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Part I: Model Checking Games

• Model checking games for modal logic and first-order logic

• The strategy problem for finite games

• Fragments of first-order logics with efficient model checking

• Fixed point logics: LFP and modal µ-calculus

• Parity games

• Model checking games for fixed point logics
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Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?
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Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)
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Model checking via games

The model checking problem for a logic L

Given: structureA

formula ψ ∈ L

Question: A |= ψ ?

Reduce model checking problemA |= ψ to strategy problem for model

checking game G(A, ψ), played by

– Falsifier (also called Player 1, or Alter), and

– Verifier (also called Player 0, or Ego), such that

A |= ψ ⇐⇒ Verifier has winning strategy for G(A, ψ)

=⇒ Model checking via construction of winning strategies
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ML: propositional modal logic

Syntax: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)
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ML: propositional modal logic

Syntax: ψ ::= Pi | ¬Pi | ψ ∧ ψ | ψ ∨ ψ | 〈a〉ψ | [a]ψ

Example: P1 ∨ 〈a〉(P2 ∧ [b]P1)

Semantics: transition systems = Kripke structures = labeled graphs

K = ( V , (Ea)a∈A , (Pi)i∈I )

states
elements

actions
binary relations

atomic propositions
unary relations

•
P1

a

a

•
P2 b

b

•
P1, P2 a • b •

P1 a •
P1, P2

b

[[ψ]]K = {v : K, v |= ψ} = {v : ψ holds at state v inK}

K, v |=
〈a〉ψ

[a]ψ
:⇐⇒ K, w |= ψ for

some

all
w with (v, w) ∈ Ea
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Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Erich Grädel Logic and Games



Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.
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Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)
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Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)
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Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

IfK, v |= Pi then Verifier has won at (Pi, v), otherwise Falsifier has won.
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Model checking game for ML

Game G(K, ψ) (for transition systemK and ψ ∈ML)

Positions: (φ, v) φ subformula of ψ, v ∈ V

From position (φ, v), Verifier wants to show thatK, v |= φ, while Falsifier

wants to prove thatK, v 6|= φ.

Verifier moves: (φ, v)
(φ ∨ ϑ, v) (〈a〉φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Falsifier moves: (φ, v)
(φ ∧ ϑ, v) ([a]φ, v) (φ, w), w ∈ vEa

(ϑ, v)

Terminal positions: (Pi, v), (¬Pi, v)

IfK, v |= Pi then Verifier has won at (Pi, v), otherwise Falsifier has won.

Lemma. K, v |= φ ⇐⇒ Verifier has winning strategy from (φ, v).
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Games and logics

Do games provide efficient solutions for model checking problems?
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Games and logics

Do games provide efficient solutions for model checking problems?

This depends on the logic, and on what we mean by efficient!
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Games and logics

Do games provide efficient solutions for model checking problems?

This depends on the logic, and on what we mean by efficient!

• How complicated are the resulting model checking games?

- are all plays necessarily finite?

- if not, what are the winning conditions for infinite plays?

- structural complexity of the game graphs?

- do the players always have perfect information?

• How big are the resulting game graphs?

how does the size of the game depend on different parameters of the

input structure and the formula?
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

winning regions computable in linear time wrt. size of game graph

Fixed-point logics (LFP or LµLµLµ): Model checking games are parity games

• admit infinite plays

• parity winning condition

Open problem: Are winning regions and winning strategies of parity

games computable in polynomial time?
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Finite games: basic definitions

Two-player games with perfect information and positional winning

condition, given by game graph (also called arena)

G = (V, E), V = V0 ∪ V1

• Player 0 (Ego) moves from positions v ∈ V0,

Player 1 (Alter) moves from v ∈ V1,

• moves are along edges

a play is a finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

• winning condition: move or lose!

Player σ wins at position v if v ∈ V1−σ and vE = ∅

Note: this is a purely positional winning condition applying to finite

plays only (infinite plays are draws)
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Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .
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Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}
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Winning strategies and winning regions

Strategy for Player σ: f : {v ∈ Vσ : vE 6= ∅} → V with (v, f (v)) ∈ E.

f is winning from position v if Player σ wins all plays that start at v and are

consistent with f .

