 ∧ φ2) = cost(φ1) + cost(φ2),

cost(∀x φ(x)) = ∑
a∈A

cost(φ(a)).

Following the example in 1.2.1, we obtain

cost(ψ(a)) = min(cost(Rab ∧ Sbd ∧ Rda), cost(Rab ∧ Sbc ∧ Rca))

= min(0 + 1 + 5, 0 + 2 + 1) = 3

cost(ψ(c)) = cost(Rca ∧ Saa ∧ Rac)

= 1 + ∞ + 0 = ∞ (ψ(c) cannot be established) ■

An appropriate structure for cost analysis is

T = (R∞
+ , min︸︷︷︸

+

, +︸︷︷︸
·

, ∞︸︷︷︸
0

, 0︸︷︷︸
1

).

This structure is called the tropical semiring1

1In the literature, also other min-plus semirings, for instance over N∞ or R∞ , are called
“tropical", and there are fields such as tropical (algebraic) geometry or tropical analysis. The
terminology was coined by French mathematicians, such as Jean-Eric Pin, Dominique Perrin,
and Christian Choffrut, in honor of their Brazilian colleague Imre Simon, who was one of
the pioneers in this area.
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1.3 Towards Semirings

1.2.5 Trust

Attach to each atomic fact a level of trust in [0, 1] ⊆ R. What confidence
do we have that a statement φ is true?

For the alternative use of information:

trust(φ1 ∨ φ2) = max(trust(φ1), trust(φ2)),

trust(∃x φ(x)) = max
a∈A

trust(φ(a));

For the joint use of information:

trust(φ1 ∧ φ2) = trust(φ1) · trust(φ2),

trust(∀x φ(x)) = ∏
a∈A

trust(φ(a)).

An appropriate structure for reasoning about confidence is thus

V = ([0, 1], max, ·, 0, 1), which is called the Viterbi semiring.

The Viterbi semiring is isomorphic to the tropical semiring via
T→ V, x 7→ e−x. Indeed, we then have

min(x, y) 7→ e−min(x,y) = max(e−x, e−y),

x + y 7→ e−x−y = e−x · e−y,

∞ 7→ 0,

0 7→ 1.

1.3 Towards Semirings

What are the general properties that a structure S = (S,+, ·, 0, 1) should
have? Recall:

• + models the alternative use of information,

• · models the joint use of information,

• 0 models false,

• all other elements of S represent some degree/shade of true,

• 1 models untracked facts.

7



1 Introduction

We “derive” the following properties of S :

(1) + and · are associative and commutative,
(2) 0 ̸= 1,
(3) 0 is neutral for +, and 1 is neutral for ·,
(4) 0 · a = 0,
(5) distributive law: a(b + c) = ab + ac

(but while + distributes over ·, the dual property does not always hold:

a + bc ?
= (a + b)(a + c); true for A, but not for N, T, V).

Definition 1.2. A structure S = (S,+, ·, 0, 1) satisfying (1)-(5) is called
a commutative semiring.

Beyond the examples A, N, T, V there are many others. In particu-
lar

B = ({⊥,⊤},∨,∧,⊥,⊤),

the Boolean semiring, which is the natural habitat of mathematical logic
(so we always did semiring semantics. . . ).

8



2 Commutative Semirings

Recall that we have defined a commutative semiring as a structure S =

(S,+, ·, 0, 1) such that

• (S,+, 0) and (S, ·, 1) are commutative monoids with 0 ̸= 1,
• a(b + c) = ab + ac for all a, b, c ∈ S,
• 0 · a = 0 for all a ∈ S.

In the following, “semirings” always are commutative semirings.

Definition 2.1. A semiring S is called

• +-idempotent, or simply idempotent, if a + a = a for all a ∈ S,
• ·-idempotent, or multiplicatively idempotent, if a · a = a for all

a ∈ S,
• fully idempotent if it is both +- and ·-idempotent.

Examples of semirings:

• B = ({⊥,⊤,∨,∧,⊥,⊤) is the Boolean semiring.
• Min-max semirings. Let (A,<) be a linear order with minimal

element 0 and maximal element 1. Then (A, max, min, 0, 1) is a
fully idempotent semiring. Notice that it can be finite (as for the
access control semiring A with 0 < T < S < C < P) or infinite (as
for the fuzzy semiring F = ([0, 1], max, min, 0, 1)).

• N = (N,+, ·, 0, 1), the natural semiring, used for counting evalua-
tion strategies, or bag semantics in databases.

• T = (R∞
+ , min,+, ∞, 0) used for min-cost computations. It is called

the tropical semiring and it is isomorphic to the Viterbi semiring
V = ([0, 1], max, ·, 0, 1) used for reasoning about confidence.

• Instead of min-max semirings, induced by a total order (A,≤), we
often consider lattice semirings (A,⊔,⊓, 0, 1) induced by a bounded
lattice, i.e., a partial order (A,≤) where a ⊔ b and a ⊓ b are supre-
mum and infimum of a, b, and 0, 1 are bottom and top elements.
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2 Commutative Semirings

• The Łukasiewicz semiring is L = ([0, 1], max,⊙, 0, 1) with a⊙ b =

max(a+ b− 1, 0). An isomorphic variant is D = ([0, 1], min,⊕, 1, 0)
with a⊕ b = min(a + b, 1). (It may be an alternative to the Viterbi
semiring for reasoning about confidence/doubt).

• A particular example is the semiring (P(X),∪,∩, ∅, X) for an
arbitrary set X.

• A further interesting semiring over a set X is Why(X) :=
(P(P(X)),∪,⋓, ∅, {∅}) where, for M, M′ ⊆ P(X),

M ⋓M′ := {m ∪m′ | m ∈ M, m′ ∈ M′}.

For instance, take M = {m} and M′ = {m′} for distinct m, m′ ∈
P(X). Then M∪M′ = {m, m′} and M⋓M′ = {m∪m′}. Moreover,
(M ∪M′)⋓ (M ∪M′) = {m, m ∪m′, m′} ̸= M ∪M′, so Why(X) is
not fully idempotent.

You noticed that we did not mention any rings or fields as examples.
Indeed, in provenance analysis we are mainly interested in semirings
that are naturally ordered (by addition): For any semiring (S,+, ·, 0, 1),
set a ≤ b if a + c = b for some c ∈ S. Clearly, ≤ is reflexive and
transitive:

• a ≤ a
(since a + 0 = a),

• a ≤ b ∧ b ≤ c =⇒ a ≤ c
(since a + x = b and b + y = c imply a + (x + y) = c).

However, ≤ need in general not be antisymmetric, i.e.

• a ≤ b ∧ b ≤ a =⇒ a = b may fail.

Definition 2.2. A semiring S is naturally ordered if

a ≤ b def⇐⇒ ∃c(a + c = b)

is a partial order. (This excludes rings.)

A function f : Sk → S on a naturally ordered semiring S is monotone
if for all a, b ∈ Sk such that ai ≤ bi (for i = 1, . . . , k) also f (a) ≤ f (b).

10



2.1 Absorptive Semirings

Lemma 2.3. + and · are monotone on naturally ordered semirings.

Proof. Let a ≤ b. We have to prove for all c that a + c ≤ b + c and
a · c ≤ b · c. We have a + x = b for some x ∈ S. Hence

a + c ≤ (a + c) + x = (a + x) + c = b + c

a · c ≤ ac + xc = (a + x)c = b · c q.e.d.

2.1 Absorptive Semirings

Definition 2.4. A semiring S = (S,+, ·, 0, 1) is absorptive if a + ab = a
for all a, b ∈ S (or equivalently 1 + b = 1 for all b ∈ S).

Notice that an absorptive semiring is also idempotent (a + a =

a + a · 1 = a) and both properties correspond to classical logical equiva-
lences: φ ∨ φ ≡ φ and φ ∨ (φ ∧ ϑ) ≡ φ.

Lemma 2.5. Every idempotent (and hence in particular every absorp-
tive) semiring is naturally ordered.

Proof. Assume a ≤ b by a + c = b, and b ≤ a by b + d = a. Hence

a + b = a + (a + c) = (a + a) + c = a + c = b

a + b = (b + d) + b = (b + b) + d = b + d = a

and thus a = b. Hence ≤ is antisymmetric and thus a partial order.
q.e.d.

Lemma 2.6. Let (S,+, ·, 0, 1) be naturally ordered. The following are
equivalent:

(1) S is absorptive
(2) · is decreasing: ab ≤ a for all a, b,
(3) 1 is maximal w.r.t. ≤.

Proof. For all a, b ∈ S:

• (1)⇒ (3): S absorptive =⇒ a + 1 = 1 =⇒ a ≤ 1.
• (3)⇒ (2): b ≤ 1 =⇒ ab ≤ a.

• (2)⇒ (1): a ≤ a + ab = a(1 + b)
(2)
≤ a. Hence a = a + ab. q.e.d.

11



2 Commutative Semirings

2.2 Positive Semirings

Definition 2.7 (positive). A semiring (S,+, ·, 0, 1)

• is +-positive if a + b = 0 implies a = 0 and b = 0,
• has divisors of 0 if there are a, b ∈ S with a, b ̸= 0 but a · b = 0,
• is positive if it is +-positive and has no divisors of 0.

Definition 2.8 (homomorphism). A semiring homomorphism is a function
h : S→ T on semirings S, T such that

(1) h(0) = 0 and h(1) = 1,
(2) h(a +S b) = h(a) +T h(b),
(3) h(a · b) = h(a) · h(b).

Recall the Boolean semiring B = ({⊥,⊤},∨,∧,⊥,⊤). For a semir-
ing (S,+, ·, 0, 1), let the truth-projection be the function tS : S→ B with

tS(a) :=

⊥, if a = 0,

⊤, if a ̸= 0.

Then tS is a semiring homomorphism if, and only if, S is positive.

Proof. Clearly tS(0) = ⊥ and tS(1) = ⊤.

• Addition:

tS(a + b) = ⊥ ⇐⇒ a + b = 0

tS(a) ∨ tS(b) = ⊥ ⇐⇒ tS(a) = tS(b) = ⊥ ⇐⇒ a = b = 0

Hence tS preserves + (for all a, b)⇐⇒ S is +-positive.
• Multiplication:

tS(a · b) = ⊥ ⇐⇒ a · b = 0

tS(a) ∧ tS(b) = ⊥ ⇐⇒ tS(a) = ⊥ or tS(b) = ⊥

⇐⇒ a = 0 or b = 0

Hence tS preserves · (for all a, b)⇐⇒ S has no divisors of 0. q.e.d.

12



2.3 Naturally-ordered versus +-positive Semirings

2.3 Naturally-ordered versus +-positive Semirings

Lemma 2.9. Every naturally ordered semiring is +-positive.

Proof. Let S be naturally ordered, and assume that a + b = 0. Then
0 ≤ a (by 0 + a = a) and a ≤ 0 (by a + b = 0), hence a = 0. q.e.d.

The converse is not true: Let (S,+, ·, 0, 1) with S = {0, 1, 2} be
defined as follows:

+ 0 1 2

0 0 1 2

1 1 2 1

2 2 1 2

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 2

This is a +-positive semiring that is not naturally ordered, since 1 ≤ 2
(by 1 + 1 = 2) and 2 ≤ 1 (by 2 + 1 = 1). q.e.d.

13





3 Semiring Valuations

Let τ = {R1, . . . , Rm} be a finite relational vocabulary, A a finite uni-
verse. We denote by AtomsA(τ) the set of fully instantiated atoms Ra
with R ∈ τ, a ∈ Aarity(R).

Definition 3.1. An S-valuation (for τ and A) is a function of the form
π : AtomsA(τ)→ S into a semiring (S,+, ·, 0, 1).

It extends to valuations for more powerful expressions, for instance
for positive first-order logic FO+.

• FO+(τ): closure of τ-atoms Rx and equalities under ∧,∨, ∃, ∀.
• FO+

A(τ) := {(φ, β) | φ ∈ FO+(τ), β : free(φ)→ A}
= {φ(a) | φ(x) ∈ FO+(τ), a ∈ An}.

Definition 3.2. An S-valuation π : AtomsA(τ) → S extends to a func-
tion π : FO+

A(τ)→ S as follows:

πJa = a′K =

1, a = a′

0, otherwise,

πJψ ∨ φK = πJψK+ πJφK,

πJψ ∧ φK = πJψK · πJφK,

πJ∃x φK = ∑
a∈A

πJφ(a)K,

πJ∀x φK = ∏
a∈A

πJφ(a)K.

3.1 Excursion: Relational Algebra

An alternative positive logical formalism, popular for instance in
databases, is RA+, positive relational algebra, a fragment of full re-
lational algebra RA.

15



3 Semiring Valuations

Syntax: Let τ = {R1, . . . , Rm} be a finite relational vocabulary. RA(τ)

is a calculus of terms, each of which comes with an arity.

• each Ri ∈ τ is in RA(τ),
• let R, R′ ∈ RA(τ) have arity r, let T ∈ RA(τ) have arity t, and let

i, j, i1, . . . , is ≤ r. Then RA(τ) contains the terms

R− R′, R ∪ R′, R× T, πi1,...,is R, σi=jR,

arities: r , r , r + t , s , r .︸ ︷︷ ︸
RA+(τ)

In addition, we admit the term ∅ (for any arity).

Semantics: Fix a (usually infinite) domain D. Let (S,+, ·, 0, 1) be a
semiring. The idea is to interpret each term R ∈ RA+(τ) by a function
R : Dr → S with finite support supp(R) = {d ∈ Dr | R(d) ̸= 0}.

Starting from such valuations Ri : Dri → S for the basic terms
Ri ∈ τ we define

(R ∪ R′)(d) := R(d) + R′(d),

(R× T)(d, d′) := R(d) · T(d′),

(πi1,...,is R)(d′) := ∑
d|i1 ···is=d′

R(d),

where we write d|i1,...,is
:= (di1 · · · dis ) ∈ Ds, for d = (d1, . . . , dr) ∈ Dr,

(σi=jR)(d) :=

R(d), if d|i = d|j,
0, otherwise,

,

∅(d) := 0.

How to interpret R− R′? This is indeed a problem since in general, we
do not have an appropriate semiring operation for that. That’s why we
only consider RA+ for now. But we will get back to this, and also to
negation in FO.

In the Boolean sense, RA is (more or less) equivalent to FO: Every
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3.1 Excursion: Relational Algebra

term R ∈ RA(τ) can be translated into a first-order formula φR(x) such
that, for any interpretation of the basic terms R1, . . . , Rm ∈ τ as finite
relations Ri ⊆ Dri , we have that

R = {d ∈ Dr | (D, R1, . . . , Rm) |= φ(d)}.

The translation is straightforward from the definition of the semantics
of RA.

The converse is a little bit more subtle, since RA usually (at least
as used in databases) assumes an infinite domain, but defines only
finite relations. In particular, RA can only define the difference of
relations, but not their (infinite) complement. We can get around this,
by restricting (D, R1, . . . , Rm) to the active domain, the set aD of elements
that occur in some relation. It is RA+-definable by

aD :=
⋃

R∈τ

⋃
i≤arity(R)

πiR.

