
Algorithmic Model Theory
SS 2016

Prof. Dr. Erich Grädel and Dr. Wied Pakusa

Mathematische Grundlagen der Informatik
RWTH Aachen



cbnd
This work is licensed under:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:
http://creativecommons.org/licenses/by-nc-nd/3.0/de/

© 2019 Mathematische Grundlagen der Informatik, RWTH Aachen.
http://www.logic.rwth-aachen.de



Contents

1 The classical decision problem 1
1.1 Basic notions on decidability . . . . . . . . . . . . . . . . . . . . 2
1.2 Trakhtenbrot’s Theorem . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Domino problems . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4 Applications of the domino method . . . . . . . . . . . . . . . . 16
1.5 The finite model property . . . . . . . . . . . . . . . . . . . . . . 20
1.6 The two-variable fragment of FO . . . . . . . . . . . . . . . . . . 21

2 Descriptive Complexity 31
2.1 Logics Capturing Complexity Classes . . . . . . . . . . . . . . . 31
2.2 Fagin’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Second Order Horn Logic on Ordered Structures . . . . . . . . 38

3 Expressive Power of First-Order Logic 43
3.1 Ehrenfeucht-Fraïssé Theorem . . . . . . . . . . . . . . . . . . . . 43
3.2 Hanf’s technique . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Gaifman’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4 Lower bound for the size of local sentences . . . . . . . . . . . 54

4 Zero-one laws 61
4.1 Random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Zero-one law for first-order logic . . . . . . . . . . . . . . . . . . 63
4.3 Generalised zero-one laws . . . . . . . . . . . . . . . . . . . . . . 68

5 Modal, Inflationary and Partial Fixed Points 73
5.1 The Modal µ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Inflationary Fixed-Point Logic . . . . . . . . . . . . . . . . . . . 75
5.3 Simultaneous Inductions . . . . . . . . . . . . . . . . . . . . . . 81
5.4 Partial Fixed-Point Logic . . . . . . . . . . . . . . . . . . . . . . 82



5.5 Capturing PTIME up to Bisimulation . . . . . . . . . . . . . . . 85



1 The classical decision problem

The classical decision problem was generally considered as the main
problem of mathematical logic until its unsolvability was proved by
Church and Turing in 1936/37.

Das Entscheidungsproblem ist gelöst, wenn man ein Verfahren
kennt, das bei einem vorgelegten logischen Ausdruck durch
endlich viele Operationen die Entscheidung über die Allge-
meingültigkeit bzw. Erfüllbarkeit erlaubt. (. . . ) Das Entschei-
dungsproblem muss als das Hauptproblem der mathematis-
chen Logik bezeichnet werden. 1

(D. Hilbert and W. Ackermann, Grundzüge der theoretischen
Logik, 1928)

By a logical expression, Hilbert and Ackermann meant what we now
call a formula of first-order logic (FO). Historically, the classical decision
problem was part of Hilbert’s formalist programme for the foundations
of mathematics. Its importance stems from the fact that first-order logic
provides a framework to express almost all aspects of mathematics.

We present three equivalent formulations of the classical decision
problem.

Satisfiability: Construct an algorithm that decides for any given formula
of FO whether it has a model.

Validity: Construct an algorithm that decides for any given formula of
FO whether it is valid, i.e. whether it holds in all models where it is
defined.

1The Entscheidungsproblem is solved when we know a procedure that allows
for any given logical expression to decide by finitely many operations its validity or
satisfiability. [. . . ] The Entscheidungsproblem must be considered the main problem
of mathematical logic.

1



1 The classical decision problem

Provability: Construct an algorithm that decides for any given formula
ψ of FO whether ⊢ ψ, meaning that ψ is provable from the empty
set of axioms in some complete formal system such as the sequent
calculus.

Since ψ is satisfiable if, and only if, ¬ψ is not valid, satisfiability
and validity are equivalent problems with respect to computability. The
equivalence with provability is a much more intricate result and in fact
a consequence of Gödel’s Completeness Theorem.
Theorem 1.1 (Completeness Theorem (Gödel)). For any given set of
sentences Φ ⊆ FO(τ) and any sentence ψ ∈ FO(τ) it holds that

Φ |= ψ ⇐⇒ Φ ⊢ ψ .

In particular ∅ |= ψ ⇔ ∅ ⊢ ψ.
Corollary 1.2. The set of valid first-order formulae is recursively enu-
merable.

1.1 Basic notions on decidability

In our formulation of the decision problem it was not precisely specified
what an algorithm is. It was not until the 1930s that Church, Kleene,
Gödel, and Turing provided precise definitions of an abstract algorithm.
Their approaches are today known to be equivalent. We introduce the
concept of a Turing machine.
Definition 1.3. A Turing machine (TM) M is a tuple M = (Q, Σ, Γ, q0, F, δ),
where

• Q is a finite set of (control) states,
• Σ, Γ are finite alphabets, where Σ is the working alphabet with a

special blank symbol □ ∈ Σ, and Γ ⊆ Σ \ {□} is the input alphabet,
• q0 ∈ Q is the initial state,
• F ⊆ Q is the set of final states and
• δ : (Q \ F)× Σ → Q × Σ × {−1, 0, 1} is the transition function.

A configuration is a triple C = (q, p, w) ∈ Q × N × Σ∗, representing
the situation that M is in state q, reads tape cell p and that the in-
scription of the infinite tape is w = w0 . . . wk, followed by infinitely

2



1.1 Basic notions on decidability

many blank-symbols. The transition function δ induces a partial
function on the set of all configurations C 7→ Next(C), where for
δ(q, wp) = (q′, a, m), the successor configuration of C is defined as
Next(C) = (q′, p + m, w0 . . . wp−1awp+1 · · ·wk). A computation of the TM
M on an input word x ∈ Γ∗ is a sequence

C0, C1, . . .

where C0 = C0(x) := (q0, 0, x) is the input configuration and Ci+1 =

Next(Ci) for all i.

M halts on x if the computation of M on x is finite and ends in a
final configuration C f = (q, p, w) with q ∈ F. Further

L(M) := {x ∈ Γ∗ : M halts on x}.

A Turing machine M computes a partial function fM : Γ∗ → Σ∗

with domain L(M) such that fM(x) = y if and only if the computation
of M on x ends in (q, p, y) for some q ∈ F, y ∈ Σ∗ and p ∈ N.
Definition 1.4. A Turing acceptor is a Turing machine M with F = F+ ·∪
F−. We say that M accepts x if the computation of M on x ends in a state
in F+ and M rejects x if the computation of M on x ends in a state in F−.
Definition 1.5.

• L ⊆ Γ∗ is recursively enumerable (r.e.) if there exists a TM M with
L(M) = L.

• L ⊆ Γ∗ is co-recursively enumerable (co-r.e.) if L := Γ∗ \ L is r.e..

• A (partial) function f : Γ∗ → Σ∗ is (Turing) computable if there is a
TM M with fM = f .

• L ⊆ Γ∗ is decidable (or recursive), if there is a Turing acceptor M such
that for all x ∈ Γ∗

x ∈ L ⇒ M accepts x

x /∈ L ⇒ M rejects x

or, equivalently, if its characteristic function
χL : Γ∗ → {0, 1} is Turing computable.

3



1 The classical decision problem

Theorem 1.6. A language L ⊆ Γ∗ is decidable if, and only if, L is r.e.
and co-r.e.
Definition 1.7. Let A ⊆ Γ∗, B ⊆ Σ∗. We say that A is (many-to-one)
reducible to B, A ≤ B, if there is a total computable function f : Γ∗ → Σ∗

such that for all x ∈ Γ∗ we have x ∈ A ⇔ f (x) ∈ B.
Lemma 1.8.

• A ≤ B, B decidable ⇒ A decidable

• A ≤ B, B r.e. ⇒ A r.e.

• A ≤ B, A undecidable ⇒ B undecidable.

There surely are undecidable languages since there are only count-
ably many Turing machines but uncountably many languages. Unfortu-
nately, among these there are quite relevant classes of languages. For
example we cannot decide whether a TM halts on a given input.
Definition 1.9 (Halting Problems). The general halting problem is defined
as

H := {ρ(M)#ρ(x) : M Turing machine, x ∈ L(M)}

where ρ(M) and ρ(x) are encodings of the TM M and the input x over
a fixed alphabet {0, 1} such that the computation of M on x can be
reconstructed from the encodings ρ(M) and ρ(x) in an effective way.
This means that there is a universal TM U which, given ρ(M) and ρ(x),
simulates the computation of M on x and halts if, and only if, M halts
on x. Thus, L(U) = H from which we conclude that H is r.e..

We introduce two special variants of the halting problem.

• The self-application problem: H0 := {ρ(M) : ρ(M) ∈ L(M)}.

• Halting on the empty word: Hε := {ρ(M) : ε ∈ L(M)}.

Theorem 1.10. H, H0, and Hε are undecidable.

Proof.

• H0 is not co-r.e. and thus undecidable. Otherwise H0 = L(M0) for
some TM M0. Then

ρ(M0) ∈ H0 ⇔ ρ(M0) ∈ L(M0) ⇔ ρ(M0) ∈ H0.

4



1.1 Basic notions on decidability

• H0 is a special case of H, hence H0 ≤ H, and H is undecidable.
• We can reduce H to Hε, thus Hε is undecidable. q.e.d.

We next establish the much more general result that in fact, no
non-trivial semantic property of Turing machines can be decided algo-
rithmically. In particular, for any fixed function, there is no algorithm
that decides whether a given program computes precisely that func-
tion, i.e. we cannot algorithmically prove the correctness of a program.
Note that this does not mean that we cannot prove the correctness of
a single given program. Instead the statement is that we cannot do so
algorithmically for all programs.
Theorem 1.11 (Rice). Let R be the set of all computable functions and
let S ⊆ R be a set of computable functions such that S ̸= ∅ and S ̸= R.
Then code(S) := {ρ(M) : fM ∈ S} is undecidable.

Proof. Let ⇑ be the everywhere undefined function, with domain Def(⇑
) = ∅. Obviously, ⇑ is computable. Assume that ⇑̸∈ S (otherwise
consider R \ S instead of S. Clearly if code(R \ S) is undecidable then
so is code(S).)

As S ̸= ∅, there exists a function f ∈ S . Let M f be a TM that
computes f , i.e. fM f = f . We define a reduction Hε ≤ code(S) by
describing a total computable function ρ(M) 7→ ρ(M′) such that

M halts on ε ⇔ fM′ ∈ S.

Specifically, given ρ(M), we construct the encoding of a TM M′ which,
given an input x, proceeds as follows:

• first simulate M on ε (i.e. apply the universal TM U to ρ(M)#ε);
• then simulate M f on x (i.e. apply the universal TM U to

ρ(M f )#ρ(x)).

It is clear that the reduction function is computable. Furthermore, if
M halts on ε then fM′(x) = f (x) for all inputs x, i.e. fM′ = f , so fM′ ∈ S.
If M does not halt on ε then M′ does not halt on x for any x, i.e. fM′ =⇑,
so fM′ ̸∈ S. q.e.d.

Definition 1.12 (Recursive inseparability). Let A, B ⊆ Γ∗ be two disjoint

5



1 The classical decision problem

sets. We say that A and B are recursively inseparable if there exists no
decidable set C ⊆ Γ∗ such that A ⊆ C and B ∩ C = ∅.
Example. (A, A) are recursively inseparable if, and only if, A is undecid-
able.
Lemma 1.13. Let A, B ⊆ Γ∗, A ∩ B = ∅ be recursively inseparable. Let
X, Y ⊆ Σ∗, X ∩Y = ∅, and let f be a total computable function such that
f (A) ⊆ X and f (B) ⊆ Y. Then X and Y are recursively inseparable.

Proof. Assume there exists a decidable set Z ⊆ Σ∗ such that X ⊆ Z
and Y ∩ Z = ∅. Consider C = {x ∈ Γ∗ : f (x) ∈ Z}. C is decidable,
A ⊆ C, B ∩ C = ∅, thus C separates A, B. q.e.d.

Notation: We write (A, B) ≤ (X, Y) if such a function f exists.
Example. (A, A) ≤ (B, B) ⇔ A ≤ B.

As a preparation for Trakhtenbrot’s Theorem, we consider the fol-
lowing refinements of Hε:

H+
ε := {ρ(M) : M accepts ε}

H−
ε := {ρ(M) : M rejects ε}

H∞
ε := {ρ(M) : the computation of M on ε is infinite

and does not cycle.}

H+
0 , H−

0 , H∞
0 are defined analogously, with respect to self-

application.
Theorem 1.14. H+

ε , H−
ε and H∞

ε are pairwise recursively inseparable.

Proof. (H+
ε , H∞

ε ): We show that every set C with H+
ε ⊆ C and H∞

ε ∩ C =

∅ is undecidable by reducing the halting problem Hε to C. Define a
reduction ρ(M) 7→ ρ(M′) as follows. From a given code ρ(M) construct
the code of a TM M′ that simulates M and simultaneously counts the
number of computation steps since the start. If M halts (accepting or
rejecting), M′ accepts.

It is clear that the reduction function is computable. If M halts
on ε then M′ halts on ε as well and accepts, so ρ(M′) ∈ H+

ε ⊆ C. If
M does not halt on ε then M′ does not halt either, and never cycles, so
ρ(M′) ∈ H∞

ε and as H∞
ε ∩ C = ∅, we have ρ(M′) ̸∈ C.

6



1.2 Trakhtenbrot’s Theorem

The statement for H−
ε and H∞

ε is proven analogously.

(H−
ε , H+

ε ): Show that (H−
0 , H+

0 ) ≤ (H−
ε , H+

ε ) and that (H−
0 , H+

0 ) are
recursively inseparable.

• (H−
0 , H+

0 ) ≤ (H−
ε , H+

ε ):
For a given input TM M construct a TM M′ that ignores its own
input and simulates M on ρ(M). Obviously, M′ can be constructed
effectively, say by a computable function h. Now h(M) accepts ε iff
M accepts ρ(M) and h(M) rejects ε iff M rejects ρ(M).

• (H−
0 , H+

0 ) recursively inseparable:
Assume there exists a decidable C with H−

0 ⊆ C and H+
0 ⊆ C.

Consider a machine M0 that decides C. There are two cases:

(1) M0 accepts ρ(M0). Then ρ(M0) ∈ C by definition of M0. Then
ρ(M0) ̸∈ H+

0 by definition of C. On the other hand, if M0

accepts ρ(M0) then ρ(M0) ∈ H+
0 (by definition of H+

0 ), a con-
tradiction.

