
Algorithmic Model Theory
SS 2010

Prof. Dr. Erich Grädel

Mathematische Grundlagen der Informatik
RWTH Aachen

cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2013 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de

Contents

1 The classical decision problem for FO 1
1.1 Basic notions on decidability 2
1.2 Trakhtenbrot’s Theorem . 8
1.3 Domino problems . 15
1.4 Applications of the domino method 19

2 Finite Model Property 27
2.1 Ehrenfeucht-Fraïssé Games . 27
2.2 FMP of Modal Logic . 30
2.3 Finite Model Property of FO2 37

3 Descriptive Complexity 47
3.1 Logics Capturing Complexity Classes 47
3.2 Fagin’s Theorem . 49
3.3 Second Order Horn Logic on Ordered Structures 53

4 LFP and Infinitary Logics 59
4.1 Ordinals . 59
4.2 Some Fixed-Point Theory . 61
4.3 Least Fixed-Point Logic . 64
4.4 Infinitary First-Order Logic . 67

5 Modal, Inflationary and Partial Fixed Points 73
5.1 The Modal µ-Calculus . 73
5.2 Inflationary Fixed-Point Logic 76
5.3 Simultaneous Inductions . 81
5.4 Partial Fixed-Point Logic . 83
5.5 Capturing PTIME up to Bisimulation 86

6 Fixed-point logic with counting 93
6.1 Logics with Counting Terms 94
6.2 Fixed-Point Logic with Counting 95
6.3 The k-pebble bijection game . 98
6.4 The construction of Cai, Fürer and Immerman 100

7 Zero-one laws 109
7.1 Random graphs . 109
7.2 Zero-one law for first-order logic 111
7.3 Generalised zero-one laws . 115

1 The classical decision problem for FO

The classical decision problem for first-order logic was considered the
main problem of mathematical logic by Hilbert and Ackermann and its
undecidability was shown by Church and Turing.

The Entscheidungsproblem is solved when we know a proce-
dure that allows for any given logical expression to decide by
finitely many operations its validity or satisfiability. [. . .] The
Entscheidungsproblem must be considered the main problem
of mathematical logic.

(D. Hilbert and W. Ackermann, 1928)

We introduce the classical decision problem for first-order logic,
for which we present three equivalent formulations. The importance
of the decision problem for first-order logic results from the fact that
first-order logic provides a framework to express almost all aspects of
mathematics.

Satisfiability: Construct an algorithm that decides for any given formula
of FO whether it has a model.

Validity: Construct an algorithm that decides for any given formula of
FO whether it is valid, i.e. whether it holds in all models where it
is defined.

Provability: Construct an algorithm that decides for any given formula
ψ of FO whether ⊢ ψ, meaning ψ is provable from the empty set
of axioms in some formal system, e.g. sequential calculus.

Since ψ is satisfiable if and only if ¬ψ is not valid, satisfiability and
validity are equivalent problems with respect to computability. The
equivalence with provability is a much more intricate result and in fact
a consequence of the following

1

1 The classical decision problem for FO

Theorem 1.1 (Completeness Theorem (Gödel)). For any given set of
sentences Φ ⊆ FO(τ) and any sentence ψ ∈ FO(τ) it holds that

Φ |= ψ ⇐⇒ Φ ⊢ ψ ;

in particular ∅ |= ψ⇔ ∅ ⊢ ψ.

As a direct consequence we get the following

Theorem 1.2. The set of valid first-order formulae is recursively enu-
merable.

1.1 Basic notions on decidability

In our formulation of the decision problem it was not precisely specified
what an algorithm is. It was not until the 1930s that Church and Kleene ,
Gödel and Turing provided a precise definition of an abstract algorithm.
Their approaches are today known to be equivalent. We introduce the
concept of a Turing machine.

Definition 1.3. A Turing machine (TM) M is a 6-tuple
M = (Q, Σ, Γ, q0, F, δ), where

• Q denotes a finite set of states,
• Σ, Γ denote finite alphabets, where Σ is the working alphabet with

a special blank symbol � ∈ Σ,
• Γ ⊆ Σ \ {�} is the input alphabet,
• q0 ∈ Q denotes the initial state,
• F ⊆ Q is the set of final states and
• δ : (Q \ F)× Σ→ Q× Σ× {−1, 0, 1} is the transition function.

A configuration is an element C = (q, p, w = w0w1 . . . wk) ∈ Q×N× Σ∗.
The transition function δ induces a partial function on the set of all
configurations

C 7→ Next(C),

where for δ(q, wp) = (q′, a, m), the successor configuration of C
is defined as Next(C) = (q′, p + m, w0 . . . wp−1awp+1 · · ·wk). A com-
putation of the TM M on an input word x ∈ Γ∗ is a configuration

2

1.1 Basic notions on decidability

sequence

C0, C1, . . .

where C0 = C0(x) := (q0, 0, x) is the input configuration and Ci+1 =

Next(Ci) for all i.
M halts on x if the computation of M on x is finite, i.e. ends in a

final configuration C f = (q, p, w) with q ∈ F.
The language accepted by M is

L(M) := {x ∈ Γ∗ : M halts on x}.