One can then translate every formula φ(x1, . . . , xr) ∈ FO into an r-ary
term Rφ ∈ RA such that, for all R1, . . . , Rm over D,

(aD, R1, . . . , Rm) |= φ(d) ⇐⇒ d ∈ Rφ

for all tuples d ∈ (aD)r.

Can we extend this equivalence to semiring semantics? So far we
do not have a semiring semantics for full RA and FO, but what about
RA+ and FO+? Embedding RA+ in FO+ poses no problem:

φR∪R′ (x) := φR(x) ∨ φR′ (x)

φR×T(x, y) := φR(x) ∧ φT(y)

φπi1,...,is (R)(x) := ∃y(φR(y) ∧ yi1 = x1 ∧ · · · ∧ yis = xs)

φσi=j R(x) := φR(x) ∧ xi = xj

φ∅(x) = ⊥

For any valuation π that interprets the symbols Ri ∈ τ as functions

17



3 Semiring Valuations

Ri : Dri → S (into a semiring S) we have that, for any R ∈ RA+ and
d ∈ Dr, R(d) = πJφR(d)K. Hence RA+ ≤ FO+ in semiring semantics
(for any semiring).

The converse is not true! The translation uses only ∨,∧, ∃ but not
∀, so RA+ is actually embedded into the existential positive fragment of
FO, denoted FO(∃,∨,∧). RA+ is strictly weaker than FO+, even in the
Boolean sense. Consider τ = {R1, R2}, both unary, and an instance with
R1 = {c}, R2 = {c, d} for distinct c, d ∈ D. By induction, one easily
proves that for every term R ∈ RA+(τ) (that is not equivalent to ∅ on
all instances) we have that (c, . . . , c) ∈ R. But let φ(x) := R2x∧∀yR1y ∈
FO+. Clearly, (aD, R1, R2) ̸|= φ(c). q.e.d.

3.2 Valuations and Homomorphisms

Theorem 3.3 (Fundamental Property). Let h : S → T be a semiring
homomorphism and π : AtomsA(τ) → S. Then we get a semiring
valuation h ◦ π : AtomsA(τ) → T such that h(πJφK) = (h ◦ π)JφK for
all φ ∈ FO+(τ).

AtomsA(τ)

S T

FO+(τ)

S T

=⇒π h ◦ π

h

π h ◦ π

h

Proof. Simple induction. For instance, if ψ = ∃x φ, then

h(πJψK) = h( ∑
a∈A

πJφ(a)K)

hom
= ∑

a∈A
h(πJφ(a)K)

I.H.
= ∑

a∈A
(h ◦ π)Jφ(a)K = (h ◦ π)JψK. q.e.d.

18



4 Provenance Semirings

4.1 One Semiring to Rule Them All

Let X be a finite set of indeterminates (or “provenance tokens”). The
semiring N[X] of multivariate polynomials (with indeterminates from
X and coefficients from N) is the semiring that is freely generated by X.
It has the following universal property.

Theorem 4.1 (Universal property). For every semiring S and every map
h : X → S there is a unique extension of h to a semiring homomorphism
ĥ : N[X]→ S.

Proof. Starting from ĥ(x) = h(x) for x ∈ X, ĥ(0) = 0 and ĥ(1) = 1,
one constructs by ĥ( f + g) := ĥ( f ) + ĥ(g) and ĥ( f · g) := ĥ( f ) · ĥ(g) a
homomorphism ĥ : N[X]→ S.

For two homomorphisms h1, h2 : N[X]→ S that extend h, it follows
by induction that h1 = h2: if h1( f ) = h2( f ) and h1(g) = h2(g), then
also h1( f + g) = h1( f ) + h1(g) = h2( f ) + h2(g) = h2( f + g), and
analogously for f · g. q.e.d.

We can think of ĥ(3x2 + 2xy + y3) as evaluating 3x2 + 2xy + y3 in
S, based on the given map h : {x, y} → S.

Fix a set X = {Xα | α ∈ AtomsA(τ)} of indeterminates to label the
atoms. The map ℓ : AtomsA(τ) → X, α 7→ Xα extends to a valuation
ℓ : FO+(τ) → N[X] that maps every sentence ψ(a) to a polynomial
fψ(a) ∈ N[X]. Let now h : X → S induce a valuation of the atoms in a
semiring S. By the fundamental property, πJψK = ĥ( fψ).

X

N[X] S

FO+(τ)

N[X] S

=⇒h

ĥ

ℓ π = ĥ ◦ ℓ

ĥ

19



4 Provenance Semirings

To compute valuations of ψ ∈ FO+(τ) in various semirings, we
can thus compute the valuation fψ ∈ N[X] of ψ in the most general
semiring and specialise to valuations in application semirings S via
homomorphisms ĥ : N[X]→ S induced by h : X → S.

4.2 Other Provenance Semirings

From N[X], the most general semiring over X, we can get “simpler” and
“less informative” semirings which have specific algebraic properties:

N[X]
2x2y + xy + 5y2 + xz

B[X]
x2y + xy + y2 + xz

Trio[X]
3xy + 5y + xz

S[X]
xy + y2 + xz

W[X]
xy + y + xz

PosBool[X]
y + xz

Which[X]
xyz

drop coeff. drop exponents

absorb drop exp.
drop coeff.

drop exp.
absorb

+ = ·

Figure 4.1. Overview on different provenance semirings

N[X]:
Elements f ∈ N[X] can be written as sum of monomials c · xe1

1 · · · x
er
r

with x1, . . . , xr ∈ X and c, e1, . . . , er ∈N.

B[X]:
Sums of distinct monomials xe1

1 · · · x
er
r . The semiring B[X] is +-

idempotent.

Trio[X]:
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4.2 Other Provenance Semirings

Sums of c · x1 · · · xr︸ ︷︷ ︸
m⊆X

, where

(c ·m) · (c′ ·m′) = cc′ · (m ∪m′),

(∑
m

cm ·m) · (∑
m′

cm′ ·m′) = ∑
m,m′

cmcm′ · (m ∪m′).

W[X]:
Sums/sets of monomials m ⊆ X, i.e., sets of subsets of X, where

+ = ∪, · = ⋓, M · M′ = {m ∪m′ | m ∈ M, m′ ∈ M′},

0 = ∅, 1 = {∅}.

Note that W[X] ∼= Why(X) = (P(P(X)),∪,⋓, ∅, {∅}).

S[X]:
Set of absorptive polynomials. We consider monomials m = xe1

1 · · · x
er
r

as a map m : X → N with m(xi) = ei (and m(x) = 0 if x does not
occur in m). Multiplication m · m′ is defined (as usual) by (m · m′)(x) =
m(x) + m′(x). For m, m′ : X → N we say that m absorbs m′ (m ≽ m′) if
m(x) ≤ m′(x) for all x ∈ X (notice the order inversion).

Example 4.2. The monomial xy2 absorbs x3y2 and xy5z, but not x2y. We
write 1m for the monomial with 1m(x) = 0 for all x ∈ X and observe
that 1m absorbs every monomial. ■

An absorptive polynomial p ∈ S[X] is a set (=̂ sum) of monomials,
none of which absorbs any other one, i.e., an antichain of monomials w.r.t.
≽. Let M be any set of monomials over X; we write maximals(M) for
the set of absorption-maximal m ∈ M (which is always an antichain, i.e.,
an element of S[X]). Addition and multiplication of absorptive polyno-
mials is defined as usual, except that we afterwards apply absorption:

p + q := maximals(p ∪ q),

p · q := maximals({m · m′ := m ∈ p, m′ ∈ q}),

0 := ∅,
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4 Provenance Semirings

1 := {1m}.

Example 4.3. In S[X] with X = {x, y, z}:

(x2y + xy2)︸ ︷︷ ︸
p

· (x + yz)︸ ︷︷ ︸
q

+z = (x3y +���x2y2z + x2y2 + xy3z)︸ ︷︷ ︸
p·q

+z

= x3y + x2y2 + z ■

(PosBool[X],∨,∧,⊥,⊤):
Positive Boolean formulae with variables in X where we identify equiva-
lent formulae. We can also view PosBool[X] as the set of absorptive poly-
nomials in S[X] without exponents (i.e., with monomials m : X → B).
This corresponds to the representation of positive Boolean formulae in
irredundant DNF. For instance,

xy + xz ⇝ (x ∧ y) ∨ (x ∧ z).

Absorption corresponds to the equivalence x ∨ (x ∧ y) ≡ x.

Since PosBool[X] identifies equivalent Boolean expressions, semir-
ing semantics in PosBool[X] is less dependent on the syntax of a formula:
φ ∨ φ, φ ∧ φ and φ get the same value in PosBool[X] although their
valuations in N[X], W[X] and S[X] may differ, since PosBool[X] is fully
idempotent:

( f + g)
∨

·
∧
( f + g)
∨

= f · f︸︷︷︸
f

+ f · g + f · g︸ ︷︷ ︸
f g

+ g · g︸︷︷︸
g

absorb
= f + g

and also a lattice semiring, with partial order f ≤ g ⇐⇒ f |= g.

Which(X) = Lin(X) := (P(X) ∪ {⊥},+, ·,⊥, ∅):
The operations are defined as follows:

S +⊥ = S, S ·⊥ = ⊥, for all S,

S + S′ = S · S′ = S ∪ S′, for all S, S′ ∈ P(X).
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4.3 Provenance Semirings as Quotients

4.3 Provenance Semirings as Quotients

Definition 4.4 (congruence). A congruence on S is an equivalence rela-
tion ∼ on S such that

a ∼ a′ and b ∼ b′ =⇒ a+ b ∼ a′+ b′ and a · b ∼ a′ · b′. (∗)

If ∼ is a congruence on a semiring S, with 0 ̸∼ 1, then the quotient S/∼
is also a semiring with elements [a] := {b ∈ S | a ∼ b} and operations
[a] + [b] := [a + b] and [a] · [b] := [ab] (note that the operations are
well-defined, i.e., independent of the choices of representatives in [a]
and [b]).

Notice that the intersection of congruences is again a congruence.
In N[X], x + x ∼ x (for x ∈ X) generates a congruence (the smallest
equivalence relation satisfying (∗) and containing x + x ∼ x for all
x ∈ X). Then N[X]/∼ ∼= B[X] by dropping coefficients.

B[X] has the universal property for idempotent semirings. Con-
sider π : X → S. It can be (uniquely) extended to π̂ : B[X]→ S if, and
only if, S is idempotent:

π̂( f ) = π̂( f + f︸ ︷︷ ︸
f

) = π̂( f ) + π̂( f ).

Also S[X] can be defined as a quotient semiring of N[X] or B[X].
Let ∼ be the smallest congruence on N[X] (or B[X]) such that f ∼ f +
f g for all f , g ∈ N[X] (or f , g ∈ B[X]). We claim that S[X] ∼= N[X]/∼
(analogously, S[X] ∼= B[X]/∼).

Proof. For f ∈ N[X], let p f be the set of monomials that occur
in f (with any coefficient c > 0), i.e., f = ∑m∈p f

cm · m. Then
maximals(p f ) ∈ S[X] which we identify with the polynomial f0 :=

∑{m | m ∈ maximals(p f )}. Clearly,

π : N[X]→ S[X], f 7→ f0 =̂ maximals(p f )

is surjective.
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4 Provenance Semirings

Notice that f ≈ g def⇐⇒ f0 = g0 defines a congruence on N[X] with
f ≈ f + f · g for all f , g (since ( f + f g)0 = f0). But ∼ is the smallest
congruence with this property, so f ∼ g =⇒ f ≈ g =⇒ f0 = g0.

We claim that, viewing f0 as a polynomial in N[X], we have f ∼ f0.
Indeed, for each m ∈ p f there is at least one m0 ∈ maximals(p f ) with
m = m0 ·m′ for some m′, so m0 ∼ m0 + m. But this implies that

∑
m∈p f

cm ·m = f ∼ f0 = ∑{m0 | m0 ∈ maximals(p f )}.

It follows that f0 = g0 =⇒ f ∼ g (by f ∼ f0 ∼ g0 ∼ g). Thus
f ∼ g⇐⇒ f0 = g0, and we obtain:

N[X]

N[X]/∼ S[X]∼

π

q.e.d.
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5 Semiring Valuations of Games

To understand what valuations in provenance semirings such as N[X],
B[X], S[X], . . . tell us about, say, first-order sentences ψ(a) ∈ FO+ (and
later ψ(a) ∈ FO and other logics), it is instructive to consider the
associated model-checking games. Given ψ ∈ FO+(τ) (or FO(τ)) and a
finite structure A, we know the model-checking game G(A, ψ): positions
are instantiated subformulae φ(a), Player 0 (Verifier) moves at positions
φ1 ∨ φ2 and ∃x φ (alternative use of information), Player 1 (Falsifier)
moves at positions φ1 ∧ φ2 and ∀x φ (joint use of information), and
plays end at atomic formulae (or literals).

Notice that the game graph of G(A, ψ) only depends on ψ and
the universe A of A. Only the labelling of the terminal positions, as
either winning for Player 0 or for Player 1, that depends on which
atoms/literals are true in A. Hence the definition of model-checking
games readily generalises to semiring semantics. Given ψ ∈ FO+(τ) (or
FO(τ)) and a finite universe A, we obtain a game graph G(A, ψ). The
terminal positions of G(A, ψ) are the atoms (literals) in AtomsA(τ) (and
their negations). A valuation π : AtomsA(τ)→ S provides a valuation
of the terminal positions in games G(A, ψ) for ψ ∈ FO+(τ). From there
we can compute valuations in S of other positions in G(A, ψ), i.e., of
subformulae φ(a) of ψ.

Towards semiring valuations for games, we consider general games,
not restricted to model-checking games.

Definition 5.1. A game graph is a structure G = (V, V0, V1, T, E), where
V = V0∪̇V1∪̇T is the set of positions, partitioned into the sets V0, V1

of the two players and the set T of terminal positions, and where
E ⊆ V × V is the set of moves. We denote the set of immediate
successors of a position v by vE := {w : (v, w) ∈ E} and assume that
vE = ∅ if, and only if, v ∈ T.
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5 Semiring Valuations of Games

A play is a finite or infinite path v0v1v2 . . . through G where the
successor vi+1 ∈ viE is chosen by Player 0 if vi ∈ V0 and by Player 1 if
v1 ∈ V1. A play ends when it reaches a terminal node vm ∈ T.

Definition 5.2. For every game graph G = (V, V0, V1, T, E), and every
position v0 ∈ V, the tree unraveling of G from v0 is the game tree
T (G, v0) consisting of all finite paths from v0. More precisely, T (G, v) =
(V#, V#

0 , V#
1 , T#, E#), where V# is the set of all finite paths ρ = v0v1 . . . vm

through G, with V#
σ = {ρv ∈ V# : v ∈ Vσ}, T# = {ρt ∈ V# : t ∈ T}, and

E# = {(ρv, ρvv′) : (v, v′) ∈ E}.

