
Logic and Games
WS 2015/2016

Prof. Dr. Erich Grädel
Notes and Revisions by Matthias Voit

Mathematische Grundlagen der Informatik
RWTH Aachen



cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2016 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de



Contents

1 Reachability Games and First-Order Logic 1
1.1 Model Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Model Checking Games for Modal Logic . . . . . . . . . . . . . 2
1.3 Reachability and Safety Games . . . . . . . . . . . . . . . . . . . 5
1.4 Games as an Algorithmic Construct: Alternating Algorithms . 10
1.5 Model Checking Games for First-Order Logic . . . . . . . . . . 20

2 Parity Games and Fixed-Point Logics 25
2.1 Parity Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Algorithms for parity games . . . . . . . . . . . . . . . . . . . . 30
2.3 Fixed-Point Logics . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Model Checking Games for Fixed-Point Logics . . . . . . . . . 37
2.5 Defining Winning Regions in Parity Games . . . . . . . . . . . 42

3 Infinite Games 45
3.1 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Gale-Stewart Games . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4 Determined Games . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5 Muller Games and Game Reductions . . . . . . . . . . . . . . . 61
3.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4 Basic Concepts of Mathematical Game Theory 79
4.1 Games in Strategic Form . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Nash equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Two-person zero-sum games . . . . . . . . . . . . . . . . . . . . 85
4.4 Regret minimization . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Iterated Elimination of Dominated Strategies . . . . . . . . . . . 89
4.6 Beliefs and Rationalisability . . . . . . . . . . . . . . . . . . . . . 95



4.7 Games in Extensive Form . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Subgame-perfect equilibria in infinite games . . . . . . . . . . . 102

Appendix A 111
4.9 Cardinal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Appendix A - Ordinal Numbers

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms, which (among others) guarantee the existence of
an empty set, an infinite set, and the powerset of any set, and that no
set is a member of itself (i.e. ∀x ¬x ∈ x) is called the Zermelo-Fränkel Set
Theory ZF. Furthermore, it is consequence of ZF that every set a contains
an ∈-minimal element b ∈ a, i.e. b ∩ a = ∅. This implies that there are
no infinite ∋-sequences x1 ∋ x2 ∋ x3 ∋ . . . , because otherwise the set
{x1, x2, x3, . . . } would not contain an ∈-minimal element. It is standard
in mathematics to use ZF extended by the axiom of choice AC, which
together are called ZFC.

Since everything is a set in mathematics, there is a need to represent
numbers as sets. The standard way to do this is to start with the empty
set, let 0 = ∅, and proceed by induction, defining n + 1 = n ∪ {n}. Here
are the first few numbers in this coding:

• 0 = ∅,
• 1 = {∅},
• 2 = {∅, {∅}},
• 3 = {∅, {∅}, {∅, {∅}}} = 2 ∪ {2},
• 4 = {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}} = 3 ∪ {3}.

Observe that for each number n (as a set) it holds that

m ∈ n =⇒ m ⊆ n for every set m. (4.1)

Sets satisfying property (4.1) are called transitive sets, because (4.1) is
equivalent to

x ∈ y ∈ n =⇒ x ∈ n for every set x, y.
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Ordinal Numbers

For example, the set a := {∅, {∅}, {{∅}}} ̸= 3 is a transitive set,
but a does not occur on our list of natural numbers. Intuitively, the
problem is that {{∅}} /∈ ∅ and ∅ /∈ {{∅}}, so ∈ is not trichotomous
on a. This is why, ∈ does not constitute a linear order on a. Now,
we define a more general class of numbers, the so-called von Neumann
ordinal numbers.

Definition 4.45. A set α is an ordinal if

(1) α is transitive, i.e. x ∈ y ∈ α =⇒ x ∈ α for every x, y, and

(2) ∈ is trichotomous on α, i.e. for every x, y ∈ α either x = y or x ∈ y
or y ∈ x.

On := {α : α is an ordinal} is the class of all ordinals.

We are going to prove in Theorem 4.47 that for all ordinal α, β it
holds that either

a = b or a ∈ b or a ∋ b.

It is even the cases, that the class of ordinal numbers forms a well-founded
order (w.r.t. ∈). This means, that ∈ is a linear order on the class of
ordinals and that every non-empty class X of ordinal number contains
an ∈-minimal ordinal α ∈ X, i.e. α ∈ β for every β ∈ X \ {α}. Note, that
this also implies that the class On is a proper class, which means that
On is not a set itself (otherwise On would satisfy Definition 4.45 and,
hence, On ∈ On in contradiction to the ZFC axioms).