M computes a partial function fM : Γ∗ → Σ∗ with domain L(M)

such that fM(x) = y if and only if the computation of M on x ends in
(q, p, y) for some q ∈ F, y ∈ Σ∗ and p ∈N.

Definition 1.4. A Turing acceptor is a Turing machine M with F =

F+ ·∪ F− where M accepts x if the computation of M on x ends in a state
in F+. M rejects x if the computation of M on x ends in a state in F−.

Definition 1.5.

• L ⊆ Γ∗ is recursively enumerable (r.e.) if there exists a TM M with
L(M) = L.

• L ⊆ Γ∗ is co-recursively enumerable (co-r.e.) if L := Γ∗ \ L is r.e..
• A (partial) function f : Γ∗ → Σ∗ is (Turing) computable if there is a

TM M with fM = f .
• L ⊆ Γ∗ is decidable if there is a Turing acceptor M such that for all

x ∈ Γ∗

x ∈ L⇒ M accepts x

x /∈ L⇒ M rejects x

or, equivalently, L is decidable if its characteristic function
χL : Γ∗ → {0, 1} is Turing computable.

Theorem 1.6. A language L ⊆ Γ∗ is decidable if and only if L is r.e.
and co-r.e.

3

1 The classical decision problem for FO

Definition 1.7. Let A ⊆ Γ∗, B ⊆ Σ∗. We say that A is (many-to-one)
reducible to B, A ≤ B, if there is a total computable function f : Γ∗ → Σ∗

such that for all x ∈ Γ∗ we have x ∈ A⇔ f (x) ∈ B.

Lemma 1.8.

• A ≤ B, B decidable⇒ A decidable

• A ≤ B, B r.e. ⇒ A r.e.

• A ≤ B, A undecidable⇒ B undecidable.

There surely are undecidable languages since there are only count-
ably many Turing machines but uncountably many languages. Un-
fortunately, among these languages there are quite relevant classes of
languages. For example we cannot even decide whether a TM halts on
a given input.

Definition 1.9 (Halting Problems). The general halting problem is defined
as

H := {ρ(M)#ρ(x) : M Turing machine, x ∈ L(M)}

where ρ(M) and ρ(x) are encodings of the TM M and the input x over
a fixed alphabet {0, 1} such that the computation of M on x can be
reconstructed from the encodings ρ(M) and ρ(x) in an effective way.

There is a universal TM U which, given ρ(M) and ρ(x), simulates
the computation of M on x and halts if and only if M halts on x. Thus,
L(U) = H from which we conclude that H is r.e..

We introduce two special variants of the halting problem

• Self-application problem

H0 := {ρ(M) : ρ(M) ∈ L(M)}

• Halting on the empty word

Hε := {ρ(M) : ε ∈ L(M)}

Theorem 1.10. H, H0, Hε are undecidable.

4

1.1 Basic notions on decidability

Proof.

• H0 is not co-r.e. and thus undecidable. Otherwise H0 = L(M0) for
some TM M0. Then

ρ(M0) ∈ H0 ⇔ M0 halts on ρ(M0)⇔ ρ(M0) ∈ H0.

• H0 is a special case of H, H0 ≤ H, and thus H is undecidable.

• We can reduce H to Hε, thus Hε is undecidable. q.e.d.

As a consequence of the next theorem we cannot algorithmically
prove whether a program computes a given function, i.e. we cannot
algorithmically prove the correctness of a program. Note that this
does not mean that we cannot prove the correctness of a single given
program. Instead the statement is that we cannot do so algorithmically
for all programs.

Theorem 1.11 (Rice). Let R be the set of all computable functions and
let S ⊆ R be a set of computable functions such that S ̸= ∅ and S ̸= R.
Then code(S) := {ρ(M) : fM ∈ S} is undecidable.

Proof. Let ⇑ be the everywhere undefined function, i.e. Def(⇑) = ∅.
Obviously, ⇑ is computable. Assume that ⇑̸∈ S (otherwise consider
R \ S instead of S. Clearly if code(R \ S) is undecidable then so is
code(S).)

As S ̸= ∅, there exists a function f ∈ S . Let M f be a TM that
computes f , i.e. fM f = f . We define a reduction Hε ≤ code(S) by
describing a total computable function ρ(M) 7→ ρ(M′) such that

M halts on ε⇔ fM′ ∈ S.

Specifically, given ρ(M), we construct the encoding of a TM M′ which,
given an input x, proceeds as follows:

• first simulate M on ε (i.e. apply the universal TM U to ρ(M)#ε);

• then simulate M f on x (i.e. apply the universal TM U to
ρ(M f)#ρ(x)).

5

1 The classical decision problem for FO

It is clear that the reduction function is computable. Furthermore,
if M halts on ε then fM′ (x) = f (x) for all inputs x, i.e. fM′ = f , so
fM′ ∈ S. If M does not halt on ε then M′ does not halt on x for any x,
i.e. fM′ =⇑, so fM′ ̸∈ S. q.e.d.

Definition 1.12 (Recursive inseparability). Let A, B ⊆ Γ∗ be two disjoint
sets. We say that A and B are recursively inseparable if there exists no
recursive set C ⊆ Γ∗ such that A ⊆ C and B ∩ C = ∅.

Example. (A, A) are recursively inseparable if and only if A is undecid-
able.