(2) M0 rejects ρ(M0). Then ρ(M0) ̸∈ C by definition of M0. Then
ρ(M0) ̸∈ H−

0 by definition of C. On the other hand, if M0 rejects
ρ(M0) then ρ(M0) ∈ H−

0 (by definition of H−
0 ), a contradiction.

q.e.d.

1.2 Trakhtenbrot’s Theorem

In the following, we consider FO, more precisely first-order logic with
equality. We restrict ourselves to a countable signature

τ∞ := {Ri
j : i, j ∈ N} ∪ { f i

j : i, j ∈ N}

where each Ri
j is a relation symbol of arity i and each f i

j is a function
symbol of arity i. We write formulae in FO(τ∞) as words over the fixed
finite alphabet

Γ := {R, f , x, 0, 1, [, ]} ∪ {=,¬,∧,∨,→,↔, ∃, ∀.(, )},

using the following encoding of relation symbols, function symbols, and
variables:

7



1 The classical decision problem

relation symbols: Ri
j 7−→ R[bin i][bin j]

function symbols: f i
j 7−→ f [bin i][bin j]

variables: xj 7−→ x[bin j].

In this way, every formula φ ∈ FO can be viewed as a word in Γ∗.
Let X ⊆ FO be a class of formulae. We analyse the following

decision problems:

Sat(X) := {ψ ∈ X : ψ has a model}
Fin-Sat(X) := {ψ ∈ X : ψ has a finite model}

Val(X) := {ψ ∈ X : ψ is valid}
Non-Sat(X) := X \ Sat(X)

Inf-Axioms(X) := Sat(X) \ Fin-Sat(X)

= {ψ ∈ X : ψ is an infinity axiom, i.e. ψ has a

model but no finite model}.

Theorem 1.15. Let X ⊆ FO be decidable. Then

(1) Val(X) is r.e.
(2) Non-Sat(X) is r.e.
(3) Sat(X) is co-r.e.
(4) Fin-Sat(X) is r.e.
(5) Inf-Axioms(X) is co-r.e.

Proof. (1) φ is valid ⇔ ⊢ φ (Completeness Theorem). Thus we can
systematically enumerate all proofs and halt if a proof for φ is listed.

(2) φ valid ⇔ ¬φ is not satisfiable.
(3) Follows from Item (2).
(4) Systematically generate all finite models and halt if a model of φ is

found.
(5) FO \ Inf-Axioms(X) = Non-Sat(X) ∪ Fin-Sat(X) is r.e. q.e.d.

Definition 1.16. A class X ⊆ FO has the finite model property (FMP) if
every satisfiable φ ∈ X has a finite model, i.e. if Sat(X) = Fin-Sat(X).
Theorem 1.17. Suppose that X ⊆ FO is decidable and that X has the
FMP. Then Sat(X) is decidable.

8



1.2 Trakhtenbrot’s Theorem

Proof. Sat(X) is co-r.e. and since Sat(X) = Fin-Sat(X) and Fin-Sat(X) is
r.e. also Sat(X) is r.e. Thus Sat(X) is decidable. q.e.d.

In this case also Fin-Sat(X), Non-Sat(X), Val(X) are decidable and
of course Inf-Axioms(X) = ∅ is decidable.
Theorem 1.18 (Trakhtenbrot). There is a finite vocabulary τ ⊆ τ∞ such
that Fin-Sat(FO(τ)), Non-Sat(FO(τ)) and Inf-Axioms(FO(τ)) are pair-
wise recursively inseparable and therefore undecidable.

The proof of Trakhtenbrot’s theorem introduces a proof strategy
that can be applied in many other undecidability proofs. (Do not focus
on the technicalities but on the general idea to construct the reduction
formulae.)

Proof. Let M be a deterministic Turing acceptor. We show that there is
an effective reduction ρ(M) 7→ ψM such that

(1) M accepts ε =⇒ ψM has a finite model.

(2) M rejects ε =⇒ ψM is unsatisfiable.

(3) The computation of M on ε is infinite and non-periodic =⇒ ψM is
an infinity axiom.

Then the theorem follows by Lemma 1.13.

Let M be a Turing acceptor with states Q = {q0, . . . , qr}, initial state
q0, alphabet Σ = {a0, . . . , as} (where a0 = □), final states F = F+ ∪ F−

and transition function δ.

ψM is defined over the vocabulary τ = {0, f , q, p, w} where 0 is a
constant, f , q, p are unary functions and w is a binary function. Define
the term k as f k0.

By constructing a formula we intend to have a model AM =

(A, 0, f , q, p, w) describing a run of M on the input ε where

• universe A = {0, 1, 2, . . . , n} or A = N;

• f (t) = t + 1 if t + 1 ∈ A and f (t) = t, if t is the last element of A;

• q(t) = i iff M is at time t in state qi;

• p(t) is the head position of M at time t;

• w(s, t) = i iff symbol ai is at time t on tape-cell s.

9



1 The classical decision problem

Note that we cannot enforce this model, but if ψM is satisfiable this
one will be among its models.

ψM := START ∧ COMPUTE ∧ END

START := (q0 = 0 ∧ p0 = 0 ∧ ∀x w(x, 0) = 0).

[Enforces input configuration on ε at time 0]

COMPUTE := NOCHANGE ∧ CHANGE

NOCHANGE := ∀x∀y(py ̸= x → w(x, f y) = w(x, y))

[content of currently not visited tape cells does not change]

CHANGE :=
∧

δ:(qi,aj) 7→(qk,aℓ,m)

∀y(αi,j → βk,ℓ,m)

where

αij := (qy = i ∧ w(py, y) = j)

[M is at time y in state qi and reads the symbol aj]

βk,ℓ,m := (q f y = k ∧ w(py, f y) = ℓ ∧ MOVEm)

and

MOVEm :=





p f y = py if m = 0

p f y = f py if m = 1

∃z( f z = py ∧ p f y = z) if m = −1.

END :=
∧

δ(qi,aj) undef.
qi ̸∈F+

∀y¬αij

[The only way the computation ends is in an accepting
state]

Remark 1.19.

• ρ(M) 7→ ψM is an effective construction.

• If M accepts ε, the intended model is finite and is indeed a model
AM |= ψM, thus ψM ∈ Fin-Sat(FO(τ)).

• If the computation of M on ε is infinite, the intended model is
infinite and AM |= ψM.

10



1.2 Trakhtenbrot’s Theorem

It remains to show that if M rejects ε, then ψM is unsatisfiable, and
if the computation of M on ε is infinite and aperiodic, then ψM is an
infinity axiom.

Suppose B = (B, 0, f , q, p, w) |= ψM.

Definition 1.20. B enforces at time t the configuration (qi, j, w) with
w = ai0 . . . aim ∈ Σ∗ if

(1) B |= qt = i,
(2) B |= pt = j,
(3) for all k ≤ m, B |= w(k, t) = ik and for all k > m, B |= w(k, t) = 0.

Since B |= ψM, the following holds:

• B enforces C0 = (q0, 0, ε) at time 0 (since B |= START.)
• If B enforces at time t a non-final configuration Ct, then B enforces

the configuration Ct+1 = Next(Ct) at time t + 1.
• Especially, the computation of M cannot reach a rejecting configura-

tion. It follows that if M rejects ε, then ψM is unsatisfiable.
Consider an infinite and aperiodic computation of M, and assume
B |= ψM is finite. Since B is finite, it enforces a periodic computa-
tion in contradiction to the assumption that the computation of M
is aperiodic.

C0 ⊢ . . . ⊢Cr ⊢ . . . ⊢Ct−1

We have shown:

• If M accepts ε, then ψM has a finite model.
• If M rejects ε, then ψM is unsatisfiable.
• If the computation of M is infinite and aperiodic, then ψM is an

infinity axiom. q.e.d.

We now know that the sets of all finitely satisfiable, all unsatisfiable
and all only infinitely satisfiable formulae are undecidable for FO(τ)

where τ consists of only three unary functions and one binary function.
This raises a number of questions.

(1) For which other vocabularies σ do we have similar undecidability
results for FO(σ)?

11



1 The classical decision problem

(2) For which σ is satisfiability of FO(σ) decidable?

(3) Is there a complete classification? In this case, we want to find mini-
mal vocabularies σ such that the above problems are undecidable,
i.e. vocabularies such that any further restriction yields a class of
formulae for which satisfiability is decidable.

We first define what it means that a fragment of FO is as hard for
satisfiability as the whole FO.
Definition 1.21. X ⊆ FO is a reduction class if there exists a computable
function f : FO → X such that ψ ∈ Sat(FO) ⇔ f (ψ) ∈ Sat(X).

Let X, Y ⊆ FO. A conservative reduction of X to Y is a computable
function f : X → Y with

• ψ ∈ Sat(X) ⇔ f (ψ) ∈ Sat(Y), and

• ψ ∈ Fin-Sat(X) ⇔ f (ψ) ∈ Fin-Sat(Y).

X is a conservative reduction class if there exists a conservative reduc-
tion of FO to X.
Corollary 1.22. Let X be a conservative reduction class. Then Fin-Sat(X),
Inf-Axioms(X) and Non-Sat(X) are pairwise recursively inseparable, and
thus Fin-Sat(X), Sat(X), Val(X), Non-Sat(X), Inf-Axioms(X) are undecid-
able.

Proof. A conservative reduction from FO to X yields a uniform reduc-
tion from Fin-Sat(FO), Inf-Axioms(FO) and Non-Sat(FO) to Fin-Sat(X),
Inf-Axioms(X) and Non-Sat(X), respectively. q.e.d.

It is indeed possible to give a complete classification of those vocab-
ularies σ such that FO(σ) is decidable.
Theorem 1.23. If σ ⊆ {P0, P1, . . .} ∪ { f } consists of at most one
unary function f and an arbitrary number of monadic predicates
P0, P1, . . ., then Sat(FO(σ)) is decidable. In all other cases, Sat(FO(σ)),
Inf-Axioms(FO(σ)) and Non-Sat(FO(σ)) are pairwise recursively insepa-
rable, and FO(σ) is a conservative reduction class.

A full proof of this classification theorem is rather difficult. In
particular, the decidability of the monadic theory of one unary function,
which implies the decidability part, is a difficult theorem due to Rabin.

12



1.3 Domino problems

On the other side, one has to show that Trakhtenbrot’s theorem applies
to the vocabularies

τ1 = {E} where E is a binary relation,
τ2 = { f , g} where f , g are unary functions,
τ3 = {F} where F is a binary function,

and hence also to all extensions of τ1, τ2, τ3.
Of course, one may also look at other syntactic restrictions besides

restricting the vocabulary. One possibility is to restrict the number of
variables. This is only interesting for relational formulae. If we have
functions, satisfiability is undecidable even for formulae with only one
variable, as we shall see later.

Define FOk as first-order logic with relational symbols only and a
fixed collection of k variables, say x1, . . . , xk.
Theorem 1.24.

• FO2 has the finite model property and is decidable (see Sect. 1.6).
• FO3 is a conservative reduction class.

A further important possibility is to restrict the structure of quan-
tifier prefixes of formulae in prenex normal form, and to combine this
with restrictions on the vocabulary, and the presence or absence of
equality. This leads to the notion of a prefix-vocabulary class in first-order
logic, and indeed, also for these fragments of FO there is a complete
classification of those with a solvable satisfiability problem, and those
that are conservative reduction classes.

A full description of this classification exceeds the scope of this
course by far (see E. Börger, E. Grädel, and Y. Gurevich, The Classical
Decision Problem, 1997). Instead we shall present some of the funda-
mental methods for establishing such results, and illustrate these with
applications to specific fragments of first-order logic.

1.3 Domino problems

Domino problems are a simple and yet general tool for proving unde-
cidability results (and lower bounds in complexity theory) without the
need of explicit encodings of Turing machine computations.

13



1 The classical decision problem

The informal idea is the following: a domino problem is given by
a finite set of dominoes or tiles, each of them an oriented unit square
with coloured edges; the question is whether it is possible to cover the
first quadrant in the Cartesian plane by copies of these tiles, without
holes and overlaps, such that adjacent dominoes have matching colours
on their common edge. The set of tiles is finite, but there are infinitely
many copies of each tile available; rotation of the tiles is not allowed.
Variants of this problem require a tiling of a different geometric object (a
finite square, a rectangle, or a torus) and/or that certain places (e.g. the
origin, the bottom row or the diagonal) are tiled by specific tiles.

Here is a more abstract defintion.
Definition 1.25. A domino system is a structure D = (D, H, V) with

• a finite set D (of dominoes),
• horizontal and vertical compatibility relations H, V ⊆ D × D.

The intuitive meaning of H and V is that

• (d, d′) ∈ H if the right colour of d is equal to the left colour of d′,
• (d, d′) ∈ V if the top colour of d is equal to the bottom colour of d′

(see Figure 1.1).

A tiling of N × N by D is a function t : N × N → D such that for
all x, y ∈ N

• (t(x, y), t(x + 1, y)) ∈ H and
• (t(x, y), t(x, y + 1)) ∈ V.

A periodic tiling of N × N by D is a tiling t for which there exist two
integers h, v ∈ N such that t(x, y) = t(x + h, y) = t(x, y + v) for all
x, y ∈ N.

The decision problem DOMINO is described as

DOMINO := {D : there exists a tiling of N × N by D}

Theorem 1.26 (Berger, Robinson). DOMINO is co-r.e. and undecidable.
In this general form, this is quite a difficult result. A simpler variant

is the so-called origin-constrained domino problem, that requires that a
specific domino must be placed at the point (0, 0). With this requirement,
it is straightforward to encode Turing machine computations by domino

14



1.3 Domino problems

a
b

c

d

c

•
•

•

•
•

•
b

Figure 1.1. Domino adjacency condition

tilings (successive rows of the tiling correspond to successive configura-
tions in the computation), and thus to reduce halting problems to tiling
problems for domino systems. The origin constraint is used to encode
the beginning of the computation (and to avoid that the entire space can
be tiled by a domino corresponding to the blank symbol) Without an
origin constraint, the problem is more difficult to handle; an essential
part of the proof is the construction of a set of dominoes that admits
only non-periodic tilings.

There are several extensions and variations of this result.
Theorem 1.27. A domino system D admits a tiling of Z×Z if, and only
if, it admits a tiling of N × N.