It is easy to check that the natural numbers we defined above are
ordinal numbers: Indeed, if n is a natural number, then we have that
n = {0, . . . , n − 1} and, consequently, for every i ∈ n follows that
i = {0, . . . , i − 1} ⊆ {0, . . . , i − 1, i, . . . n − 1} = n. Similarly, it is easy to
see that for every m, k ∈ n that either m = k or m ∈ k or k ∈ m holds. It
is worth mentioning that the relation ∈ coincides with the usual order
< on natural numbers.

Except for natural numbers, are there any other ordinal numbers?
In fact, we shall see that there are infinite many ordinals which are
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infinitely large. For example, consider ω which is defined by

ω =
⋃

n
n =

⋃

n
{0, . . . , n − 1} = {0, 1, 2, 3, . . . }.

ω is the set of all natural numbers, but it is easy to verify that it satisfies
Definition 4.45 and, hence, ω is also an ordinal number. But it does
not stop here! It is always possible to apply the +1 operation, which is
defined as

α + 1 := α ∪ {α}.

Lemma 4.46. Let α be an ordinal and β ∈ α. Then β and α + 1 are
ordinals as well.

Proof. First, we prove that β is an ordinal. To do this, we need to prove
that β satisfies (1) and (2) of Definition 4.45.

(1) For this, let d ∈ c ∈ β. We need to show that d ∈ β. Due to
b ∈ c ∈ β ∈ α and the transitivity of α (Definition 4.45 (1)), it
follows that b, c ∈ α. Thus, β, c, d ∈ α. By Definition 4.45 (2), we can
conclude that β = d or β ∈ d or d ∈ β holds.
β = d is impossible, because β = d would implies that d ∈ c ∈ β = d
and, thus, c ∋ d ∋ c ∋ . . . but due to the ZFC axioms there are no
infinite ∋-sequences. Similarly, β ∈ d is also wrong since otherwise
d ∈ c ∈ β ∈ d. Therefore, d ∈ β has to be true.

(2) It remains to show that Definition 4.45 (2) is true for β. But this is
trivial because, due to Definition 4.45 (1), it is the case that β ⊆ α

and condition (2) is assumed to be true for α.

Now we demonstrate that α + 1 is an ordinal number.

(1) Transitivity of α + 1: Let c ∈ b ∈ α + 1. Our goal is to prove that
c ∈ α + 1. Since α + 1 = α ∪ {α}, we can distinguish the following
two cases. If b = α, then c ∈ b ∈ α and, by using the transitivity of
α, we can deduce that

c ∈ α ⊆ α ∪ {α} = α + 1.
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Otherwise, b ̸= α and then b ∈ α (because b ∈ α + 1). By transitivity
of α, we obtain c ∈ α ⊆ α + 1.

(2) Trichotomy: Let x, y ∈ α + 1. We need to prove that x = y or
x ∈ y or y ∈ x holds. If both x, y ∈ α, then there is nothing to
prove. Hence, x /∈ α or y /∈ α. W.l.o.g. we assume that x /∈ α. Since
x ∈ α + 1, it follows that x = α. If y ∈ α, then we are done. If, on the
other hand, y /∈ α, then x = α = y. Thus, we obtain x ∈ y or x = y.

q.e.d.

But does it make sense to say that ω + 1 is the next ordinal, is there
an order on ordinals?

In fact, the ordinal numbers are linearly ordered by ∈.

Theorem 4.47. For every ordinal α, β either α = β or α ∈ β or β ∈ α.
Furthermore, α ⊆ β holds, if and only if α ∈ β or α = β.

Before can prove this theorem, we need some lemmas first.

Lemma 4.48. If X is a non-empty class of ordinals, then

⋂
X := {x : x ∈ a for every a ∈ X}

is an ordinal.

Proof. Since X is non-empty, there is an ordinal α ∈ X and, then,
⋂

X ⊆ α.
Because α is a set, it is possible to prove (by using the ZFC axioms) that
⋂

X is a set. Now it suffices to prove that
⋂

X satisfies the two conditions
from Definition 4.45:

(1) Transitivity: Let a ∈ b ∈ ⋂X. Then a ∈ b ∈ γ for all γ ∈ X. Since X
is a class of ordinals, it follows that a ∈ γ for all γ ∈ X and, finally,
a ∈ ⋂X.

