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4 Expressive Power of First-Order
Logic

In the whole chapter we restrict ourselves to finite and relational vocabu-
laries τ.

4.1 Ehrenfeucht-Fraïssé Theorem

Let A and B be τ-structures with a ∈ Ak and b ∈ Bk for some k ≥
0. Recall that we write A, a ≡ B, b if no FO-formula can distinguish
between (A, a) and (B, b), that is if for all φ(x) ∈ FO(τ) we have

A |= φ(a)⇔ B |= φ(b).

For m ≥ 0 we write A, a ≡m B, b if the same holds for all FO(τ)-
formulas of quantifier rank at most m. We aim to develop an algebraic
characterisation of ≡m via back-and-forth systems and a game-theoretic
characterisation via Ehrenfeucht-Fraïssé games.

Back-and-forth systems. A partial isomorphism between τ-structures A and
B is a bijective function p with finite domain dom(p) ⊆ A and range
rg(p) ⊆ B such that p is an isomorphism between the substructures of
A and B induced on dom(p) and rg(p), respectively, that is

p : A ↾ dom(p) ∼= B ↾ rg(p).

Part(A,B) denotes the set of partial isomorphism between A and B.
For all A and B we have ∅ ∈ Part(A,B). For p ∈ Part(A,B) we
write p = a → b for a ∈ Ak and b ∈ Bk if dom(p) = {a1, . . . , ak} and
rg(p) = {b1, . . . , bk} and if p(ai) = bi for 1 ≤ i ≤ k.
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4 Expressive Power of First-Order Logic

Definition 4.1. Let I ⊆ Part(A,B) and p ∈ Part(A,B). Then p has
back-and-forth extensions in I if

∀ a ∈ A ∃ b ∈ B : p ∪ {(a, b)} ∈ I (forth)

∀ b ∈ B ∃ a ∈ A : p ∪ {(a, b)} ∈ I (back)

Accordingly, for I, J ⊆ Part(A,B) we say that I has back-and-forth exten-
sions in J, if every p ∈ I has back-and-forth extensions in J.
Definition 4.2. Let m ≥ 0. A back-and-forth system for m-equivalence of
(A, a) and (B, b) is a sequence (Ii)i≤m of sets of partial isomorphisms
Ii ⊆ Part(A,B) such that

• a→ b ∈ Im, and

• for all 0 < i ≤ m, Ii has back-and-forth extensions in Ii−1.

If such a system (Ii)i≤m for (A, a) and (B, b) exists, then we write

(Ii)i≤m : (A, a) ≃m (B, b),

and we say that (A, a) and (B, b) are m-isomorphic.
Lemma 4.3. For every m ≥ 0, every τ-structure A and every a ∈ Ak,
there exists an FO(τ)-formula χm

A,a(x1, . . . , xk) of quantifier rank m such
that for all B and b ∈ Bk we have

B |= χm
A,a(b)⇔ A, a ≃m B, b.

Moreover the number of different formulas χm
A,a only depends on m, τ,

and k, and not on A or a (up to logical equivalence).

Proof. The construction is by induction on m ≥ 0 (for all k ≥ 0, A, and
a ∈ Ak at the same time).

χ0
A,a(x1, . . . , xk) =

∧
{φ(x1, . . . , xk) : φ is an atomic or negated

atomic FO(τ)-formula with A |= φ(x1, . . . , xk)}

We have that A, a ≃0 B, b if, and only if, a → b ∈ Part(A,B) which
means that (A, a) and (B, b) satisfy the same atomic formulas. Note that
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4.1 Ehrenfeucht-Fraïssé Theorem

the number of different atomic formulas in k variables only depends on
the vocabulary τ and on k ≥ 0.

Now let m > 0. Then we set χm
A,a(x1, . . . , xk) =

∧

a′∈A

∃x χm−1
A,a,a′(x1, . . . , xk, x) ∧ ∀x

∨

a′∈A

χm−1
A,a,a′(x1, . . . , xk, x).

