
Logic and Games
A Tutorial

Erich Grädel

Outline

Part I: Model Checking Games

• Model checking games for modal logic and first-order logic

• The strategy problem for finite games

• Fragments of first-order logics with efficient model checking

• Fixed point logics: LFP and modal µ-calculus

• Parity games

• Model checking games for fixed point logics

Erich Grädel Logic and Games

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Erich Grädel Logic and Games

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

Erich Grädel Logic and Games

Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

=⇒ Model checking via construction of winning strategies

Erich Grädel Logic and Games

ML: propositional modal logic

Syntax: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)

Erich Grädel Logic and Games

ML: propositional modal logic

Syntax: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)

Semantics: transition systems = Kripke structures = labeled graphs

K = (V , (Ea)a∈A , (Pi)i∈I)

states
elements

actions
binary relations

atomic propositions
unary relations

•
P1

a

a

•
P2 b

b

•
P1, P2 a • b •

P1 a •
P1, P2

b

[[ψ]]K = {v : K, v |= ψ} = {v : ψ holds at state v inK}

K, v |=
〈a〉ψ

[a]ψ
:⇐⇒ K, w |= ψ for

some

all
w with (v, w) ∈ Ea

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

IfK, v |= Pi then Verifier has won at (Pi, v), otherwise Falsifier has won.

Erich Grädel Logic and Games

Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

IfK, v |= Pi then Verifier has won at (Pi, v), otherwise Falsifier has won.

Lemma. K, v |= φ ⇐⇒ Verifier has winning strategy from (φ, v).

Erich Grädel Logic and Games

Games and logics

Do games provide efficient solutions for model checking problems?

Erich Grädel Logic and Games

Games and logics

Do games provide efficient solutions for model checking problems?

This depends on the logic, and on what we mean by efficient!

Erich Grädel Logic and Games

Games and logics

Do games provide efficient solutions for model checking problems?

This depends on the logic, and on what we mean by efficient!

• How complicated are the resulting model checking games?

- are all plays necessarily finite?

- if not, what are the winning conditions for infinite plays?

- structural complexity of the game graphs?

- do the players always have perfect information?

• How big are the resulting game graphs?

how does the size of the game depend on different parameters of the

input structure and the formula?

Erich Grädel Logic and Games

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Erich Grädel Logic and Games

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or LµLµLµ): Model checking games are parity games

• admit infinite plays

• parity winning condition

Open problem: Are winning regions and winning strategies of parity

games computable in polynomial time?

Erich Grädel Logic and Games

Finite games: basic definitions

Two-player games with perfect information and positional winning

condition, given by game graph (also called arena)

G = (V, E), V = V0 ∪ V1

• Player 0 (Ego) moves from positions v ∈ V0,

Player 1 (Alter) moves from v ∈ V1,

• moves are along edges

a play is a finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

• winning condition: move or lose!

Player σ wins at position v if v ∈ V1−σ and vE = ∅

Note: this is a purely positional winning condition applying to finite

plays only (infinite plays are draws)

Erich Grädel Logic and Games

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Erich Grädel Logic and Games

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Erich Grädel Logic and Games

Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Algorithmic problems: Given a game G

• compute winning regionsW0,W1

• compute winning strategies

Associated decision problem:

G := {(G, v) : Player 0 has winning strategy for G from position v}

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩W

n
σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆Wn

σ}

(positions with winning strategy in≤ n + 1 moves for Player σ)

Erich Grädel Logic and Games

Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩W

n
σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆Wn

σ}

(positions with winning strategy in≤ n + 1 moves for Player σ)

untilWn+1
σ = Wn

σ (this happens for n ≤ |V|).

Erich Grädel Logic and Games

A linear time algorithm forG

Input: A game G = (V, V0, V1, E)

forall v ∈ V let (∗ 1: initialisation ∗)

win[v] := ⊥, P[v] := {u : (u, v) ∈ E}, n[v] := |vE|

forall σ ∈ {0, 1}, v ∈ Vσ (∗ 2: calculate win ∗)

if n[v] = 0 then Propagate(v, 1− σ)

returnwin end

procedure Propagate(v, σ)

ifwin[v] 6= ⊥ then return

win[v] := σ (∗ 3: mark v as winning for Player σ ∗)

forall u ∈ P[v] do (∗ 4: propagate change to predecessors ∗)

n[u] := n[u]− 1

if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo

Erich Grädel Logic and Games

G and the satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

Erich Grädel Logic and Games

G and the satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

1) G ≤log-lin S-H:

For G = (V0 ∪ V1, E) construct Horn formula ψ with clauses

u← v for all u ∈ V0 and (u, v) ∈ E

u← v1 ∧ · · · ∧ vm for all u ∈ V1, uE = {v1, . . . , vm}

The minimal model of ψ is precisely the winning region of Player 0.