(2) Trichotomy: Let a, b ∈ ⋂
X. Then a, b ∈ α and, because α is an

ordinal, a ∈ b or a = b or b ∈ a.

q.e.d.

The transitivity of ordinals allows us to prove that elements of
ordinals are subsets. Of course, the converse is not true in general,
because not every subset of an ordinal is an element. However, proper
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subsets that are ordinals turn out to be elements. As usual we write
α ⊂ β as a shorthand for α ⊆ β and α ̸= β.

Lemma 4.49. Let α, β be ordinals and α ⊂ β. Then α ∈ β.

Proof. Towards a contradiction, we assume there are some ordinals α ⊂ β

with α /∈ β.
In order to obtain a contradiction, we prove that there is an infinite

∋-sequence β0 ∋ β1 ∋ β2 . . . of ordinals starting at β such that α ⊂ βi

but α /∈ βi for all i ∈ {0, 1, 2, . . . }.
We start with β0 := β. Now, consider the set

β0 \ α := {y ∈ β0 : y /∈ α} .

We define γ :=
⋂
(β0 \ α). Due to α ⊂ β = β0, there is a µ ∈ β0 \ α. As a

result, β0 \ α ̸= ∅ and γ is an ordinal (by Lemma 4.48).

Claim 4.50. α ⊆ γ.

Proof. Let δ ∈ α. We are going to prove that δ ∈ γ.
Since α ⊂ β0 we have δ ∈ β0. Let µ′ ∈ β0 \ α be picked arbitrarily.

As a result µ′, δ ∈ β0 and, by Definition 4.45 (2), it follows that

µ′ = δ or µ′ ∈ δ or δ ∈ µ′.

We observe that µ′ ̸= δ, because µ′ /∈ α but δ ∈ α. Furthermore,
µ′ /∈ δ, because otherwise µ′ ∈ δ ∈ α and (since α is an ordinal) µ′ ∈ α

but µ′ /∈ α.
Therefore, it must be the case that δ ∈ µ′. µ′ ∈ β0 \ α was chosen

arbitrarily, so δ ∈ ⋂(β0 \ α) = γ. q.e.d.

Now we have

α ⊆ γ =
⋂

β0 \ α.

Recall that µ ∈ β0 \ α and, therefore, γ =
⋂
(β0 \ α) ⊆ µ. Together with

α ⊆ γ this leads to α ⊆ µ. Since µ ∈ β0 and α /∈ β0, it follows that α ⊂ µ.
Furthermore, α /∈ µ, because otherwise α ∈ µ ∈ β0 and then α ∈ β0

(because β0 is an ordinal) in contradiction to α /∈ β0.
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All in all, we managed to prove that µ ∈ β0 is an ordinal (due to
Lemma 4.46) with α ⊂ µ but α /∈ µ. Hence, we can set β1 := µ.

By repetition, we can construct the desired sequence β0 ∋ β1 ∋ β2 ∋
. . ., but this contradicts the ZFC axioms!

q.e.d.

Now we have all the tools we need to finally prove Theorem 4.47.

Proof (of Theorem 4.47). First we prove that α ⊆ β ⇐⇒ α = β ∨ α ∈ β.
The direction “⇐=” follows intermediately from Definition 4.45 (1),

while “=⇒” is Lemma 4.49.
Now we demonstrate that ∈ is a linear order on the class of ordinal

numbers. Towards a contradiction, assume that there are ordinals α, β

that are incomparable w.r.t. ∈, i.e., we have

α ̸= β and α /∈ β and β /∈ α. (4.2)

Consider α ∩ β. By Lemma 4.48, α ∩ β is an ordinal. Furthermore,
α ∩ β ⊆ α and α ∩ β ⊆ β. If α = α ∩ β, then α ⊆ β and by Lemma 4.49
either α = β or α ∈ β in contradiction to (4.2). Thus, α ̸= α ∩ β and,
similarly, β ̸= α ∩ β.

But then, α ∩ β ⊂ α and α ∩ β ⊂ β, which implies that α ∩ β ∈ α and
α ∩ β ∈ β, which leads to α ∩ β ∈ α ∩ β, but due to the ZFC axioms this
is not possible! Contradiction!

So, ∈ is in fact a linear order on the class of ordinal numbers. q.e.d.

Recall that On is the class of all ordinals. Theorem 4.47 tells us that
∈ is a linear order on On. More general, ∈ is a well-founded order on On.
An order (A,<) is a well-founded order, if

(1) (A,<) is a linear order and
(2) for every non-empty set X ⊆ A there is a <-minimal element x ∈ X,

i.e., x < y for every y ∈ X.