Winning regionsW0,W1:

Wσ = {v ∈ V : Player σ has winning strategy from position v}

Algorithmic problems: Given a game G

• compute winning regionsW0,W1

• compute winning strategies

Associated decision problem:

G := {(G, v) : Player 0 has winning strategy for G from position v}
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

Erich Grädel Logic and Games



Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩W

n
σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆Wn

σ}

(positions with winning strategy in≤ n + 1 moves for Player σ)
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Algorithms for finite games

Theorem

G is P-complete and solvable in timeO(|V| + |E|).

remains true for strictly alternating games on graphs G = (V, E).

A simple polynomial-time algorithm

Compute winning regions inductively: Wσ =
⋃

n∈N
Wn

σ where

• W0
σ = {v ∈ V1−σ : vE = ∅}

(winning terminal positions for Player σ)

• Wn+1
σ = {v ∈ Vσ : vE ∩W

n
σ 6= ∅} ∪ {v ∈ V1−σ : vE ⊆Wn

σ}

(positions with winning strategy in≤ n + 1 moves for Player σ)

untilWn+1
σ = Wn

σ (this happens for n ≤ |V|).

Erich Grädel Logic and Games



A linear time algorithm forG

Input: A game G = (V, V0, V1, E)

forall v ∈ V let (∗ 1: initialisation ∗)

win[v] := ⊥, P[v] := {u : (u, v) ∈ E}, n[v] := |vE|

forall σ ∈ {0, 1}, v ∈ Vσ (∗ 2: calculate win ∗)

if n[v] = 0 then Propagate(v, 1− σ)

returnwin end

procedure Propagate(v, σ)

ifwin[v] 6= ⊥ then return

win[v] := σ (∗ 3: mark v as winning for Player σ ∗)

forall u ∈ P[v] do (∗ 4: propagate change to predecessors ∗)

n[u] := n[u]− 1

if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo

Erich Grädel Logic and Games



G and the satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)
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G and the satisfiability of propositional Horn formulae

Propositional Horn formulae: conjunctions of clauses of form

X ← X1 ∧ · · · ∧ Xn and 0← X1 ∧ · · · ∧ Xn

Theorem. S-H is P-complete and solvable in linear time.

(actually,G and S-H are essentially the same problem)

1) G ≤log-lin S-H:

For G = (V0 ∪ V1, E) construct Horn formula ψ with clauses

u← v for all u ∈ V0 and (u, v) ∈ E

u← v1 ∧ · · · ∧ vm for all u ∈ V1, uE = {v1, . . . , vm}

The minimal model of ψ is precisely the winning region of Player 0.

(G, v) ∈ G ⇐⇒ ψG ∧ (0← v) is unsatisfiable
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2) S-H ≤log-lin G:

Define game Gψ for Horn formula ψ(X1, . . . , Xn) =
∧

i∈I Ci

Positions: {0} ∪ {X1, . . . , Xn} ∪ {Ci : i ∈ I}

Moves of Player 0: X → C for X = head(C)

Moves of Player 1: C → X for X ∈ body(C)

Note: Player 0 wins iff play reaches clause C with body(C) = ∅

Player 0 has winning strategy from position X ⇐⇒ ψ |= X

Hence,

Player 0 wins from position 0 ⇐⇒ ψ unsatisfiable.
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations
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Alternating algorithms

nondeterministic algorithms, with states divided into

accepting, rejecting, existential, and universal states

Acceptance condition: game with Players ∃ and ∀, played on

computation graph C(M, x) ofM on input x

Positions: configurations ofM

Moves: C → C′ for C′ successor configuration of C

- Player ∃moves at existential configurations

wins at accepting configurations

- Player ∀moves at universal configurations

wins at rejecting configurations

M accepts x :⇐⇒ Player ∃ has winning strategy for game on C(M, x)
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Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A
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Alternating versus deterministic complexity classes

Alternating time≡ deterministic space

Alternating space≡ exponential deterministic time

L ⊆ P ⊆ P ⊆ E ⊆ E

|| || || ||

A ⊆ A ⊆ A ⊆ A

Alternating logspace algorithm forG: Play the game !
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ
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Evaluation game for FO

FO: ψ ::= Rix | ¬Rix | x = y | x 6= y | ψ ∧ ψ | ψ ∨ ψ | ∃xψ | ∀xψ

The game G(A, ψ) (forA = (A, R1, . . . , Rm), Ri ⊆ Ari)