Lemma 1.13. Let A, B ⊆ Γ∗, A ∩ B = ∅ be recursively inseparable. Let
X, Y ⊆ Σ∗, X ∩ Y = ∅, and let f be a total computable function such
that f (A) ⊆ X and f (B) ⊆ Y. Then X and Y are recursively inseparable.

Proof. Assume there exists a decidable set Z ⊆ Σ∗ such that X ⊆ Z
and Y ∩ Z = ∅. Consider C = {x ∈ Γ∗ : f (x) ∈ Z}. C is decidable,
A ⊆ C, B ∩ C = ∅, thus C separates A, B. q.e.d.

Notation: We write (A, B) ≤ (X, Y) if such a function f exists.

Example. (A, A) ≤ (B, B)⇔ A ≤ B.

As a preparation to prove Trakhtenbrot’s theorem, we consider a
refinement of Hε

H+
ε := {ρ(M) : M accepts ε}

H−ε := {ρ(M) : M rejects ε}
H∞

ε := {ρ(M) : the computation of M on ε is infinite

and does not cycle.}

H+
0 , H−0 , H∞

0 are defined analogously, with respect to self-
application.

Theorem 1.14. H+
ε , H−ε and H∞

ε are pairwise recursively inseparable.

Proof.

6

1.1 Basic notions on decidability

• (H+
ε , H∞

ε): We show that every set C with H+
ε ⊆ C and H∞

ε ∩ C =

∅ is undecidable by reducing the halting problem Hε to C. Define
the function ρ(M) 7→ ρ(M′) as follows. From a given code ρ(M)

construct the code of a TM M′ that simulates M and simultaneously
counts the number of computation steps since the start. If M halts
(accepting or rejecting), M′ accepts.

It is clear that the reduction function is computable. If M halts on ε

then M′ halts on ε as well and accepts, so ρ(M′) ∈ H+
ε ⊆ C. If M

does not halt on ε then M′ does not halt either, so ρ(M′) ∈ H∞
ε

and as H∞
ε ∩ C = ∅, we have ρ(M′) ̸∈ C.

• The statement for H−ε and H∞
ε is proven analogously.

• (H−ε , H+
ε): Show that (H−0 , H+

0) ≤ (H−ε , H+
ε) and that (H−0 , H+

0)

are recursively inseparable.

– (H−0 , H+
0) ≤ (H−ε , H+

ε):

For a given input TM M construct a TM M′ that ignores its
own input and simulates M on ρ(M). Obviously, M′ can be
constructed effectively, say by a computable function h. Now
h(M) accepts ε iff M accepts ρ(M) and h(M) rejects ε iff M
rejects ρ(M).

– (H−0 , H+
0) recursively inseparable:

Assume there exists a decidable C with H−0 ⊆ C and H+
0 ⊆ C.

Consider a machine M0 that decides C. There are two cases:

(1) M0 accepts ρ(M0). Then ρ(M0) ∈ C by definition of M0.
Then ρ(M0) ̸∈ H+

0 by definition of C. On the other hand,
if M0 accepts ρ(M0) then ρ(M0) ∈ H+

0 (by definition of
H+

0), a contradiction.

(2) M0 rejects ρ(M0). Then ρ(M0) ̸∈ C by definition of M0.
Then ρ(M0) ̸∈ H−0 by definition of C. On the other hand,
if M0 rejects ρ(M0) then ρ(M0) ∈ H−0 (by definition of
H−0), a contradiction.

q.e.d.

7

1 The classical decision problem for FO

1.2 Trakhtenbrot’s Theorem

In the following, we consider FO, more precisely first-order logic with
equality. We restrict ourselves to a countable signature

τ∞ := {Ri
j : i, j ∈N} ∪ { f i

j : i, j ∈N}

where Ri
j stands for a relation symbol of arity i and f i

j stands for a
function symbol of arity i.

We encode formulae over a fixed alphabet

Γ := {R, f , x, 0, 1, [,]} ∪ {=,¬,∧,∨,→,↔, ∃, ∀.(,)},

and uniquely encode the relational and functional symbols

relation symbols: Ri
j 7−→ R[bin i][bin j]

functional symbols: f i
j 7−→ f [bin i][bin j]

variables: xj 7−→ x[bin j].

Thus, every formula ϕ ∈ FO is a word in Γ∗.
Let X ⊆ FO be a class of formulae. We analyse the following

decision problems:

Sat(X) := {ψ ∈ X : ψ has a model}
Fin-sat(X) := {ψ ∈ X : ψ has a finite model}

Val(X) := {ψ ∈ X : ψ is valid}
Non-sat(X) := X \ Sat(X)

Inf-axioms(X) := Sat(X) \ Fin-sat(X)

= {ψ ∈ X : ψ is an infinity axiom, i.e. ψ has a

model but no finite model}.

Theorem 1.15. Let X ⊆ FO be decidable. Then

(1) Val(X) is r.e.
(2) Non-sat(X) is r.e.
(3) Sat(X) is co-r.e.

8

1.2 Trakhtenbrot’s Theorem

(4) Fin-sat(X) is r.e.
(5) Inf-axioms(X) is co-r.e.