Since the number of different formulas χm−1
A,a,a′ (up to equivalence)

only depends on m− 1 and k + 1 (by the induction hypothesis), also
the number of different formulas χm

A,a only depends on m and k (up to
equivalence) and not on A or a. This is of particular importance if one
of the structures is infinite, because it guarantees that the conjunction
and the disjunction in χm

A,a are finite. It holds

(A, a) ≃m (B, b)

⇐⇒




∀a′ ∈ A ∃b′ ∈ B : (A, a, a′) ≃m−1 (B, b, b′)

∀b′ ∈ B ∃a′ ∈ A : (A, a, a′) ≃m−1 (B, b, b′)

⇐⇒ (by (IH))




∀a′ ∈ A ∃b′ ∈ B : B |= χm−1

A,a,a′(b, b′)

∀b′ ∈ B ∃a′ ∈ A : B |= χm−1
A,a,a′(b, b′)

⇐⇒ B |= χm
A,a(b). q.e.d.

Ehrenfeucht-Fraïssé games. The Ehrenfeucht-Fraïssé game Gm(A, a,B, b)
is played by two players according to the following rules.

The arena consists of the structures A and B. We assume that
A ∩ B = ∅. The players are called Spoiler and Duplicator, and a play of
Gm(A, a,B, b) consists of m moves.

The initial position is Gm(A, a,B, b). In the i-th move, 1 ≤ i ≤ m, the
play proceeds from the position

Gm−i+1(A, a, c1, . . . , ci−1,B, b, d1, . . . , di−1).

Spoiler either chooses an element ci ∈ A or an element di ∈ B. Duplicator
answers by choosing an element ci ∈ A or di ∈ B in the other structure.
The new position is Gm−i(A, a, c1, . . . , ci,B, b, d1, . . . , di). After m moves,
elements c1, . . . , cm from A and d1, . . . , dm from B are chosen. Duplicator
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4 Expressive Power of First-Order Logic

wins at a final position G0(A, a, c1, . . . , cm,B, b, d1, . . . , dm) if A, a, c ≡0

B, b, d. Otherwise Spoiler wins.
A winning strategy of Spoiler is a function which determines, for

every reachable position, a move such that Spoiler wins each play which
is consistent with this strategy, no matter how Duplicator plays. Winning
strategies for Duplicator are defined analogously. We say that Spoiler
(respectively, Duplicator) wins the game Gm(A, a,B, b) if this player has
a winning strategy for Gm(A, a,B, b). By induction on the number of
moves it is easy to show that for every (sub)game exactly one of the two
players has a winning strategy.
Theorem 4.4 (Ehrenfeucht, Fraïssé). Let A,B be τ-structures (recall, τ

is finite and relational), let a ∈ Ak and b ∈ Bk and let m ≥ 0. Then the
following statements are equivalent:

(i) A, a ≡m B, b.

(ii) A, a ≃m B, b.

(iii) B |= χm
A,a(b).

(iv) Duplicator wins Gm(A, a,B, b).

Proof. Since A |= χm
A,a(a) and since qr(χm

A,a) ≤ m, we have that (i) ⇒
(iii). By Lemma 4.3, (ii) ⇔ (iii). Recall from the introductory course

that (iv) ⇒ (ii). The proof strategy was to show, by induction on the
quantifier rank m ≥ 0, that if a formula φ(x) of quantifier rank m can
distinguish between A, a and B, b, then we can extract a winning strategy
for Spoiler from this formula for the game Gm(A, a,B, b).

Hence, it suffices to prove (ii)⇒ (iv). Let (Ii)i≤m : (A, a) ≃m (B, b).
For m = 0 the claim holds, since a → b ∈ Im ⊆ Part(A,B). For
m > 0 assume that the Spoiler at position Gm(A, a,B, b) picks an element
a′ ∈ A. By the forth property Duplicator can pick b′ ∈ B such that
(a, a′) → (b, b′) ∈ Im−1. Hence, (Ii)i≤m−1 : (A, a, a′) ≃m−1 (B, b, b′).
By the induction hypothesis, Duplicator wins Gm−1(A, a, a′,B, b, b′). If
Spoiler picks an element b′ ∈ B the reasoning is analogous using the
back property. q.e.d.

Corollary 4.5. For all k ≥ 0, the relation ≡m induces an equivalence
relation on pairs (A, a) of τ-structures A and a ∈ Ak of finite index.