For example, (N,<) is a well-founded order but (Z,<) or (Q≥0,<)

are not well-founded orders.
It is not difficult to see that ordinal numbers are well-founded

orders (w.r.t. ∈). Indeed, if X ⊆ On is a non-empty class of ordinals,
then γ :=

⋂
X is an ordinal (by Lemma 4.48) and γ ⊆ x for all x ∈ X.
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It remains to prove that γ ∈ X: Otherwise γ /∈ X and then γ ⊂ x for
all x ∈ X. This leads to γ ∈ x for all x ∈ X (by Theorem 4.47). Thus,
{γ} ⊆ x and, as a consequence, γ + 1 ⊆ x for all x ∈ X. But then
γ + 1 ⊆ ⋂

X = γ =⇒ γ ∈ γ which violates the ZFC axioms! Hence,
⋂

X = γ ∈ X.
Now we turn our attention towards the construction of bigger

ordinals. For this, we need the following lemma which states that
ordinal numbers are closed under unions.

Lemma 4.51. Let x be a set of ordinals, i.e., every α ∈ x is an ordinal.
Then

⋃
x := {β : β ∈ α for some α ∈ x}

is an ordinal number.

Proof. Using the ZFC axioms, it is possible to prove that
⋃

x is a set.
Hence, it remains to show that (1) and (2) of Definition 4.45 are satisfied.

(1) Transitivity of
⋃

x: If a ∈ b ∈ ⋃
x, then there is a c ∈ x such that

a ∈ b ∈ c and, by transitivity, a ∈ c which implies that a ∈ ⋃ x.
(2) Trichotomy: If a, b ∈ ⋃

x. Then there are some c, d ∈ x such that
a ∈ c and b ∈ d. Applying Lemma 4.46 yields that a, b are ordinals
and, by Theorem 4.47, either a = b or a ∈ b or b ∈ a.

q.e.d.

ω :=
⋃

n n, the union of all natural numbers, is again an ordinal
number. To prove this, we observe that ω =

⋃
ω and use Lemma 4.51

(that ω is a set is a consequence of the axiom of infinity).
What is the next ordinal number after ω? We can again apply the

+1 operation in the same way as for natural numbers, so

ω + 1 = ω ∪ {ω} = {0, 1, 2, . . . , {0, 1, 2, . . .}}.

Of course it is now possible to construction ordinals like ω + 2 :=
(ω + 1) + 1, ω + 3, . . . and then we can build the union

ω + ω =
⋃

i∈ω

ω + i = {0, 1, 2, . . . , ω, ω + 1, ω + 2, . . . },
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which is an ordinal because of Lemma 4.51. The fact that
ω ∪ {ω + i : i ∈ ω} is a set can be proven by using the axiom of re-
placement.

To get an intuition on how ordinals look like, consider the following
examples of infinite ordinals: ω + 1, ω + ω = 2ω, 3ω, . . . , ω · ω =

ω2, ω3, . . . , ωω.
For some ordinals α it is the case that α = β+ 1 for some β. However,

it is not possible to find an ordinal γ such that γ + 1 = ω holds (Why?).

Definition 4.52. Let α ̸= 0 be an ordinal. If β + 1 ∈ α for every β ∈ α,
then we call α an limes ordinal.

It is easy to see that λ is an limes ordinal, if and only if λ ̸= 0 and
⋃

λ = λ.
Ordinals that are not limes ordinals are called successor ordinals

because of the following theorem.

Theorem 4.53. Let α ̸= 0 be an ordinal that is not an limes ordinal. Then
there is an ordinal β such that β + 1 = α.

Proof. By Definition 4.52 there is a β ∈ α such that β+ 1 /∈ α. By Theorem
4.47, either β + 1 = α or β + 1 ∋ α.

So, we only need to show that β + 1 ̸∋ α holds. Otherwise α ∈
β + 1 = β ∪ {β}. Clearly, α /∈ {β} because α = β ∈ α would violate the
ZFC axioms. But then α ∈ β ∈ α which contradicts the ZFC axioms as
well. Hence β + 1 ∋ α is impossible which leads to β + 1 = α. q.e.d.

Ordinals are intimately connected to well-orders. In fact any well-
ordering (A,<) is isomorphic to some (α, ∈) where α is an ordinal.
For example, (N,<) is isomorphic to (ω,∈) and ω + ω represents
({0, 1} × N,<lex) where <lex is the lexicographical order.