Proof. (1) ϕ is valid ⇔ ⊢ ϕ (Completeness Theorem). Thus we can
systematically enumerate all proofs and halt if a proof for ϕ is
listed.

(2) ϕ valid⇔ ¬ϕ is not satisfiable.
(3) Follows from Item (2).
(4) Systematically generate all finite models and halt if a model of ϕ is

found.
(5) FO \ Inf-axioms(X) = Non-sat(X) ∪ Fin-sat(X) is r.e. q.e.d.

Definition 1.16. A class X ⊆ FO has the finite model property (FMP) if
every satisfiable ϕ ∈ X has a finite model, i.e. if Sat(X) = Fin-sat(X).

Theorem 1.17. Suppose that X ⊆ FO is decidable and that X has the
FMP. Then Sat(X) is decidable.

Proof. Sat(X) is co-r.e. and since Sat(X) = Fin-sat(X) and Fin-sat(X) is
r.e. also Sat(X) is r.e. Thus Sat(X) is decidable. q.e.d.

In this case also Fin-sat(X), Non-sat(X), Val(X) are decidable and
of course Inf-axioms(X) = ∅ is decidable.

Theorem 1.18 (Trakhtenbrot). There is a finite vocabulary τ ⊆ τ∞

such that Fin-sat(FO(τ)), Non-sat(FO(τ)) and Inf-axioms(FO(τ)) are
pairwise recursively inseparable and therefore undecidable.

The proof of Trakhtenbrot’s theorem introduces a proof strategy
that can be applied in many other undecidability proofs. (Do not focus
on the technicalities but on the general idea to construct the reduction
formulae.)

Proof. Let M be a deterministic Turing acceptor. We show that there is
an effective reduction ρ(M) 7→ ψM such that

(1) M accepts ε =⇒ ψM has a finite model.
(2) M rejects ε =⇒ ψM is unsatisfiable.

9

1 The classical decision problem for FO

(3) The computation of M on ε is infinite and non-periodic =⇒ ψM

is an infinity axiom.

Then the theorem follows by Lemma 1.13.
Let M be a Turing acceptor with states Q = {q0, . . . , qr}, initial state

q0, alphabet Σ = {a0, . . . , as} (where a0 = �), final states F = F+ ∪ F−

and transition function δ.
ψM is defined over the vocabulary τ = {0, f , q, p, w} where 0 is a

constant, f , q, p are unary functions and w is a binary function. Define
the term k as f k0.

By constructing a formula we intend to have a model AM =

(A, 0, f , q, p, w) describing a run of M on the input ε where

• universe A = {0, 1, 2, . . . , n} or A = N;
• f (t) = t + 1 if t + 1 ∈ A and f (t) = t, if t is the last element of A;
• q(t) = i iff M is at time t in state qi;
• p(t) is the head position of M at time t;
• w(s, t) = i iff symbol ai is at time t on tape-cell s.

Note that we cannot enforce this model, but if ψM is satisfiable this
one will be among its models.

ψM := START ∧ COMPUTE ∧ END

START := (q0 = 0∧ p0 = 0∧ ∀x w(x, 0) = 0).

[Enforces input configuration on ε at time 0]

COMPUTE := NOCHANGE∧ CHANGE

NOCHANGE := ∀x∀y(py ̸= x → w(x, f y) = w(x, y))

[content of currently not visited tape cells does not change]

CHANGE :=
∧

δ:(qi ,aj) 7→(qk ,aℓ ,m)

∀y(αi,j → βk,ℓ,m)

where

αij := (qy = i ∧ w(py, y) = j)

[M is at time y in state qi and reads the symbol aj]

βk,ℓ,m := (q f y = k ∧ w(py, f y) = ℓ ∧MOVEm)

10

1.2 Trakhtenbrot’s Theorem

and

MOVEm :=





p f y = py if m = 0

p f y = f py if m = 1

∃z(f z = py ∧ p f y = z) if m = −1.

END :=
∧

δ(qi ,aj) undef.
qi ̸∈F+

∀y¬αij

[The only way the computation ends is in an accepting state]

Remark 1.19.

• ρ(M) 7→ ψM is an effective construction.

• If M accepts ε, the intended model is finite and is indeed a model
AM |= ψM, thus ψM ∈ Fin-sat(FO(τ)).

• If the computation of M on ε is infinite, the intended model is
infinite and AM |= ψM.

It remains to show that if M rejects ε, then ψM is unsatisfiable, and
if the computation of M on ε is infinite and aperiodic, then ψM is an
infinity axiom.

Suppose B = (B, 0, f , q, p, w) |= ψM.

Definition 1.20. B enforces at time t the configuration (qi, j, w) with
w = ai0 . . . aim ∈ Σ∗ if

(1) B |= qt = i,

(2) B |= pt = j,

(3) for all k ≤ m, B |= w(k, t) = ik and for all k > m, B |= w(k, t) = 0.

Since B |= ψM, the following holds:

• B enforces C0 = (q0, 0, ε) at time 0 (since B |= START.)

• If B enforces at time t a non-final configuration Ct, then B enforces
the configuration Ct+1 = Next(Ct) at time t + 1.

• Especially, the computation of M cannot reach a rejecting configu-
ration. It follows that if M rejects ε, then ψM is unsatisfiable.