58



4.2 Hanf’s technique

Corollary 4.6. A class K of τ-structures is FO-definable if, and only if,
there exists m ≥ 0 such that for all τ-structures A and B with A ≡m B

it holds that A ∈ K ⇔ B ∈ K.

4.2 Hanf’s technique

Describing winning strategies in Ehrenfeucht-Fraïssé games can be diffi-
cult. In this section we want to establish sufficient criteria for structures
A and B which guarantee that Duplicator has a winning strategy in the
game Gm(A,B). The following approach goes back to Hanf who gave a
similar criterion to characterise ≡ (equivalance in full first-order logic).
However, since we are mainly interested in properties of finite structures,
≡ is far too powerful (two finite structures A,B are isomorphic if, and
only if, A ≡ B).

Gaifman graph. Let A be a τ-structure. The Gaifman-graph G(A) =

(VG(A), EG(A)) of A is defined as the undirected graph over the vertex
set VG(A) = A with the edge relation

EG(A) = {(a, b) : a ̸= b and the elements a, b occur together

in some tuple c ∈ RA for a relation R ∈ τ}.

The Gaifman graph allows us to define a notion of distance between
the elements of the structure A: we define dA : A2 → N ∪ {∞} as the
usual distance function in the Gaifman graph G(A) of A.

Let r ≥ 0. The r-neighbourhood of an element a ∈ A is the set
Nr
A(a) = Nr(a) = {b ∈ A : dA(a, b) ≤ r}. In particular, N0(a) = {a}.

For a tuple a = (a1, . . . , ak) ∈ Ak we set

Nr(a) =
⋃

1≤i≤k

Nr(ai).

The r-isomorphism type of an element a ∈ A is the isomorphism type
ι of the structure (A ↾ Nr(a), a) (that is of the substructure of A induced
on the r-neighbourhood of a extended by a new constant symbol to
distinguish the element a). This means that for τ-structures A,B, two
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4 Expressive Power of First-Order Logic

elements a ∈ A and b ∈ B have the same r-isomorphism type if there is an
isomorphism π : A ↾ Nr(a)→ B ↾ Nr(b) with π(a) = b.
Definition 4.7. Let r ≥ 0 and t ≥ 0. Two τ-structures A and B are
(r, t)-Hanf equivalent if for all isomorphism types ι of structures (C, c)
(where C is a τ-structure and c ∈ C is a distinguished constant) the
number of a ∈ A with r-isomorphism type ι is the same as the number
of b ∈ B with r-isomorphism type ι or both numbers exceed the threshold
t.
Remark 4.8. If A and B are (r, t)-Hanf equivalent, then they also are
(r′, t)-Hanf equivalent for all r′ ≤ r.
Theorem 4.9 (Hanf’s Theorem). Let m ≥ 0 and let A and B be two
τ-structures such that all 3m-neighbourhoods in A and B have at most
e ≥ 0 many elements.

If A and B are (3m, m · e)-Hanf equivalent, then A ≡m B.

Proof. For i ≥ 0 we obtain a back-and-forth system for m-equivalence of
A and B by setting

Im−i = {a→ b ∈ Part(A,B) : |a| = |b| = i,

A ↾ N3m−i
(a), a ∼= B ↾ N3m−i

(b), b}.

We have Im = {∅}, so let i ≥ 1. Without loss of generality, it suffices
to show that Im−i has forth-extensions in Im−i−1. Let a = (a1, . . . , ai) and
b = (b1, . . . , bi) and ρ be such that ρ : A ↾ N3m−i

(a), a ∼= B ↾ N3m−i
(b), b.

Let a ∈ A. We have to find b ∈ B such that A ↾ N3m−i−1
(a, a), a, a ∼= B ↾

N3m−i−1
(b, b), b, b.

Case 1 (close to a). If a ∈ N2·3m−i−1
(a), then we choose b = ρ(a) ∈

N2·3m−i−1
(b). This is a valid choice since we have ρ : A ↾ N3m−i

(a), a, a ∼=
B ↾ N3m−i

(b), b, b.
Case 2 (far from a). If a ̸∈ N2·3m−i−1

(a), then N3m−i−1
(a) ∩

N3m−i−1
(aj) = ∅ for all 1 ≤ j ≤ i. Hence, it suffices to find b ∈ B

with the same 3m−i−1-isomorphism type as a (call this ι) and the prop-
erty that N3m−i−1

(b) ∩ N3m−i−1
(bj) = ∅ for all 1 ≤ j ≤ i.