For most game-theoretic considerations, the games played on
G and its unravelings are equivalent, via the canonical projection
π : T (G, v0)→ G, ρv 7→ v mapping every path to its end point.

There are several possibilities to define the notion of a strategy
formally. Here, we identify a strategy with the set of plays that it admits
and view it as a subtree of T (G, v0).

Definition 5.3. A strategy of Player σ (for σ ∈ {0, 1}) from v0 in a
game G is a subtree S = (W, F) of T (G, v0) with W ⊆ V# and F ⊆
(W ×W) ∩ E# such that

• W is closed under predecessors: if ρv ∈W then also ρ ∈W;
• if ρv ∈W ∩V#

σ , then |(ρv)F| = 1;
• if ρv ∈W ∩V#

1−σ, then (ρv)F = (ρv)E#.

We write Stratσ(v0) for the set of all strategies of Player σ from v0, and
Plays(S) for the set of plays admitted by S .

5.1 Well-founded Games

We now consider games on finite, acyclic game graphs G, which do not
admit infinite plays. We are interested in valuations f0, f1 : V → S of
the positions of G in some semiring S, describing a value (or cost) of a
position, from the point of view of Players 0 and 1. These are induced
by valuations

fσ : T → S (of the terminal positions),
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5.1 Well-founded Games

hσ : E→ S \ {0} (of the moves).

The simplest example is a reachability game G with objective Tσ ⊆
T and valuations

fσ(t) :=

1, t ∈ Tσ

0, t ∈ T \ Tσ

and hσ(e) := 1 for all e ∈ E.

More complicated examples may associate with terminal positions and
moves non-trivial costs, access restrictions or confidences.

Definition 5.4. Given a well-founded game G = (V, V0, V1, T, E) with
fσ : T → S and hσ : E → S \ {0}, we define a valuation fσ : V → S for
Player σ by backwards induction:

fσ(v) :=

∑w∈vE hσ(vw) · fσ(w), if v ∈ Vσ,

∏w∈vE hσ(vw) · fσ(w), if v ∈ V1−σ.

That is, a move from v to w contributes to fσ(v) the value hσ(vw) · fσ(w).
We again use summation for alternative use of moves, and product for
joint use of moves.

The valuations fσ and hσ further induce valuations of plays and
strategies. Consider a finite play x = v0v1 . . . vm, with vm ∈ T. We
put fσ(x) := hσ(v0v1) · · · hσ(vm−1vm) · fσ(vm). In other words, fσ(x)
consists of the product over all edges ∏e∈x hσ(e) and the valuation
fσ(outcome(x)), where the outcome of the play is the terminal position
vm the play ends in. For strategies, we take multiplicities of moves and
positions into account.

Definition 5.5. Let S = (W, F) ∈ Stratσ(v0) be a strategy. For v ∈ V
and e = (v, w) ∈ E, set

#v(S) := |{ρv : ρv ∈ S}| = |π−1
S (v)|,

#e(S) := |{ρv ∈ S : ρv→ ρvw is a move in S}| = |π−1
S (e)|,

where πS : (W, F)→ (V, E) is the restriction of the canonical projection
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5 Semiring Valuations of Games

π : T (G, v0)→ G to S . Then

F(S) := ∏
e∈E

hσ(e)#e(S) · ∏
t∈T

fσ(t)#t(S)

is the valuation of S in the semiring S.

Remark 5.6. In some important special cases the valuation of strategies
coincides with the product of the valuations of plays they admit.

Lemma 5.7. If hσ(e) = 1 for all e ∈ E, or if the semiring S is multiplica-
tively idempotent, then F(S) = ∏x∈Plays(S) fσ(x).

Proof. For each terminal position t ∈ T, let

#t(S) = |{x ∈ Plays(S) : outcome(x) = t}|.

For e ∈ E, we have

#e(S) > 0 ⇐⇒ e ∈ x for some play x ∈ Plays(S).

Since hσ(e)n = hσ(e) if n > 0 (and hσ(e)n = 1 if n = 0), we have

hσ(e)#e(S) =

hσ(e), e ∈ x for some x ∈ Plays(S),
1, otherwise.

Thus,

∏
x∈Plays(S)

fσ(x)

= ∏
x∈Plays(S)

(
∏
e∈x

hσ(e)

)
· fσ(outcome(x))

= ∏
e∈x,

x∈Plays(S)

hσ(e) · ∏
t∈T

fσ(t)|{x∈Plays(S) : outcome(x)=t}|

= ∏
e∈E

hσ(e)#e(S) · ∏
t∈T

fσ(t)#t(S) = F(S). q.e.d.

However, there are simple examples where F(S) ̸= ∏x∈Plays(S) fσ(x)
if the semiring is not multiplicatively idempotent.
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5.1 Well-founded Games

Example 5.8. Consider the following game in a semiring with an element
a such that a2 ̸= a.

v0 v1

s

t

a
1

1

f0(s) = f0(t) = 1

h0(v0v1) = a

For the unique strategy S of Player 0 (do nothing), we have F(S) =

a, but there are two plays in Plays(S) each with value a, so

∏x∈Plays(S) fσ(x) = a2. ■

Theorem 5.9 (Sum-of-Strategies). Let G be any finite acyclic game with
valuations fσ : T → S and hσ : E → S \ {0}, inducing the valuation
fσ : V → S. Then for all v ∈ V,

fσ(v) = ∑
S∈Stratσ(v)

F(S).

Proof. For terminal positions v the claim is trivially true. So suppose
that v ∈ Vσ. Then any strategy S ∈ Stratσ(v) can be written in the form
S = v · S ′ for some successor w ∈ vE and some strategy S ′ ∈ Stratσ(w).

v
w

S S ′

Clearly, #t(S) = #t(S ′) for every terminal position t ∈ T. For the
moves we have that #e(S) = #e(S ′) for all e ̸= (v, w) but #e(S) = 1 and
#e(S ′) = 0 for e = (v, w). This implies that F(S) = h(vw) · F(S ′). By
induction hypothesis fσ(w) = ∑S ′∈Stratσ(w) F(S ′). Hence

fσ(v)
def
= ∑

w∈vE
hσ(vw) · fσ(w)

IH
= ∑

w∈vE
hσ(vw) · ∑

S ′∈Stratσ(w)

F(S ′)

= ∑
w∈vE

∑
S ′∈Stratσ(w)

hσ(vw) · F(S ′) = ∑
S∈Stratσ(v)

F(S).
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5 Semiring Valuations of Games

Finally, let v ∈ V1−σ with vE = {w1, . . . , wn}. Every strategy
S ∈ Stratσ(v) has the form S = v(S1 ∪ · · · ∪ Sn) with Si ∈ Stratσ(wi).
For the terminal nodes t ∈ T we have that #t(S) = ∑i≤n #t(Si); similarly,
for all moves e from a different position than v, we have #e(S) =

∑i≤n #e(Si), but for the moves e = (v, wi) we have #e(S) = 1 and
#e(Si) = 0 for all i. Thus

F(S) = ∏
wi∈vE

hσ(vwi) · F(Si).

It follows that

fσ(v) = ∏
wi∈vE

hσ(vwi) · fσ(wi)

= ∏
wi∈vE

hσ(vwi) · ∑
Si∈Stratσ(wi)

F(Si)


= ∏

wi∈vE

 ∑
Si∈Stratσ(wi)

hσ(vwi) · F(Si)


(∗)
= ∑

v·(S1∪...Sn)∈Stratσ(v)
∏

wi∈vE
hσ(vwi) · F(Si)

= ∑
S∈Stratσ(v)

F(S),

where (∗) uses the distributive law

n

∏
i=1

 ∑
j∈Ai

aij

 = ∑
(j1,...,jn)

∈A1×···×An

a1j1 · a2j2 · · · anjn = ∑
(j1,...,jn)

∈A1×···×An

(
n

∏
i=1

aiji

)
.

q.e.d.

5.2 Game Valuations in Provenance Semirings

Let X be a set of variables Xe for moves e ∈ E and Xt for terminal
positions T, and consider fσ : T → X ∪ {1} and hσ : E→ X ∪ {1} with
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5.2 Game Valuations in Provenance Semirings

fσ(t) = Xt or fσ(t) = 1,

hσ(e) = Xe or hσ(e) = 1.︸ ︷︷ ︸
for untracked t/e

We get a valuation fσ : V →N[X] by the rules

fσ(v) =


∑

w∈vE
hσ(vw) · fσ(w), for v ∈ Vσ,

∏
w∈vE

hσ(vw) · fσ(w), for v ∈ V1−σ.

Similarly, we get valuations fσ : V → K(X) for other provenance semir-
ings K(X) = B[X], Trio[X], W[X], . . . (by the same rules), and of course:

V N[X]

K(X)

fσ

fσ

What do these valuations tell us? To simplify notation, we write e
for Xe and t for Xt.

N[X]:
Each fσ(v) ∈N[X] is a sum of monomials

cm ·m = cm · eα1
1 · · · e

αr
r · t

β1
1 · · · t

βs
s

which, by the Sum-of-Strategies Theorem, tells us that Player σ has
exactly cm strategies S ∈ Stratσ(v) that

• use the moves e1, . . . , er (and possibly further untracked ones),

• have the outcomes t1, . . . , ts (and possibly other untracked ones),

• use the move ei precisely αi times, and have precisely β j plays with
outcome tj:

#ei (S) = αi and #tj (S) = β j. (∗)
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5 Semiring Valuations of Games

Example 5.10. Consider a game G where Player 0 has a reachability
objective W ⊆ T. We just want to track the terminal positions, i.e.
we put f0 : t 7→ Xt=̂t, and h0 : e 7→ 1 (for all e ∈ E), so that we get
valuations f0(v) ∈N[T].

Specialize these valuations by setting t := 0 for t ∈ T \W. More
precisely, consider g : T → N[T] with g(t) = t for t ∈ W and g(t) = 0
otherwise. By the universal property, this extends to ĝ : N[T]→N[T]
such that ĝ : f0(v) 7→ f W

0 (v) := f0(v)[t 7→ 0]t∈T\W .

Observe that f W
0 (v) is a sum of monomials cm · tβ1

1 · · · t
βs
s for

t1, . . . , ts ∈W; each such monomial tells us that Player 0 has cm winning
strategies, admitting precisely β j plays ending in tj ∈W (for each j). ■

B[X]:

fσ(v) ∈ B[X] is a sum of monomials m = eα1
1 · · · e

αr
r · t

β1
1 · · · t

βs
s telling us

that Player σ has at least one strategy S ∈ Stratσ(v) with property (∗).

Trio[X]:
fσ(v) ∈ Trio[X] is a sum of monomials cm · e1 · · · er · t1 · · · ts telling us
that Player σ has precisely cm strategies making use of precisely the
moves in {e1, . . . , er} and with outcomes {t1, . . . , ts}.

W[X]:
Analogously (without coefficients).

To understand the valuations in S[X] and PosBool[X], we first have
to discuss the notion of absorption among strategies.

5.3 Absorption on Strategies

Definition 5.11. Let Y ⊆ E ∪ T and S ,S ′ ∈ Stratσ(v). We say that S
absorbs S ′ (w.r.t. Y), denoted S ≽Y S ′, if #e(S) ≤ #e(S ′) and #t(S) ≤
#t(S ′) for all e, t ∈ Y.

An absorption-dominant strategy S ∈ Stratσ(v) (w.r.t. Y) is one that
is not absorbed by any other strategy S ′ with

#y(S ′) ≤ #y(S) for all y ∈ Y,
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5.4 Game Valuations in Application Semirings

#y(S ′) < #y(S) for at least one y ∈ Y.

For acyclic games (and especially model-checking games for FO)
we are mainly interested in absorption(-dominance) w.r.t. Y := T (this
will be different for games with infinite plays). Absorption-dominant
strategies are in a sense strategies with minimal effort: to establish
φ ∨ (φ ∧ ψ) we can either choose a strategy that establishes φ, or one
that establishes φ ∧ ψ. The second one will be absorbed by the first one.

S[X]:
Assuming that we only track the terminal positions, fσ(v) ∈ S[T] is a
sum of monomials m = tβ1

1 · · · t
βr
r each of which stands for an absorption-

dominant strategy S ∈ Stratσ(v) with precisely βi plays with outcome
ti (for i = 1, . . . , r). This means that every other strategy S ′ ∈ Stratσ(v)
either admits a play with outcome t /∈ {t1, . . . , tr} or has more than βi

plays with outcome ti, for some i ≤ r, or also has precisely βi plays with
outcome ti, for all i ≤ r.

PosBool[X]:
Valuations fσ(v) ∈ PosBool[T] lose the information about the number
of plays with a particular outcome. Monomials are of the form t1 . . . tr

and say that {t1, . . . , tr} is a minimal set of outcomes for strategies in
Stratσ(v).

5.4 Game Valuations in Application Semirings

5.4.1 Cost of Strategies

Given a game G = (V, V0, V1, T, E), associate with Player 0 cost func-
tions f0 : T → R∞

+ and h0 : E → R∞
+ for terminal positions and moves.

Define the cost of a strategy S ∈ Strat0(v) as the sum of all moves and
outcomes it admits, weighted by the number of their occurrences:

cost(S) := ∑
e∈E

#e(S) · h0(e) + ∑
t∈T

#t(S) · f0(t).

Proposition 5.12. The cost of an optimal strategy from v for Player 0
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5 Semiring Valuations of Games

is given by the valuation f0(v) in the tropical semiring T =

(R∞
+ , min,+, ∞, 0).

Proof. We defined the valuation of a strategy S ∈ Strat0(v) in a semiring
(S,+, ·, 0, 1) as

F(S) := ∏
e∈E

hσ(e)#e(S) · ∏
t∈T

fσ(t)#t(S).

Product in T is addition in R∞
+ , so cost(S) = F(S) (in T). Addition in

T is minimization, so by the Sum-of-Strategies Theorem,

f0(v) = min
S∈Strat0(v)

cost(S),

which describes the minimal cost of a strategy for Player 0 from v.
q.e.d.

5.4.2 Clearance Levels

Recall the access control semiring A = ({0 < T < S < C < P =

1}, max, min, 0, P) and consider functions fσ : T → A and hσ : E →
A \ {0} to define access levels for the moves and terminal positions
(Player σ can make a move e if, and only if, her personal clearance level
is at least h(e), similarly for t ∈ T). We say that Player σ wins if she can
reach an accessible terminal position.

Proposition 5.13. The valuation fσ(v) ∈ A describes the minimal clear-
ance level that Player σ needs to win from position v.

Proof. Since A is multiplicatively idempotent, we have

hσ(e)#e(S) =

hσ(e), e occurs in S ,

0, otherwise

fσ(t)#t(S) =

 fσ(t), t occurs in S ,

0, otherwise
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5.4 Game Valuations in Application Semirings

Hence, for every strategy S ∈ Stratσ(v),

F(S) = min({hσ(e) : e ∈ S} ∪ { fσ(t) : t ∈ S})

and, by the Sum-of-Strategies Theorem,

fσ(v) = max
S∈Stratσ(v)

F(S).