11

1 The classical decision problem for FO

Consider an infinite and aperiodic computation of M, and assume
B |= ψM is finite. Since B is finite, it enforces a periodic computa-
tion in contradiction to the assumption that the computation of M
is aperiodic.

C0 ⊢ . . . ⊢ Cr ⊢ . . . ⊢ Ct−1

We have shown:

• If M accepts ε, then ψM has a finite model.

• If M rejects ε, then ψM is unsatisfiable.

• If the computation of M is infinite and aperiodic, then ψM is an
infinity axiom. q.e.d.

We now know that the sets of all finitely satisfiable, all unsatisfiable
and all only infinitely satisfiable formulae are undecidable for FO(τ)

where τ consists of only three unary functions and one binary function.
This raises a number of questions.

(1) For which other vocabularies σ do we have similar undecidability
results for FO(σ)?

(2) For which σ is satisfiability of FO(σ) decidable?

(3) Is there a complete classification? In this case, we want to find min-
imal vocabularies σ such that the above problems are undecidable,
i.e. vocabularies such that any further restriction yields a class of
formulae for which satisfiability is decidable.

We first define what it means that a fragment of FO is as hard for
satisfiability as the whole FO.

Definition 1.21. X ⊆ FO is a reduction class if there exists a computable
function f : FO→ X such that ψ ∈ Sat(FO)⇔ f (ψ) ∈ Sat(X).

Let X, Y ⊆ FO. A conservative reduction of X to Y is a computable
function f : X → Y with

• ψ ∈ Sat(X)⇔ f (ψ) ∈ Sat(Y), and

• ψ ∈ Fin-sat(X)⇔ f (ψ) ∈ Fin-sat(Y).

12

1.2 Trakhtenbrot’s Theorem

X is a conservative reduction class if there exists a conservative re-
duction of FO to X.

Corollary 1.22. Let X be a conservative reduction class. Then
Fin-sat(X), Inf-axioms(X) and Non-sat(X) are pairwise recursively insep-
arable, and thus Fin-sat(X), Sat(X), Val(X), Non-sat(X), Inf-axioms(X)

are undecidable.

Proof. A conservative reduction from FO to X yields a uniform reduc-
tion from Fin-sat(FO), Inf-axioms(FO) and Non-sat(FO) to Fin-sat(X),
Inf-axioms(X) and Non-sat(X), respectively. q.e.d.

We now observe that we can indeed give a complete classification
of signatures σ such that FO(σ) is decidable.

Theorem 1.23. If σ ⊆ {P0, P1, . . .} ∪ { f } consists of at most one
unary function f and an arbitrary number of monadic relations
P0, P1, . . ., then Sat(FO(σ)) is decidable. In all other cases, Sat(FO(σ)),
Inf-axioms(FO(σ)) and Non-sat(FO(σ)) are pairwise recursively insepa-
rable, and FO(σ) is a conservative reduction class.

A full proof of this classification theorem is rather difficult. In
particular, the decidability of the monadic theory of one unary function,
which implies the decidability part, is a difficult theorem due to Rabin.
On the other side, one has to show that Trakhtenbrot’s theorem applies
to the vocabularies

τ1 = {E} where E is a binary relation,
τ2 = { f , g} where f , g are unary functions,
τ3 = {F} where F is a binary function,

and hence to all extensions of τ1, τ2, τ3.
Of course, we may also look at other syntactic restrictions besides

restricting the vocabulary. One possibility is to restrict the number of
variables. This is only interesting for relational formulae. If we have
functions, satisfiability is undecidable even for formulae with only one
variable as we shall see.

Define FOk as first-order logic with relational symbols only and a
fixed amount of k variables, say x1, . . . , xk.

13

1 The classical decision problem for FO

Theorem 1.24.

• FO2 has the finite model property and is decidable (see Chapter 2).
• FO3 is a conservative reduction class.

Another possibility is to restrict the structure of quantifier prefixes.

Definition 1.25 (Prefix-Vocabulary Classes). A string in {∀, ∃}∗ is called
prefix, and an arity sequence is a sequence assigning all positive integers
values in N∪ {ω}.

For any set of prefixes Π and any arity sequences p and f , [Π, p, f]
and [Π, p, f]= denote the collection of all formulae ϕ ∈ FO in prenex
normal form without equality and with equality, respectively, such that

• the prefix of ϕ belongs to Π,
• the number of n-ary predicate symbols in ϕ is at most p(n) and
• the number of n-ary function symbols in ϕ is at most f (n).
• Except for the logical constants true and false, ϕ has no nullary

predicate symbols, no nullary function symbols and no free vari-
ables.

The prefix set containing all prefixes and the arity sequence that assigns
ω to each n will be denoted all.

We write arity sequences as tuples, e.g., (2, 1, ω), (0) to express that
two predicate symbols of arity 1, one of arity 2, unboundedly many of
arity 3 and no other predicate or function symbols are allowed.

Theorem 1.26 (Gurevich). Let X be a prefix class, p, q two arity se-
quences and X = [Π, p, q]=.

• X is a conservative reduction class if it contains any of

(1) [∀, (0), (2)]=
(2) [∀, (0), (0, 1)]=
(3) [∀2∃, (ω, 1), (0)]=
(4) [∃∗∀2∃, (0, 1), (0)]=
(5) [∀2∃∗, (0, 1), (0)]=.