We know that in A and B there are the same numbers of realisations
of ι or more than m · e many. By our assumption, we know that in
N2·3m−i−1

(a) there are at most m · e realisations, and the same number of
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4.3 Gaifman’s Theorem

realisations can be found in N2·3m−i−1
(b) (because of ρ). Hence, we can

find a b ∈ B as claimed. q.e.d.

Corollary 4.10. Let m ≥ 0 and let A and B be τ-structures such that the
maximal degree in the Gaifman graphs G(A) and G(B) is d ≥ 0. If A
and B are (3m, m · d3m

) equivalent, then A ≡m B.
Corollary 4.11. Connectivity of finite graphs is not definable in first-
order logic.

Proof. Let An be a cycle of length 2n and let Bn be the disjoint union of
two cycles of length n. For m we can set n = 3m+1. Then An and Bn are
(3m, ∞)-Hanf equivalent but An is connected while Bn is not.

q.e.d.

4.3 Gaifman’s Theorem

Hanf’s technique shows that first-order logic can essentially express
local properties only: if two structures realise the same number of
f (m)-neighbourhood types, then no first-order sentence with quantifier
rank ≤ m can distinguish between both structures. Gaifman’s Theorem
makes this observation more precise by showing that every FO-sentence
is equivalent to an FO-sentence which only speaks about neighbour-
hoods of elements of a bounded radius (and this semantic property
is guaranteed by the syntactic structure of the sentence). To formally
introduce this Gaifman normal form for first-order logic we first have to
introduce the notions of local formulas and local sentences.

First of all, for every r ≥ 0 we can find an FO-formula ϑ≤r(x, y)
which defines in each structure A the pairs of elements (a, b) ∈ A2 whose
distance in the Gaifman graph G(A) of A is at most r, that is

ϑA
≤r = {(a, b) : dA(a, b) ≤ r}.

In formulas we will usually write d(x, y) ≤ r as a shorthand
for ϑ≤r(x, y). Also we write d(x, y) ≤ r for a tuple of variables
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4 Expressive Power of First-Order Logic

x = (x1, . . . , xk) to abbreviate the formula

d(x, y) ≤ r =
∨

1≤i≤k

d(xi, y) ≤ r.

Local formulas. A formula φ(x) is r-local if its evaluation in a structure
A with respect to a tuple a ∈ Ak only depends on the r-neighbourhood
of a. To capture this formally, we inductively define the relativisation
φNr(x)(x, y) of a formula φ(x, y) to the r-neighbourhood Nr(x) of x (for
the construction we assume that no variable in x is bound in φ):

φNr(x) = φ for atomic formulas φ

φNr(x) = ψNr(x) ◦ ϑNr(x) for φ = ψ ◦ ϑ, ◦ ∈ {∧,∨}
φNr(x) = ¬ψNr(x) for φ = ¬ψ

φNr(x) = ∃z(d(x, z) ≤ r ∧ ψNr(x)) for φ = ∃zψ

φNr(x) = ∀z(d(x, z) ≤ r → ψNr(x)) for φ = ∀zψ

Lemma 4.12. For all r ≥ 0, A, a ∈ Ak and b ∈ (Nr(a))ℓ we have

A ↾ Nr(a) |= φ(a, b) ⇔ A |= φNr(x)(a, b).

Definition 4.13. A formula φ(x) is called r-local if φ(x) ≡ φNr(x)(x), that
is if for all A and a ∈ Ak we have

A |= φ(a) ⇔ A |= φNr(x)(a) ⇔ A ↾ Nr(a) |= φ(a).