(G, v) ∈ G ⇐⇒ ψG ∧ (0← v) is unsatisfiable

Erich Grädel Logic and Games

2) S-H ≤log-lin G:

Define game Gψ for Horn formula ψ(X1, . . . , Xn) =
∧

i∈I Ci

Positions: {0} ∪ {X1, . . . , Xn} ∪ {Ci : i ∈ I}

Moves of Player 0: X → C for X = head(C)

Moves of Player 1: C → X for X ∈ body(C)

Note: Player 0 wins iff play reaches clause C with body(C) = ∅

Player 0 has winning strategy from position X ⇐⇒ ψ |= X

Hence,

Player 0 wins from position 0 ⇐⇒ ψ unsatisfiable.

Erich Grädel Logic and Games

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Erich Grädel Logic and Games

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

Erich Grädel Logic and Games

Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

M accepts x :⇐⇒ Player ∃ has winning strategy for game on C(M, x)

Erich Grädel Logic and Games

Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Erich Grädel Logic and Games

Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Alternating logspace algorithm forG: Play the game !

Erich Grädel Logic and Games

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

Erich Grädel Logic and Games

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Erich Grädel Logic and Games

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Erich Grädel Logic and Games

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Erich Grädel Logic and Games

Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Winning condition: φ atomic / negated atomic

Verifier

Falsifier
wins at φ(a) ⇐⇒ A

|=

6|=
φ(a)

Erich Grädel Logic and Games

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Erich Grädel Logic and Games

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Erich Grädel Logic and Games

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| + qd(ψ) log |A|) qd(ψ): quantifier-depth of ψ

alternating space: O(width(ψ) · log |A| + log |ψ|)

Erich Grädel Logic and Games

Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| + qd(ψ) log |A|) qd(ψ): quantifier-depth of ψ

alternating space: O(width(ψ) · log |A| + log |ψ|)

deterministic time: O(|ψ| · |A|width(ψ))

deterministic space: O(|ψ| + qd(ψ) log |A|)

Erich Grädel Logic and Games

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Erich Grädel Logic and Games

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

Erich Grädel Logic and Games

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Erich Grädel Logic and Games

Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Fragments of FO with model checking complexityO(|ψ| · ‖A‖)):

—ML : propositional modal logic

— FO2 : formulae of width two

—GF : the guarded fragment of first-order logic

Erich Grädel Logic and Games

The guarded fragment of first-order logic (GF)

Fragment of first-order logic with only guarded quantification

∃y(α(x, y) ∧ φ(x, y)) ∀y(α(x, y)→ φ(x, y))

with guards α : atomic formulae containing all free variables of φ

Erich Grädel Logic and Games

The guarded fragment of first-order logic (GF)

Fragment of first-order logic with only guarded quantification

∃y(α(x, y) ∧ φ(x, y)) ∀y(α(x, y)→ φ(x, y))

with guards α : atomic formulae containing all free variables of φ

Generalizes modal quantification: ML⊆GF⊆ FO

〈a〉φ ≡ ∃y(Eaxy ∧ φ(y)) [a]φ ≡ ∀y(Eaxy→ φ(y))

Guarded logics generalize and, to some extent, explain the good

algorithmic and model-theoretic properties of modal logics.

Erich Grädel Logic and Games

Model-theoretic and algorithmic properties of GF

• Satisfiability for GF is decidable (Andréka, van Benthem, Németi)

• GF has finite model property (Grädel)

• GF has (generalized) tree model property:

every satisfiable formula has model of small tree width (Grädel)

• Extension by fixed points remains decidable (Grädel, Walukiewicz)

• . . .