• If X is contained in one of the following classes, then Sat(X) and
Inf-axioms(X) are decidable

14

1.3 Domino problems

(6) [∃∗∀∗, all, (0)]=
(7) [∃∗, all, all]=
(8) [all, (ω), (1)]=
(9) [∃∗∀∃∗, all, (1)]=.

This gives a complete classification.

1.3 Domino problems

Domino problems are a simple and yet general tool for proving unde-
cidability without talking about Turing machines.

The informal idea is the following: a domino (type) is an oriented
square with unit length and coloured edges. We consider the following
decision problem.

Given: a finite set of domino types (infinite supply of each).

Question: does there exist a tiling of N×N such that adjacent
edges have the same colour?

The undecidability of the stated problem is established by encoding
computations of Turing machines in an appropriate way. A row of the
tiling represents a configuration of a Turing machine.

Definition 1.27. A domino system is a structure D = (D, H, V) with

• a finite set D,

• horizontal and vertical compatibility relations H, V ⊆ D× D.

The meaning of H and V is that

• (d, d′) ∈ H if the right colour of d is equal to the left colour of d′,

• (d, d′) ∈ V if the top colour of d is equal to the bottom colour of d′

(see Figure 1.1).

A tiling of N×N by D is a function σ : N×N→ D such that for all
x, y ∈N

• (σ(x, y), σ(x + 1, y)) ∈ H and

• (σ(x, y), σ(x, y + 1)) ∈ V.

15

1 The classical decision problem for FO

A periodic tiling of N×N by D is a tiling σ for which two integers
h, v ∈N exist such that for all x, y ∈N it holds σ(x, y) = σ(x + h, y) =
σ(x, y + v). The decision problem DOMINO is described as

DOMINO := {D : there exists a tiling of N×N by D}

a

b

c

d

c

•

•

•

•

•

•

b

Figure 1.1. Domino adjacency condition

An important variant is the origin constrained tiling.

Definition 1.28. An origin constrained domino system is a system (D, D0)

with D0 ⊆ D. A tiling with origin constraint D0 is a tiling σ such that
σ(0, 0) ∈ D0. The corresponding decision problem is

CORNER-DOMINO := {(D, D0) : there exists a tiling of N×N

with origin constraint D0}.

Theorem 1.29 (Wang, Büchi). CORNER-DOMINO is undecidable.

Proof. We reduce Hω
ε = {ρ(M) : the computation of M on ε is infinite},

which is co-r.e., to CORNER-DOMINO.
Consider a 1-tape TM M = (Q, Σ, q0, δ, F), and construct (D, D0)

such that the computation of M on ε is infinite if and only if there exists
a tiling of N×N by D with origin constraint D0.

Assume w.l.o.g. that M never moves off-tape to the left, i.e. in
configurations (q, 0, w) it is never the case that δ(q, w0) = (q′, a,−1).

16

1.3 Domino problems

D consists of the following domino types.

For each a ∈ Σ ↔

a

↔

a

For each (q, a) ∈ Q× Σ with
δ(q, a) = (q′, a′, 0)

↔
(q′, a′)

↔

(q, a)

For each (q, a) ∈ Q× Σ with
δ(q, a) = (q′, a′, 1), for each
b ∈ Σ

↔
a′

(q, a)

(q, a)

(q, a)

(q′, b)

↔

b

For each (q, a) ∈ Q× Σ with
δ(q, a) = (q′, a′,−1) for each
b ∈ Σ

↔
(q′, b)

(q, a)

b

(q, a)

a′

↔

(q, a)

Additionally there exist
dominoes

⊢

(q0,�)

↔0

⊥

↔0

�

↔0

⊥

The origin constraint D0 con-
sists of

⊢

(q0,�)

↔0

⊥

Note that (D, D0) can be constructed effectively from M.

There is precisely one way of tiling the first row:

17

1 The classical decision problem for FO

⊢

(q0,�)

↔0

⊥

σ(0, 0)

↔0

�

↔0

⊥

σ(0, i) for all i > 0

· · ·

Assume the first j rows have been tiled correctly. Then the top edge of
row j reads

w0 . . . wi−1(q, wi)wi+1 . . .

for Cj = (q, i, w0, w1, . . .), the jth configuration of M on ε.
This tiling can be extended to a tiling of row j + 1 if and only if

there exists Cj+1 = Next(Cj).
Conclusion: The computation of M on ε is infinite if and only if

there exists a tiling of N×N by (D, D0). q.e.d.

Stronger forms of this result are the following

Theorem 1.30 (Berger, Robinson). DOMINO (without origin constraint)
is co-r.e. and undecidable.

Theorem 1.31. The problem of tiling Z×Z is reducible to the problem
of tiling N×N. (Proof via König’s Lemma).

Theorem 1.32. The set of domino systems admitting a periodic tiling
of N×N, those that admit no tiling of N×N and those that admit a
tiling but not a periodic one are pairwise recursively inseparable.