Positions: φ(a) φ(x) subformula of ψ, a ∈ Ak

Verifier moves: φ
φ ∨ ϑ ∃xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Falsifier moves: φ
φ ∧ ϑ ∀xφ(x, b) φ(a, b) (a ∈ A)

ϑ

Winning condition: φ atomic / negated atomic

Verifier

Falsifier
wins at φ(a) ⇐⇒ A

|=

6|=
φ(a)
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| + qd(ψ) log |A|) qd(ψ): quantifier-depth of ψ

alternating space: O(width(ψ) · log |A| + log |ψ|)
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Complexity of FOmodel checking

To decide whetherA |= ψ, construct the game G(A, ψ) and check whether

Verifier has winning strategy from initial position ψ.

Efficient implementation: on-the-fly construction of game while solving it

Size of game graph can be exponential: |G(A, ψ)| ≤ |ψ| · |A|width(ψ)

width(ψ): maximal number of free variables in subformulae

Complexity of FOmodel checking:

alternating time: O(|ψ| + qd(ψ) log |A|) qd(ψ): quantifier-depth of ψ

alternating space: O(width(ψ) · log |A| + log |ψ|)

deterministic time: O(|ψ| · |A|width(ψ))

deterministic space: O(|ψ| + qd(ψ) log |A|)
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)
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Complexity of FOmodel checking

• Structure complexity (ψ fixed) : A ⊆ L

• Expression complexity and combined complexity: P

Crucial parameter for complexity: width of formula

FOk := {ψ ∈ FO : width(ψ) ≤ k} = k-variable fragment of FO

ModCheck(FOk) is P-complete and solvable in timeO(|ψ| · |A|k)

Fragments of FO with model checking complexityO(|ψ| · ‖A‖)):

—ML : propositional modal logic

— FO2 : formulae of width two

—GF : the guarded fragment of first-order logic
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The guarded fragment of first-order logic (GF)

Fragment of first-order logic with only guarded quantification

∃y(α(x, y) ∧ φ(x, y)) ∀y(α(x, y)→ φ(x, y))

with guards α : atomic formulae containing all free variables of φ
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The guarded fragment of first-order logic (GF)

Fragment of first-order logic with only guarded quantification

∃y(α(x, y) ∧ φ(x, y)) ∀y(α(x, y)→ φ(x, y))

with guards α : atomic formulae containing all free variables of φ

Generalizes modal quantification: ML⊆GF⊆ FO

〈a〉φ ≡ ∃y(Eaxy ∧ φ(y)) [a]φ ≡ ∀y(Eaxy→ φ(y))

Guarded logics generalize and, to some extent, explain the good

algorithmic and model-theoretic properties of modal logics.

Erich Grädel Logic and Games



Model-theoretic and algorithmic properties of GF

• Satisfiability for GF is decidable (Andréka, van Benthem, Németi)

• GF has finite model property (Grädel)

• GF has (generalized) tree model property:

every satisfiable formula has model of small tree width (Grädel)

• Extension by fixed points remains decidable (Grädel, Walukiewicz)

• . . .

• Guarded logics have small model checking games:

‖G(A, ψ)‖ = O(|ψ| · ‖A‖)

=⇒ efficient game-based model checking algorithms
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Advantages of game based approach to model checking

• intuitive top-down definition of semantics

(very effective for teaching logic)

• versatile and general methodology,

can be adapted to many logical formalisms

• isolates the real combinatorial difficulties of an evaluation problem,

abstracts from syntactic details.

• if you understand games, you understand alternating algorithms

• closely related to automata based methods

• algorithms and complexity results for many logic problems follow

from results on games
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more
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Logics and games

First-order logic (FO) ormodal logic (ML):Model checking games have

• only finite plays

• positional winning condition

Winning regions computable in linear time wrt. size of game graph

In many computer science applications, more expressive logics are needed:

temporal logics, dynamic logics, fixed-point logics,. . .

Model checking games for these logics admit infinite plays and need more

complicated winning conditions.