• Guarded logics have small model checking games:

‖G(A, ψ)‖ = O(|ψ| · ‖A‖)

=⇒ efficient game-based model checking algorithms

Erich Grädel Logic and Games

Advantages of game based approach to model checking

• intuitive top-down definition of semantics

(very effective for teaching logic)

• versatile and general methodology,

can be adapted to many logical formalisms

• isolates the real combinatorial difficulties of an evaluation problem,

abstracts from syntactic details.

• if you understand games, you understand alternating algorithms

• closely related to automata based methods

• algorithms and complexity results for many logic problems follow

from results on games

Erich Grädel Logic and Games

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

Erich Grädel Logic and Games

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

Erich Grädel Logic and Games

Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

=⇒ we have to consider the theory of infinite games

Erich Grädel Logic and Games

Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Erich Grädel Logic and Games

Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Erich Grädel Logic and Games

Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Winning condition:

– finite plays: who cannot move, loses

– infinite plays: least priority seen infinitely often determines winner

Player 0 wins π ⇐⇒ min{k : (∃∞i)Ω(vi) = k} is even

Erich Grädel Logic and Games

Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Winning condition:

– finite plays: who cannot move, loses

– infinite plays: least priority seen infinitely often determines winner

Player 0 wins π ⇐⇒ min{k : (∃∞i)Ω(vi) = k} is even

Winning regionsW0,W1:

Wi = {v ∈ V : Player i has winning strategy from position v}

Erich Grädel Logic and Games

Least fixed point logics

Extend a basic logical formalism by least and greatest fixed points

FO (first-order logic) −→ LFP (least fixed point logic)

ML (modal logic) −→ Lµ (modal µ-calculus)

GF (guarded fragment) −→ µGF (guarded fixed point logic)

conjunctive queries −→ Datalog / Stratified Datalog

Erich Grädel Logic and Games

Least fixed point logics

Extend a basic logical formalism by least and greatest fixed points

FO (first-order logic) −→ LFP (least fixed point logic)

ML (modal logic) −→ Lµ (modal µ-calculus)

GF (guarded fragment) −→ µGF (guarded fixed point logic)

conjunctive queries −→ Datalog / Stratified Datalog

Idea: Capture recursion.

For any definable monotone relational operator

Fφ : T 7→ {x : φ(T, x)}

make also the least and the greatest fixed point of Fφ definable:

[lfpTx . φ(T, x)](z) [gfpTx . φ(T, x)](z)

µX . φ νX . φ

Erich Grädel Logic and Games

Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

Erich Grädel Logic and Games

Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ

Erich Grädel Logic and Games

Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ

Inductive construction of the greatest fixed point on a structureA:

T0 := Ak (all tuples of appropriate arity)

Tα+1 := Fφ(T
α)

Tλ :=
⋂

α<λ

Tα (λ limit ordinal)

=⇒ decreasing sequence of stages (Tα ⊇ Tα+1),

converges to a fixed point T∞ of Fφ

Erich Grädel Logic and Games

Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ

Inductive construction of the greatest fixed point on a structureA:

T0 := Ak (all tuples of appropriate arity)

Tα+1 := Fφ(T
α)

Tλ :=
⋂

α<λ

Tα (λ limit ordinal)

=⇒ decreasing sequence of stages (Tα ⊇ Tα+1),

converges to a fixed point T∞ of Fφ

Fact: T∞ = gfp(Fφ) (Knaster, Tarski)

Erich Grädel Logic and Games

Example: Bisimulation

K = (V, E, P1, . . . , Pm) transition system

Bisimilarity onK is the greatest equivalence relation Z ⊆ V × V such that:

if (u, v) ∈ Z then

– u and v have the same atomic properties

– from u and v there are edges into the same equivalence classes

Erich Grädel Logic and Games

Example: Bisimulation

K = (V, E, P1, . . . , Pm) transition system

Bisimilarity onK is the greatest equivalence relation Z ⊆ V × V such that:

if (u, v) ∈ Z then

– u and v have the same atomic properties

– from u and v there are edges into the same equivalence classes

Thus, bisimilarity is the greatest fixed point of the refinement operator

Z 7→ {(u, v) : K |= φ(Z, u, v)} where

φ :=
∧

i≤m
Piu↔ Piv ∧

∀x (Eux→ ∃y(Evy ∧ Zxy)) ∧ ∀y(Evy→ ∃x(Eux ∧ Zxy))

u and v are bisimilar inK ⇐⇒ K |= [gfpZuv . φ](u, v)