Definition 1.33. A computable function f is a reduction from domino
systems to X if, for all domino systems D, f (D) = ϕD is in X and the
following holds:

• D admits a periodic tiling of N×N⇒ ψD has a finite model

• D admits no tiling of N×N⇒ ψD is unsatisfiable

• D admits a tiling of N×N but no periodic one⇒ ψD is an infinity
axiom.

18

1.4 Applications of the domino method

Remark 1.34. Let X ∈ FO. If there exists a reduction from domino
systems to X then X is a conservative reduction class.

Proof. Since Fin-sat(FO) and Non-sat(FO) are recursively enumerable
and Inf-axioms(FO) is co-recursively enumerable, we can associate with
every first-order formula ψ a Turing machine M such that

• ψ ∈ Fin-sat(FO)⇒ ρ(M) ∈ H+
ε ,

• ψ ∈ Non-sat(FO)⇒ ρ(M) ∈ H−ε ,

• ψ ∈ Inf-axioms(FO)⇒ ρ(M) ∈ H∞
ε .

The proof of 1.32 reduces the halting problems H+
ε , H−ε , H∞

ε , to the
domino problems. There exists a recursive function that associates with
every TM M a domino system D satisfying

• If M ∈ H+
ε then D admits a periodic tiling of N×N.

• If M ∈ H−ε then D admits no tiling of N×N.

• If M ∈ H∞
ε then D admits a tiling of N×N but no periodic one.

Finally, according to to the assumption, there is a reduction D 7→
ϕD from domino systems to X Thus, the domino method yields a
conservative reduction from FO to X.

q.e.d.

1.4 Applications of the domino method

We now apply the domino method to obtain several reduction classes.

Theorem 1.35. [∀∃∀, (0, ω), (0)] is a conservative reduction class.

Proof. Due to Remark 1.34 it suffices to give a reduction from domino
systems to X, i.e. find a mapping D 7→ ψD over a vocabulary consisting
of binary relation symbols (Pd)d∈D such that

(1) D admits a periodic tiling of N×N⇒ ψD has a finite model

(2) D admits no tiling of N×N⇒ ψD is unsatisfiable

(3) D admits a tiling of N×N but no periodic one⇒ ψD is an infinity
axiom

19

1 The classical decision problem for FO

The intended model is N with intended interpretation of Pd =

{(i, j) ∈N×N : τ(i, j) = d} for all d ∈ D. We define ψD by

ψD := ∀x∃y∀z
(∧

d ̸=d′
Pdxz→ ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′yz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′zy)
)

.

Obviously ψD is of the desired format, i.e. ψD ∈ [∀∃∀, (0, ω), (0)].

(1) If D admits a periodic tiling of N×N, then ψD has a finite model.
Let τ : N×N→ D be a periodic tiling such that for some h, v ∈N

τ(x, y) = τ(x + h, y) = τ(x, y + v) for all x, y. Let t := lcm(h, v) be
the least common multiple of h and v. Then τ induces a tiling

τ : Z/tZ×Z/tZ→ D

with τ′(x, y) = τ(x(mod t), y(mod t)).
Thus, A = (Z/tZ, (Pd)d∈D) with Pd = {(i, j) : τ′(i, j) = d} is a
finite model (for x in ψD choose y := x + 1 (mod t) in ψD .)

(2) If ψD has a model, then D admits a tiling.

(3) We want to show: if ψD has a finite model, then D admits a periodic
tiling. (In the case that ψD is unsatisfiable, we show with the same
arguments as in (1) that if D admits a tiling of N×N, then ψD
has a model A = (N, (Pd)d∈D).)

Let now ψD have a finite model. To show that if ψD has a (finite)
model, then D admits a (periodic) tiling we consider the Skolem normal
form ϕD of ψD :

ϕD := ∀x∀z(
∧

d ̸=d′
Pdxz→ ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′ f xz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′z f x).

• Suppose B = (B, f , (Pd)d∈D) |= ϕD . Define a tiling τ : N×N→
D as follows: choose b ∈ B, and set τ(i, j) := d for the unique

20

1.4 Applications of the domino method

d ∈ D such that B |= Pd(f ib, f jb) for all i, j ∈N. Since B |= ϕD , τ

is a correct tiling.

• Suppose that B |= ϕD is finite:

• •
f bf

· · · · · · •

f

Choose b ∈ B such that, for some t ≥ 1, f tb = b. Then the defined
tiling τ is periodic.

q.e.d.

Corollary 1.36. FO3 is a conservative reduction class.

Later we show that FO2 has the FMP.

Consider sets of formulae X ⊆ FO over functional vocabularies.
FO(τ) is a conservative reduction class if τ contains

• two unary functions or

• one binary function.

This is even true for sentences of the form ∀xϕ where ϕ is quantifier-
free.

Theorem 1.37. [∀, (0), (2)]= and [∀, (0), (0, 1)]= are conservative reduc-
tion classes.

Proof. We apply the domino method for formulae ∀xϕ where ϕ is
quantifier-free with any number of unary functions, and then apply
a reduction/interpretation to reduce this to two unary/one binary
function/s.