Note that r-locality is a semantic property of formulas. However,
it is easy to see that all formulas φNr(x)(x) are r-local (in other words,
the syntatic transformations guarantee that we obtain a local formula,
but of course there are local formulas which do not have this syntactic
form). Moreover, it is not hard to verify that every formula φ(x) which
is r-local is also r′-local for all r′ ≥ r. For a formula φ(x) we write
φr(x) = φNr(x)(x) to denote the r-local version of the formula φ(x).
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4.3 Gaifman’s Theorem

Local sentences. An ℓ-tuple of elements a = (a1, . . . , aℓ) ∈ Aℓ in a
structure A is called r-scattered if d(ai, aj) > 2r for all ai and aj, i ̸= j, that
is if the r-neighbourhoods Nr(ai), 1 ≤ i ≤ ℓ, are pairwise disjoint. A
basic local sentence of Gaifman rank (r, m, ℓ) is a sentence of the form

∃x1 · · · ∃xℓ


∧

i ̸=j

d(xi, xj) > 2r ∧
∧

i

ψr(xi)


 ,

where qr(ψ) = m, which expresses the existence of an r-scattered tuple
of length ℓ such that every point in this tuple satisfies an r-local property
which is specified by a formula ψ of quantifier-rank m. A local sentence
is Boolean combination of basic local sentences.
Theorem 4.14 (Gaifman). Every first-order sentence is equivalent to a
local sentence.

To prove Gaifman’s Theorem it suffices to show the following
lemma.
Lemma 4.15. If A and B satisfy the same basic local sentences, then
A ≡ B.

Proof (of Gaifman’s Theorem using the preceeding lemma). Let Φ denote the
set of all basic local sentences. Let φ be an FO-sentence and let K =

Mod(φ) be the class of models of φ. For A ∈ K we define

Φ(A) = {φ : φ ∈ Φ,A |= φ} ∪ {¬φ : φ ∈ Φ,A |= ¬φ}

Then for all A ∈ K we have Φ(A) |= φ, because if B |= Φ(A), then
A and B agree on all sentences from Φ and thus, by the preceeding
lemma, we have that A ≡ B. By the compactness theorem, we can find
finite sets Φ0(A) ⊆ Φ(A) such that Φ0(A) |= φ for all A ∈ K.

We claim that for a finite subclass K0 ⊆ K, the sentence φ is
equivalent to

∨
A∈K0

∧
Φ0(A) (which is a local sentence). We know

that
∨

A∈K0

∧
Φ0(A) |= φ, so assume that for every finite subclass of

structures K0 ⊆ K the set {φ} ∪ {¬∧
Φ0(A) : A ∈ K0} would be satisfi-

able. Then, by compactness, also {φ} ∪ {¬∧
Φ0(A) : A ∈ K} would be

satisfiable which is impossible since A |= ∧
Φ0(A) for all A ∈ K. q.e.d.

Proof (of Lemma 4.15). For all m ≥ 0, we prove by induction on j =
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4 Expressive Power of First-Order Logic

m, . . . , 0 that one can find values g(0), g(1), . . . , g(m) such that

Ij = {a→ b : |a| = |b| = m− j, (A ↾ N7j
(a), a) ≡g(j) (B ↾ N7j

(b), b)}

defines a back-and-forth system for m-equivalence of A and B. Sufficient
criteria for the values g(0), . . . , g(m) are collected in the course of the
proof (and it will be obvious that we can find values which satisfy all
contraints). Note that Im = {∅}.

Let 0 ≤ j < m and let a→ b ∈ Ij+1. Then we know that

(A ↾ N7j+1
(a), a) ≡g(j+1) (B ↾ N7j+1

(b), b).

By symmetry, it suffices to show that a→ b has a forth-extension in Ij.
Let a ∈ A. We have to find b ∈ B such that

(A ↾ N7j
(aa), aa) ≡g(j) (B ↾ N7j

(bb), bb).

To this end we consider the g(j)-types of the 7j-neighbourhoods of
tuples in A and B. Recall from Lemma 4.3 that we can describe these
types by a first-order formula. More precisely, for a structure D and a
tuple d in D we set

ψ
j
d
(x) =

[
χ

g(j)

(D↾N7j
(d),d)

(x)
]N7j

(x)
.

Then ψ
j
d
(x) is a 7j-local formula such that C |= ψ

j
d
(c) if the 7j-

neighbourhood of c in C (with distinguished tuple c) is g(j)-equivalent
to the 7j-neighbourhood of d in D (with distinguished tuple d). To find
an appropriate b ∈ B we distinguish between the following cases.

Case 1 (a is close to a). Assume that a ∈ N2·7j
(a). Then

(A ↾ N7j+1
(a), a) |= ∃z(d(a, z) ≤ 2 · 7j ∧ ψ

j
aa(a, z)).