Proof. It is clear that a tiling of Z × Z also gives a tiling of N × N. The
converse is a nice application of König’s Lemma. Suppose that t is a tiling
of N × N by D. There exists at least one domino d such that for all n
there exist i, j > n with t(i, j) = d. Fix such a d. Further, for every k ∈ N,
let Sk be the square {−k, . . . ,−1, 0, 1, . . . , k} × {−k, . . . ,−1, 0, 1, . . . , k}.

We define a finitely branching tree whose nodes are the correct
tilings tk of Sk by D such that tk(0, 0) = d. The root is the unique such
tiling of S0 and the children of a tiling tk are the possible extensions
to tilings tk+1 of Sk+1. This tree contains paths of any finite length. By
König’s Lemma it also contains an infinite path from the root, which
means that D admits a tiling of Z × Z. q.e.d.

The undecidability result from Theorem 1.26 can be strengthened to
a recursive inseparability result.

15



1 The classical decision problem

Theorem 1.28. The set of domino systems admitting a periodic tiling
of N × N, those that admit no tiling of N × N and those that admit a
tiling but not a periodic one are pairwise recursively inseparable.

The proof of Theorem 1.28 reduces the halting problems H+
ε , H−

ε , H∞
ε ,

to the domino problems. There exists a recursive function that associates
with every TM M a domino system D satisfying

• If M ∈ H+
ε then D admits a periodic tiling of N × N.

• If M ∈ H−
ε then D admits no tiling of N × N.

• If M ∈ H∞
ε then D admits a tiling of N × N but no periodic one.

Definition 1.29. A computable function f is a conservative reduction from
domino systems to X if, for all domino systems D, f (D) = φD is in X and
the following holds:

• D admits a periodic tiling of N × N ⇒ ψD has a finite model
• D admits no tiling of N × N ⇒ ψD is unsatisfiable
• D admits a tiling of N × N but no periodic one ⇒ ψD is an infinity

axiom.

Proposition 1.30. Let X ∈ FO. If there exists a conservative reduction
from domino systems to X then X is a conservative reduction class.

Proof. Since Fin-Sat(FO) and Non-Sat(FO) are recursively enumerable
and Inf-Axioms(FO) is co-recursively enumerable, we can associate with
every first-order formula ψ a Turing machine M such that

• ψ ∈ Fin-Sat(FO) ⇒ ρ(M) ∈ H+
ε ,

• ψ ∈ Non-Sat(FO) ⇒ ρ(M) ∈ H−
ε ,

• ψ ∈ Inf-Axioms(FO) ⇒ ρ(M) ∈ H∞
ε .

According to the assumption, there is a reduction D 7→ φD from
domino systems to X. Thus, the domino method yields a conservative
reduction from FO to X.

q.e.d.

1.4 Applications of the domino method

We now apply the domino method to obtain several reduction classes.

16



1.4 Applications of the domino method

The Kahr-Moore-Wang class KMW is the class of all first-order
sentences of form ∀x∃y∀zφ, where φ is a quantifier-free formula without
equality, whose vocabulary contains only binary relation symbols.
Theorem 1.31. The Kahr-Moore-Wang class is a conservative reduction
class.

Proof. It suffices to construct a conservative reduction from domino
systems to KMW, i.e., a mapping D 7→ ψD over a vocabulary consisting
of binary relation symbols (Pd)d∈D such that

(1) D admits a periodic tiling of N × N ⇒ ψD has a finite model

(2) D admits no tiling of N × N ⇒ ψD is unsatisfiable

(3) D admits a tiling of N × N but no periodic one ⇒ ψD is an infinity
axiom

For a tiling t : N × N → D, an intended model of ψD is N with
the interpretation Pd = {(i, j) ∈ N × N : t(i, j) = d} for all d ∈ D. We
define ψD by

ψD := ∀x∃y∀z
( ∧

d ̸=d′
Pdxz → ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′yz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′zy)
)

.

Obviously ψD is of the desired format, i.e. ψD ∈ KMW.
(1) Suppose that D admits a periodic tiling t of N × N, such that

t(x, y) = t(x + h, y) = t(x, y + v) for all x, y. We construct a finite model
of ψD as follows. Let m := lcm(h, v) be the least common multiple of h
and v. Then t induces a tiling

t′ : Z/mZ × Z/mZ → D

with t′(x, y) = t(x( mod m), y( mod m)).
It follows that A = (Z/mZ, (Pd)d∈D) with Pd = {(i, j) : t′(i, j) = d}

is a finite model for ψD (for x in Z/mZ choose y := x + 1 (mod m)).
(2) By analogous arguments, it follows, that whenever D admits a

tiling of N × N, then ψD has a model over N.

17



1 The classical decision problem

(3) Finally we prove that if ψD has a model, then D admits a tiling
of N × N, and if that model is finite, we even obtain a periodic tiling.

Consider the Skolem normal form φD of ψD:

φD := ∀x∀z(
∧

d ̸=d′
Pdxz → ¬Pd′xz

∧
∨

(d,d′)∈H

(Pdxz ∧ Pd′ f xz) ∧
∨

(d,d′)∈V

(Pdzx ∧ Pd′z f x).

If ψD is satisfiable, then also φD has a model B = (B, f , (Pd)d∈D).
Define a tiling t : N × N → D as follows: choose any b ∈ B, and for all
i, j ∈ N, set t(i, j) := d for the unique d ∈ D such that B |= Pd( f ib, f jb).
Since B |= φD, it follows that t is a correct tiling.

Now suppose that B |= φD is finite.

• •
f bf

· · · · · · •
f

Choose b ∈ B such that, for some n ≥ 1, f nb = b. Then the defined
tiling t is periodic. q.e.d.

Corollary 1.32. FO3 is a conservative reduction class.
Later we shall prove that FO2 has the FMP.

Consider now formula classes X ⊆ FO over functional vocabularies.
One can prove that FO(τ) is a conservative reduction class if τ contains

• two unary functions or
• one binary function.

This is even true for sentences of the form ∀xφ where φ is quantifier-free.
We stablish, again via a conservative reduction from domino prob-

lems, a weaker result from which the above mentioned ones can be
obtained by interpretation arguments (see exercises).
Theorem 1.33. The class F , consisting of all sentences ∀xφ where φ

is a quantifier-free formula whose vocabulary consists only of unary
function symbols, is a conservative reduction classes.

Proof. We define a conservative reduction D = (D, H, V) 7→ ψD where
ψD ∈ F has the vocabulary { f , g, (hd)d∈D} where all function symbols

18



1.4 Applications of the domino method

are unary. The intended model is N × N with successor functions f
and g. The subformula ∀x( f gx = g f x) ensures that the models of ψD
contain a two-dimensional grid. The fact that a position x is tiled by
d ∈ D is expressed by requiring that hdx = x, i.e. that x is a fixed point
of hd.

ψD := ∀x
(

f gx = g f x ∧
∧

d ̸=d′
(hdx = x → hd′x ̸= x)

∧
∨

(d,d′)∈H

(hdx = x ∧ hd′ f x = f x)

∧
∨

(d,d′)∈V

(hdx = x ∧ hd′gx = gx)
)

.

We claim that there exists a tiling t : N × N → D if and only if ψD
is satisfiable.

” ⇒ ” Assume that t is a correct tiling. Construct the (intended) model
A = (N × N, f , g, (hd)d∈D) with

– f (i, j) = (i + 1, j),
– g(i, j) = (i, j + 1),

– hd(i, j)




= (i, j) if t(i, j) = d

̸= (i, j) otherwise.

Clearly A |= ψD.
” ⇐ ” Consider B = (B, f , g, (hd)d∈D) |= ψD.

Choose an arbitrary b ∈ B and define t : N × N → D by

t(i, j) := d iff B |= hd f igjb = f igjb.

Note that every point in B is a fixed-point of exactly one of the
functions hd, and t is well-defined and a a correct tiling. Further, if
B is finite, then σ is periodic, and thus the reduction is conservative.

q.e.d.

Exercise 1.1. Prove that the more restricted class F2 ⊆ F consisting of
sentences in F that contain just two unary function symbols, is also a
conservative reduction class.

19



1 The classical decision problem

Hint: Transform sentences ∀xφ with unary function symbols
f1, . . . , fm into sentences ∀xφ̃ := ∀xφ[x/hx, fi/hgi] where h, g are fresh
unary function symbols.

1.5 The finite model property

We study the finite model property (FMP) for fragments of FO as a
mean to show that these fragments are decidable, and also to better
understand their expressive power and algorithmic complexity.

Recall that a class X ⊆ FO has the finite model property if Sat(X) =

Fin-Sat(X). Since for any decidable class X, Fin-Sat(X) is r.e. and Sat(X)

is co-r.e., it follows that Sat(X) is decidable if X has the FMP. In many
cases, the proof that a class has the finite model property provides a
bound on the model’s cardinality, and thus a complexity bound for the
satisfiability problem. To prove completeness for complexity classes we
make use of a bounded variant of the domino problem.

We shall illustrate the power of this method by a few examples.
Definition 1.34. The atomic k-type of a1, . . . , ak in A is defined as

atpA(a1, . . . , ak) := {γ(x1 . . . , xk) : γ atomic formula or negated

atomic formula such that A |= γ(a1, . . . , ak)}.

In the examples that we consider here, the structures contain unary
or binary relations only. Hence, to describe a structure it suffices to
define its universe and to specify the atomic 1-types and 2-types for all
of its elements.
Example 1.35. Let A be the structure (A, E1, . . . , Em) where the Ei are
binary relations. Then for a ∈ A:

atpA(a) = {Eixx : A |= Eiaa} ∪ {¬Eixx : A |= ¬Eiaa}.

The monadic class (also called the Löwenheim class) is the class of
first-order sentences over a vocabulary the contains only unary predi-
cates.
Theorem 1.36. The monadic class has the FMP.

20



1.6 The two-variable fragment of FO

Proof. Let A = (A, PA
1 , . . . , PA

n ) |= φ where qr(φ) = m. For each se-
quence of bits α = α1 . . . αn ∈ {0, 1}n we define PA

α = Q1 ∩ Q2 ∩ . . . ∩ Qn,
where Qi = PA

i if αi = 1 and Qi = A \ PA
i if αi = 0. Notice that the sets

PA
α define a partition of A, and that α completely describes the atomic

1-type of any a ∈ PA
α .

We construct B by taking min(|PA
α |, m) elements into each PB

α . Ob-
serve that B is completly specified in this way, with PB

i =
⋃

α|αi=1 PB
α ).

We show that A ≡m B using the Ehrenfeucht-Fraïssé Theorem.
The following is a winning strategy for Duplicator in the

Ehrenfeucht-Fraïssé game with m moves on (A,B): Answer any el-
ement chosen by Spoiler by an element with the same atomic type in the
other structure, respecting equalities and inequalities with previously
chosen elements. Due to the construction it is certainly possible to do
that for m moves, so Duplicator wins the game. Hence A ≡m B, and
therefore B |= φ. q.e.d.

From the proof we see that the constructed finite model B is in fact
a submodel of the arbitrary model A that we started with. Thus we
have in fact established a stronger result than the finite model property,
namely the finite submodel property of the monadic class: every infinite
model of a sentence in the monadic class has a finite substructure which
is also a model of that sentence.

In general it need not be the case that classes with the FMP also
have the finite submodel property.

1.6 The two-variable fragment of FO

We denote relational first-order logic over k variables by FOk, i.e.

FOk := {φ ∈ FO : φ relational, φ only contains k variables}.

We have shown that the Kahr-Moore-Wang class KMW, and hence also
FO3, are conservative reduction classes. We now prove that FO2 has the
finite model property and is thus decidable. Note that FOk formulae
are not necessarily in prenex normal form. A further motivation for the
study of FO2 is that propositional modal logic can be viewed as a frag-

21



1 The classical decision problem

ment of FO2 (in fact ML can be proven to be precisely the bisimulation
invariant fragment of FO2).

Before we proceed to prove the finite model property for FO2, as a
first step we establish a normal form for formulae in FO2.
Lemma 1.37 (Scott). For each sentence ψ ∈ FO2 one can construct in
polynomial time a sentence φ ∈ FO2 of the form

φ := ∀x∀yα ∧
n∧

i=1

∀x∃yβi

such that α, β1, . . . , βn are quantifier free and such that ψ and φ are
satisfiable over the same universe. Moreover, we have |φ| = O(|ψ| ·
log |ψ|).

Proof. First of all, we can assume that formulae φ ∈ FO2 only contain
unary and binary relation symbols. This is no restriction since relations
of higher arity can be substituted by introducing new binary and unary
relation symbols. For example, if R is a relation of arity three, one
could add a unary relation Rx and three binary relations Rx,x,y, Rx,y,x

and Rx,y,y and replace each atom R(x, x, x) (or R(y, y, y)) by Rx(x) (or
Rx(y)) and atoms as R(x, x, y) or R(x, y, x) by Rx,x,y(x, y) and Rx,y,x(x, y)
respectively. By adding appropriate new subformulae one can ensure
that the semantics are preserved, i.e. that the newly introduced relations
partition a ternary relation in the intended sense. For example we would
introduce as a new subformula ∀x(Rx(x) ↔ Rx,x,y(x, x)).

With ψ containing at most binary relations, we iterate the following
steps until ψ has the desired form. We choose a subformula Qyη of ψ

(Q ∈ {∀, ∃}, η quantifier free) and add a new unary relation R:

ψ′ := ψ[Qyη/Rx]

ψ 7→ ψ′ ∧ ∀x(Rx ↔ Qyη).

R captures those x that satisfy Qyη. The resulting formula φ is not yet
of the desired form, but it is equivalent to the following:

(a) if Q = ∃, then

22



1.6 The two-variable fragment of FO

φ ≡ ψ′ ∧ ∀x∀y(η → Rx) ∧ ∀x∃y(Rx → η)

(b) else if Q = ∀, then

φ ≡ ψ′ ∧ ∀x∀y(Rx → η) ∧ ∀x∃y(η → Rx)

Now use that conjunctions of ∀∀-formulae are equivalent to a ∀∀-formula

and obtain ψ ≡ ∀x∀yα ∧
n∧

i=1
∀x∃yβi. q.e.d.

Theorem 1.38. FO2 has the finite model property. In fact, every satisfi-
able formula ψ ∈ FO2 has a model with at most 2|ψ| elements.

Proof. The proof strategy is as follows: we start with a model A of ψ and
proceed by constructing a new model B of ψ such that |B| ≤ 2O(|ψ|).
For the construction the following definitions will be essential.