If the clearance level of Player σ is at least Fσ(v) then there exists a
strategy S from v such that Player σ can use all moves in S and access
the outcome of each compatible play x ∈ Plays(S). q.e.d.

5.4.3 Counting Winning Strategies

Consider a reachability game with objective W ⊆ T for Player σ. Put

fσ(t) =

1, t ∈W

0, t ∈ T \W
and hσ(e) = 1, for all e ∈ E.

Then the valuation fσ(v) in the natural semiring (N,+, ·, 0, 1) describes
the number of winning strategies of Player σ from v. Indeed, F(S) = 1 if
S is winning from v, and F(S) = 0 otherwise. The claim follows by the
Sum-of-Strategies Theorem.

Note that we count all winning strategies, not just the positional
ones.

Example 5.14. Consider the following game:

v

s1

t1

t2

s2

e′

e

f ′

f

g

h

T = {s1, s2, t1, t2}

W = {t1, t2}

Player 0 has 9 strategies, 4 of which are winning (and absorption-
dominant w.r.t. T), but only 2 winning strategies are positional:
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5 Semiring Valuations of Games

v

e
g

h

f
g

h

eg/ f g (pos.)

eg/ f h (not pos.)

eh/ f g (not pos.)

eh/ f h (pos.)

■

5.5 Separating Valuations

The valuations f0, f1 for the two players in a game G, as defined by
Definition 5.4, are a priori completely independent of each other. This
admits the treatment of a wide variety of games, without any restrictions
on how the objectives of the two players relate to each other.

In antagonistic games, valuations f0, f1 shall reflect conflicting objec-
tives.

Definition 5.15. Let f0, f1 be the valuations of the two players in a game
G, and let U ⊆ V be a set of positions. We say that

(1) f0, f1 are weakly antagonistic on U if

∀u ∈ U
(

f0(u) · f1(u) = 0
)
,

(2) f0, f1 are antagonistic on U if

∀u ∈ U
(

f0(u) = 0 or f1(u) = 0
)
,

(3) f0 and f1 are additively positive on U if

∀u ∈ U
(

f0(u) + f1(u) ̸= 0
)
,

(4) f0 and f1 are strongly antagonistic on U if they are both antagonistic
and additively positive U. In other words,

∀u ∈ U
(

f0(u) = 0 if, and only if, f1(u) ̸= 0
)
.

Notice that if the underlying semiring S has no divisors of 0, then
weakly antagonistic valuations are in fact antagonistic.
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5.5 Separating Valuations

Proposition 5.16. (1) If f0, f1 are weakly antagonistic on T, then they
are so on all positions.

(2) If f0, f1 are antagonistic on T, then they are so on all positions.
(3) Assume that S is positive. If f0, f1 are additively positive on T,

then they are so on all positions. It follows that if f0, f1 are strongly
antagonistic on T, then they are so on all positions.

Proof. Since hσ : E → S \ {0} and we are only interested in whether
valuations are 0 or not, we can assume that hσ(e) = 1 for all e ∈ E.
Recall that if v ∈ Vσ, then

fσ(v) = ∑
w∈vE

fσ(w) and f1−σ(v) = ∏
w∈vE

f1−σ(w).

For Claim (1), assume that f0, f1 are weakly antagonostic on vE. Then
it follows that f0, f1 are also weakly antagonistic on v:

fσ(v) · f1−σ(v) =
(

∑
w∈vE

fσ(w)
)
·
(

∏
w∈vE

f1−σ(w)
)

= ∑
w∈vE

(
fσ(w) · ∏

w′∈vE
f1−σ(w′)

)
= ∑

w∈vE

(
fσ(w) · f1−σ(w)︸ ︷︷ ︸

=0

· ∏
w′∈vE\{w}

f1−σ(w′)
)
= 0.

For Claim (2), assume that f0 and f1 are antagonistic on vE. Then

fσ(v) ̸= 0 =⇒ (∃w ∈ vE) fσ(w) ̸= 0

=⇒ (∃w ∈ vE) f1−σ(w) = 0 =⇒ f1−σ(v) = 0.

The corresponding implication for strongly antagonistic valuations
does not hold for all semirings, but it holds for positive ones. So assume
that S is positive, v ∈ Vσ, and that f0, f1 are additively positive on vE.

Then fσ(v) + f1−σ(v) = 0 holds if, and only if, fσ(w) = 0 for all
w ∈ vE (+-positivity) and f1−σ(w) = 0 for at least one w ∈ vE (no
divisors of 0). Hence fσ(v) + f1−σ(v) = 0 would imply that f0(w) +

f1(w) = 0 for some w ∈ vE, which contradicts our assumption. q.e.d.

We remark that if the underlying semirings is not positive, then
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5 Semiring Valuations of Games

Claim (3) does not hold for all games. A simple counterexample is
given by game consisting of just one position v ∈ V1, with two possible
moves to the terminal positions t and t′, with f0(t) = a, f0(t′) = a′ and
f1(t) = b, f1(t′) = b′. Clearly f0(v) = a · a′ and f1(v) = b + b′. If the
semiring is not +-positive, then we may have that a = a′ = 0, but b, b′

are non-zero elements with b + b′ = 0, so f0(v) = f1(v) = 0 although
f0, f1 are additively positive on T. If the semiring has divisors of 0, then
we may have b = b′ = 0 and a, a′ are non-trivial divisors of 0, so again,
f0, f1 are additively positive on T but not on v.

Consider the case that S = B. Strongly antagonistic valuations
f0, f1 : T → B define a strictly antagonistic reachability game. A play
is won by Player σ if, and only if, it is lost by Player 1− σ. We just
proved that then, every position v has strongly antagonistic valuations
f0, f1, i.e. fσ(v) ̸= 0 ⇐⇒ f1−σ = 0. This is Zermelo’s Theorem: in
well-founded, strictly antagonistic games, one of the two players has a
winning strategy, i.e. the game is determined.
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6 Semiring Valuations for FO (with
negation)

Negation poses a problem for semiring semantics, because in the semir-
ing setting, negation is not a compositional logical operation. What does
this mean? For ψ ∧ φ and ψ ∨ φ the valuations πJψ ∧ φK and πJψ ∨ φK
are πJψK · πJφK and πJψK+ πJφK and are thus completely determined
by πJψK and πJφK (independent of the syntax of ψ and φ; we call this a
compositional definition).

By the idea that in any semiring, the element 0 stands for false and
all other elements for some shade of true, we would have that for any
ψ with πJψK ̸= 0, necessarily πJ¬ψK = 0. But if πJψK = 0 we cannot
infer the value πJ¬ψK, without examining ψ itself (unless we are in the
Boolean semiring where we have a unique value ̸= 0; or if we give up
the “axiom” that ¬¬ψ ≡ ψ, as we could then set πJ¬ψK = 1 if πJψK = 0,
and πJ¬ψK = 0 otherwise, so that πJ¬¬ψK ∈ {0, 1} for all ψ).

We deal with this problem via transformation to negation normal
form (nnf), i.e. we put πJ¬ψK := πJnnf(¬ψ)K, or, equivalently, only
consider formulae in FO that are in negation normal form.

Let τ be a relational vocabulary, A a (finite) universe, S a semiring.
Let LitA(τ) = AtomsA(τ) ∪NegAtomsA(τ), where NegAtomsA(τ) =

{¬α | α ∈ AtomsA(τ)}.

Definition 6.1. An S-interpretation (for τ and A) is a function
π : LitA(τ) → S. It extends to a valuation for all first-order sentences
ψ(a) ∈ FO(τ ∪ A) by interpreting equalities and inequalities by their
truth values,

πJai = ajK =

1, if ai = aj,

0, if ai ̸= aj,
πJai ̸= ajK =

1, if ai ̸= aj,

0, if ai = aj,
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6 Semiring Valuations for FO (with negation)

logical connectives and quantifiers by the semiring operations (e.g.
πJψ ∨ φK = πJψK+ πJφK) and by interpreting negation by transforma-
tion to negation normal form:

πJ¬ψK = πJnnf(¬ψ)K.

6.1 Game-theoretic view

Let G(A, ψ) be the game graph induced by ψ ∈ FO(τ) and A. Its
terminal positions are literals in LitA(τ), or equalities and inequalities.
An S-interpretation π : LitA(τ)→ S thus provides a valuation f0 : T →
S of the terminal positions of G(A, ψ). We put f1(α) := f0(¬α) = π(¬α).
Further we put hσ(e) = 1 for all moves e of G(A, ψ). We thus obtain
valuations f0, f1 : V → S for all positions v of G(A, ψ). Notice that these
positions are instantiated subformulae φ(a) of ψ.

Theorem 6.2. For all first-order sentences ψ ∈ FO(τ), all semiring
interpretations π : LitA(τ) → S and all positions φ(a) of G(A, ψ) we
have

f0(φ(a)) = πJφ(a)K,

f1(φ(a)) = πJ¬φ(a)K.

Proof. Obvious induction. q.e.d.

Although this theorem holds without any restriction on the semir-
ing interpretation π : LitA(τ) → S, not all such interpretations are
meaningful for logic. Normally we require that the value π(Ra) and
π(¬Ra) are related in a reasonable way.

Definition 6.3. An S-interpretation π : LitA(τ)→ S is model-defining, if
for each pair α,¬α of complementary literals, π(α) = 0⇐⇒ π(¬α) ̸= 0.
In that case π defines a unique τ-structure Aπ with universe A, with
RAπ = {a | π(Ra) ̸= 0} for every R ∈ τ.
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6.1 Game-theoretic view

Clearly, if S ̸= B, several model-defining S-interpretations may
define the same structure.

Proposition 6.4. If S is positive and π : LitA(τ)→ S is model-defining,
then for all φ ∈ FO(τ),

Aπ |= φ ⇐⇒ πJφK ̸= 0

Proof. In fact for any semiring S (positive or not) and any model-
defining interpretation π : LitA(τ)→ S we have that

πJφK ̸= 0 =⇒ Aπ |= φ (1)

(by trivial induction). For the converse, we observe that on each game
graph G(A, φ), the valuations

f0 : α 7→ π(α),

f1 : α 7→ π(¬α),

are strongly antagonistic on the terminal positions. Since S is positive,
they are strongly antagonistic on all positions, in particular on φ. Hence

πJφK = f0(φ) = 0 ⇐⇒ πJ¬φK = f1(φ) ̸= 0.

It follows that

πJφK = 0 =⇒ πJ¬φK ̸= 0
(1)
=⇒ Aπ |= ¬φ =⇒ Aπ ̸|= φ. (2)

The claim follows from (1) and (2). q.e.d.

In semiring semantics, also S-interpretations that do not define
a single structure are interesting. Additional issues arise for such
interpretations π : LitA(τ)→ S:

• If for every atom α ∈ AtomsA(τ) either π(α) = 0 or π(¬α) = 0,
then there is no φ ∈ FO(τ) with πJφK ̸= 0 and πJ¬φK ̸= 0.

(Valuations that are antagonistic on the terminal positions are so on all
positions.)
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6 Semiring Valuations for FO (with negation)

• If for every atom α ∈ AtomsA(τ) it holds π(α) · π(¬α) = 0, then
also πJφK · πJ¬φK = 0 for all φ ∈ FO(τ).
(Valuations that are weakly antagonistic on the terminal positions are so
on all positions.)

• If S is positive, and for all atoms α ∈ AtomsA(τ) we have that
π(α) + π(¬α) ̸= 0, then also πJφK + πJ¬φK ̸= 0 for all φ ∈ FO(τ).
(Additively positive valuations on the terminal positions are additively
positive on all positions.)

6.2 Dual-indeterminate Polynomials

In the presence of negation, the semirings N[X], B[X], . . . are not re-
ally appropriate anymore since they do not adequately represent the
relationship between positive and negative literals.

Let X, X be two disjoint sets of indeterminates with a bijection
X ↔ X, x 7→ x. We use these indeterminates to annotate literals and
we usually write xα for the variable that annotates α.

Convention. If x ∈ X is used to annotate α, we can use x only annotate
the literal ¬α. In other words, we forbid annotations of the form

α 7→ x β 7→ 0

¬α 7→ 0 ¬β 7→ x for α ̸= β.

On K(X ∪ X) = N[X ∪ X], B[X ∪ X], S[X ∪ X], . . . let ∼ be the
congruence generated by x · x ∼ 0 for all x ∈ X. A monomial m in any
K(X ∪ X) is conflicting if it contains both x and x, for some x ∈ X (with
positive exponents, i.e., m(x), m(x) > 0). For f ∈ K(X ∪ X), let f̂ be
obtained by deleting all conflicting monomials from f . Clearly f ∼ f̂
(since m ∼ 0 for every conflicting monomial m).

Further observe that f ∼ g⇐⇒ f̂ = ĝ. (Indeed: f ≈ g def⇐⇒ f̂ = ĝ
is a congruence with x · x ≈ 0. Compatibility with + is clear since
for f + g = h also f̂ + ĝ = ĥ. For f · g = h observe that ĥ contains
all non-conflicting monomials mm′ for m ∈ f and m′ ∈ g which is the
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6.2 Dual-indeterminate Polynomials

same as the non-conflicting monomial mm′ for m ∈ f̂ and m′ ∈ ĝ, thus
ĥ = f̂ · ĝ. Conversely, if f̂ = ĝ, then f ∼ f̂ = ĝ ∼ g.)

Thus N[X, X] := N[X ∪ X]/∼ is in one-to-one correspondence
with those polynomials in N[X ∪ X] that do not contain any conflicting
monomials, and similarly for B[X, X], S[X, X], . . . . These are called
semirings of dual-indeterminate polynomials.

Theorem 6.5 (Universal property). Any function h : X ∪ X → S with
h(x) · h(x) = 0 for all x ∈ X extends to a unique homomorphism
ĥ : N[X, X]→ S (with ĥ|X∪X = h).

Definition 6.6. A provenance-tracking labelling of LitA(τ) is a map
π : LitA(τ) → X ∪ X ∪ {0, 1} mapping atoms α to π(α) ∈ X ∪ {0, 1}
and negated atoms to π(¬α) ∈ X ∪ {0, 1}.

If π maps α/¬α to an indeterminate x or x, then this literal is
tracked through the model-checking computation. If it is mapped to 0/1,
then we do not track it, but we still need to take into account whether
or not it holds in a given structure. A provenance-tracking labelling
gives, for each semiring K(X, X) of dual-indeterminate polynomials, a
K(X, X)-interpretation π : LitA(τ)→ K(X, X).

Assume that π : LitA(τ) → X ∪ X ∪ {0, 1} is both provenance-
tracking and model-defining. For every first-order sentence ψ ∈ FO(τ)

and every semiring K(X, X) we obtain a valuation πJψK ∈ K(X, X)

which gives us information about the winning strategies of Player 0 in
the model-checking game for Aπ |= ψ.