We assume that the quantifier rank of this formula, which only depends
on j and g(j), is at most g(j + 1) (this gives a first condition on g(j + 1)).
But then, by our precondition, we can find b ∈ N2·7j

(b) such that
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4.3 Gaifman’s Theorem

(B ↾ N7j
(b)) |= ψ

j
aa(b, b),

which implies that aa→ bb ∈ Ij.
Case 2 (a is far from a). Assume that a ̸∈ N2·7j

(a). Then the 7j-
neighbourhoods of a and a are disjoint, i.e. N7j

(a) ∩ N7j
(a) = ∅. Hence

it suffices to find a b ∈ B whose 7j-neighbourhood is disjoint with the
7j-neighbourhood of b and such that the 7j-neighbourhood of a in A and
of b in B have the same g(j)-type. Formally the requirements for b ∈ B
are:

N7j
(b) ∩ N7j

(b) = ∅

B ↾ N7j
(b) |= ψ

j
a(b).

For s ≥ 1 we define a formula δs(x1, . . . , xs) which expresses the
existence of a 2 · 7j-scattered tuple of elements whose 7j-neighbourhood
has the same g(j)-type as the 7j-neighbourhood of a in A:

δs(x1, . . . , xs) =
∧

ℓ ̸=k

d(xℓ, xk) > 4 · 7j ∧
∧

k

ψ
j
a(xk).

We now determine the maximal lenght e of such tuples which are
realised in A and the maximal lenght i of such tuples which are realised
in A ↾ N2·7j

(a), that is i and e are determined such that

(A ↾ N7j+1
, a) |= ∃x1 · · · ∃xi (

∧

k

d(a, xk) ≤ 2 · 7j ∧ δi) (4.1)

(A ↾ N7j+1
, a) ̸|= ∃x1 · · · ∃xi+1 (

∧

k

d(a, xk) ≤ 2 · 7j ∧ δi+1) (4.2)

A |= ∃x1 · · · ∃xe δe (4.3)

A ̸|= ∃x1 · · · ∃xe+1 δe+1. (4.4)

Of course, i ≤ e. Moreover, i ≤ m− j = |a| = |b|. We claim that the
corresponding values determined in B are the same. For 4.1 and 4.2 we
guarantee this by choosing g(j+ 1) large enough. Note that the quantifier
rank of the formulas in 4.1 and 4.2 only depends on m (because i is
bounded by m), j and g(j) (we obtain a second condition on g(j + 1)).
For 4.3 and 4.4 this follows since these are basic local sentences and A
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and B satisfy the same basic local sentences by our assumption.

Case 2.1 (i = e). Then we claim that all c ∈ A whose 7j-neighbourhood
has the same g(j)-type as a are contained in N6·7j

(a). Indeed, we could
extend each 2 · 7j-scattered tuple of such elements in N2·7j

(a) by each
such element c ∈ A with d(a, c) > 6 · 7j. Since a ̸∈ N2·7j

(a) we have

(A ↾ N7j+1
(a), a) |= ∃z (2 · 7j < d(a, z) ≤ 6 · 7j ∧ ψ

j
a(z) ∧ ψ

j
a(a)).

We assume that g(j + 1) is larger than the quantifier rank of this formula
(this gives a third condition on g(j + 1)). Then by our assumption we
have that

(B ↾ N7j+1
(b), b) |= ∃z (2 · 7j < d(b, z) ≤ 6 · 7j ∧ ψ

j
a(z) ∧ ψ

j
a(b)).

This in turn shows that we can find an appropriate b ∈ B.

Case 2.2 (i < e). In this case we know that B |= ∃x1 · · · ∃xi+1δi+1

which implies that we can find b ∈ B such that N7j
(b) ∩ N7j

(b) = ∅ and
such that B |= ψ

j
a(b). q.e.d.

4.4 Lower bound for the size of local sentences

Gaifman’s Theorem states that for every FO-sentence there is an equiva-
lent local one. In the following we show that the local sentence can be
much longer than the original one, as captured by
Theorem 4.16. For every h ≥ 1 there is an FO(E)-sentence φh ∈ O(h4)

such that every FO(E)-sentence in Gaifman normal form, i.e. every local
sentence, that is equivalent to φh has size at least Tower(h).