An element a ∈ A is said to be a king of A if its atomic 1-type is
unique in A, i.e. if atpA(b) ̸= atpA(a) for all b ̸= a. We let

• K := {a ∈ A : a is a king of A} be the set of kings of A, and

• P := {atpA(a) : a ∈ A, a /∈ K} be the set of atomic 1-types which
are realized at least twice in A.

Since A |= ∀x∃yβi for i = 1, . . . , n, there exist (Skolem) functions
f1, . . . , fn : A → A such that A |= βi(a, fia) for all a ∈ A. The court
of A is defined as

C := K ∪ { fik : k ∈ K, i = 1, . . . , n}.

Let C be the substructure of A induced by C. We construct a model
B |= ψ with universe B = C ∪ (P × {1, . . . , n} × {0, 1, 2}).

23



1 The classical decision problem

A

C
K

B

C
K

P

P

P

To specify B we set B|C = C and for all other elements we specify
the 1- and 2-types (in this way fixing B on the remaining part). However,

(1) This must be done consistently:

• atpA(b, b′) and atpA(b, b′′) must agree on atpA(b), and
• γ(x, y) ∈ atpB(b, b′) ⇔ γ(y, x) ∈ atpB(b

′, b).

(2) Of course we have to ensure that B |= ψ.

We illustrate the construction with the following example.

Example 1.39. Consider the formula ψ over the signature τ = {R, B} (red
edges and blue edges).

ψ = ∃x(Rxx ∧ Bxx)

∧ ∀x∀y((Rxx ∧ Bxx ∧ Ryy ∧ Byy → x = y)

∧(Rxx ∨ Bxx)

∧(Rxy ∧ Ryx → x = y)

∧(Bxy ∧ Byx → x = y)

∧(Bxy ∧ x ̸= y → Ryy))

∧ ∀x∃y(x ̸= y ∧ (Rxx → Rxy)

∧ (Bxx → Bxy)).

Let A |= ψ, then A looks like follows:

• • • • · · ·
K C

24



1.6 The two-variable fragment of FO

In this case P = {{Rxx,¬Bxx}, {¬Rxx, Bxx}} and the universe of
B is B = C ∪ (P × {1} × {0, 1, 2}).

We proceed to construct B by specifying the 1-types and 2-types of
its elements as follows.

(1) The atomic 1-types of elements (p, i, j) are set to atpB((p, i, j)) = p.

(2) The atomic 2-types atpB(b, b′) will be set so that B |= ∀x∃yβi for
i = 1, . . . , m.
Choose for each p ∈ P an element h(p) ∈ A with atpA(h(p)) = p.
Find for each b ∈ B and each i a suitable element b′ such that
B |= βi(b, b′) (by defining atpB(b, b′) appropriately).

(a) If b is a king, set b′ := fi(b) ∈ C ⊆ B. Then B |= βi(b, b′).

(b) If b ∈ C \ K (non-royal member of the court), distinguish:
• If fi(b) ∈ K, then set b′ := fi(b) ∈ K ⊆ B.

• Otherwise it holds that atpA( fi(b)) = p ∈ P.
In this case, set b′ := (p, i, 0). Now set atpB(b, b′) :=
atpA(b, fi(b)). Thus B |= βi(b, b′) since A |= βi(b, fi(b)).

(c) If b = (p, j, ℓ) for some p ∈ P, j ∈ {1, . . . , n}, ℓ ∈ {0, 1, 2}, let
a := h(p) and consider fi(a).
If fi(a) ∈ K, set b′ = fi(a) and atpB(b, b′) := atpA(a, b′).
If fi(a) /∈ K, then atpA( fi(a)) = p′ ∈ P.
Set b′ := (p′, i, (ℓ+ 1) (mod 3)).
Then set atpB(b, b′) := atpA(a, fi(a)), and thus B |= βi(b, b′).

To complete the construction of B, let b1, b2 ∈ B be such that
atpB(b1, b2) is not yet specified. Choose a1, a2 ∈ A so that

atpA(a1) = atpB(b1) and

atpA(a2) = atpB(b2)

and set

atpB(b1, b2) := atpA(a1, a2).

Since A |= α(a1, a2), also B |= α(b1, b2).
For the previously considered example, B looks as follows:

25



1 The classical decision problem

C
K

P × {0} P × {1}

P × {2}

•
•

•
•

•
•

•
•

Overall, we obtain B |= ∀x∀yα ∧
n∧

i=1
∀x∃yβi = ψ, and the size of B

is restricted by

|B| = |C|︸︷︷︸
≤|K|(n+1)

+ 3n|P| = O(n · # (atomic 1-types)) .

For k relation symbols, there are 2k atomic 1-types, hence |B| = 2O(|ψ|).

q.e.d.

This result implies that Sat(FO2) is in NEXPTIME (indeed it is
NEXPTIME-complete), since we can simply guess a finite structure
A of exponential size (in the length of ψ) and verify that A |= ψ.
Corollary 1.40. Sat(FO2) ∈ NEXPTIME = (

⋃
k

NTIME(2nk
)).

This is a typical complexity level for decidable fragments of FO.
In fact, Sat(FO2) is even complete for NEXPTIME. For showing this, we
reduce a bounded version of the domino problem to Sat(FO2).
Definition 1.41. Let D = (D, H, V) be a domino system and let Z(t)
denote Z/tZ × Z/tZ. For a word w = w0, . . . , wn−1 ∈ Dn we say that
D tiles Z(t) with initial condition w if there is τ : Z(t) → D such that

• if τ(x, y) = d and τ(x + 1, y) = d′ then (d, d′) ∈ H
for all (x, y) ∈ Z(t) ,

• if τ(x, y) = d, τ(x, y + 1) = d′ then (d, d′) ∈ V
for all (x, y) ∈ Z(t) and

• τ(i, 0) = wi for all i = 0, . . . , n − 1.

26



1.6 The two-variable fragment of FO

Let D be a domino system and T : N → N a mapping. Define

DOMINO(D, T) := {w ∈ D∗ : D tiles Z(T(|w|)) with initial

condition w} .

One can describe computations of a (in this case non-deterministic)
Turing machine by domino tilings in such a way that the input condition
of the domino problem relates to the initial configuration of the Turing
machine. The restrictions on the size of the tiled rectangle correspond
to the time and space restrictions of the Turing machine. To prove
that a problem A is NEXPTIME-hard, it then suffices to show that
DOMINO(D, 2n) ≤p A.

Our goal is to show that DOMINO(D, 2n) reduces to Sat(X) for
relatively simple classes X ⊆ FO. Set

X = {φ ∈ FO2 : φ = ∀x∀y α ∧ ∀x∃y β, s.t. α, β quantifier-free,

without =, and with only monadic predicates} .

We show that Sat(X) is NEXPTIME-complete and hence also
Sat(FO2) is NEXPTIME-complete.
Lemma 1.42. For each domino system D = (D, H, V) there exists a
polynomial time reduction w ∈ Dn 7→ ψw ∈ X such that D tiles Z(2n)

with initial condition w if and only if ψw is satisfiable.

Proof. The intended model of ψw is a description of a tiling τ : Z(2n) →
D in the universe Z(2n).

Let z = (a, b) ∈ Z(2n) with a =
n−1
∑

i=0
ai2i and b =

n−1
∑

i=0
bi2i. Encode the

tuple as (ao, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n.
To encode the tiling, we define ψw with the monadic predicates Xi,

X∗
i , Yi, Y∗

i , Ni for 0 ≤ i < n and Pd(d ∈ D) with the following intended
meaning:

Xiz iff ai = 1.

X∗
i z iff aj = 1 for all j < i.

Yiz iff bj = 1.

27



1 The classical decision problem

Y∗
i z iff bj = 1 for all j < i.

Niz iff z = (i, 0).

Pdz iff τ(z) = d.

ψw will have the form ψw = ∀x∀yα ∧ ∀x∃yβ, where β accounts
for the correct interpretation of Xi, X∗

i , Yi, Y∗
i , Ni and ensures that every

element has a successor, and α accounts for the description of a correct
tiling.

Now β is the the following formula:

β = X∗
0 x ∧ Y∗

0 x

∧
n−1∧

i=1

X∗
i x ↔ (X∗

i−1x ∧ Xi−1x)

∧
n−1∧

i=1

Y∗
i x ↔ (Y∗

i−1x ∧ Yi−1x)

∧
n−1∧

i=0

Xiy ↔ (Xix ⊕ X∗
i x)

∧
n−1∧

i=0

Yiy ↔ (Yix ⊕ (Y∗
i x ∧ Xn−1x ∧ X∗

n−1x))

∧ N0x ↔ (
n−1∧

i=0

¬Xix ∧ ¬Yix)

∧
n−1∧

i=0

Nix ↔ Ni+1y.

We define the following shorthands for use in α:

H(x, y) :=
n−1∧

i=0

(Yiy ↔ Yix) ∧
n−1∧

i=0

(Xiy ↔ (Xix ⊕ X∗
i x))

V(x, y) :=
n−1∧

i=0

(Xiy ↔ Xix) ∧
n−1∧

i=0

(Yiy ↔ (Yix ⊕ Y∗
i x)).

Now α is defined to be

28



1.6 The two-variable fragment of FO

α =
∧

d ̸=d′
¬(Pdx ∧ Pd′x)

∧ (H(x, y) →
∨

(d,d′)∈H

(Pdx ∧ Pd′y))

∧ (V(x, y) →
∨

(d,d′)∈V

(Pdx ∧ Pd′y))

∧ (
n−1∧

i=i

(Nix → Pwi x)).

Claim 1.43. ψw is satisfiable if and only if D tiles Z(2n) with initial
condition w.

Proof. We show both directions.

(⇐) Consider the intended model, ψw holds in it.
(⇒) Consider C = (C, X1, . . .) |= ψw and define a mapping

f : C → Z(2n)

c 7→ (a, b) ≡ (a0, . . . , an−1, b0, . . . , bn−1)

with ai = 1 iff C |= Xic and

bi = 1 iff C |= Yic.

As C |= ∀x∃yβ, f is surjective. Choose for each z ∈ Z(2n) an element
c ∈ f−1(z) and set τ(z) = d for the unique d that satisfies C |= Pdc.
Then τ is a correct tiling with initial condition w. q.e.d.

Since the length of ψw is |ψw| = O(n log n), the above claim com-
pletes the proof of the lemma. q.e.d.

29





2 Descriptive Complexity

In this chapter we study the relationship between logical definability
and computational complexity on finite structures. In contrast to the
theory of computational complexity we do not measure resources as
time and space required to decide a property but the logical resources
needed to define it. The ultimate goal is to characterize the complexity
classes known from computational complexity theory by means of logic.

We first define what it means for a logic to capture a complexity
class. One of the main results is due to Fagin, stating that existential
second order logic captures NP. At this point it is still unknown whether
there exists a logic capturing PTIME on all finite structures. However, a
deeper analysis of the proof of Fagin’s Theorem shows that SO-HORN
logic captures PTIME on all ordered finite structures.

2.1 Logics Capturing Complexity Classes

To measure the complexity of a property of finite τ-structures, (for
instance, graph) we have to represent the structures by words over a finite
alphabet Σ, so that they can serve as inputs for Turing machines. For
graphs, a natural choice is to take an adjacency matrix, and write it, row
after row, as binary string. Notice that one and the same graph can have
many different adjacency matrices, and thus many different encodings.
Moreover, it is an important open problem to decide efficiently (i.e. in
polynomial time) whether two different matrices represent the same
graph, up to isomorphism. The choice of an adjacency matrix means to
fix an enumeration of the vertices, and thus an ordering of the graph. The
same is true for encoding finite structures of any fixed finite vocabulary
τ: to define an encoding it is necessary to fix an ordering on the universe.

By Ord(τ) we denote the class of all finite structures (A,<), where
A is a τ-structure and < is a linear order on its universe. For any

31



2 Descriptive Complexity

structure A ∈ Ord(τ) with universe of size n, and for any fixed k, we can
identify Ak with the set {0, 1, . . . , nk − 1}. This is done by associating
each k-tuple a with its rank in the lexicographic ordering induced by <

on Ak. When we talk about the a-th element, we understand it in this
sense.
Definition 2.1. An encoding is a function mapping ordered structures to
words. An encoding code(·) : Ord(τ) → Σ∗ is good if it identifies iso-
morphic structures, is polynomially bounded, first-order definable and
allows to compute the values of atomic statements efficiently. Formally,
the following abstract conditions must be satisfied.

• code(A,<) = code(B,<) iff (A,<) ∼= (B,<).

• There is a fixed polynomial p such that |code(A,<)| ≤ p(|A|) for
all (A,<) ∈ Ord(τ).

• For all k ∈ N and all σ ∈ Σ there exists a first-order formula
βσ(x1, . . . , xk) of vocabulary τ ∪ {<} so that for all (A,<) and all
a ∈ Ak it holds that

(A,<) |= βσ(a) ⇔ the a-th symbol of code(A,<) is σ.

• Given code(A,<) a relation symbol R of τ and a tuple a one can
efficiently decide whether A |= Ra.

The meaning of “efficiently” in the last condition may depend on
the context, here we understand it is as evaluated in linear time and
logarithmic space.
Example 2.2. Let A = (A, R1, . . . , Rm) be a structure with a linear order
< on A. Let |A| = n and let si be the arity of Ri. Let ℓ be the maximal
arity of R1, . . . , Rm. For each relation we define

χ(Rj) = w0 . . . wnsj−10nℓ−nsj ∈ {0, 1}nℓ
,

where wi = 1 if the i-th element of Asj is in Rj. Now

code(A,<) := 1n0nℓ−nχ(R1) . . . χ(Rm).

When we say that an algorithm decides a class K of finite τ-structures

32



2.2 Fagin’s Theorem

we actually mean that it decides

code(K) = {code(A,<) : A ∈ K,< a linear order on A}.

Definition 2.3. A model class is a class K of structures of a fixed vocabu-
lary τ that is closed under isomorphism, i.e. if A ∈ K and A ∼= B, then
B ∈ K.

A domain is an isomorphism closed class D of structures where the
vocabulary is not fixed. For a domain D and vocabulary τ, we write
D(τ) for the class of τ-structures in D.
Definition 2.4. Let L be a logic, Comp a complexity class and D a
domain of finite structures. L captures Comp on D if

(1) For every vocabulary τ and every (fixed) sentence ψ ∈ L(τ), the
model-checking problem for ψ on D(τ) is in Comp.

