Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik

RWTH Aachen Prof. Dr. E. Grädel, K. Dannert

2. Übung Mathematische Logik II

Abgabe: bis Montag, 23. Oktober in der Vorlesung oder um 18:00 Uhr am Lehrstuhl.

Aufgabe 1 5 + 5 Punkte

- (a) Aus dem Kreationsaxiom folgt, dass für jede Menge x eine transitive Menge y mit $x \subseteq y$ existiert. Zeigen Sie, dass dann auch eine eindeutig bestimmte kleinste transitive Menge TC(x) existiert, sodass $x \subseteq TC(x)$ gilt. TC(x) nennt man auch den transitiven Abschluss (engl.: transitive closure) von x.
- (b) Sei n eine natürliche Zahl und $a = \{x\}$ eine hereditär endliche Menge mit $x \in \mathrm{HF}_n$. Bestimmen Sie, wie viele Elemente $\mathrm{TC}(a)$ mindestens enthält, wie viele Elemente $\mathrm{TC}(a)$ maximal enthält und geben Sie jeweils eine Menge $x \in \mathrm{HF}_n$ an, für die Ihre Schranke angenommen wird.

Aufgabe 2 4 Punkte

Seien a, b Mengen und A, B echte Klassen. Sei $\varphi(x)$ eine Eigenschaft von Mengen. Welche der folgenden Klassen sind Mengen? Für welche von ihnen braucht man zusätzliche Informationen, um dies zu entscheiden?

$$a\cap b,\ a\cap B,\ A\cap B,\ \bigcap a,\ \bigcap A,\ a\backslash A,\ A\backslash B,\ \{x\in A\mid x\in a\cap b,\ \varphi(x)\}.$$

Aufgabe 3 (2+2)+4 Punkte

Eine Klasse A heißt erblich, wenn für alle $a \subseteq b \in A$ auch $a \in A$ ist.

- (a) Beweisen Sie die folgenden Aussagen.
 - (i) Eine Klasse A ist genau dann erblich und transitiv, wenn acc(A) = A ist.
 - (ii) Ist B eine erbliche und transitive Klasse und $A \subseteq B$, so gilt $acc(a) \subseteq B$.
- (b) Sei $a \in HF_n$ für eine natürliche Zahl n. Wir definieren $a_0 := a$ und $a_{i+1} := acc(a_i)$ für alle natürlichen Zahlen i > 0. Zeigen Sie, dass es eine natürliche Zahl k gibt mit $a_{k+1} = a_k$ und zeigen Sie ferner, dass a_k erblich und transitiv ist.

Aufgabe 4 6 Punkte

Bestimmen Sie die Akkumulationen der folgenden Mengen und untersuchen Sie, ob es sich jeweils um eine Geschichte handelt:

$$A_1 = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\},\$$

$$A_2 = \{[2], [3]\},\$$

$$A_3 = \{HF_i \mid i \in \mathbb{N}\}.$$