Erich Grädel Logic and Games

Least fixed point logic LFP

Syntax. LFP extends FO by fixed point rule:

• For every formula ψ(T, x1 . . . xk) ∈ LFP[τ ∪ {T}],

T k-ary relation variable, occuring only positive in ψ,

build formulae [lfpTx . ψ](x) and [gfpTx . ψ](x)

Semantics. On τ-structureA, ψ(T, x) defines monotone operator

ψA : P(Ak) −→ P(Ak)

T 7−→ {a : (A, T) |= ψ(T, a)}

• A |= [lfpTx . ψ(T, x)](a) :⇐⇒ a ∈ lfp(ψA)

A |= [gfpTx . ψ(T, x)](a) :⇐⇒ a ∈ gfp(ψA)

Erich Grädel Logic and Games

Modal µ-calculus Lµ

Syntax. Lµ extends ML by fixed point rule:

• With every formula ψ(X), where X occurs only positive in ψ

Lµ also contains the formulae µX.ψ and νX.ψ

Semantics. On transition systemK, ψ(X) defines operator

ψK : X 7−→ [[ψ]](K,X) = {v : (K, X), v |= ψ}

ψK is monotone, and therefore has a least and a greatest fixed point

lfp(ψK) =
⋂

{X : ψK(X) ⊆ X}, gfp(ψK) =
⋃

{X : X ⊆ ψK(X)}

• [[µX.ψ]]K := lfp(ψK), [[νX.ψ]]K := gfp(ψK)

Erich Grädel Logic and Games

Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·

Erich Grädel Logic and Games

Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·

These inductive sequences reach fixed points

Xα = Xα+1 =: X∞, Yβ = Yβ+1 =: Y∞

for some α, β, with |α|, |β| ≤ |V|

Erich Grädel Logic and Games

Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·

These inductive sequences reach fixed points

Xα = Xα+1 =: X∞, Yβ = Yβ+1 =: Y∞

for some α, β, with |α|, |β| ≤ |V|

X∞ = [[µX.ψ]]K Y∞ = [[νX.ψ]]K

Erich Grädel Logic and Games

Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P

Erich Grädel Logic and Games

Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P

• K, w |= νX µY .♦((P ∧ X) ∨ Y) ⇐⇒
on some path from w, P occurs infinitely often

Erich Grädel Logic and Games

Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P

• K, w |= νX µY .♦((P ∧ X) ∨ Y) ⇐⇒
on some path from w, P occurs infinitely often

• Logics of knowledge: multi-modal propositional logics where

[a]φ stands for “agent a knows φ”

add common knowledge:

everybody knows φ, and everybody knows that everybody knows φ,

and everybody knows that everybody knows that everybody knows . . .

expressible as a greatest fixed point: Cφ ≡ νX . (φ ∧
∧

a[a]X)

Erich Grädel Logic and Games

Finite games and LFP

• G is definable in LFP / Lµ

Player 0 has winning strategy for game G from position v

⇐⇒

G = (V, V0, V1, E) |= [lfpWx . (V0x ∧ ∃y(Exy ∧Wy))

∨ (V1x ∧ ∀y(Exy→Wy)](v)

⇐⇒

G, v |= µW . (V0 ∧ ♦W) ∨ (V1 ∧�W)

Erich Grädel Logic and Games

Finite games and LFP

• G is definable in LFP / Lµ

Player 0 has winning strategy for game G from position v

⇐⇒

G = (V, V0, V1, E) |= [lfpWx . (V0x ∧ ∃y(Exy ∧Wy))

∨ (V1x ∧ ∀y(Exy→Wy)](v)

⇐⇒

G, v |= µW . (V0 ∧ ♦W) ∨ (V1 ∧�W)

• G is complete for LFP

(via quantifier-free reductions on finite structures)

Erich Grädel Logic and Games

Importance of the modal µ-calculus

• encompasses most of the popular logics used in hardware verification:

LTL, CTL, CTL∗, PDL,. . . , and also many logics from other fields:

game logic, description logics, etc.