(2) For every vocabulary τ and any model class K ⊆ D(τ) whose
membership problem is in Comp, there exists a sentence ψ ∈ L(τ)
such that

K = {A ∈ D(τ) : A |= ψ}.

Notice that first-order logic is very weak, in this sense. Indeed, for
every fixed first-order sentence ψ ∈ FO(τ), it can be decided efficiently,
with logarithmic space, whether a given finite τ-structure is a model
for ψ. However, FO does not capture Logspace, not even on ordered
structures. Indeed, the reachability problem on undirected graphs can
be solved in Logspace, but it is not first-order expressible.

2.2 Fagin’s Theorem

Existential second-order logic (Σ1
1) is the fragment of second-order logic

consisting of formulae of the form ∃R1 . . . ∃Rm φ where φ ∈ FO and
R1, . . . , Rm are relation symbols. As we will see in this chapter, the
logic Σ1

1 captures the complexity class NP on the domain of all finite
structures.
Example 2.5. 3-Colourability of a graph G = (V, E) is in NP and indeed
there is a Σ1

1-formula defining the class of graphs which possess a valid

33



2 Descriptive Complexity

3-colouring:

∃R∃B∃Y ( ∀x(Rx ∨ Bx ∨ Yx)

∧ ∀x∀y(Exy → ¬((Rx ∧ Ry) ∨ (Bx ∧ By) ∨ (Yx ∧ Yy))

Theorem 2.6 (Fagin). Existential second-order logic captures NP on the
domain of all finite structures.

Proof. The proof consists of two parts. First, let ψ = ∃R1 . . . ∃Rm φ ∈ Σ1
1

be an existential second-order sentence. We show that it can be decided
in non-deterministic polynomial time whether a given structure A is a
model of ψ.

In a first step, we guess relations R1, . . . , Rm on A. Recall that
relations can be identified with binary strings of length nsi , where si is
the arity of Ri. Then we check whether (A, R1, . . . , Rm) |= φ which can be
done in LOGSPACE and hence in PTIME. Thus the computation consists
of guessing a polynomial number of bits followed by a deterministic
polynomial time computation, showing that the problem is in NP.

For the other direction, let K be an isomorphism-closed class of
τ-structures and let M be a non-deterministic TM deciding code(K) in
polynomial time. We construct a sentence ψ ∈ Σ1

1 such that for all finite
τ-structure A it holds that

A |= ψ ⇔ M accepts code(A,<) for any linear order < on A.

Let M = (Q, Σ, q0, F+, F−, δ) with accepting and rejecting states F+ and
F− and δ : (Q × Σ) → P(Q × Σ × {0, 1,−1}) which, given an input
code(A,<), decides in non-deterministic polynomial time whether A

belongs to K or not. We assume that all computations of M reach an
accepting or rejecting state after precisely nk steps (n := |A|).

We encode a computation of M on code(A,<) by relations X and
construct a first-order sentence φM ∈ FO(τ ∪ {<} ∪ {X}) such that for
every linear order < there exists X with (A,<, X) |= φM if and only if
code(A,<) ∈ L(M). To this end we show that

• If X represents an accepting computation of M on code(A,<) then
(A,<, X) |= φM.

34



2.2 Fagin’s Theorem

• If (A,<, X) |= φM then X contains a representation of an accepting
computation of M on code(A,<).

Accordingly the desired formula ψ is then obtained via existential second-
order quantification

ψ := (∃ <)(∃X)(”< is a linear order ” ∧ φM).

Details:

• We represent numbers up to nk as tuples in Ak.
• For each state q ∈ Q we introduce a predicate

Xq := {t ∈ Ak : at time t the TM M is in state q}.

• For each symbol σ ∈ Σ we define

Yσ := {(t, a) ∈ Ak × Ak : at time t the cell a contains σ}.

• The head predicate is

Z := {(t, a) ∈ Ak × Ak : at time t the head of M

is at position a}.

Now φM is the universal closure of START ∧ COMPUTE ∧ END.

START := Xq0(0) ∧ Z(0, 0) ∧
∧

σ∈Σ

(βσ(x) → Yσ(0, x)).

Recall that βσ states that the symbol at position x in code(A,<) is σ.
The existence of the formulae βσ is guaranteed by the fact that code(·)
is a good encoding. In what follows, we denote by x + 1 and x − 1 a
first-order formula that defines the direct successor and predecessor of
the tuple x (in the lexicographical ordering on tuples that is induced by
the linear order <), respectively.

COMPUTE := NOCHANGE ∧ CHANGE.

35



2 Descriptive Complexity

NOCHANGE :=
∧

σ∈Σ

(Yσ(t, x) ∧ Z(t, y) ∧ y ̸= x

∧ t′ = t + 1 → Yσ(t
′, x)).

CHANGE :=
∧

q∈Q,σ∈Σ

(PRE[q, σ] →
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′, m]),

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t′ = t + 1,

POST[q′, σ′, m] := Xq′(t
′
) ∧ Yσ′(t′, x) ∧ MOVEm[t

′, x],

and

MOVEm[t
′, x] :=





∃y(x − 1 = y ∧ Z(t′, y)), m = −1

Z(t′, x), m = 0

∃y(x + 1 = y ∧ Z(t′, y)), m = 1.

Finally, we let

END :=
∧

q∈F−
¬Xq(t).

It remains to show the following two claims.
Claim 1. If X represents an accepting computation of M on code(A,<)

then (A,<, X) |= φM. This, however, follows immediately from the
construction of φM.
Claim 2. If (A,<, X) |= φM, then X contains a representation of an
accepting computation of M on code(A,<). We define

CONF[C, j] := Xq(j) ∧ Z(j, p) ∧
nk−1∧

i=0

Ywi(j, i)

for configurations C = (w0 . . . wnk−1, q, p) (tape content w0 . . . wnk−1,
state q, head position p), i.e. the conjunction of the atomic statements

36



2.2 Fagin’s Theorem

that hold for C at time j. Let C0 be the input configuration of M on
code(A,<). Since (A,<, X) |= START it follows that

(A,<, X) |= CONF[C0, 0].

Since (A,<, X) |= COMPUTE and (A,<, X) |= CONF[Ci, t], for some
Ci ⊢ Ci+1 it holds that (A,<, X) |= CONF[Ci+1, t + 1].

Finally, no rejecting configuration can be encoded in X because
(A,<, X) |= END. Thus an accepting computation

C0 ⊢ C1 ⊢ . . . ⊢ Cnk−1

of M on code(A,<) exists, with (A,<, X) |= CONF[Ci, i] for all i ≤
nk − 1. This completes the proof of Fagin’s Theorem. q.e.d.

Theorem 2.7 (Cook, Levin). SAT is NP-complete.

Proof. Obviously SAT ∈ NP. We show that for any Σ1
1-definable class K

of finite structures the membership problem A ∈ K can be reduced to
SAT. By Fagin’s Theorem, there exists a first-order sentence ψ such that

K = {A ∈ Fin(τ) : A |= ∃R1 . . . ∃Rmψ}.

Given A, construct a propositional formula ψA as follows.

• replace ∃xi φ by
∨

a∈A φ[xi/a],

• replace ∀xi φ by
∧

a∈A φ[xi/a],

• replace all closed τ-atoms Pa in ψ with their truth values,

• replace all atoms Ra with propositional variables PRa.

This is a polynomial transformation and it holds that

A ∈ K ⇔ A |= ∃R1 . . . ∃Rmψ ⇔ ψA ∈ SAT.

q.e.d.

37



2 Descriptive Complexity

2.3 Second Order Horn Logic on Ordered Structures

The problem of whether there exists a logic capturing PTIME on all
finite structures is still open. However, on ordered finite structures, there
are several known logical characterizations of PTIME. The most famous
result of this kind is the one is the Theorem by Immerman and Vardi
which states that the least fixed-point logic LFP captures PTIME on the
class of all ordered finite structures. We shall discuss this later. We here
present a different characterization of PTIME, in terms of second-order
Horn logic SO-HORN, which follows from a careful analysis of the proof
of Fagin’s Theorem. Indeed, the construction that we used in that proof
is not the original one by Fagin, but an optimized version that has been
tailored so that it can be adapted to a proof that SO-HORN captures
PTIME on ordered structures.
Definition 2.8. Second-order Horn logic, denoted by SO-HORN, is the set
of second-order sentences of the form

Q1R1 . . . QmRm∀y1 . . . ∀ys

t∧

i=1

Ci,

where Qi ∈ {∃, ∀} and the Ci are Horn clauses, i.e. implications

β1 ∧ . . . ∧ βm → H,

where each β j is either a positive atom Rkz or an FO-formula that does
not contain R1, . . . , Rm. H is either a positive atom Rjz or the Boolean
constant 0.

Σ1
1-HORN denotes the existential fragment of SO-HORN, i.e. the

set of SO-HORN sentences where all second-order quantifiers are exis-
tential.
Theorem 2.9. Every sentence ψ ∈ SO-HORN is equivalent to a sentence
ψ′ ∈ Σ1

1-HORN.

Proof. It suffices to prove the theorem for formulae of the form

ψ = ∀P∃R1 . . . ∃Rm∀zφ,

38



2.3 Second Order Horn Logic on Ordered Structures

where φ is a conjunction of Horn clauses and m ≥ 0 (for m = 0, the
formula has the form ∀P∀zφ). Indeed we can then eliminate universal
quantifiers beginning with the inner most one by considering only the
part starting with that universal quantifier.

Lemma 2.10. A formula ∃R∀zφ(P, R) ∈ Σ1
1-HORN holds for all relations

P on a structure A if and only if it holds for those P that are false at at
most one point.

Proof. Let k be the arity of P. For every k-tuple a, let Pa = Ak − {a}, i.e.
the relation that is false at a and true at all other points. By assumption,
there exist Ra such that

(A, Pa, Ra
) |= ∀zφ.

Now consider any P ̸= Ak and let Ri :=
⋂

a/∈P Ra
i . We show that

(A, P, R) |= ∀zφ where R is the tuple consisting of all Ri.
Suppose that this is false, then there exists a relation P ̸= Ak,

a clause C of φ and an assignment ρ : {z1, . . . , zs} → A such that
(A, P, R) |= ¬C[ρ]. We proceed to show that in this case there exists a
tuple a such that (A, Pa, Ra

) |= ¬C[ρ] and thus

(A, Pa, Ra
) |= ¬∀zφ

which contradicts the assumption.

• If the head of C[ρ] is Pa, then take a = u /∈ P.

• If the head of C[ρ] is Riu, then choose a /∈ P such that u /∈ Ra
i , which

exists because u /∈ Ri.

• If the head is 0, take an arbitrary a /∈ P.

The head of C[ρ] is clearly false in (A, Pa, Ra
). Pa does not occur in

the body of C[ρ], because a /∈ P and all atoms in the body of C[ρ] are
true in (A, P, R). All other atoms of the form Pi that might occur in the
body of the clause remain true for Pa. Moreover, every atom Riv in the
body remains true if Ri is replaced by Ra

i because Ri ⊆ Ra
i . This implies

(A, Pa, Ra
) |= ¬C[ρ]. q.e.d.

39



2 Descriptive Complexity

Using the above lemma, the original formula ψ = ∀P∃R1 . . . ∃Rm∀zφ

is equivalent to

∃R ∀zφ[Pu/u = u] ∧ ∀y ∃R ∀zφ[Pu/u ̸= y].

This formula can be converted again to Σ1
1-HORN; in the second part

we push the external first-order quantifiers inside while increasing the
arity of quantified relations by |y| to compensate it, i.e. we get

∃R′ ∀y zφ[Pu/u ̸= y, R(x)/R′(x, y)].

q.e.d.

Theorem 2.11. If ψ ∈ SO-HORN, then the set of finite models of ψ,
Mod(ψ), is in PTIME.

Proof. Given ψ′ ∈ SO-HORN, transform it to an equivalent sentence
ψ = ∃R1 . . . ∃Rm∀z

∧
i Ci in Σ1

1-HORN. Given a finite structure A reduce
the problem of whether A |= ψ to HORNSAT (as in the proof of the
Theorem of Cook and Levin).

• Omit quantifiers ∃Ri.

• Replace the universal quantifiers ∀ziη(zi) by
∧

a∈A η[zi/a].
• If there is a clause that is already made false by this interpretation,

i.e. C = 1 ∧ . . . ∧ 1 → 0, reject ψ. Else interpret atoms Riu as
propositional variables.

The resulting formula is a propositional Horn formula with length
polynomially bounded in |A| and which is satisfiable iff A |= ψ. The
satisfiability problem HORNSAT can be solved in linear time. q.e.d.

Theorem 2.12 (Grädel). On ordered finite structures SO-HORN and
Σ1

1-HORN capture PTIME.

Proof. We analyze the formula φM constructed in the proof of Fagin’s
Theorem in the case of a deterministic TM M. Recall that φM is the
universal closure of START∧NOCHANGE∧CHANGE∧END. START,
NOCHANGE and END are already in Horn form. CHANGE has the

40



2.3 Second Order Horn Logic on Ordered Structures

form

∧

q∈Q,σ∈Σ

(PRE[q, σ] →
∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′, m]).

For a deterministic M for each (q, σ) there is a unique δ(q, σ) = (q′, σ′, m).
In this case PRE[q, σ] → POST[q′, σ′, m] can be replaced by the conjunc-
tion of the Horn clauses

• PRE[q, σ] → Xq′(t
′
)

• PRE[q, σ] → Yσ′(t′, x)
• PRE[q, σ] ∧ y = x + m → Z(t′, y).

q.e.d.

Remark 2.13. The assumption that a linear order is explicitly available
cannot be eliminated, since linear orderings are not definable by Horn
formulae.

41





3 Expressive Power of First-Order
Logic

In the whole chapter we restrict ourselves to finite and relational vocabu-
laries τ.

3.1 Ehrenfeucht-Fraïssé Theorem

Let A and B be τ-structures with a ∈ Ak and b ∈ Bk for some k ≥
0. Recall that we write A, a ≡ B, b if no FO-formula can distinguish
between (A, a) and (B, b), that is if for all φ(x) ∈ FO(τ) we have

A |= φ(a) ⇔ B |= φ(b).

For m ≥ 0 we write A, a ≡m B, b if the same holds for all FO(τ)-
formulas of quantifier rank at most m. We aim to develop an algebraic
characterisation of ≡m via back-and-forth systems and a game-theoretic
characterisation via Ehrenfeucht-Fraïssé games.