The well-ordering of ordinals allows to define and prove the princi-
ple of transfinite induction. This principle states that On, the class of all
ordinals, is generated from ∅ by taking the successor (+1) and the union
on limit steps, as shown on the examples before.

The principle of transfinite induction allows us to define sets Xα

where α is an ordinal number. Since On is a well-order, we only need to
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describe how Xα is constructed under the assumption that Xβ is already
defined for every β ∈ α.

For example, it is possible to define (via transfinite induction) the
winning region of player 0 in a reachability game (V, V0, V1, E). To do
this, we define sets W0

α for every ordinal number α:

W0
0 := ∅,

W0
α+1 :=

{
x ∈ V0 : xE ∩ W0

α ̸= ∅
}
∪
{

x ∈ V1 : xE ⊆ W0
α

}
,

W0
λ :=

⋃

β∈λ

W0
β for limes ordinals λ.

Now it is easy to verify that
⋃

α∈On W0
α is the winning region of

Player 0.

4.9 Cardinal Numbers

Besides ordinals, we sometimes need cardinal numbers which are special
ordinal number that can be used to measure the size of sets. We say that
two sets x, y have the same cardinality, if there is a bijection between x
and y.

Definition 4.54. An ordinal κ is a cardinal number, if for every α ∈ κ there
is no bijection between κ and α. Furthermore, we say that a cardinal
number κ is the cardinality of a set x, if there is a bijection between x
and κ. In this case we let |x| := κ.

Cn := {κ ∈ On : κ is a cardinal number} is the class of all cardinal
numbers.

But is it guaranteed that we really find a cardinal number for every
possible set out there? The next theorem answers this question.

Theorem 4.55. For every set x there is a cardinal number |x|.

Proof. Consider the class Y of ordinals, which is given by

Y := {α ∈ On : there is a bijection f : x → α}
= {α ∈ On : there is a bijection f : α → x} .
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If Y is non-empty, then |x| :=
⋂

Y ∈ Y is the desired cardinal number.
Now we prove that X ̸= ∅ is indeed the case. By the axiom of

choice, there is a choice function g for x, i.e., for every y ⊆ x with y ̸= ∅
we have g(y) ∈ y.

Using transfinite induction, we define for every ordinal α an object
xα by

xα :=





g(yα) if yα := x \
{

xβ : β ∈ α
}
̸= ∅

x if yα = ∅

It is easy to see that for every xα ̸= x we have that xα is an element
of x but xα ̸= xβ for every β ∈ α.

If xα = x holds for some ordinal α, then there is a minimal ordinal
α′ ⊆ α such that xα′ = x and, by definition of xα′ , this means that
x =

{
xβ : β ∈ α′

}
. Furthermore, the function f : α′ → x, β 7→ xβ is a

bijection between x and α′. This implies that α′ ∈ Y.
So, it only remains to prove that xα = x for some ordinal α. Towards

a contradiction, we assume that xα ̸= x for every ordinal α. Then every
xα ∈ x and, therefore, the mapping f : On → x′ := {xα : α ∈ On} , α 7→
xα is a bijection between On and x′. Since x is a set, x′ ⊆ x is a set as
well. Therefore, by the axiom of replacement,

f−1[x′] :=
{

f−1(y) : y ∈ x′
}
= On

is a set. As a result, On satisfies Definition 4.45 and, consequently,
On ∈ On which violates the ZFC axioms! Contradiction!

q.e.d.

It is worth mentioning that the enumeration (xα)α∈|x| induces a
well-ordering < on x by

xα < xβ ⇐⇒ α ∈ β.

Corollary 4.56 (Well-ordering theorem). Every set x can be well-ordered,
i.e., there is a well-order < on x.

Every finite ordinal number is a cardinal number but there are also
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infinite cardinal numbers. For example, ℶ0 := ω is the smallest infinite
cardinal number and, by using the power set, we can construct strictly
larger cardinal numbers:

ℶα+1 := 2ℶα := |P(ℶα)| ,

ℶλ :=
⋃

β∈λ

ℶβ for limes ordinals λ.

Please observe that ℶ1 = |P(ω)| = |R|.
Whether there exists cardinal numbers between ℶ0 and ℶ1 is called

the continuum hypothesis (CH) which has turned out to be independent
of ZFC, i.e., neither (CH) nor ¬(CH) are consequences of ZFC.
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