=⇒ we have to consider the theory of infinite games
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Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v
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Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Erich Grädel Logic and Games



Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Winning condition:

– finite plays: who cannot move, loses

– infinite plays: least priority seen infinitely often determines winner

Player 0 wins π ⇐⇒ min{k : (∃∞i)Ω(vi) = k} is even
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Parity games

G = (V, E,Ω), V = V0 ∪ V1, Ω : V → N

Player 0 moves at positions v ∈ V0, Player 1 at positions v ∈ V1

Ω(v) is the priority of position v

Play: finite or infinite sequence π = v0v1v2 · · · with (vi, vi+1) ∈ E

Winning condition:

– finite plays: who cannot move, loses

– infinite plays: least priority seen infinitely often determines winner

Player 0 wins π ⇐⇒ min{k : (∃∞i)Ω(vi) = k} is even

Winning regionsW0,W1:

Wi = {v ∈ V : Player i has winning strategy from position v}
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Least fixed point logics

Extend a basic logical formalism by least and greatest fixed points

FO (first-order logic) −→ LFP (least fixed point logic)

ML (modal logic) −→ Lµ (modal µ-calculus)

GF (guarded fragment) −→ µGF (guarded fixed point logic)

conjunctive queries −→ Datalog / Stratified Datalog
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Least fixed point logics

Extend a basic logical formalism by least and greatest fixed points

FO (first-order logic) −→ LFP (least fixed point logic)

ML (modal logic) −→ Lµ (modal µ-calculus)

GF (guarded fragment) −→ µGF (guarded fixed point logic)

conjunctive queries −→ Datalog / Stratified Datalog

Idea: Capture recursion.

For any definable monotone relational operator

Fφ : T 7→ {x : φ(T, x)}

make also the least and the greatest fixed point of Fφ definable:

[lfpTx . φ(T, x)](z) [gfpTx . φ(T, x)](z)

µX . φ νX . φ
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Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}
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Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ
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Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ

Inductive construction of the greatest fixed point on a structureA:

T0 := Ak (all tuples of appropriate arity)

Tα+1 := Fφ(T
α)

Tλ :=
⋂

α<λ

Tα (λ limit ordinal)

=⇒ decreasing sequence of stages (Tα ⊇ Tα+1),

converges to a fixed point T∞ of Fφ
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Greatest fixed points (in LFP)

[gfpTx . φ(T, x)](a) : a contained in greatest T with T = {x : φ(T, x)}

this T exists if Fφ : T 7→ {x : φ(T, x)} is monotone (preserves⊆)

to guarantee monotonicity: require that T positive in φ

Inductive construction of the greatest fixed point on a structureA:

T0 := Ak (all tuples of appropriate arity)

Tα+1 := Fφ(T
α)

Tλ :=
⋂

α<λ

Tα (λ limit ordinal)

=⇒ decreasing sequence of stages (Tα ⊇ Tα+1),

converges to a fixed point T∞ of Fφ

Fact: T∞ = gfp(Fφ) (Knaster, Tarski)
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Example: Bisimulation

K = (V, E, P1, . . . , Pm) transition system

Bisimilarity onK is the greatest equivalence relation Z ⊆ V × V such that:

if (u, v) ∈ Z then

– u and v have the same atomic properties

– from u and v there are edges into the same equivalence classes
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Example: Bisimulation

K = (V, E, P1, . . . , Pm) transition system

Bisimilarity onK is the greatest equivalence relation Z ⊆ V × V such that:

if (u, v) ∈ Z then

– u and v have the same atomic properties

– from u and v there are edges into the same equivalence classes

Thus, bisimilarity is the greatest fixed point of the refinement operator

Z 7→ {(u, v) : K |= φ(Z, u, v)} where

φ :=
∧

i≤m
Piu↔ Piv ∧

∀x (Eux→ ∃y(Evy ∧ Zxy)) ∧ ∀y(Evy→ ∃x(Eux ∧ Zxy))

u and v are bisimilar inK ⇐⇒ K |= [gfpZuv . φ](u, v)
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Least fixed point logic LFP

Syntax. LFP extends FO by fixed point rule:

• For every formula ψ(T, x1 . . . xk) ∈ LFP[τ ∪ {T}],

T k-ary relation variable, occuring only positive in ψ,

build formulae [lfpTx . ψ](x) and [gfpTx . ψ](x)

Semantics. On τ-structureA, ψ(T, x) defines monotone operator

ψA : P(Ak) −→ P(Ak)