Back-and-forth systems. A partial isomorphism between τ-structures A and
B is a bijective function p with finite domain dom(p) ⊆ A and range
rg(p) ⊆ B such that p is an isomorphism between the substructures of
A and B induced on dom(p) and rg(p), respectively, that is

p : A ↾ dom(p) ∼= B ↾ rg(p).

Part(A,B) denotes the set of partial isomorphism between A and B.
For all A and B we have ∅ ∈ Part(A,B). For p ∈ Part(A,B) we
write p = a → b for a ∈ Ak and b ∈ Bk if dom(p) = {a1, . . . , ak} and
rg(p) = {b1, . . . , bk} and if p(ai) = bi for 1 ≤ i ≤ k.

43



3 Expressive Power of First-Order Logic

Definition 3.1. Let I ⊆ Part(A,B) and p ∈ Part(A,B). Then p has
back-and-forth extensions in I if

∀ a ∈ A ∃ b ∈ B : p ∪ {(a, b)} ∈ I (forth)

∀ b ∈ B ∃ a ∈ A : p ∪ {(a, b)} ∈ I (back)

Accordingly, for I, J ⊆ Part(A,B) we say that I has back-and-forth exten-
sions in J, if every p ∈ I has back-and-forth extensions in J.
Definition 3.2. Let m ≥ 0. A back-and-forth system for m-equivalence of
(A, a) and (B, b) is a sequence (Ii)i≤m of sets of partial isomorphisms
Ii ⊆ Part(A,B) such that

• a → b ∈ Im, and

• for all 0 < i ≤ m, Ii has back-and-forth extensions in Ii−1.

If such a system (Ii)i≤m for (A, a) and (B, b) exists, then we write

(Ii)i≤m : (A, a) ≃m (B, b),

and we say that (A, a) and (B, b) are m-isomorphic.
Lemma 3.3. For every m ≥ 0, every τ-structure A and every a ∈ Ak,
there exists an FO(τ)-formula χm

A,a(x1, . . . , xk) of quantifier rank m such
that for all B and b ∈ Bk we have

B |= χm
A,a(b) ⇔ A, a ≃m B, b.

Moreover the number of different formulas χm
A,a only depends on m, τ,

and k, and not on A or a (up to logical equivalence).

Proof. The construction is by induction on m ≥ 0 (for all k ≥ 0, A, and
a ∈ Ak at the same time).

χ0
A,a(x1, . . . , xk) =

∧
{φ(x1, . . . , xk) : φ is an atomic or negated

atomic FO(τ)-formula with A |= φ(x1, . . . , xk)}

We have that A, a ≃0 B, b if, and only if, a → b ∈ Part(A,B) which
means that (A, a) and (B, b) satisfy the same atomic formulas. Note that

44



3.1 Ehrenfeucht-Fraïssé Theorem

the number of different atomic formulas in k variables only depends on
the vocabulary τ and on k ≥ 0.

Now let m > 0. Then we set χm
A,a(x1, . . . , xk) =

∧

a′∈A

∃x χm−1
A,a,a′(x1, . . . , xk, x) ∧ ∀x

∨

a′∈A

χm−1
A,a,a′(x1, . . . , xk, x).

Since the number of different formulas χm−1
A,a,a′ (up to equivalence)

only depends on m − 1 and k + 1 (by the induction hypothesis), also
the number of different formulas χm

A,a only depends on m and k (up to
equivalence) and not on A or a. This is of particular importance if one
of the structures is infinite, because it guarantees that the conjunction
and the disjunction in χm

A,a are finite. It holds

(A, a) ≃m (B, b)

⇐⇒




∀a′ ∈ A ∃b′ ∈ B : (A, a, a′) ≃m−1 (B, b, b′)

∀b′ ∈ B ∃a′ ∈ A : (A, a, a′) ≃m−1 (B, b, b′)

⇐⇒ (by (IH))




∀a′ ∈ A ∃b′ ∈ B : B |= χm−1

A,a,a′(b, b′)

∀b′ ∈ B ∃a′ ∈ A : B |= χm−1
A,a,a′(b, b′)

⇐⇒ B |= χm
A,a(b). q.e.d.

Ehrenfeucht-Fraïssé games. The Ehrenfeucht-Fraïssé game Gm(A, a,B, b)
is played by two players according to the following rules.

The arena consists of the structures A and B. We assume that
A ∩ B = ∅. The players are called Spoiler and Duplicator, and a play of
Gm(A, a,B, b) consists of m moves.

The initial position is Gm(A, a,B, b). In the i-th move, 1 ≤ i ≤ m, the
play proceeds from the position

Gm−i+1(A, a, c1, . . . , ci−1,B, b, d1, . . . , di−1).

Spoiler either chooses an element ci ∈ A or an element di ∈ B. Duplicator
answers by choosing an element ci ∈ A or di ∈ B in the other structure.
The new position is Gm−i(A, a, c1, . . . , ci,B, b, d1, . . . , di). After m moves,
elements c1, . . . , cm from A and d1, . . . , dm from B are chosen. Duplicator

45



3 Expressive Power of First-Order Logic

wins at a final position G0(A, a, c1, . . . , cm,B, b, d1, . . . , dm) if A, a, c ≡0

B, b, d. Otherwise Spoiler wins.
A winning strategy of Spoiler is a function which determines, for

every reachable position, a move such that Spoiler wins each play which
is consistent with this strategy, no matter how Duplicator plays. Winning
strategies for Duplicator are defined analogously. We say that Spoiler
(respectively, Duplicator) wins the game Gm(A, a,B, b) if this player has
a winning strategy for Gm(A, a,B, b). By induction on the number of
moves it is easy to show that for every (sub)game exactly one of the two
players has a winning strategy.
Theorem 3.4 (Ehrenfeucht, Fraïssé). Let A,B be τ-structures (recall, τ

is finite and relational), let a ∈ Ak and b ∈ Bk and let m ≥ 0. Then the
following statements are equivalent:

(i) A, a ≡m B, b.

(ii) A, a ≃m B, b.

(iii) B |= χm
A,a(b).

(iv) Duplicator wins Gm(A, a,B, b).

Proof. Since A |= χm
A,a(a) and since qr(χm

A,a) ≤ m, we have that (i) ⇒
(iii). By Lemma 3.3, (ii) ⇔ (iii). Recall from the introductory course

that (iv) ⇒ (ii). The proof strategy was to show, by induction on the
quantifier rank m ≥ 0, that if a formula φ(x) of quantifier rank m can
distinguish between A, a and B, b, then we can extract a winning strategy
for Spoiler from this formula for the game Gm(A, a,B, b).

Hence, it suffices to prove (ii) ⇒ (iv). Let (Ii)i≤m : (A, a) ≃m (B, b).
For m = 0 the claim holds, since a → b ∈ Im ⊆ Part(A,B). For
m > 0 assume that the Spoiler at position Gm(A, a,B, b) picks an element
a′ ∈ A. By the forth property Duplicator can pick b′ ∈ B such that
(a, a′) → (b, b′) ∈ Im−1. Hence, (Ii)i≤m−1 : (A, a, a′) ≃m−1 (B, b, b′).
By the induction hypothesis, Duplicator wins Gm−1(A, a, a′,B, b, b′). If
Spoiler picks an element b′ ∈ B the reasoning is analogous using the
back property. q.e.d.

Corollary 3.5. For all k ≥ 0, the relation ≡m induces an equivalence
relation on pairs (A, a) of τ-structures A and a ∈ Ak of finite index.

46



3.2 Hanf’s technique

Corollary 3.6. A class K of τ-structures is FO-definable if, and only if,
there exists m ≥ 0 such that for all τ-structures A and B with A ≡m B

it holds that A ∈ K ⇔ B ∈ K.

3.2 Hanf’s technique

Describing winning strategies in Ehrenfeucht-Fraïssé games can be diffi-
cult. In this section we want to establish sufficient criteria for structures
A and B which guarantee that Duplicator has a winning strategy in the
game Gm(A,B). The following approach goes back to Hanf who gave a
similar criterion to characterise ≡ (equivalance in full first-order logic).
However, since we are mainly interested in properties of finite structures,
≡ is far too powerful (two finite structures A,B are isomorphic if, and
only if, A ≡ B).

Gaifman graph. Let A be a τ-structure. The Gaifman-graph G(A) =

(VG(A), EG(A)) of A is defined as the undirected graph over the vertex
set VG(A) = A with the edge relation

EG(A) = {(a, b) : a ̸= b and the elements a, b occur together

in some tuple c ∈ RA for a relation R ∈ τ}.

The Gaifman graph allows us to define a notion of distance between
the elements of the structure A: we define dA : A2 → N ∪ {∞} as the
usual distance function in the Gaifman graph G(A) of A.

Let r ≥ 0. The r-neighbourhood of an element a ∈ A is the set
Nr
A(a) = Nr(a) = {b ∈ A : dA(a, b) ≤ r}. In particular, N0(a) = {a}.

For a tuple a = (a1, . . . , ak) ∈ Ak we set

Nr(a) =
⋃

1≤i≤k

Nr(ai).

The r-isomorphism type of an element a ∈ A is the isomorphism type
ι of the structure (A ↾ Nr(a), a) (that is of the substructure of A induced
on the r-neighbourhood of a extended by a new constant symbol to
distinguish the element a). This means that for τ-structures A,B, two

47



3 Expressive Power of First-Order Logic

elements a ∈ A and b ∈ B have the same r-isomorphism type if there is an
isomorphism π : A ↾ Nr(a) → B ↾ Nr(b) with π(a) = b.
Definition 3.7. Let r ≥ 0 and t ≥ 0. Two τ-structures A and B are
(r, t)-Hanf equivalent if for all isomorphism types ι of structures (C, c)
(where C is a τ-structure and c ∈ C is a distinguished constant) the
number of a ∈ A with r-isomorphism type ι is the same as the number
of b ∈ B with r-isomorphism type ι or both numbers exceed the threshold
t.
Remark 3.8. If A and B are (r, t)-Hanf equivalent, then they also are
(r′, t)-Hanf equivalent for all r′ ≤ r.
Theorem 3.9 (Hanf’s Theorem). Let m ≥ 0 and let A and B be two
τ-structures such that all 3m-neighbourhoods in A and B have at most
e ≥ 0 many elements.

If A and B are (3m, m · e)-Hanf equivalent, then A ≡m B.

Proof. For i ≥ 0 we obtain a back-and-forth system for m-equivalence of
A and B by setting

Im−i = {a → b ∈ Part(A,B) : |a| = |b| = i,

A ↾ N3m−i
(a), a ∼= B ↾ N3m−i

(b), b}.

We have Im = {∅}, so let i ≥ 1. Without loss of generality, it suffices
to show that Im−i has forth-extensions in Im−i−1. Let a = (a1, . . . , ai) and
b = (b1, . . . , bi) and ρ be such that ρ : A ↾ N3m−i

(a), a ∼= B ↾ N3m−i
(b), b.

Let a ∈ A. We have to find b ∈ B such that A ↾ N3m−i−1
(a, a), a, a ∼= B ↾

N3m−i−1
(b, b), b, b.

Case 1 (close to a). If a ∈ N2·3m−i−1
(a), then we choose b = ρ(a) ∈

N2·3m−i−1
(b). This is a valid choice since we have ρ : A ↾ N3m−i

(a), a, a ∼=
B ↾ N3m−i

(b), b, b.
Case 2 (far from a). If a ̸∈ N2·3m−i−1

(a), then N3m−i−1
(a) ∩

N3m−i−1
(aj) = ∅ for all 1 ≤ j ≤ i. Hence, it suffices to find b ∈ B

with the same 3m−i−1-isomorphism type as a (call this ι) and the prop-
erty that N3m−i−1

(b) ∩ N3m−i−1
(bj) = ∅ for all 1 ≤ j ≤ i.

We know that in A and B there are the same numbers of realisations
of ι or more than m · e many. By our assumption, we know that in
N2·3m−i−1

(a) there are at most m · e realisations, and the same number of

48



3.3 Gaifman’s Theorem

realisations can be found in N2·3m−i−1
(b) (because of ρ). Hence, we can

find a b ∈ B as claimed. q.e.d.

Corollary 3.10. Let m ≥ 0 and let A and B be τ-structures such that the
maximal degree in the Gaifman graphs G(A) and G(B) is d ≥ 0. If A
and B are (3m, m · d3m

) equivalent, then A ≡m B.
Corollary 3.11. Connectivity of finite graphs is not definable in first-
order logic.

Proof. Let An be a cycle of length 2n and let Bn be the disjoint union of
two cycles of length n. For m we can set n = 3m+1. Then An and Bn are
(3m, ∞)-Hanf equivalent but An is connected while Bn is not.

q.e.d.

3.3 Gaifman’s Theorem

Hanf’s technique shows that first-order logic can essentially express
local properties only: if two structures realise the same number of
f (m)-neighbourhood types, then no first-order sentence with quantifier
rank ≤ m can distinguish between both structures. Gaifman’s Theorem
makes this observation more precise by showing that every FO-sentence
is equivalent to an FO-sentence which only speaks about neighbour-
hoods of elements of a bounded radius (and this semantic property
is guaranteed by the syntactic structure of the sentence). To formally
introduce this Gaifman normal form for first-order logic we first have to
introduce the notions of local formulas and local sentences.

First of all, for every r ≥ 0 we can find an FO-formula ϑ≤r(x, y)
which defines in each structure A the pairs of elements (a, b) ∈ A2 whose
distance in the Gaifman graph G(A) of A is at most r, that is

ϑA
≤r = {(a, b) : dA(a, b) ≤ r}.

In formulas we will usually write d(x, y) ≤ r as a shorthand
for ϑ≤r(x, y). Also we write d(x, y) ≤ r for a tuple of variables

49



3 Expressive Power of First-Order Logic

x = (x1, . . . , xk) to abbreviate the formula

d(x, y) ≤ r =
∨

1≤i≤k

d(xi, y) ≤ r.