• reasonably good algorithmic properties:

- satisfiability problem decidable (E-complete)

- efficient model checking for practically important fragments of Lµ

- automata-based algorithms

• nice model-theoretic properties:

- finite model property

- tree model property

• Lµ is the bisimulation-invariant fragment of MSO

Erich Grädel Logic and Games

Importance of the modal µ-calculus

• encompasses most of the popular logics used in hardware verification:

LTL, CTL, CTL∗, PDL,. . . , and also many logics from other fields:

game logic, description logics, etc.

• reasonably good algorithmic properties:

- satisfiability problem decidable (E-complete)

- efficient model checking for practically important fragments of Lµ

- automata-based algorithms

• nice model-theoretic properties:

- finite model property

- tree model property

• Lµ is the bisimulation-invariant fragment of MSO

Disadvantage: Fixed-point formulae are hard to read

Erich Grädel Logic and Games

Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)

Erich Grädel Logic and Games

Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)

Infinite plays possible

Erich Grädel Logic and Games

Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)

Infinite plays possible

need winning condition for infinite plays

Erich Grädel Logic and Games

Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

Erich Grädel Logic and Games

Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c

Erich Grädel Logic and Games

Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c

Erich Grädel Logic and Games

Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c

Erich Grädel Logic and Games

Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins

What about cycles with both least and greatest fixed points?

Erich Grädel Logic and Games

Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins

What about cycles with both least and greatest fixed points?

The outermost fixed point on cycle determines the winner

Erich Grädel Logic and Games

Model checking games for LFP and LµLµLµ

Extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a)

Ta −→ φ(T, a)

Parity game, with following priority assignment:

• Ω(Ta) is







even if T gfp-variable

odd if T lfp-variable

• Ω(Ta) ≤ Ω(T ′b) if T ′ depends on T

(i.e. if T free in [fpT ′x . φ(T ′, T, x)](a))

• Ω(φ) maximal, for other formulae φ

Analogous for Lµ

Erich Grädel Logic and Games

Model checking game with nested cycles: Example

ψ = νX µY .♦((P ∧ X) ∨ Y)
︸ ︷︷ ︸

φ

≡ on some path, P occurs infinitely often

K : •
P

a
•
b

Erich Grädel Logic and Games

Model checking game with nested cycles: Example

ψ = νX µY .♦((P ∧ X) ∨ Y)
︸ ︷︷ ︸

φ

≡ on some path, P occurs infinitely often

K : •
P

a
•
b

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b

Erich Grädel Logic and Games

Model checking game with nested cycles: Example

Bad cycles for Verifier: Least priority is odd

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b

Erich Grädel Logic and Games

Model checking game with nested cycles: Example

Bad cycles for Verifier: Least priority is odd

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b

Erich Grädel Logic and Games

Model checking game with nested cycles: Example

Winning strategy for Verifier

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b

Erich Grädel Logic and Games

Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Erich Grädel Logic and Games

Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)

Erich Grädel Logic and Games

Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)

Theorem. Player 0 wins G from position u ⇐⇒ G, u |= Wind.

Erich Grädel Logic and Games

Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)

Theorem. Player 0 wins G from position u ⇐⇒ G, u |= Wind.

Proof. The model checking game for Wind on G coincides (up to the

presence of additional ‘stupid’ moves) with the game G itself !

Erich Grädel Logic and Games

	Outline
	Model checking via games
	ML: propositional modal logic
	Model checking game for ML
	Games and logics
	Logics and games
	Finite games: basic definitions
	Winning strategies and winning regions
	Algorithms for finite games
	A linear time algorithm for Game
	 Game and the satisfiability of propositional Horn formulae
	
	Alternating algorithms
	Alternating versus deterministic complexity classes
	Evaluation game for FO
	Complexity of FO model checking
	Complexity of FO model checking
	The guarded fragment of first-order logic (GF)
	Model-theoretic and algorithmic properties of GF
	Advantages of game based approach to model checking
	Logics and games
	Parity games
	Least fixed point logics
	Greatest fixed points (in LFP)
	Example: Bisimulation
	Least fixed point logic LFP
	Modal -calculus L
	Inductive generation of fixed points
	L: Examples
	Finite games and LFP
	Importance of the modal -calculus
	Model checking games for LFP and L-.4
	Model checking game for L: Example
	Model checking game for L: Example
	Model checking game for L: Example
	Model checking game for L: Example
	Winning conditions
	Model checking games for LFP and L-.4
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Model checking game with nested cycles: Example
	Defining winning regions of parity games in L