Consider πJψK ∈ N[X, X]; it is a sum of monomials of the form
c · xj1

1 · · · x
jr
r , each of which informs us that Player 0 has precisely c

winning strategies S ∈ Strat0(ψ) with the property that

• all plays in Plays(S) end at a literal α with π(α) ∈ {x1, . . . , xr} ∪
{1},

• there are precisely ji plays in Plays(S) that end in a literal α with
π(α) = xi.

Similarly for other dual-indeterminate semirings. For instance
πJψK ∈ S[X, X] is a sum of monomials of the form xj1

1 · · · x
jr
r saying that
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6 Semiring Valuations for FO (with negation)

Player 0 has an absorption-dominant winning strategy for Aπ |= ψ with
that property. Further, although the semirings K(X, X) are not positive
(since x · x = 0), we still have πJψK ̸= 0⇐⇒ Aπ |= ψ.

Composing π : LitA(τ) → X ∪ X ∪ {0, 1} with a map h : X ∪ X ∪
{0, 1} → S (into an arbitrary semiring S) with h(x) · h(x) = 0, h(0) = 0
and h(1) = 1 results in S-valuations for FO(τ):

LitA(τ)

X ∪ X ∪ {0, 1} S

π

h

h ◦ π

FO(τ)

N[X, X] S

π

ĥ

ĥ ◦ π

S = T : cost computation for FO(τ),
S = A : clearance levels for FO(τ),
S = V : confidence scores,
S = N : counting evaluation strategies.

What about K(X, X)-interpretations that are not model-defining?

Definition 6.7. A provenance-tracking labelling π : LitA(τ)→ X ∪ X ∪
{0, 1} is model-compatible if for each atom α, either

• π(α) = x and π(¬α) = x for some x ∈ X, or
• π(α) = 0 and π(¬α) = 1, or
• π(α) = 1 and π(¬α) = 0.

A structure A (with universe A) is compatible with π if A |= α for
every literal α ∈ LitA(τ) with π(α) = 1, and we set Modπ := {A |
A is compatible with π}. We say that ψ ∈ FO(ψ) is

• Modπ-satisfiable if A |= ψ for some A ∈ Modπ ,
• Modπ-valid if A |= ψ for all A ∈ Modπ .

Let π : LitA(τ) → X ∪ X ∪ {0, 1} be model-compatible, and ψ ∈
FO(τ). For each provenance semiring K(X, X), the valuation πJψK ∈
K(X, X) gives information about evaluation strategies and their use of
literals mapped to X ∪ X. For N[X, X], each monomial c · xj1

1 · · · x
jr
r ∈
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6.3 Example: Model-defining tracking

πJψK indicates that there are c strategies for the game G(A, ψ) from ψ

all whose outcomes are literals α with π(α) ∈ {x1, . . . , xr} ∪ {1} (and
there are precisely ji plays with outcome labelled by xi).

Corollary 6.8. Let π be model-compatible and ψ ∈ FO(τ). Then,

• ψ is Modπ-satisfiable if πJψK ̸= 0,

• ψ is Modπ-valid if πJ¬ψK = 0.

6.3 Example: Model-defining tracking

Consider the sentence ψ ∈ FO({E}) defined as follows:

dom(x) := ∀y(x = y ∨ (Exy ∧ ¬Eyx))

ψ := ∀x ¬dom(x) “no dominant vertex”

nnf(ψ) = ∀x∃y(x ̸= y ∧ (¬Exy ∨ Eyx))

We evaluate ψ in the following provenance-tracking labelling:

a

b

c
x z

y

v

u A = {a, b, c}

X = {x, y, z, u, v}

π : LitA({E}) −→ X ∪ X ∪ {0, 1}

Eab 7−→ x

Eba 7−→ y

Ebc 7−→ z

 tracked edges

¬Ecb 7−→ u

¬Eac 7−→ v

}
tracked non-edges
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6 Semiring Valuations for FO (with negation)

which becomes model-defining by mapping

¬Eab,¬Eba,¬Ebc 7−→ 0

Ecb, Eac 7−→ 0

all other atoms 7−→ 0

all other neg. atoms 7−→ 1

}
untracked

The model induced by π is:

Aπ :
a

b

c

We can compute the value of ψ as follows:

πJψK = πJ¬dom(a) ∧ ¬dom(b) ∧ ¬dom(c)K

= πJ(¬Eab
0
∨ Eba

y
) ∨ (¬Eac

v
∨ Eca

0
)K

· πJ(¬Eba
0
∨ Eab

x
) ∨ (¬Ebc

0
∨ Ecb

0
)K

· πJ(¬Eca
1
∨ Eac

0
) ∨ (¬Ecb

u
∨ Ebc

z
)K

= (y + v) · x · (1 + u + z)

= xy + xv + xyu + xvu + xyz + xvz

Each monomial corresponds to a winning strategy for proving that
Aπ |= ψ.

• For instance, the monomial xyu describes the following strategy:

from ¬dom(a) b Eba =̂ y

¬dom(b) a Eab =̂ x

¬dom(c) b ¬Ecb =̂ u,
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6.3 Example: Model-defining tracking

• The monomial xv is associated with a different strategy:

¬dom(a) c ¬Eac =̂ v

¬dom(b) a Eab =̂ x

¬dom(c) a ¬Eca =̂ 1.

We also see that the fact Eab labelled by x is necessary for proving
Aπ |= ψ (it occurs in all winning strategies). Indeed, removing Eab
from Aπ makes b a dominant vertex.

Cost computation in T. Let h : X ∪ X ∪ {0, 1} → R∞
+ be given by

x 7→ 0, y 7→ 1, z 7→ 2,

u 7→ ∞, v 7→ 5,

resulting in

cost(ψ) = ĥ ◦ πJψK

= min(ĥ(xy)
1

, ĥ(xv)
5

, ĥ(xyu)
∞

, ĥ(xvu)
∞

, ĥ(xyz)
3

, ĥ(xvz)
7

)

= 1 (recall: ĥ(xy) = h(x) + h(y)).

Access restriction in A. Now consider the mapping

x 7→ P, y 7→ T, z 7→ C,

u 7→ P, v 7→ P.

The required clearance level for ψ is then

cl.-level(ψ) = max(T, P, T, P, T, C) = P.

That is, Aπ |= ψ can be checked with public information. However, if
your clearance level is not for top secret information, only the strategies
corresponding to xv, xvu, and xvz are available, whose costs are 5, ∞,
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6 Semiring Valuations for FO (with negation)

and 7. So only agents cleared for top secret information have a strategy
with cost 1.

6.4 Example: Model-compatible tracking

We next move to applications of model-compatible interpretations. Mod-
ify the map π : LitA({E}) → X ∪ X ∪ {0, 1} of the previous example
on the tracked edges and tracked non-edges of the model Aπ above by
mapping the complementary literals to the complementary tokens:

π : Eab/¬Eab 7−→ x/x,

Eba/¬Eba 7−→ y/y,

Ebc/¬Ebc 7−→ z/z,

Ecb/¬Ecb 7−→ u/u,

Eac/¬Eac 7−→ v/v,

a

b

c
x/x z/z

y/y

v/v

u/u

and the rest as above. Then

Modπ = {A = (A, E) | A |= ¬Eaa ∧ ¬Ebb ∧ ¬Ecc ∧ ¬Eca}.

We can again compute

πJψK = πJ¬dom(a) ∧ ¬dom(b) ∧ ¬dom(c)K

= (x + y + v + 0)(y + x + z + u)(1 + v + u + z)

= . . . 48 monomials, which reduces to 30 monomials
by elimination of conflicting monomials.

On the other side,

πJ¬ψK = πJdom(a) ∨ dom(b) ∨ dom(c)K = xyv + xyzu + 0.

Each of the two monomials in πJ¬ψK gives us models for ¬ψ in Modπ :

• xyv: models of the form

a

b

c

(Ebc and Ecb may or may not
hold in these models),
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6.4 Example: Model-compatible tracking

• xyzu: models of the form

a

b

c
(Eac may or may not hold).

Consider the structure

B:

a

b

cx

y
z

B is not a model of ¬ψ. For X = {x, y, z, u, v} let the edges/non-edges
with labels in X ∪ X be the one that can be added to / deleted from B.
A minimal repair (for B, X, X and ¬ψ) is a minimal subset of X ∪ X such
that switching these edges/non-edges will update B to a model of ¬ψ.
We can read off the minimal repairs from πJ¬ψK:

• xyv: delete Eba (y⇝ y),
add Eac (v⇝ v);

• xyzu: delete Eab (x⇝ x).

Given a cost labelling h : X ∪ X ∪ {0, 1} → T we may select:

• the repair with minimal cost, or
• the repaired model inducing the minimal cost for ¬ψ.
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7 Elementary Equivalence versus
Isomorphism

Definition 7.1. Let πA : LitA(τ) → S and πB : LitB(τ) → S be two
S-interpretations.

• Isomorphism: πA ∼= πB if there is a bijection h : A ∼−→ B such that
for every τ-literal α(x) and all a ∈ Ak: πA(α(a)) = πB(α(ha)). We
write h : πA

∼−→ πB.

• Elementary equivalence: πA, a ≡ πB, b if for all φ(x) ∈ FO(τ):
πAJφ(a)K = πBJφ(b)K.

Obviously, the Isomorphism Lemma also holds for semiring semantics.

Lemma 7.2 (Isomorphism Lemma). If h : πA
∼−→ πB is an isomorphism

of S-interpretations, then for all tuples a ∈ Ak: πA, a ≡ πB, h(a), and in
particular πA ≡ πB.

In classical Boolean semantics, the converse holds for finite struc-
tures. For every finite τ-structure A there exists a sentence ψa ∈ FO(τ)

such that B |= ψa ⇐⇒ B ∼= A. Hence B ≡ A⇐⇒ B ∼= A.

Questions for any given semiring S:

(1) Are elementary equivalent finite S-interpretations always isomor-
phic?

(2) Is every finite S-interpretation πA FO-axiomatisable? That is, is
there a set ΦA ⊆ FO such that whenever πBJφK = πAJφK for all
φ ∈ ΦA, then πA ∼= πB?

(3) Does every finite S-interpretation admit an axiomatisation by a
finite set of axioms?

(4) . . . by a single axiom?
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7 Elementary Equivalence versus Isomorphism

Obviously, the following implications would hold for positive an-
swers: (4) =⇒ (3) =⇒ (2) =⇒ (1). We shall prove that the answers
depend on the semiring S.

• For min-max semirings with ≥ 3 elements, there exists πA ≇ πB

with πA ≡ πB, so all answers are negative.
• For V, T, N and N[X], any finite interpretation is FO-

axiomatisable, so (1) and (2) have positive answers.
• For V and T, finite axiomatisations are possible, but not axiomati-

sations by a single axiom (so (3) and (4) are not always equivalent).

7.1 A Counterexample

Let τ = {P, Q} consist of two unary predicates, and let S4 := ({0 <

1 < 2 < 3}, max, min, 0, 3) (the min-max-semiring with four elements).
For A = {a, b, c}, consider the following interpretations (notice that the
interpretation of P and Q is switched):

πPQ :=

P Q ¬P ¬Q

a 1 3 0 0

b 2 1 0 0

c 3 2 0 0

πQP :=

P Q ¬P ¬Q

a 3 1 0 0

b 1 2 0 0

c 2 3 0 0

Clearly πPQ ≇ πQP. How can we prove that πPQ ≡ πQP? Idea: If
πA ̸≡ πB, then this is witnessed by some pair i ̸= j in S and ψ ∈ FO,
with πAJψK = i and πBJψK = j. To exclude (i, j) as such a witness, we
look for homomorphisms hA, hB : S→ S′ with

• hA(i) ̸= hB(j),
• hA ◦ πA ≡ hB ◦ πB (elementary equivalent S′-interpretations).

(This excludes (i, j), since πAJψK = i, πBJψK = j imply (by the Fun-
damental Property) (hA ◦ πA)JψK = hA(i) ̸= hB(j) = (hB ◦ πB)JψK,
contradicting hA ◦ πA ≡ hB ◦ πB.)

We want to find enough homomorphisms to exclude all pairs i ̸= j
as possible witnesses. For S′ = B, the equivalences hA ◦ πA ≡ hB ◦ πB

amount to isomorphism.
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7.1 A Counterexample

Definition 7.3. A set H ⊆ Hom2(S, S′) of homomorphism pairs
h, h′ : S→ S′ is separating if for all i ̸= j in S, there is a pair (h, h′) ∈ H
with h(i) ̸= h′(j).

A diagonal separating set is a separating set H where h = h′ for all
(h, h′) ∈ H. We can present it as D = {h ∈ Hom(S, S′) | (h, h) ∈ H}.

We then obtain the following reduction: Let πA : LitA(τ) → S,
πB : LitB(τ)→ S, a ∈ Ak, b ∈ Bk, and H ⊆ Hom2(S, S′) be a separating
set, φ(x) ∈ FO(τ). If (h ◦ πA)Jφ(a)K = (h′ ◦ πB)Jφ(b)K for all (h, h′) ∈
H, then πAJφ(a)K = πBJφ(b)K (if πAJφ(a)K = i ̸= j = πBJφ(b)K, then
(h ◦ πA)Jφ(a)K = h(i) ̸= h′(j) = (h′ ◦ πB)Jφ(b)K for some (h, h′) ∈ H,
contradiction). Hence h ◦ πA, a ≡ h′ ◦ πB, b for all (h, h′) ∈ H implies
that πA, a ≡ πB, b.

Let Sm be the min-max semiring over {0, . . . , m− 1}. A diagonal
separating set for Sm and B is D = {hj | 1 ≤ j ≤ m− 1} with hj(i) = ⊥
if i < j, and hj(i) = ⊤ if i ≥ j, since every pair i < j is separated by hj.
Recall the S4-interpretations πPQ and πQP given above and consider
their resulting B-interpretations (i.e., finite structures) hj ◦ πPQ and
hj ◦ πQP, for j ∈ {1, 2, 3}. We have to show that hj ◦ πPQ ≡ hj ◦ πQP for
all j ∈ {1, 2, 3}. To this end, we show that they are isomorphic (which
implies elementary equivalence):

h1 ◦ πPQ :

P Q

a ⊤ ⊤
b ⊤ ⊤
c ⊤ ⊤

= h1 ◦ πQP :

P Q

a ⊤ ⊤
b ⊤ ⊤
c ⊤ ⊤

h2 ◦ πPQ :

P Q

a ⊥ ⊤
b ⊤ ⊥
c ⊤ ⊤

∼= h2 ◦ πQP :

P Q

a ⊤ ⊥
b ⊥ ⊤
c ⊤ ⊤(switch a and b)
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7 Elementary Equivalence versus Isomorphism

h3 ◦ πPQ :

P Q

a ⊥ ⊤
b ⊥ ⊥
c ⊤ ⊥

∼= h3 ◦ πQP :

P Q

a ⊤ ⊥
b ⊥ ⊥
c ⊥ ⊤(switch a and c)

Corollary 7.4. πPQ ≡ πQP (although πPQ ≇ πQP).