Define a mapping D = (D, H, V) 7→ ψD where ψD is a formula
over the vocabulary { f , g, (hd)d∈D} where all function symbols are
unary. The intended model is N×N with successor functions f and g.
The subformula ∀x(f gx = g f x) ensures that the models of ψD contain
a two-dimensional grid. The fact that a position x is tiled by d ∈ D is

21

1 The classical decision problem for FO

expressed by requiring that hdx = x, i.e. that x is a fixed point of hd.
Now define

ψD := ∀x
(

f gx = g f x ∧
∧

d ̸=d′
(hdx = x → hd′x ̸= x)

∧
∨

(d,d′)∈H

(hdx = x ∧ hd′ f x = f x)

∧
∨

(d,d′)∈V

(hdx = x ∧ hd′ gx = gx)
)

.

We claim that there exists a tiling σ : N×N → D if and only if
ψD is satisfiable.

”⇒ ” Assume σ is a correct tiling. Construct the (intended) model
A = (N×N, f , g, (hd)d∈D) with

– f (i, j) = (i + 1, j),
– g(i, j) = (i, j + 1),

– hd(i, j)




= (i, j) if σ(i, j) = d

̸= (i, j) otherwise.

Clearly A |= ψD .
”⇐ ” Consider B = (B, f , g, (hd)d∈D) |= ψD .

Choose an arbitrary b ∈ B and define

σ : N×N→ D : σ(i, j) := d iff B |= hd f igjb = f igjb.

Note that every position is in exactly one of the hd. Then σ is
a correct tiling. If B is finite, then σ is periodic, and thus the
reduction is conservative.

We now show that we can sharpen the results, i.e. show that two
unary function symbols are sufficient

Consider ∀xϕ ∈ [∀, (0), (ω)]= with monadic function symbols
f1, . . . , fm. Transform ϕ into ϕ̃ := ϕ[x/hx, fi/hgi] where h, g are fresh
unary function symbols. This procedure transforms formulae over the
vocabulary { f1, . . . , fm} into formulae over the vocabulary {h, g}. The
idea is to replace an application of fi by i applications of g. The second
function h takes care of unwanted equalities.

22

1.4 Applications of the domino method

x

• • · · · •

f1 f2 fm

x

hx

• • · · · • •
gm(hx)

h

g

g g

Claim: ∀xϕ is (finitely) satisfiable⇔ ∀xϕ̃ is (finitely) satisfiable.

”⇐ ” Let B = (B, h, g) |= ∀xϕ̃. Construct A = (A, f1, . . . , fm) with

– A = {hb : b ∈ B}
– fi(a) = (hgi)(a)

Then A |= ∀xϕ.

”⇒ ” Let A = (A, f1, . . . , fm) |= ∀xϕ. Construct B = (B, g, h) with

– B = A×
(
Z/(m + 1)Z

)
,

– g(a, i) = (a, i + 1),

– h(a, 0) = (a, 0),

– h(a, i) = (fia, 0).

This transformation preserves the meaning of terms: Let t(x) =
fi1 . . . fik

x be a term in ϕ. Then t̃(x) = hgi1 . . . hgik hx, and it holds
that t̃B[a, 0] = (tA[a], 0). Now the claim follows via induction over
the structure of ϕ.

We now show that we need at most one binary function. The idea
is to find an interpretation of g, h : A → A in a structure A = (A, F)
with F : A× A→ A via

• g(a) = F(a, F(a, a)),

• h(a) = F(F(a, a), a)

23

1 The classical decision problem for FO

where F(a, a) ̸= a.
Formally, consider a formula ∀xϕ with unary function symbols

f , g. Introduce a new binary function symbol F and translate

ϕ 7→ ϕg ∧ ϕh

where

ϕg := ϕ[x/g∗x, g/g∗, h/h∗],

ϕh := ϕ[x/h∗x, g/g∗, h/h∗]

with

g∗t = F(t, Ftt),

h∗t = F(Ftt, t).

Claim: ∀xϕ (finitely) satisfiable ⇔ ∀x(ϕg ∧ ϕh) (finitely) satisfi-
able.

”⇒ ” Let A = (A, g, h) |= ∀xϕ be a model. Set B = (B, F) with

– B := A×Z/3Z

– F((a, i), (a, i)) := (a, i + 1)
– F((a, i), (a, i + 1)) := (ga, 0)
– F((a, i + 1), (a, i)) := (ha, 0).

Now, for all (a, i) ∈ B

g∗(a, i) = F
(
(a, i), F(a, i)(a, i)

)
= F

(
(a, i), (a, i + 1)

)
= (ga, 0)

and

h∗(a, i) = (ha, 0).

Thus A is isomorphic to a copy of A defined in B.

A ∼= A∗ := ({(a, 0) : a ∈ A}, g∗, h∗).

Therefore, for all (a, i)

B |= ϕg(a, i)⇔ A∗ |= ϕ(ga, 0)

24

1.4 Applications of the domino method

⇔ A |= ϕ(ga) and

B |= ϕh(a, i)⇔ A∗ |= ϕ(ha, 0)

⇔ A |= ϕ(ha).

Thus, A |= ∀xϕ implies B |= ∀x(ϕg ∧ ϕk).
”⇐ ” For B = (B, F) |= ∀x(ϕg ∧ ϕh) let A = (A, g, h) with

– A := g∗(B) ∪ h∗(B)
– g := g∗

– h := h∗

Then A |= ∀xϕ. q.e.d.

25