Local formulas. A formula φ(x) is r-local if its evaluation in a structure
A with respect to a tuple a ∈ Ak only depends on the r-neighbourhood
of a. To capture this formally, we inductively define the relativisation
φNr(x)(x, y) of a formula φ(x, y) to the r-neighbourhood Nr(x) of x (for
the construction we assume that no variable in x is bound in φ):

φNr(x) = φ for atomic formulas φ

φNr(x) = ψNr(x) ◦ ϑNr(x) for φ = ψ ◦ ϑ, ◦ ∈ {∧,∨}
φNr(x) = ¬ψNr(x) for φ = ¬ψ

φNr(x) = ∃z(d(x, z) ≤ r ∧ ψNr(x)) for φ = ∃zψ

φNr(x) = ∀z(d(x, z) ≤ r → ψNr(x)) for φ = ∀zψ

Lemma 3.12. For all r ≥ 0, A, a ∈ Ak and b ∈ (Nr(a))ℓ we have

A ↾ Nr(a) |= φ(a, b) ⇔ A |= φNr(x)(a, b).

Definition 3.13. A formula φ(x) is called r-local if φ(x) ≡ φNr(x)(x), that
is if for all A and a ∈ Ak we have

A |= φ(a) ⇔ A |= φNr(x)(a) ⇔ A ↾ Nr(a) |= φ(a).

Note that r-locality is a semantic property of formulas. However,
it is easy to see that all formulas φNr(x)(x) are r-local (in other words,
the syntatic transformations guarantee that we obtain a local formula,
but of course there are local formulas which do not have this syntactic
form). Moreover, it is not hard to verify that every formula φ(x) which
is r-local is also r′-local for all r′ ≥ r. For a formula φ(x) we write
φr(x) = φNr(x)(x) to denote the r-local version of the formula φ(x).

50



3.3 Gaifman’s Theorem

Local sentences. An ℓ-tuple of elements a = (a1, . . . , aℓ) ∈ Aℓ in a
structure A is called r-scattered if d(ai, aj) > 2r for all ai and aj, i ̸= j, that
is if the r-neighbourhoods Nr(ai), 1 ≤ i ≤ ℓ, are pairwise disjoint. A
basic local sentence of Gaifman rank (r, m, ℓ) is a sentence of the form

∃x1 · · · ∃xℓ


∧

i ̸=j

d(xi, xj) > 2r ∧
∧

i

ψr(xi)


 ,

where qr(ψ) = m, which expresses the existence of an r-scattered tuple
of length ℓ such that every point in this tuple satisfies an r-local property
which is specified by a formula ψ of quantifier-rank m. A local sentence
is Boolean combination of basic local sentences.
Theorem 3.14 (Gaifman). Every first-order sentence is equivalent to a
local sentence.

To prove Gaifman’s Theorem it suffices to show the following
lemma.
Lemma 3.15. If A and B satisfy the same basic local sentences, then
A ≡ B.

Proof (of Gaifman’s Theorem using the preceeding lemma). Let Φ denote the
set of all basic local sentences. Let φ be an FO-sentence and let K =

Mod(φ) be the class of models of φ. For A ∈ K we define

Φ(A) = {φ : φ ∈ Φ,A |= φ} ∪ {¬φ : φ ∈ Φ,A |= ¬φ}

Then for all A ∈ K we have Φ(A) |= φ, because if B |= Φ(A), then
A and B agree on all sentences from Φ and thus, by the preceeding
lemma, we have that A ≡ B. By the compactness theorem, we can find
finite sets Φ0(A) ⊆ Φ(A) such that Φ0(A) |= φ for all A ∈ K.

We claim that for a finite subclass K0 ⊆ K, the sentence φ is
equivalent to

∨
A∈K0

∧
Φ0(A) (which is a local sentence). We know

that
∨

A∈K0

∧
Φ0(A) |= φ, so assume that for every finite subclass of

structures K0 ⊆ K the set {φ} ∪ {¬∧
Φ0(A) : A ∈ K0} would be satisfi-

able. Then, by compactness, also {φ} ∪ {¬∧
Φ0(A) : A ∈ K} would be

satisfiable which is impossible since A |= ∧
Φ0(A) for all A ∈ K. q.e.d.

Proof (of Lemma 3.15). For all m ≥ 0, we prove by induction on j =

51



3 Expressive Power of First-Order Logic

m, . . . , 0 that one can find values g(0), g(1), . . . , g(m) such that

Ij = {a → b : |a| = |b| = m − j, (A ↾ N7j
(a), a) ≡g(j) (B ↾ N7j

(b), b)}

defines a back-and-forth system for m-equivalence of A and B. Sufficient
criteria for the values g(0), . . . , g(m) are collected in the course of the
proof (and it will be obvious that we can find values which satisfy all
contraints). Note that Im = {∅}.

Let 0 ≤ j < m and let a → b ∈ Ij+1. Then we know that

(A ↾ N7j+1
(a), a) ≡g(j+1) (B ↾ N7j+1

(b), b).

By symmetry, it suffices to show that a → b has a forth-extension in Ij.
Let a ∈ A. We have to find b ∈ B such that

(A ↾ N7j
(aa), aa) ≡g(j) (B ↾ N7j

(bb), bb).

To this end we consider the g(j)-types of the 7j-neighbourhoods of
tuples in A and B. Recall from Lemma 3.3 that we can describe these
types by a first-order formula. More precisely, for a structure D and a
tuple d in D we set

ψ
j
d
(x) =

[
χ

g(j)

(D↾N7j
(d),d)

(x)
]N7j

(x)
.

Then ψ
j
d
(x) is a 7j-local formula such that C |= ψ

j
d
(c) if the 7j-

neighbourhood of c in C (with distinguished tuple c) is g(j)-equivalent
to the 7j-neighbourhood of d in D (with distinguished tuple d). To find
an appropriate b ∈ B we distinguish between the following cases.

Case 1 (a is close to a). Assume that a ∈ N2·7j
(a). Then

(A ↾ N7j+1
(a), a) |= ∃z(d(a, z) ≤ 2 · 7j ∧ ψ

j
aa(a, z)).

We assume that the quantifier rank of this formula, which only depends
on j and g(j), is at most g(j + 1) (this gives a first condition on g(j + 1)).
But then, by our precondition, we can find b ∈ N2·7j

(b) such that

52



3.3 Gaifman’s Theorem

(B ↾ N7j
(b)) |= ψ

j
aa(b, b),

which implies that aa → bb ∈ Ij.
Case 2 (a is far from a). Assume that a ̸∈ N2·7j

(a). Then the 7j-
neighbourhoods of a and a are disjoint, i.e. N7j

(a) ∩ N7j
(a) = ∅. Hence

it suffices to find a b ∈ B whose 7j-neighbourhood is disjoint with the
7j-neighbourhood of b and such that the 7j-neighbourhood of a in A and
of b in B have the same g(j)-type. Formally the requirements for b ∈ B
are:

N7j
(b) ∩ N7j

(b) = ∅

B ↾ N7j
(b) |= ψ

j
a(b).

For s ≥ 1 we define a formula δs(x1, . . . , xs) which expresses the
existence of a 2 · 7j-scattered tuple of elements whose 7j-neighbourhood
has the same g(j)-type as the 7j-neighbourhood of a in A:

δs(x1, . . . , xs) =
∧

ℓ ̸=k

d(xℓ, xk) > 4 · 7j ∧
∧

k

ψ
j
a(xk).

We now determine the maximal lenght e of such tuples which are
realised in A and the maximal lenght i of such tuples which are realised
in A ↾ N2·7j

(a), that is i and e are determined such that

(A ↾ N7j+1
, a) |= ∃x1 · · · ∃xi (

∧

k

d(a, xk) ≤ 2 · 7j ∧ δi) (3.1)

(A ↾ N7j+1
, a) ̸|= ∃x1 · · · ∃xi+1 (

∧

k

d(a, xk) ≤ 2 · 7j ∧ δi+1) (3.2)

A |= ∃x1 · · · ∃xe δe (3.3)

A ̸|= ∃x1 · · · ∃xe+1 δe+1. (3.4)

Of course, i ≤ e. Moreover, i ≤ m − j = |a| = |b|. We claim that the
corresponding values determined in B are the same. For 3.1 and 3.2 we
guarantee this by choosing g(j+ 1) large enough. Note that the quantifier
rank of the formulas in 3.1 and 3.2 only depends on m (because i is
bounded by m), j and g(j) (we obtain a second condition on g(j + 1)).
For 3.3 and 3.4 this follows since these are basic local sentences and A

53



3 Expressive Power of First-Order Logic

and B satisfy the same basic local sentences by our assumption.

Case 2.1 (i = e). Then we claim that all c ∈ A whose 7j-neighbourhood
has the same g(j)-type as a are contained in N6·7j

(a). Indeed, we could
extend each 2 · 7j-scattered tuple of such elements in N2·7j

(a) by each
such element c ∈ A with d(a, c) > 6 · 7j. Since a ̸∈ N2·7j

(a) we have

(A ↾ N7j+1
(a), a) |= ∃z (2 · 7j < d(a, z) ≤ 6 · 7j ∧ ψ

j
a(z) ∧ ψ

j
a(a)).

We assume that g(j + 1) is larger than the quantifier rank of this formula
(this gives a third condition on g(j + 1)). Then by our assumption we
have that

(B ↾ N7j+1
(b), b) |= ∃z (2 · 7j < d(b, z) ≤ 6 · 7j ∧ ψ

j
a(z) ∧ ψ

j
a(b)).

This in turn shows that we can find an appropriate b ∈ B.

Case 2.2 (i < e). In this case we know that B |= ∃x1 · · · ∃xi+1δi+1

which implies that we can find b ∈ B such that N7j
(b) ∩ N7j

(b) = ∅ and
such that B |= ψ

j
a(b). q.e.d.

3.4 Lower bound for the size of local sentences

Gaifman’s Theorem states that for every FO-sentence there is an equiva-
lent local one. In the following we show that the local sentence can be
much longer than the original one, as captured by
Theorem 3.16. For every h ≥ 1 there is an FO(E)-sentence φh ∈ O(h4)

such that every FO(E)-sentence in Gaifman normal form, i.e. every local
sentence, that is equivalent to φh has size at least Tower(h).

Here, Tower : N → N is the function defined by Tower(0) := 1 and
Tower(n) := 2Tower(n−1) for n > 0. In order to prove this theorem we
first introduce and analyse an encoding of natural numbers by trees.
Definition 3.17. For natural numbers i, n we write bit(i, n) to denote the
i-th bit in the binary representation of n, i.e., bit(i, n) = 0 if ⌊ n

2i ⌋ is even,
and bit(i, n) = 1 if ⌊ n

2i ⌋ is odd. Inductively we define a directed and
rooted tree T (n) for each natural number n as follows:

• T (0) is the one-node tree.

54



3.4 Lower bound for the size of local sentences

• For n > 0 the tree T (n) is obtained by creating a new root and
attaching to it all trees T (i) for all i such that bit(i, n) = 1.

The following figure illustrates these trees.
T (0) T (1) T (2) T (3) T (10) T (2210

)

It is straightforward to see that

for all h, n ≥ 0, height(T (n)) ≤ h ⇐⇒ n < Tower(h).

Recall that the height of a tree is the length of its longest path.
For a graph G = (V, E) and some node v ∈ V, let Gv be the

subgraph induced on the set of nodes reachable from v. Now, we show
that important properties of these tree encodings of natural numbers
can be expressed by small FO(E)-formulas in the sense of the following
three Lemmata.
Lemma 3.18. For each h ≥ 0 there is a formula eqh(x, y) ∈ FO(E) of
length O(h) such that for all graphs G = (V, E) we have that: if there
are u, v ∈ V and m, n < Tower(h) with Gu ∼= T (n) and Gv ∼= T (m), then
G |= eqh(u, v) ⇔ n = m.

Proof. • If h = 0, set eqh(x, y) := true.

• If h > 0, eqh(x, y) has to be equivalent to

∀z(Exz → ∃w(Eyw ∧ eqh−1(z, w)))∧
∀w(Eyw → ∃z(Exz ∧ eqh−1(z, w))).

The length of the formula we get by this recursive definition would

55



3 Expressive Power of First-Order Logic

be exponential in h. However, we can rewrite it as follows:

eqh(x, y) :=(∃zExz ↔ ∃wEyw)∧
∀z(Exz → ∃w(Eyw ∧ ∀w′(Eyw′ → ∃z′(Exz′∧
∀u∀v((u = z ∧ v = w) ∨ (u = z′ ∧ v = w′) →
eqh−1(u, v)))))).

q.e.d.

Lemma 3.19. For h ≥ 0 there is a formula codeh(x) ∈ FO(E) of length
O(h2) such that for all graphs G = (V, E) and v ∈ V:

G |= codeh(v) ⇐⇒ Gv ∼= T (i) for some i < Tower(h).

Proof. • If h = 0, set codeh(x) := ¬∃yExy.
• If h > 0, set

codeh(x) :=∀y(Exy → codeh−1(y))∧
∀y1∀y2(Exy1 ∧ Exy2 ∧ eqh−1(y1, y2) → y1 = y2).

Observe that

∥codeh(x)∥ = ∥codeh−1(x)∥+ ∥eqh−1(x, y)∥+O(1)

≤ c · (1 + 2 + · · ·+ h) for some c ≥ 1,

implying that ∥codeh(x)∥ ∈ O(h2).
q.e.d.

Lemma 3.20. For h ≥ 0 there are formulas

(1) bith(x, y) of length O(h),
(2) lessh(x, y) of length O(h2),
(3) min(x) of length O(1),
(4) succh(x, y) of length O(h3),
(5) maxh(x) of length O(h4),

such that for all G = (V, E) and nodes u, v ∈ V with Gu ∼= T (m) and
Gv ∼= T (n), where m, n < Tower(h):

56



3.4 Lower bound for the size of local sentences

(1) G |= bith(u, v) ⇐⇒ bit(m, n) = 1,
(2) G |= lessh(u, v) ⇐⇒ m < n,
(3) G |= min(u) ⇐⇒ m = 0,
(4) G |= succh(u, v) ⇐⇒ m + 1 = n,
(5) G |= maxh(u) ⇐⇒ m = Tower(h)− 1.

Proof. (1) bith(x, y) := ∃z(Eyz ∧ eqh(x, z)),
(2) • If h = 0, set lessh(x, y) := f alse.

• If h > 0, set

lessh(x, y) :=∃y′(Eyy′ ∧ ∀x′(Exx′ → ¬eqh−1(x′, y′))∧
∀x′′(Exx′′ ∧ lessh−1(y′, x′′) →
∃y′′(Eyy′′ ∧ eqh−1(y′′, x′′)))

(3) min(x) := ¬∃yExy.
(4) • If h = 0, set succh(x, y) := f alse.