7.2 Separating Homomorphisms for PosBool[X]

A similar approach works also for more general semirings, such as
PosBool[X] and W[X], and thus, by the universal property, also for
all fully idempotent semirings S with |S| ≥ 3. We illustrate this for
PosBool[x, y], A = {a, b, c, d} and τ = {P, Q} (as above). Note that for
PosBool[X], any subset Y ⊆ X induces a homomorphism

hY : PosBool[X]→ B, hY(x) =

⊤, if x ∈ Y,

⊥, if x ∈ X \Y.

Then hY( f ) = ⊤ if, and only if, f contains a monomial all whose
variables are in Y.

Lemma 7.5. DX := {hY | Y ⊆ X} ⊆ Hom(PosBool[X], B) is a diagonal
separating set of homomorphisms.

Proof. Let f , g ∈ PosBool[X] with f ̸= g. Let m = ∏y∈Y y be a mono-
mial that occurs in one of f , g but not in the other, with minimal Y. We
can assume that m occurs in f but not in g. Clearly hY( f ) = ⊤, and we
claim that hY(g) = ⊥.

Otherwise g would contain a monomial m′ with only variables
from Y. Since m′ has less variables than m, it must also occur in f . But
m′ absorbs m, so m does not occur in f , contradiction. q.e.d.
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7.2 Separating Homomorphisms for PosBool[X]

Consider the following PosBool[x, y]-interpretations:

πxy :

A P Q ¬P ¬Q
a 0 y x 0
b x 0 0 y
c y x 0 0
d 0 0 y x

πyx :

A P Q ¬P ¬Q
a y 0 0 x
b 0 x y 0
c x y 0 0
d 0 0 x y

Obviously πxy ≇ πyx. To prove that πxy ≡ πyx it suffices to show
that for all h ∈ Dxy = {h∅, hx, hy, hxy}, we have h ◦ πxy ∼= h ◦ πyx.

h∅ ◦ πxy :

A P Q ¬P ¬Q
a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥

h∅ ◦ πyx :

A P Q ¬P ¬Q
a ⊥ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊥
c ⊥ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊥

hx ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊤ ⊥
b ⊤ ⊥ ⊥ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤

hx ◦ πyx :

A P Q ¬P ¬Q

a ⊥ ⊥ ⊥ ⊤
b ⊥ ⊤ ⊥ ⊥
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥

hy ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊤ ⊥ ⊥
b ⊥ ⊥ ⊥ ⊤
c ⊤ ⊥ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊥

hy ◦ πyx :

A P Q ¬P ¬Q

a ⊤ ⊥ ⊥ ⊥
b ⊥ ⊥ ⊤ ⊥
c ⊥ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊥ ⊤

hxy ◦ πxy :

A P Q ¬P ¬Q

a ⊥ ⊤ ⊤ ⊥
b ⊤ ⊥ ⊥ ⊤
c ⊤ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊤

hxy ◦ πyx :

A P Q ¬P ¬Q

a ⊤ ⊥ ⊥ ⊤
b ⊥ ⊤ ⊤ ⊥
c ⊤ ⊤ ⊥ ⊥
d ⊥ ⊥ ⊤ ⊤

Since PosBool[X] has the universal property for lattice semirings
(S,⊔,⊓, 0, 1), it follows that for each such semiring with at least three
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elements, there exist S-interpretations πrs and πsr which are elementary
equivalent but not isomorphic: choose r, s ̸= 0, r ̸= s and let πrs, πsr be
obtained from πxy, πyx by x 7→ r, y 7→ s.

7.3 A different Story: The Viterbi Semiring

Recall the Viterbi semiring V = ([0, 1], max, ·, 0, 1). We want to show
that every finite V-interpretation is FO-axiomatisable up to isomor-
phism.

Let τ be a finite relational vocabulary and let Litn(τ) be the set of
literals Rx/¬Rx for R ∈ τ and x a tuple of variables from x1, . . . , xn.
Recall that for every finite structure A with universe A = {a1, . . . , an}
there is a characteristic sentence χA ∈ FO(τ) such that B |= χA ⇐⇒
B ∼= A. The characteristic sentence has the form

χA := ∃x1 . . . ∃xn(φ(x) ∧ ψ(x))

with

φ(x) =
∧

1≤i<j≤n

(
xi ̸= xj ∧ ∀y

∨
i≤n

y = xi
)
,

ψ(x) =
∧
{α(x) ∈ Litn(τ) | A |= α(a)}, a = x[x1/a1, . . . , xn/an].

Here, φ(x) asserts that the universe has precisely n elements. This can
be reused as-is for any semiring.

Lemma 7.6. For every S-interpretation πB : LitB(τ) → S into an arbi-
trary semiring S and every tuple b = (b1, . . . , bn):

πBJφ(b)K =

1, if B = {b1, . . . , bn} and bi ̸= bj for i ̸= j,

0, otherwise.

Proof. The computation

πBJφ(b)K = ∏
i<j

πBJbi ̸= bjK · ∏
b∈B

∑
i≤n

πBJb = biK
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7.3 A different Story: The Viterbi Semiring

evaluates to 1 if b1, . . . , bn is a distinct enumeration of all elements of B,
and to 0 otherwise. q.e.d.

On the other side, the conjunction over the “true” literals ψ(x) does
not suffice to characterise a semiring interpretation up to isomorphism.
There is a trivial example over universe A = {a}, τ = {P, Q} with
model-defining V-interpretations

π : Pa 7→ 0.1 π : Qa 7→ 0.9

π′ : Pa 7→ 0.9 π′ : Qa 7→ 0.1.

Clearly π ≇ π′, but constructing χπ , χπ′ as above (using the induced
model Aπ = Aπ′ ) would give

χπ = ∃x(φ(x) ∧ Px ∧Qx) = χπ′ .

Idea: repeat different “true” literals a different number of times, so
that a different collection of values for the literals guarantees to give
a different product. We associate with every finite V-interpretation
πA : LitA(τ)→ V and every ε > 0 a characteristic sentence

χπA ,ε := ∃x1 · · · ∃xn(φ(x) ∧ ψε(x))

with n = |A| and φ(x) as above, but with a more sophisticated con-
struction of ψε(x).

Let a = (a1, . . . , an) be a fixed enumeration of A and α1(a), . . . , αk(a)
an enumeration of the “true” literals of πA (with πA(α(a)) ̸= 0). Fur-
ther, fix a sequence f (1), . . . , f (k) ∈N subject to the condition that

• f (1) = 1,

• f (i + 1) is large enough so that (1− ε) f (i+1) < ε f (1)+···+ f (i). (∗)

Then put

ψε(x) :=
k∧

i=1
αi(x)

f (i) (where αm := α ∧ α ∧ · · · ∧ α︸ ︷︷ ︸
m times

).
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Proposition 7.7. Let πA : LitA(τ)→ V, πB : LitB(τ)→ V be two finite
model-defining V-interpretations which induces the finite set of values

V := {πA(α) | α ∈ LitA(τ)} ∪ {πB(α) | α ∈ LitB(τ)}.

Let 0 < ε ≤ min{|r− s| | r, s ∈ V, r ̸= s}. Then πAJχπA ,εK = πBJχπB ,εK
implies πA ∼= πB.

Proof. Assume πAJχπA ,εK = πBJχπB ,εK. By construction, both values
are > 0. By the lemma above, and since “∃” is interpreted by max,
we have |A| = |B| and we further have enumerations a = (a1, . . . , an),
b = (b1, . . . , bn) of A and B such that

πAJψε(a)K = πAJχπA ,εK = πBJχπB ,εK = πBJψε(b)K.

Observe that πAJψε(a)K = ∏k
i=1 πA(αi(a) f (i)) > 0 implies πA(αi(a)) >

0 for all i, and analogously πB(αi(b)) > 0 for all i. For i = 1, . . . , k, let
ri := πA(αi(a)) > 0 and si := πB(αi(b)) > 0. It remains to show that
ri = si for all i ≤ k; then a 7→ b is indeed an isomorphism from πA to
πB.

Assume that this is not the case. Let j = max{i ≤ k | ri ̸= si}. We
can assume that rj < sj. Further sj − rj ≥ ε and ε ≤ ri, si ≤ 1 for all i.
Hence

rj ≤ sj − ε ≤ sj − ε · sj = (1− ε)sj,

and

r f (1)
1 · · · r f (j)

j ≤ r f (j)
j ≤ (1− ε) f (j)s f (j)

j

(∗)
< ε f (1)+···+ f (j−1) · s f (j)

j ≤ s f (1)
1 · · · s f (j)

j .

But ri = si for i = j + 1, . . . , k so it follows that

πAJψε(a)K = ∏
1≤i≤k

r f (i)
i ̸= ∏

1≤i≤k
s f (i)

i = πBJψε(b)K,

and hence πAJχπA ,εK ̸= πBJχπB ,εK, contradiction. q.e.d.
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While none of the sentences χπA ,ε alone can characterise πA, the (of
course countable) set ΦπA = {χπA ,ε | ε > 0} provides an axiomatisation.
Indeed: No infinite V-interpretation πB agrees with πA on χπA ,ε (due
to φ(x)), and for a finite V-interpretation πB we have

• if πA ∼= πB then πBJχπA ,εK = πAJχπA ,εK for all ε,
• if πA ≇ πB then we find an appropriate ε such that πAJχπA ,εK ̸=

πBJχπA ,εK by Proposition 7.7.

One can show that for each finite V-interpretation, also an axioma-
tisation by a finite set of sentences is possible, so also question (3) has a
positive answer for V. We finally show that, however, no axiomatisation
by a single sentence is possible, in general.

Proposition 7.8. There exists a V-interpretation π : LitA(τ)→ V such
that for every sentence ψ ∈ FO(τ), there exists a V-interpretation
π′ : LitA(τ)→ V such that π ≇ π′, but πJψK = π′JψK.

Proof. Let π : Pa 7→ p, Qa 7→ q with 0 < p, q < 1 and p, q are multiplica-
tively independent: there are no k, l ∈ Z \ {0} with pkql = 1.

Consider the corresponding B[x, y]-interpretation πB : Pa 7→ x,
Qa 7→ y. For ψ ∈ FO(τ), we have πBJψK ∈ B[x, y] and h : x 7→ p,
y 7→ q extends to ĥ : B[x, y] → V with ĥ(πBJψK) = πJψK (by the
universal property of B[x, y] for idempotent semirings). πBJψK is a
sum of monomials of the form m = xiyj, and πJψK = piqj is the
maximal value m(p, q) for the monomials m in πBJψK. Since p, q are
multiplicatively independent, no other monomial can take the same
value, i.e. m′(p, q) < m(p, q) for all other monomials m′ occurring in
πBJψK.

We can certainly find another pair of values r, s with r ̸= p and
risj = piqj such that r is sufficiently close to p that m′(r, s) < m(r, s) =
m(p, q) for all other monomials m′ in πBJψK. For the V-interpretation
π′ with π′ : Pa 7→ r, Qa 7→ s this implies π′JψK = risj = piqj = πJψK,
but π ≇ π′. q.e.d.
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8 Least Fixed Points and ω-Continuous
Semirings

8.1 Scenarios involving Least Fixed Points

We discuss several scenarios that go beyond the semiring valuations
considered so far.

8.1.1 Games with Cycles

Consider finite game graphs G = (V, V0, V1, T, E) as in Chapter 5, but
drop the condition that G is acyclic. Given fσ : T → S, hσ : E→ S \ {0},
we defined

fσ(v) = ∑
w∈vE

hσ(vw) · fσ(w), for v ∈ Vσ,

fσ(v) = ∏
w∈vE

hσ(vw) · fσ(w), for v ∈ V1−σ.

Without the acyclicity condition this is no longer a simple back-
wards induction. Instead, putting xv := fσ(v) we get, for X = {xv | v ∈
V}, an equation system X = G(X):

(∗)

xt = fσ(t) for t ∈ T,

xv = ∑
w∈vE

hσ(vw) · xw for v ∈ Vσ,

xv = ∏
w∈vE

hσ(vw) · xw for v ∈ V1−σ.

Under what condition can we compute a solution G : X → S? The
obvious idea is to use a least fixed-point induction. We define:
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8 Least Fixed Points and ω-Continuous Semirings

• G0(xv) = 0, for all v,

• Gi+1(xv) =


fσ(xv) for v ∈ T,

∑w∈vE hσ(vw) · xw for v ∈ Vσ,

∏w∈vE hσ(vw) · xw for v ∈ V1−σ.

Question: Does the sequence G0, G1, . . . converge to a fixed-point solu-
tion Gm = Gm+1 =: G∞?

8.1.2 Query languages with recursion: Datalog

Definition 8.1. A Datalog program Π is a finite set of rules

r : H(x)← α1, . . . , αm

where H(x), the head of the rule, is an atomic formula, and α1, . . . , αm,
the body of the rule, is a collection of atomic formulae, containing all
variables of the head predicate (and possibly more).

Example:

Txy← Exy

Txy← Txz, Tzy

We use the following notation:
σ: predicates that occur in the head of some rule (here: T),
τ: predicates that occur only in the bodies of the rules (here: E).

Given a database D of vocabulary τ, one recursively computes
values for the head predicates and then produces a database Π(D) of
vocabulary τ ∪ σ: Write the body of a rule as a conjunction

r : H(x)← β(x, y), where β(x, y) = α1 ∧ · · · ∧ αm.

Start with Π(D) = (D, ∅), i.e. let the set of σ-predicates be empty.
Whenever an instantiation β(a, b) of the body of a rule is true in Π(D),
add the fact H(a) to Π(D). This process terminates (after a polynomial
number of steps w.r.t. |D|).
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A (Boolean) Datalog query is given by a Datalog program Π and
a head atom H(a). It is true in a database D if the fact H(a) holds
in Π(D); one often writes D ∪Π |= H(a). In the example above, a
database D = (D, E) with finite E ⊆ D× D satisfies the query Tab if
(a, b) is in the transitive closure of E. Thus Datalog can express queries
that are not FO-definable.

On the other side, Datalog is limited by the absence of negation and
universal quantification. In particular, Datalog queries are monotone: If
D ⊆ D′ (viewed as sets of atomic facts), then every Datalog query true
in D is also true in D′. There exist numerous extensions and variants of
Datalog that add, for instance, negation in one form or another.

Question: How to define semiring valuations for Datalog?

8.1.3 Logic: Positive least-fixed point logic

Here we consider posLFP, a fragment of a much more general fixed-
point logic (LFP), to be considered later. Given a formula ψ(R, x) of
vocabulary τ ∪ {R} in which R occurs only positively and where |x| = k
matches the arity of R, we build the formula

[lfp Rx. ψ(R, x)](z).

Given a τ-structure A, we associate with ψ(R, x) an operator

Fψ : P(Ak) −→ P(Ak),

∈

R 7−→ {a ∈ Ak | (A, R) |= ψ(R, a)}.