T 7−→ {a : (A, T) |= ψ(T, a)}

• A |= [lfpTx . ψ(T, x)](a) :⇐⇒ a ∈ lfp(ψA)

A |= [gfpTx . ψ(T, x)](a) :⇐⇒ a ∈ gfp(ψA)
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Modal µ-calculus Lµ

Syntax. Lµ extends ML by fixed point rule:

• With every formula ψ(X), where X occurs only positive in ψ

Lµ also contains the formulae µX.ψ and νX.ψ

Semantics. On transition systemK, ψ(X) defines operator

ψK : X 7−→ [[ψ]](K,X) = {v : (K, X), v |= ψ}

ψK is monotone, and therefore has a least and a greatest fixed point

lfp(ψK) =
⋂

{X : ψK(X) ⊆ X}, gfp(ψK) =
⋃

{X : X ⊆ ψK(X)}

• [[µX.ψ]]K := lfp(ψK), [[νX.ψ]]K := gfp(ψK)
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Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·
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Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·

These inductive sequences reach fixed points

Xα = Xα+1 =: X∞, Yβ = Yβ+1 =: Y∞

for some α, β, with |α|, |β| ≤ |V|
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Inductive generation of fixed points

ψ(X) defines operator ψK : X 7→ {v : (K, X), v |= ψ}

X0 := ∅ Y0 := V

Xα+1 := ψK(Xα) Yα+1 := ψK(Yα)

Xλ :=
⋃

α<λ

Xα (λ limit ordinal) Yλ :=
⋂

α<λ

Yα

X0 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ · · · Y0 ⊇ · · · ⊇ Yα ⊇ Yα+1 ⊇ · · ·

These inductive sequences reach fixed points

Xα = Xα+1 =: X∞, Yβ = Yβ+1 =: Y∞

for some α, β, with |α|, |β| ≤ |V|

X∞ = [[µX.ψ]]K Y∞ = [[νX.ψ]]K
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Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P
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Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P

• K, w |= νX µY .♦((P ∧ X) ∨ Y) ⇐⇒
on some path from w, P occurs infinitely often

Erich Grädel Logic and Games



Lµ: Examples

• K, w |= νX . 〈a〉X ⇐⇒ there is an infinite a-path from w inK

K, w |= µX . P ∨ [a]X ⇐⇒ every infinite a-path from w

eventually hits P

• K, w |= νX µY .♦((P ∧ X) ∨ Y) ⇐⇒
on some path from w, P occurs infinitely often

• Logics of knowledge: multi-modal propositional logics where

[a]φ stands for “agent a knows φ”

add common knowledge:

everybody knows φ, and everybody knows that everybody knows φ,

and everybody knows that everybody knows that everybody knows . . .

expressible as a greatest fixed point: Cφ ≡ νX . (φ ∧
∧

a[a]X)
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Finite games and LFP

• G is definable in LFP / Lµ

Player 0 has winning strategy for game G from position v

⇐⇒

G = (V, V0, V1, E) |= [lfpWx . (V0x ∧ ∃y(Exy ∧Wy))

∨ (V1x ∧ ∀y(Exy→Wy)](v)

⇐⇒

G, v |= µW . (V0 ∧ ♦W) ∨ (V1 ∧�W)
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Finite games and LFP

• G is definable in LFP / Lµ

Player 0 has winning strategy for game G from position v

⇐⇒

G = (V, V0, V1, E) |= [lfpWx . (V0x ∧ ∃y(Exy ∧Wy))

∨ (V1x ∧ ∀y(Exy→Wy)](v)

⇐⇒

G, v |= µW . (V0 ∧ ♦W) ∨ (V1 ∧�W)

• G is complete for LFP

(via quantifier-free reductions on finite structures)
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Importance of the modal µ-calculus

• encompasses most of the popular logics used in hardware verification:

LTL, CTL, CTL∗, PDL,. . . , and also many logics from other fields:

game logic, description logics, etc.

• reasonably good algorithmic properties:

- satisfiability problem decidable (E-complete)

- efficient model checking for practically important fragments of Lµ

- automata-based algorithms

• nice model-theoretic properties:

- finite model property

- tree model property

• Lµ is the bisimulation-invariant fragment of MSO
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Importance of the modal µ-calculus

• encompasses most of the popular logics used in hardware verification:

LTL, CTL, CTL∗, PDL,. . . , and also many logics from other fields:

game logic, description logics, etc.