Here, Tower : N→N is the function defined by Tower(0) := 1 and
Tower(n) := 2Tower(n−1) for n > 0. In order to prove this theorem we
first introduce and analyse an encoding of natural numbers by trees.
Definition 4.17. For natural numbers i, n we write bit(i, n) to denote the
i-th bit in the binary representation of n, i.e., bit(i, n) = 0 if ⌊ n

2i ⌋ is even,
and bit(i, n) = 1 if ⌊ n

2i ⌋ is odd. Inductively we define a directed and
rooted tree T (n) for each natural number n as follows:

• T (0) is the one-node tree.
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• For n > 0 the tree T (n) is obtained by creating a new root and
attaching to it all trees T (i) for all i such that bit(i, n) = 1.

The following figure illustrates these trees.

T (0) T (1) T (2) T (3) T (10) T (2210
)

It is straightforward to see that

for all h, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n < Tower(h).

Recall that the height of a tree is the length of its longest path.

For a graph G = (V, E) and some node v ∈ V, let Gv be the
subgraph induced on the set of nodes reachable from v. Now, we show
that important properties of these tree encodings of natural numbers
can be expressed by small FO(E)-formulas in the sense of the following
three Lemmata.
Lemma 4.18. For each h ≥ 0 there is a formula eqh(x, y) ∈ FO(E) of
length O(h) such that for all graphs G = (V, E) we have that: if there
are u, v ∈ V and m, n < Tower(h) with Gu ∼= T (n) and Gv ∼= T (m), then
G |= eqh(u, v)⇔ n = m.

Proof. • If h = 0, set eqh(x, y) := true.

• If h > 0, eqh(x, y) has to be equivalent to

∀z(Exz→ ∃w(Eyw ∧ eqh−1(z, w)))∧
∀w(Eyw→ ∃z(Exz ∧ eqh−1(z, w))).

The length of the formula we get by this recursive definition would
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be exponential in h. However, we can rewrite it as follows:

eqh(x, y) :=(∃zExz↔ ∃wEyw)∧
∀z(Exz→ ∃w(Eyw ∧ ∀w′(Eyw′ → ∃z′(Exz′∧
∀u∀v((u = z ∧ v = w) ∨ (u = z′ ∧ v = w′)→
eqh−1(u, v)))))).

q.e.d.

Lemma 4.19. For h ≥ 0 there is a formula codeh(x) ∈ FO(E) of length
O(h2) such that for all graphs G = (V, E) and v ∈ V:

G |= codeh(v) ⇐⇒ Gv ∼= T (i) for some i < Tower(h).

Proof. • If h = 0, set codeh(x) := ¬∃yExy.
• If h > 0, set

codeh(x) :=∀y(Exy→ codeh−1(y))∧
∀y1∀y2(Exy1 ∧ Exy2 ∧ eqh−1(y1, y2)→ y1 = y2).

Observe that

∥codeh(x)∥ = ∥codeh−1(x)∥+ ∥eqh−1(x, y)∥+O(1)
≤ c · (1 + 2 + · · ·+ h) for some c ≥ 1,

implying that ∥codeh(x)∥ ∈ O(h2).
q.e.d.

Lemma 4.20. For h ≥ 0 there are formulas

(1) bith(x, y) of length O(h),
(2) lessh(x, y) of length O(h2),
(3) min(x) of length O(1),
(4) succh(x, y) of length O(h3),
(5) maxh(x) of length O(h4),

such that for all G = (V, E) and nodes u, v ∈ V with Gu ∼= T (m) and
Gv ∼= T (n), where m, n < Tower(h):
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(1) G |= bith(u, v) ⇐⇒ bit(m, n) = 1,
(2) G |= lessh(u, v) ⇐⇒ m < n,
(3) G |= min(u) ⇐⇒ m = 0,
(4) G |= succh(u, v) ⇐⇒ m + 1 = n,
(5) G |= maxh(u) ⇐⇒ m = Tower(h)− 1.

Proof. (1) bith(x, y) := ∃z(Eyz ∧ eqh(x, z)),
(2) • If h = 0, set lessh(x, y) := f alse.