Due to the assumption that R only occurs positively in ψ, the
operator Fψ is monotone: if R ⊆ R′, then Fψ(R) ⊆ Fψ(R′). Therefore,
starting with R0 = ∅, the sequence R0, R1, R2, . . . with Ri+1 := Fψ(Ri)

is increasing: R0 ⊆ R1 ⊆ . . . and therefore reaches a fixed-point Rα

with Rα+1 = Fψ(Rα) = Rα =: R∞. If A is finite, this happens after
a polynomial number of steps: α ≤ |A|k. In fact, this inductively
computed fixed point R∞ is always the least fixed point of Fψ, so

R∞ = lfp(Fψ) =
⋂
{R ⊆ Ak | Fψ(R) = R}
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8 Least Fixed Points and ω-Continuous Semirings

=
⋂
{R ⊆ Ak | Fψ(R) ⊆ R}.

Semantics of lfp-formulae:

A |= [lfp Rx. ψ(R, x)](a) def⇐⇒ a ∈ lfp(Fψ).

Example 8.2. Let ψ(T, xy) := Exy∨ ∃z(Txz∧ Tzy). For a directed graph
G = (V, E), we have

G |= [lfp Txy. ψ(T, xy)]((a, b))

⇐⇒ (a, b) ∈ TC(E)

⇐⇒ there is a path a +−→ b in G. ■

We define posLFP(τ) as the set of formulae built from τ-literals Px,¬Px,
x = y, x ̸= y and fixed-point atoms Rx, combined with ∧, ∨, ∃, ∀, lfp.
Some facts (more details in the upcoming lecture “Algorithmic Model
Theory”):

• Let ψ ∈ posLFP(τ). On a given finite τ-structure A it can be
decided in polynomial time (w.r.t. |A|) whether A |= ψ.

• Datalog ≤ posLFP: Every Datalog query can be translated into an
equivalent posLFP-formula.

Example 8.3. As a further important example, consider reachability
games G = (V, V0, V1, T, E) with a winning condition W ⊆ T for
Player 0. Player 0 has a winning strategy for (G, W) from v ⇐⇒
(G, W) |= [lfp Rx. φ(R, x)](v), where

φ(R, x) := Wx ∨ (V0x ∧ ∃y(Exy ∧ Ry))

∨ (V1x ∧ ∀y(Exy→ Ry)).

Indeed, for the fixed-point induction R0 ⊆ R1 ⊆ . . . of Fφ on (G, W) we
have that Ri = {v | Pl. 0 can win from v in ≤ i− 1 moves.}. ■

Question: How to define semiring valuations for posLFP?
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8.2 Towards Semirings for Least Fixed Points

8.2 Towards Semirings for Least Fixed Points

Not all semirings are appropriate for these three scenarios. Consider
the following game:

s v w t

8.2.1 Natural Numbers

Using the semiring S = N, we set h0(e) = 1 for all edges e, and
h0(s) = a, h0(t) = b for some a, b ∈ N (e.g. a = 2, b = 5). We get an
equation system for xv, xw (and xs, xt):

xs = a,

xt = b,

xv = xw + a,

xw = xv · b.

This system has no solution in N. The least fixed-point induction,
starting with G0(xv) = G1(xw) = 0 leads to Gi(xs) = a, Gi(xt) = b for
all i, and further

xv xw

G0 0 0

G1 a 0

G2 a ab

G3 a + ab ab

G4 ab + ab2

G5 a + ab + ab2

G6 ab + ab2 + ab3

...
...

G2n−1 a + ab + · · ·+ abn−1

G2n ab + ab2 + · · ·+ abn

...
...
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8 Least Fixed Points and ω-Continuous Semirings

But we do get a solution in the extended semiring N∞ over N ∪
{∞} with operations extended as follows:

∞ + n = ∞ and ∞ · n =

∞, n ̸= 0,

0, n = 0.

The solution gives:

f0(v) = G∞(v) =


0, a = 0,

a, b = 0,

∞, a, b ̸= 0,

f0(w) = G∞(w) =

0, a = 0 or b = 0,

∞, a, b ̸= 0.

8.2.2 Viterbi Semiring

We also get solutions in many other semirings, for instance in the Viterbi
semiring:

f0(v) = G∞(v) = a, f0(w) = G∞(w) = ab.

Indeed:

f0(v) = f0(w) + a since a = max(ab, a),

f0(w) = f0(v) · b since ab = a · b.

8.2.3 Formal Power Series

What about the most general semirings N[X], here N[s, t]? The fixed-
point induction gives polynomials

F2n+1(v) = s + st + · · ·+ stn,

F2n+1(w) = st + st2 + · · ·+ stn.
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8.3 ω-continuous Semirings

This does not converge to a solution in N[s, t], but it does converge
in N∞Js, tK, the semiring of formal power series (i.e., possibly infinite
sums of monomials) over s, t. The solution is given by the infinite sums

f0(v) = s + st + st2 + . . . ,

f0(w) = st + st2 + . . . .

Indeed, f0(v) = s + f0(w) and f0(w) = f0(v) · t. And this valuation
gives us the desired information about the strategies of Player 0 from v
and w:

• From v, Player 0 has strategies Sn for each n ∈N: move n times to
w, then to s. The monomial associated with Sn is s · tn (one play to
s, n plays to t). Thus F(Sn) = s · tn and f0(v) = ∑n∈N F(Sn).

• From w this is analogous, but for S ′n (move n times from v to w,
then to s) the valuation is F(S ′n) = s · tn+1.

8.3 ω-continuous Semirings

Definition 8.4. A semiring S is ω-continuous if it is

• naturally ordered (a ≤ b def⇐⇒ ∃c a + c = b is a partial order);

• ω-complete: every ascending ω-chain C = (an)n<ω with an ≤ an+1,
for all n, has a supremum in S (denoted

⊔
C);

• and its operations + and · are ω-continuous in both arguments
(see below), i.e., a +

⊔
C =

⊔
(a + C) and a ·⊔C =

⊔
(a · C) for all

ascending ω-chains C.

Definition 8.5. A function f : S → S on ω-complete semirings is ω-
continuous, if f (

⊔
C) =

⊔
f (C) for each ascending ω-chain C = (an)n∈ω

with supremum
⊔

C.

Notice that an ω-continuous function f is in particular monotone
(a ≤ b =⇒ f (a) ≤ f (b)). To see this, consider the chain {a, b} with
a ≤ b. Then

⊔{ f (a), f (b)} = f (
⊔{a, b}) = f (b), hence f (a) ≤ f (b).

(For + and ·, we already know that they are monotone on naturally
ordered semirings.)
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8 Least Fixed Points and ω-Continuous Semirings

Theorem 8.6 (Kleene). If S is ω-complete and f : S→ S is ω-continuous,
then lfp( f ) =

⊔{ f n(0) | n < ω}.

Proof. As f is monotone, the iteration 0, f (0), f 2(0), . . . , f n(0), . . . is an
ascending ω-chain with a supremum z ∈ S. By the ω-continuity of f :

f (z) = f
(⊔
{ f n(0) | n < ω}

)
=
⊔{

f n+1(0)
∣∣∣ n < ω

}
= z.

For each other fixed point x = f (x), we have that f n(0) ≤ x for all
n, since clearly f 0(0) = 0 ≤ x and if f n(0) ≤ x then also f n+1(0) =

f ( f n(0)) ≤ f (x) = x. Thus also z =
⊔{ f n(0) | n < ω} ≤ x, so

z = lfp( f ). q.e.d.

This readily generalizes to systems ( f1, . . . , fn) with fi : Sn → S
(see below). In an ω-continuous semiring, we also have a well-defined
infinite summation operator

∑
i≤ω

bi :=
⊔
{∑

i≤n
bi | n < ω}

and the Kleene star operation

a∗ := ∑
i<ω

ai =
⊔
{(1 + a + a2 + · · ·+ ai | i < ω}.

Definition 8.7. Given a semiring S and a finite set X of indeterminates,
we define the semiring SJXK of formal power series (possibly infinite sums
of monomials) with coefficients in S and indeterminates in X. Addition
and multiplication are defined in the obvious way.

If S is ω-continuous, then so is SJXK. Further, for n = |X|, each
f ∈ SJXK induces a function

f : Sn → S, (a1, . . . , an) 7→ f (a1, . . . , an)

which is ω-continuous in each argument.

We can deal with negation in the same way as in polynomial semir-
ings, using dual-indeterminate power series: NJX, XK is the quotient
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of NJX ∪ XK by the congruence generated by x · x = 0 for x ∈ X. This
semiring has the following universal property:

Proposition 8.8 (Universal Property). Every function f : X∪X → S into
an ω-continuous semiring S with f (x) · f (x) = 0 for all x ∈ X extends
uniquely to an ω-continuous semiring homomorphism f̂ : NJX, XK→ S
that coincides with f on X ∪ X.

Let S be ω-continuous. A system of power series (or polynomials)
with indeterminates X = (X1, . . . , Xn) is a sequence F = ( f1, . . . , fn)

with fi ∈ SJXK. It induces a function F : Sn → Sn that is ω-continuous
in each argument. By Kleene’s Fixed-Point Theorem it has a least fixed
point lfp(F) ∈ Sn which coincides with the supremum

⊔
i<ω Fi of the

Kleene approximants with F0 = 0 and Fi+1 = F(Fi). We also refer to
lfp(F) as the least fixed-point solution of X = F(X).

8.3.1 Reachability Games

Consider now a reachability game G (potentially with cycles), valuations
fσ : T → S and hσ : E→ S \ {0} into an ω-continuous semiring S, and
the associated equation system Gσ(X) = X for X = {xv | v ∈ V}.
The least fixed-point solution lfp(Gσ) gives us the desired valuation
fσ : V → S with fσ(v) = (lfp Gσ)(xv). Does the Sum-of-Strategies
Theorem hold also in this case? To generalise this result to games G
with cycles, we need to extend valuations of plays and strategies to such
games.

Plays:
For a finite play x = v0 . . . vm ending in a terminal node vm ∈ T, we put
fσ(x) = hσ(v0v1) · · · hσ(vm−1vm) fσ(vm) as before. For an infinite play
x we put fσ(x) = 0.

Strategies:
For a strategy S ∈ Stratσ(v) we put F(S) = 0 if S admits any infinite
play. Hence a strategy S can have a non-zero valuation only if it admits
only finite plays. By Kőnig’s Lemma it then only admits a finite number
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8 Least Fixed Points and ω-Continuous Semirings

of plays, and putting

F(S) = ∏
e∈E

hσ(e)#e(S) · ∏
v∈T

fσ(t)#t(S)

is well-defined, as #e(S) and #t(S) are always finite.

Although the number of strategies in Stratσ(v) may well be infinite,
the Sum-of-Strategies Theorem generalizes to reachability games with
cycles. The proof relies on Kleene’s Fixed-Point Theorem and the
unravelings of G to finite truncated acyclic games G(n).

Definition 8.9. Given G = (V, V0, V1, T, E) with basic valuations
fσ : T → S and hσ : E → S \ {0}, the truncation G(n) = (V(n), V(n)

0 ,

V(n)
1 , T(n), E(n)) for n > 0 is the restriction of the forest

⋃
v∈V T (G, v) to

paths of less than n moves, and ρ(n) : G(n) → G is the restriction of the
canonical homomorphisms ρ to G(n).

The basic valuations for G(n) are defined by

hn
σ : E(n) −→ S \ {0}, f n

σ : T(n) −→ S,

e 7−→ hσ(ρ
(n)(e)), πv 7−→

{
fσ(v) if v ∈ T

0 if v /∈ T,

i.e. if πv ∈ T(n) is an initial segment with n− 1 moves of a play in G
that has not reached a terminal position.

The games G(n) are finite acyclic games and the basic valuations
hn

σ, f n
σ extend to valuations f n

σ : V → S. Let Gn : V → S be the Kleene
approximants of the equation system Gσ(X) = X of the game G. By an
easy induction, we get the

Lemma 8.10. For all n > 0, we have f n
σ = Gn.

Let Strat(n)σ (v) be the set of strategies of Player σ from v in G(n).
Since the games G(n) are acyclic, the Sum-of-Strategies Theorem from
Chapter 5 holds:

f n
σ (v) = ∑

T ∈Strat(n)σ (v)

F(T )
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Every strategy S ∈ Stratσ(v) of G induces strategies S (n) ∈
Strat(n)σ (v) for G(n) (for all n).

Lemma 8.11. For every strategy S ∈ Stratσ(v) in G with F(S) ̸= 0 there
exists some nS < ω with

• S = S (n) for all n ≥ nS ,

• F(S (m)) = 0 for all m < nS .

Proof. If F(S) ̸= 0 then Plays(S) is finite and has only finite plays.
Let nS = max{|x| : x ∈ Plays(S)}. For n ≥ nS , all x ∈ Plays(S)
are also contained in Plays(S (n)). For m < nS , Plays(S (m)) contains
an unfinished play, whose last position has value f m

σ (w) = 0, hence
F(S (m)) = 0. q.e.d.

Every strategy T ∈ Strat(n)σ (v) is induced by some S ∈ Stratσ(v),
so that T = S (n). In general S is not uniquely determined by T and n.
Nevertheless:

Lemma 8.12. For all positions v of G and all n,

∑
S∈Stratσ(v)

F(S (n)) = ∑
T ∈Strat(n)σ (v)

F(T ).

Proof. If S1 ̸= S2 ∈ Stratσ(v) with T = S (n)1 = S (n)2 , then Plays(T )
contains an unfinished play (otherwise T = S1 = S2) which implies
F(T ) = 0. Thus, although the strategy spaces Stratσ(v) may be infinite,
whereas Strat(n)σ (v) is finite for each n, those strategies that provide
non-zero valuations are in one-to-one correspondence, and the two
sums have the same values. q.e.d.

Theorem 8.13 (Sum of Strategies). For every finite game graph G with
basic valuations fσ : T → S and hσ : E→ S \ {0} into an ω-continuous
semiring S ,

fσ(v) = (lfp Gσ)(v) = ∑
S∈Stratσ(v)

F(S).
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Proof. For every n < ω,

Gn(v) = f n
σ (v) = ∑

T ∈Strat(n)σ (v)

F(T ) = ∑
S∈Stratσ(v)

F(S (n)).

Further, for every S ∈ Stratσ(v), we have F(S) = F(S (n)) for suffi-
ciently large n. Take suprema on both sides. q.e.d.

For basic valuations fσ : V →N∞JTK with fσ(t) = t and hσ(e) = 1
for all e ∈ E, the value fσ(v) ∈N∞JTK is an infinite sum of monomials
m · tj1

1 · · · t
jk
k with m ∈ N∞ and j1, . . . , jk > 0. Each such monomial

indicates that Player σ has m strategies S from v with set of outcomes
{t1, . . . , tk}, and precisely ji plays consistent with S have outcome ti.