• reasonably good algorithmic properties:

- satisfiability problem decidable (E-complete)

- efficient model checking for practically important fragments of Lµ

- automata-based algorithms

• nice model-theoretic properties:

- finite model property

- tree model property

• Lµ is the bisimulation-invariant fragment of MSO

Disadvantage: Fixed-point formulae are hard to read
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Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)
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Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)

Infinite plays possible
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Model checking games for LFP and LµLµLµ

LFP-game: extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a) (fp ∈ {lfp,gfp})

Tb −→ φ(T, b)

Similarly for Lµ: extendML-game by moves

(λX . φ, u) −→ (φ, u) (λ ∈ {µ, ν})

(X, w) −→ (φ, w)

Infinite plays possible

need winning condition for infinite plays
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Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a
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Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c
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Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c
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Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c
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Model checking game for Lµ: Example

ψ = µX.P ∨�X ≡ [lfpTx . Px ∨ ∀y(Exy→ Ty)](x)

K : •
a

•
b

•
c

•
P

d
from node a

ψ, a P ∨�X, a �X, a X, d P ∨�X, d P, d

P, a X, b �X, c �X, d

P ∨�X, b P ∨�X, d

P, b �X, b X, c P, c
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins

What about cycles with both least and greatest fixed points?
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Winning conditions

On formulae [lfpTx . ψ(T, x)](a) or µX.ψ (where ψ has no fixed points),

Verifier must win in a finite number of steps.

By forcing a cycle, Falsifier wins.

Are cycles always bad for Verifier?

No, not if they correspond to greatest fixed points

• lfp-cycles: Falsifier wins

• gfp-cycles: Verifier wins

What about cycles with both least and greatest fixed points?

The outermost fixed point on cycle determines the winner
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Model checking games for LFP and LµLµLµ

Extend FO-game by moves

[fpTx . φ](a) −→ φ(T, a)

Ta −→ φ(T, a)

Parity game, with following priority assignment:

• Ω(Ta) is







even if T gfp-variable

odd if T lfp-variable

• Ω(Ta) ≤ Ω(T ′b) if T ′ depends on T

(i.e. if T free in [fpT ′x . φ(T ′, T, x)](a) )

• Ω(φ) maximal, for other formulae φ

Analogous for Lµ
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Model checking game with nested cycles: Example

ψ = νX µY .♦((P ∧ X) ∨ Y)
︸ ︷︷ ︸

φ

≡ on some path, P occurs infinitely often

K : •
P

a
•
b
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Model checking game with nested cycles: Example

ψ = νX µY .♦((P ∧ X) ∨ Y)
︸ ︷︷ ︸

φ

≡ on some path, P occurs infinitely often

K : •
P

a
•
b

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b
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Model checking game with nested cycles: Example

Bad cycles for Verifier: Least priority is odd

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b
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Model checking game with nested cycles: Example

Bad cycles for Verifier: Least priority is odd

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b
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Model checking game with nested cycles: Example

Winning strategy for Verifier

ψ, a φ, a X, a
0

P ∧ X, a P, a

♦((P ∧ X) ∨ Y), a Y, a
1

(P ∧ X) ∨ Y, a

(P ∧ X) ∨ Y, b Y, b
1

♦((P ∧ X) ∨ Y), b

P, b P ∧ X, b X, b
0

φ, b ψ, b
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Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}
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Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)
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Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)

Theorem. Player 0 wins G from position u ⇐⇒ G, u |= Wind.
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Defining winning regions of parity games in Lµ

Describe parity game with d priorities by transition system

G = (V, E, E0, . . . , Ed−1, A0, . . . , Ad−1) where

Ei = {u : Ω(u) = i and Ego (Player 0) moves from u}

Ai = {u : Ω(u) = i and Alter (Player 1) moves from u}

Define the formula

Wind := νX0 µX1 νX2 · · · λXd−1

∨

i

(

(Ei ∧ ♦Xi) ∨ (Ai ∧�Xi)
)

Theorem. Player 0 wins G from position u ⇐⇒ G, u |= Wind.

Proof. The model checking game for Wind on G coincides (up to the

presence of additional ‘stupid’ moves) with the game G itself !
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