• If h > 0, set

lessh(x, y) :=∃y′(Eyy′ ∧ ∀x′(Exx′ → ¬eqh−1(x′, y′))∧
∀x′′(Exx′′ ∧ lessh−1(y′, x′′)→
∃y′′(Eyy′′ ∧ eqh−1(y′′, x′′)))

(3) min(x) := ¬∃yExy.
(4) • If h = 0, set succh(x, y) := f alse.

• If h > 0, set

succh(x, y) =∃y′(Eyy′∧
∀y′′(Eyy′′ ∧ y′ ̸= y′′ → lessh−1(y′, y′′)∧
∀x′(Exx′ → ¬eqh−1(x′, y′)∧
∀y′′(Eyy′′ ∧ lessh−1(y′, y′′)→
∃x′′(Exx′′ ∧ eqh−1(y′′, x′′)))∧
∀x′′(Exx′′ ∧ lessh−1(y′, x′′)→
∃y′′(Eyy′′ ∧ eqh−1(y′′, x′′)))∧
¬min(y′)→ (∃x′(Exx′ ∧min(x′))∧
∀x′(Exx′ ∧ lessh−1(x′, y′)→
∃z(succh−1(x′, z) ∧ (z = y′ ∨ Exz)))).

(5) • If h = 0, set maxh(x) := ¬∃yExy.
• If h > 0, set

maxh(x) :=∃y(Exy ∧min(y)) ∧ ∀y(Exy→
(maxh−1(y) ∨ ∃z(Exz ∧ succh−1(y, z))).
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This formula is correct since x = Tower(h)− 1 = 2Tower(h−1) − 1
implies that T (Tower(h)− 1) has a subtree T (i) for any i ≤
Tower(h− 1)− 1.

q.e.d.

Finally, we use these three lemmata to prove a last lemma of which
Theorem 4.16 is a corollary.
Lemma 4.21. For all h ≥ 1 there is a formula φh ∈ FO(E) with ∥φh∥ ∈
O(h4) such that every local sentence ψ which is equivalent to φh on the
class of forests of height less or equal to h has size ∥ψ∥ ≥ Tower(h).

Proof. Let Fh be the forest consisting of all trees T (i) with 0 ≤ i <

Tower(h) and let F−i
h be the forest Fh without the tree T (i) for some

0 ≤ i < Tower(h). Furthermore, root(x) := ¬∃yEyx. Now, define

φh :=∃x(root(x) ∧min(x))∧
∀x(root(x) ∧ ¬maxh(x)→ ∃y(root(y) ∧ succh(x, y))).

Observe that ∥φh∥ ∈ O(h4) and Fh |= φh as well as F−i
h ̸|= φh for each

0 ≤ i < Tower(h).
Let ψ be a local sentence which is equivalent to φh on the class of

all forests of height less or equal to h. We want to show that ∥ψ∥ ≥
Tower(h).

ψ is a Boolean combination of basic local sentences χ1, . . . , χL with

χℓ = ∃x1 . . . ∃xkℓ(
∧

i ̸=j

d(xi, xj) > 2 · rℓ ∧
∧

i

ψ
rℓ
ℓ (xi)).

W.l.o.g. there is some m ≤ L such that Fh |= χℓ for all ℓ ≤ m and Fh ̸|= χℓ

for all m < ℓ ≤ L. Hence we can find for all ℓ ≤ m nodes uℓ,1, . . . , uℓ,kℓ
in Fh such that Fh |= d(uℓ,i, uℓ,j) > 2 · rℓ ∧ ψ

rℓ
ℓ (uℓ,i) for all i ̸= j. The set U

consisting of all these nodes contains at most k1 + · · ·+ km ≤ ∥ψ∥ many
nodes.

Towards a contradiction assume that ∥ψ∥ < Tower(h). Since Fh

contains Tower(h) many disjoint trees, there is at least one j < Tower(h)
such that T (j) in Fh contains no U-node. We claim that F−j

h |= ψ (which
would yield the desired contradiction).
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• F−j
h ⊨ χℓ where l ≤ m: the local properties around the nodes

uℓ,1, . . . , uℓ,kℓ also hold in F−j
h since the neighbourhoods are not

changed by removing the tree T(j).
• F−j

h ⊭ χℓ where m < ℓ ≤ L: clear, since F−j
h is a substructure of Fh.

q.e.d.
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