8.3.2 Valuations for posLFP

Let π : LitA(τ) → S be a semiring intepretation into an ω-continuous
semiring S, which provides valuations πJψK ∈ S for ψ ∈ FO(τ). We
extend this to posLFP as follows:

Consider ψ(a) = [lfp Rx. φ(R, x)](a). Assume that a valuation for
φ are already defined; if R has arity m, this gives us a function g : Am →
S. For two such functions g, g′ we say that g ≤ g′ if g(a) ≤ g′(a) for all
a ∈ Am. Given π : LitA(τ)→ S, and g : Am → S, let

π[R 7→ g] : LitA(τ) ∪AtomsA({R}) −→ S

be obtained from π by adding valuations Rc 7→ g(c). This provides, for
each a ∈ Am a valuation π[R 7→ g]Jφ(R, a)K ∈ S and thus an update
operator Fφ

π on functions g : Am → S:

Fφ
π : g 7→ Fφ

π (g), where Fφ
π (g) : a 7→ π[R 7→ g]Jφ(R, a)K.

This operator is monotone; by Kleene’s Fixed-Point Theorem, it has a
least fixed point lfp(Fφ

π ) : Am → S which coincides with the supremum
of (gn)n<ω with g0 = 0 and gn+1 := Fφ

π (gn), and which we define as
the S-valuation of ψ, i.e.,

πJψ(a)K := lfp(Fφ
π )(a).
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8.3.3 Definition via Model-Checking Game

Alternatively, we can define the S-valuation via model-checking games.
Extend model-checking games G(A, ψ) from FO to posLFP by the fol-
lowing moves, for formulae [lfp Rx. φ(R, x)](a), assuming that each
fixed-point variable R is used only once by an lfp-operator, so that φ is
uniquely determined by R:

[lfp Rx. φ(R, x)](a) 7−→ φ(R, a),

Rb 7−→ φ(R, b).

Notice that G(A, ψ) may have cycles, but the terminal positions are
just the τ-literals Pc,¬Pc and c = d, c ̸= d. A valuation π : LitA(τ)→ S
provides a valuation f0 of the terminal positions of G(A, ψ); as for FO-
model-checking games, we evaluate edges trivially. We get a valuation
f0 : V → S of all positions of G(A, ψ). But these positions are instan-
tiated subformulae φ(a) of ψ. In particular, f0(ψ(a)) ∈ S gives us a
semiring valuation for ψ(a) ∈ posLFP. These two definitions coincide:

πJψ(a)K = f0(ψ(a)).

8.3.4 Datalog

Valuations of Datalog queries are defined in a similar way. Consider
a Datalog program Π with head vocabulary σ and body predicates
from τ, and an ω-continuous semiring S. A τ-database over S with
domain A is given by a function D : AtomsA(τ) → S. The Datalog
program Π extends this to a function (D, Π) : AtomsA(τ ∪ σ) → S
which is the least fixed point of an update operator FD

π on functions
g : AtomsA(τ ∪ σ)→ S.

Given a rule r : H(x) ← γ1(E1), . . . , γm(Em) with E1 ∪ · · · ∪ Em =

x ∪ y, an instantiation r(a, b) of r is obtained by a map x 7→ a, y 7→ b.
Put

head(r(ab)) = Ha,

body(r(ab)) = {γ1(ab), . . . , γm(ab)}.
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The update function FD
Π : g 7→ g′ for g : AtomsA(τ ∪ σ)→ S is given by

the equation system

g(xα) = D(α), for α ∈ AtomsA(τ),

g(xα) = ∑
r(ab)∈Π

with head(r(ab))=α

∏
γ∈body(r(ab))

g(xγ).

The update operator is monotone, and we put (D, Π)(α) =
(
lfp FD

Π
)
(xα)

for every α ∈ AtomsA(σ ∪ τ).

We can also view this as a reachability game with positions

{xα | α ∈ AtomsA(σ)}︸ ︷︷ ︸
V0

∪ {xα | α ∈ AtomsA(τ)}︸ ︷︷ ︸
T

∪ {r(a, b) | r a rule of Π, a ∈ Ai, b ∈ Aj for appropriate i, j}︸ ︷︷ ︸
V1

.

Player 0 moves from xα ∈ V0 to some r(a, b) with head(r(a, b)) = α

and from there Player 1 moves to some xγ with γ ∈ body(r(a, b)). An
S-database D : AtomsA(τ) → S provides a valuations of Player 0 for
the positions in T. The induced valuation f0 : V0 → S provides values(
Π, D

)
(α) = f0(xα). Again the valuations coincide.
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9 Greatest Fixed Points, Fully-Continuous
Semirings and Generalized Absorptive
Polynomials

9.1 Semirings for LFP

The full LFP-logic is based on both least and greatest fixed points (or,
equivalently, the interleaving of least fixed points and negation). This
means that for formulae ψ(R, x), where R occurs only positively in ψ,
we can build not only [lfp Rx. ψ(R, x)](z), but also [gfp Rx. ψ(R, x)](z)
with

A |= ψ(a) def⇐⇒ a ∈ gfp(Fψ),

where gfp(F) is the greatest fixed point of a monotone operator F.

Consider a powerset lattice P(B). There is a duality between least
and greatest fixed points: For X ∈ P(B), let X := B \X, and let the dual
operator of F : P(B)→ P(B) be Fd : P(B)→ P(B) with Fd(X) := F(X).
If F is monotone, then so is Fd, and we have lfp(Fd) = gfp(F), and
gfp(Fd) = lfp(F). In terms of LFP-formulae, this means that

¬
[
lfpR x. ψ(R, x)

]
(z) ≡

[
gfpR x. ¬ψ(R, x)[R/¬R]

]
(z),

¬
[
gfpR x. ψ(R, x)

]
(z) ≡

[
lfpR x. ¬ψ(R, x) [R/¬R]︸ ︷︷ ︸

replace atoms Ra by ¬Ra

]
(z).

For a monotone operator F : P(B)→ P(B), the greatest fixed point
gfp(F) can be computed by dual induction (compared to lfp(F)):

Y0 := B, Yα+1 := F(Yα), Yλ :=
⋂

α<λ

Yα,
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9 Greatest Fixed Points

for ordinals α and limit ordinals λ. This produces a decreasing sequence

Y0 ⊇ Y1 ⊇ . . . Yα ⊇ Yα+1 ⊇ . . . Y∞ = F(Y∞) = gfp(F).

Example 9.1. Given a game G = (V, V0, V1, T, E), a safety condition for
Player 0 is given by a set S ⊆ V of safe positions; Player 0 wins those
plays that never leave S. The winning region of (G, S) for Player 0 is
defined by

ψ(x) :=
[
gfp Wx. Sx ∧ (V0x → ∃y(Exy ∧Wy))

∧ (V1x → ∀y(Exy→Wy))
]
(x). ■

To define semiring valuations for posLFP-formulae, we considered
for φ(R, x) and π : LitA(τ) → S the monotone update operator Fφ

π on
functions g : Am → S with Fφ

π (g) : a 7→ π[R 7→ g]Jφ(R, a)K and then
put πJ[lfp Rx. φ(R, x)](a)K := lfp(Fφ

π )(a). Can we use the same idea
for greatest fixed points? What properties of semirings are necessary
to guarantee that that greatest fixed points gfp(Fφ

π ) are well-defined and
informative on S?

Given a naturally ordered semiring S, a chain C ⊆ S is any totally
ordered subset.

Definition 9.2. A naturally ordered semiring S is fully chain-complete if
every chain C ⊆ S has supremum

⊔
C and an infimum

d
C. Moreover,

S is fully continuous if in addition, its operations ◦ ∈ {+, ·} are fully
continuous, i.e., a ◦⊔C =

⊔
(a ◦ C) and a ◦

d
C =

d
(a ◦ C) for all a ∈ S

and all non-empty chains C ⊆ S.

Example 9.3. The semirings V, N∞, N∞JXK, N∞[X, X] are fully contin-
uous. ■

By a straightforward generalisation of Kleene’s Theorem, we obtain
that every monotone function f : S → S on a fully chain-complete
semiring has least and greatest fixed points lfp( f ) and gfp( f ). Hence
semiring semantics for LFP is well-defined in fully chain-complete
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9.1 Semirings for LFP

semirings (one has to show that the update operators Fφ
π are always

monotone, even for nested fixed points).

Example 9.4. Existence of an infinite path from u:

G :
u v

ψ(u) := [gfp Rx. ∃y(Exy ∧ Ry)](u).

The fixed-point induction gives R0 = {u, v}, R1 = {u, v} = R∞. Indeed,
an infinite path exists from both u and v. What happens if we evaluate
ψ in different semirings?

B:
There is a unique B-interpretation π that defines G, and πJψ(u)K = 1.

V:
For π with π(Euv) = π(Evv) = 1, we have πJψ(u)K = 1 as above. But
if we set π(Evv) = 1− ε (for ε > 0), we obtain πJψ(u)K = 0 due to the
fixed-point iteration 1, 1− ε, (1− ε)2, . . . . So while Aπ = G, we have
πJψ(u)K = 0 although G |= ψ(u).

The Viterbi semiring is thus not truth-preserving (but since the loop
at v must occur infinitely often in an infinite path from u, the value
πJψ(u)K still makes sense as a confidence score).

N∞JXK:
Setting π(Euv) = x, π(Evv) = y, we get πJψ(u)K = 0 due to the fixed-
point iteration ⊤, y · ⊤, y2 · ⊤, . . . with infimum 0. (Here, ⊤ is the
power series where all monomials have coefficient ∞, whereas ym ·⊤
contains only those monomials where y has an exponent ≥ m.)

Thus N∞JXK is not truth-preserving either.

N∞:
Setting π(Euv) = π(Evv) = 1 gives πJψ(u)K = ∞. The fixed-point
iteration is ∞, 1 · ∞, . . . stagnating immediately.

Problem: Multiplication with non-zero values is increasing. Great-
est fixed-point iterations will almost always stay at infinity and do not
provide informative values.

Notice that we cannot get the value in N∞ from the computation
in N∞JXK by evaluation of the power series, so N∞JXK are not the right
universal provenance semirings for full LFP. ■
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9 Greatest Fixed Points

The problem that in some semirings, the valuations of greatest
fixed points are, although well-defined, not really informative and do
not provide useful insights why a formula holds, can be tied to two
separate problems:

• lack of symmetry between least and greatest fixed points in some
semirings,

• semirings that are not truth-preserving (they may evaluate true
statements to 0).

To deal with these problems, we work with semirings that are absorptive
and chain-positive.

Absorptive semirings provide more symmetry: multiplication is
decreasing (whereas addition is increasing). This avoids the problems
(as in N∞) that the gfp-induction remains stuck at the top element.
Further, absorptive semirings give information about “reduced” proof
and evaluation strategies.

We say that a semiring S is truth-preserving for a logic L if for every
model-defining S-interpretation π we have that Aπ |= φ⇐⇒ πJφK ̸= 0
for all φ ∈ L.

Definition 9.5. A fully chain-complete semiring S is chain-positive if for
every non-empty chain C ⊆ S of non-zero elements,

d
C is non-zero as

well.

Lemma 9.6. Every chain-positive, positive semiring is truth-preserving
for LFP.

9.2 Generalised Absorptive Polynomials

We introduce the semirings S∞[X] (and S∞[X, X]). Let X be a finite set
of indeterminates. We generalise the notion of a monomial to m : X →
N∞ with m = xm(x1)

1 · · · xm(xn)
n . Multiplication of monomials adds

exponents, and xn · x∞ = x∞. We say that m2 absorbs m1 (m2 ≽ m1) if
m2(x) ≤ m1(x) for all x ∈ X. The set of monomials is of course infinite,
but
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9.3 Case Study: Büchi Games

• every antichain of monomials is finite,
• while there are infinitely descending chains of monomials, such as

1 = x0 ≻ x1 ≻ x2 ≻ . . . (with infimum x∞), there are no infinitely
ascending chains.

Definition 9.7. S∞[X] is the set of antichains of monomials with inde-
terminates from X and exponents from N∞. We write such antichains
as formal sums of their monomials and call them generalised absorptive
polynomials.

Addition and multiplication of polynomials are defined as usual,
but we keep only ≽-maximal monomials in the result and disregard
coefficients.

Notice: There is no difference between polynomials and formal
power series here, since antichains of monomials are finite.

Theorem 9.8 (Universality). Every mapping h : X → S into an absorp-
tive, fully continuous semiring S extends uniquely to a fully-continuous
semiring homomorphism ĥ : S∞[X]→ S.

In absorptive semirings, the powers of an element a form a de-
scending chain 1 ≥ a ≥ a2 ≥ . . . with infimum a∞. Hence h(x) = a
implies ĥ(x∞) = ĥ(

d
n<ω xn) =

d
n<ω(h(x))n = a∞ by continuity of ĥ.

It is thus not difficult to see that ĥ is uniquely defined. The non-trivial
part of the proof is the one showing that ĥ is fully continuous.

The semirings S∞[X] and S∞[X, X] are the “right” most general
semirings for LFP.

9.3 Case Study: Büchi Games

In a Büchi game G = (V, V0, V1, E, F), Player 0 wins plays that hit F
infinitely often. Winning regions are LFP-definable by

win(x) = [gfp Yy. [lfp Zz. φ(Y, Z, z)](y)](x),

φ(Y, Z, z) :=
(

Fz ∧ ((V0z ∧ ∃u(Ezu ∧Yu)) ∨ (V1z ∧ ∀u(Ezu→ Yu)))
)

∨
(
¬Fz ∧ ((V0z ∧ ∃u(Ezu ∧ Zu)) ∨ (V1z ∧ ∀u(Ezu→ Zu)))

)
.

79



9 Greatest Fixed Points

Idea: Compute πJwin(v)K, where π is a semiring interpretation of
a Büchi game (see Figure 9.1 for an example).

v
v′

uw

a
c

b

d

e i

f

h

g

k

m

n

p

q

Figure 9.1. S∞[X]-interpretation πstrat of a Büchi game (dashed nodes are in F).

Theorem 9.9 (Sum of Strategies).

πJwin(v)K = ∑
{

πJSK

∣∣∣∣∣ S is an absorption-dominant

winning strategy from v

}
,

where

πJSK := ∏
e∈E

e#e(S) (with #e(S) ∈N∞).

Here, π : G → S maps a Büchi game into an absorptive, fully-
continuous semiring S. For instance, πstrat : G 7→ S∞[X], e 7→ xe (we
write e for xe). In the example (see Figure 9.1), we get

πstratJwin(v)K = (abcd)∞︸ ︷︷ ︸
positional

+ abce2h2(gkm)∞︸ ︷︷ ︸
positional

+ abc f 2(gkm)∞︸ ︷︷ ︸
positional

+ abce f h(gkm)∞︸ ︷︷ ︸
absortion-dominant,

but not positional

.

From πstratJwin(v)K ∈ S∞[X] we can derive:

(1) Whether Player 0 wins from v (this holds iff πstratJwin(v)K ̸= 0).
(2) Edge profiles of all absorption-dominant winning strategies from v.
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9.3 Case Study: Büchi Games

(3) The number and shapes of all positional winning strategies from v.
(4) Whether Player 0 can still win if a subset X ⊆ E is forbidden.
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