• If h > 0, set

succh(x, y) =∃y′(Eyy′∧
∀y′′(Eyy′′ ∧ y′ ̸= y′′ → lessh−1(y′, y′′)∧
∀x′(Exx′ → ¬eqh−1(x′, y′)∧
∀y′′(Eyy′′ ∧ lessh−1(y′, y′′) →
∃x′′(Exx′′ ∧ eqh−1(y′′, x′′)))∧
∀x′′(Exx′′ ∧ lessh−1(y′, x′′) →
∃y′′(Eyy′′ ∧ eqh−1(y′′, x′′)))∧
¬min(y′) → (∃x′(Exx′ ∧ min(x′))∧
∀x′(Exx′ ∧ lessh−1(x′, y′) →
∃z(succh−1(x′, z) ∧ (z = y′ ∨ Exz)))).

(5) • If h = 0, set maxh(x) := ¬∃yExy.
• If h > 0, set

maxh(x) :=∃y(Exy ∧ min(y)) ∧ ∀y(Exy →
(maxh−1(y) ∨ ∃z(Exz ∧ succh−1(y, z))).

57



3 Expressive Power of First-Order Logic

This formula is correct since x = Tower(h)− 1 = 2Tower(h−1) − 1
implies that T (Tower(h)− 1) has a subtree T (i) for any i ≤
Tower(h − 1)− 1.

q.e.d.

Finally, we use these three lemmata to prove a last lemma of which
Theorem 3.16 is a corollary.
Lemma 3.21. For all h ≥ 1 there is a formula φh ∈ FO(E) with ∥φh∥ ∈
O(h4) such that every local sentence ψ which is equivalent to φh on the
class of forests of height less or equal to h has size ∥ψ∥ ≥ Tower(h).

Proof. Let Fh be the forest consisting of all trees T (i) with 0 ≤ i <

Tower(h) and let F−i
h be the forest Fh without the tree T (i) for some

0 ≤ i < Tower(h). Furthermore, root(x) := ¬∃yEyx. Now, define

φh :=∃x(root(x) ∧ min(x))∧
∀x(root(x) ∧ ¬maxh(x) → ∃y(root(y) ∧ succh(x, y))).

Observe that ∥φh∥ ∈ O(h4) and Fh |= φh as well as F−i
h ̸|= φh for each

0 ≤ i < Tower(h).
Let ψ be a local sentence which is equivalent to φh on the class of

all forests of height less or equal to h. We want to show that ∥ψ∥ ≥
Tower(h).

ψ is a Boolean combination of basic local sentences χ1, . . . , χL with

χℓ = ∃x1 . . . ∃xkℓ(
∧

i ̸=j

d(xi, xj) > 2 · rℓ ∧
∧

i

ψ
rℓ
ℓ (xi)).

W.l.o.g. there is some m ≤ L such that Fh |= χℓ for all ℓ ≤ m and Fh ̸|= χℓ

for all m < ℓ ≤ L. Hence we can find for all ℓ ≤ m nodes uℓ,1, . . . , uℓ,kℓ
in Fh such that Fh |= d(uℓ,i, uℓ,j) > 2 · rℓ ∧ ψ

rℓ
ℓ (uℓ,i) for all i ̸= j. The set U

consisting of all these nodes contains at most k1 + · · ·+ km ≤ ∥ψ∥ many
nodes.

Towards a contradiction assume that ∥ψ∥ < Tower(h). Since Fh

contains Tower(h) many disjoint trees, there is at least one j < Tower(h)
such that T (j) in Fh contains no U-node. We claim that F−j

h |= ψ (which
would yield the desired contradiction).

58



3.4 Lower bound for the size of local sentences

• F−j
h |= χℓ where l ≤ m: the local properties around the nodes

uℓ,1, . . . , uℓ,kℓ also hold in F−j
h since the neighbourhoods are not

changed by removing the tree T(j).
• F−j

h |= χℓ where m < ℓ ≤ L: clear, since F−j
h is a substructure of Fh.

q.e.d.

59





4 Zero-one laws

4.1 Random graphs

We consider the class Gn of (undirected) graphs over {0, . . . , n − 1}, i.e.

Gn := {G = (V, E) : G graph, V = {0, . . . , n − 1}},

In order to introduce random graphs we consider a sequence of probability
distributions µ = (µ1, µ2, . . . ) on (G1,G2, . . . ), i.e. µn : Gn → [0, 1] and
∑G∈Gn µ(G) = 1 for all n ≥ 1. This defines a sequence of probability
spaces (G1, µ1), (G2, µ2), . . . on classes of graphs of increasing size.
Example 4.1.

(1) The uniform distribution µn assigns equal probability to each graph:

µn(G) =
1

2(
n
2)

.

(2) Let p : N → [0, 1] be an arbitrary mapping. Then the probability
space Gn,p = (Gn, µp,n) is defined by the following random experi-
ment: determine for every pair (u, v) with 0 ≤ u < v < n whether
(u, v) ∈ E using a random variable X taking values 0, 1 (False and
True) with Pr[X = 1] = p(n) and Pr[X = 0] = (1 − p(n)). Observe
that for p = 1

2 one obtains the uniform distribution.

We make the following convention: unless otherwise stated, µn denotes
the uniform distribution. For a class K of graphs we set

µn(K) := µn(K ∩ Gn) = ∑
G∈K∩Gn

µn(G).

This definition formalises what it means that a random graph G ∈ Gn has
a certain property K. However, in what follows, we are not interested

61



4 Zero-one laws

in random graphs of some fixed size n ∈ N but much more in the
behaviour of the probability µn(K) if we increase the size of graphs, i.e.
if we let n approach infinity.
Definition 4.2. The asymptotic probability of a class K of graphs (with
respect to µ) is defined as

µ(K) := lim
n→∞

µn(K),

in the case that this sequence has a limit. In particular, if ψ is a sentence
over vocabulary {E} in some logic L, then the asymptotic probability of ψ

(with respect to µ) is defined as

µ(ψ) := lim
n→∞

µn({G ∈ Gn : G |= ψ},

again only for the case that the limit exists.
Example 4.3.

(1) Let K = {G : G is a clique}. Then

lim
n→∞

µn(K) = lim
n→∞

1

2(
n
2)

= 0.

(2) Let H be a graph and let KH = {G : G contains H as subgraph}.
For n > k · |H| we have

µn(KH) ≥ 1 − (1 − (2−|E(H)|))k,

hence µ(KH) = 1 since k → ∞ for n → ∞.

(3) Let K = {G : G is three-colourable}. Then

lim
n→∞

µn(K) ≤ 1 − lim
n→∞

µn({G ∈ Gn : G contains K4}) = 0.

(4) Recall that we have limn→∞ µn({G : (3, 17) ∈ E}) = 1
2 .

(5) The asymptotic probability is not defined for every class of graphs.
For instance, consider K = {G : G has an even number of nodes}.
Then the sequence (µn(K))n≥1 = (0, 1, 0, 1, . . . ) has no limit.

62



4.2 Zero-one law for first-order logic

4.2 Zero-one law for first-order logic

In this section we prove the zero-one law for first-order logic:
Theorem 4.4. For sentences ψ ∈ FO (over relational vocabulary) we have

µ(ψ) = 0 or µ(ψ) = 1.

To put it in words, every first-order definable property of graphs either
holds almost never or almost surely on random graphs of increasing size.
Definition 4.5. An atomic graph k-type is a maximal consistent set t of
FO({E})-literals in variables x1, . . . , xk, i.e. Exixj,¬Exixj, xi = xj, xi ̸= xj,
which is consistent with the graph axioms (∀x¬Exx, ∀x∀y(Exy ↔ Eyx)).
Furthermore, for a graph G = (V, E) and a ∈ Vk we define the atomic
graph k-type of a by

tG(a) := {φ(xi, xj) : φ an FO({E})-literal such that G |= φ(ai, aj)}.

Formally, an atomic k-type t is a set but we frequently identify it
with the formula t(x) =

∧
φ∈t φ(x) (this formula is an FO-formula, since

there are only finitely many {E}-literals in k variables).

In what follows, let s(x) and t(x) denote atomic graph types of
tuples of distinct elements, i.e. s, t |= ∧

i<j≤k xi ̸= xk. We say that
an atomic (m + 1)-type t(x1, . . . , xm, xm+1) extends an atomic m-type
s(x1, . . . , xm) if s ⊆ t, or equivalently, if t |= s.
Definition 4.6. Let s(x1, . . . , xm) and t(x1, . . . , xm, xm+1) be atomic types
such that s ⊆ t. We define the extension axiom σs,t by

σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)).

Furthermore, we let T be the set of all extension axioms together with
the graph axioms.

The proof of the zero-one law for FO relies on the following proper-
ties of the extension axioms and the set T:

(1) µ(σs,t) = 1 for all σs,t ∈ T.

(2) T is ω-categorical, i.e. there is, up to isomorphism, only one count-
able model of T. This structure is known as the Rado graph.

63



4 Zero-one laws

(3) T is complete, i.e. for all ψ ∈ FO either T |= ψ or T |= ¬ψ.

We proceed to establish these three properties.
Lemma 4.7. Let σs,t ∈ T be an extension axiom. Then µ(σs,t) = 1.

Proof. Let σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)). For every
i = 1, . . . , m we have t |= Exixm+1 or t |= ¬Exixm+1. Let G ∈ Gn

be a random graph and a1, . . . , am ∈ {0, . . . , n − 1}. For every fixed
am+1 ∈ V \ {a1, . . . , am}, the experiments G |= Eaiam+1 are stochastically
independent and have probability 1

2 . Hence

Pr[G |= t(a, am+1)|G |= s(a)] =
1

2m .

Thus, probability that no element am+1 ∈ V \ {a1, . . . , am} extends a
realisation a of s to a realisation of (a, am+1) of t is (1 − 1

2m )n−m. In
conclusion, we obtain

µn(¬σs,t) = µn(∃x1 · · · ∃xn(s(x) ∧ ∀xm+1¬t(x, xm+1)))

≤ nm · (1 − 1
2m )n−m exp. fast−→ 0,

and thus µ(σs,t) = 1. q.e.d.

The compactness theorem implies that also every logical conse-
quence of the extensions axioms almost surely holds in a random graph.
Corollary 4.8. If T |= ψ then µ(ψ) = 1, and the set T is satisfiable.

Proof. If T |= ψ, then by the compactness theorem there is a finite set
T0 ⊆ T such that T0 |= ψ. Hence, we have µn(ψ) ≥ µn(

∧
T0). Observe

that µn(¬φ) = 1 − µn(φ) and µn(φ1 ∨ φ2) ≤ µn(φ1) + µn(φ2) are true
for every sentences φ, φ1, φ2. Furthermore, by Lemma 4.7, it follows that
µn(¬σ) = 1 − µn(σ) → 0 for n → ∞. Putting everything together, we
obtain

µn(¬ψ) ≤ µn
(
¬
∧

T0
)
= µn

( ∨

σ∈T0

¬σ
)
≤ ∑

σ∈T0

µn(¬σ)

and the sum on the right converges to 0 for n → ∞, which implies that
µn(ψ) converges to 1 or, to put it differently, µ(ψ) = 1. q.e.d.

64



4.2 Zero-one law for first-order logic

Interestingly, one can give explicit description of models of T and
we present two different possibilities here. However, as we show later
that T is ω-categorical, these models are isomorphic.
Definition 4.9 (Rado graph). The following graphs are models of T.

(1) Let pi denote the i-th prime number. We define G = (N, E) with

E := {(i, j) ∈ N × N : pi | j or pj | i.}

We claim that G |= T. To see this, we choose an arbitrary extension
axiom σs,t := ∀x1 · · · ∀xm(s(x) → ∃xm+1t(x, xm+1)) ∈ T.
Let I ·∪ J = {1, . . . , m} be the partition defined by t with respect to
the following condition

• If t |= Exixm+1 then i ∈ I, and

• if t |= ¬Exixm+1 then i ∈ J.

Let a1, . . . , ak ∈ A such that G |= s(a1, . . . , ak). We set am+1 :=
∏i∈I pai q where q is a prime number with q > pa1 · · · pam . Then it is
easy to check that G |= Eaiam+1 for all i ∈ I and G |= ¬Eajam+1 for
all j ∈ J.

(2) The set HF of heriditarily finite sets is defined by:

• ∅ ∈ HF

• If a1, . . . , ak ∈ HF, then also {a1, . . . , ak} ∈ HF.

Let G = (HF, E) with E := {(a, b) : a ∈ b or b ∈ a}. Similarly as
above, one can show that G |= T.

Theorem 4.10. Let G = (VG, EG) and H = (VH, EH) be two countable
models of T. Then G ∼= H. The unique countable model of T is known
as the Rado graph R.

Proof. First of all, it is clear that T has no finite models, hence G and
H are infinite graphs. We fix two enumerations of VG and VH and
inductively construct a sequence of partial isomorphism p0, p1, p2, . . .
between G and H such that p0 ⊆ p1 ⊆ p2 ⊆ · · · . For the base case,
we set p0 := ∅. For the induction step let pi = {(a1, b1), . . . , (ai, bi)} ∈
Loc(G, H) be already defined. We distinguish between the following
two cases:

65



4 Zero-one laws

• If i is even, choose ai+1 ∈ VG to be the minimal element (with respect
to the enumeration of VG) which is not in the domain of pi, i.e.
ai+1 ̸∈ {a1, . . . , ai}. Let s := tG(a1, . . . , ai) and t := tG(a1, . . . , ai+1).
Since pi is a partial isomorphism we know that H |= s(b1, . . . , bi).
Since H |= σs,t there exists an element bi+1 ∈ VH such that H |=
t(b1, . . . , bi+1). We set pi+1 := pi ∪ {(ai+1, bi+1)} and obtain a partial
isomorphism extending pi.

• If i is odd, we proceed analogously, but this time we let bi+1 ∈
VH be the minimal element (with respect to the enumeration of
VH) which is not in the image of pi, i.e. bi+1 ̸∈ {b1, . . . , bi}. For
s := tH(b1, . . . , bi) and t := tH(b1, . . . , bi+1), the same reasoning
as above yields an element ai+1 ∈ VG such that G |= t(a1, . . . , ai+1.
Again we obtain an extended partial isomorphism by setting pi+1 :=
pi ∪ {(ai+1, bi+1)}.

Finally we let p :=
⋃

i≥0 pi. By construction we have that dom(p) = VG

and im(p) = VH, hence p : G ∼−→ H. q.e.d.

In particular, ω-categorical theories are complete:
Theorem 4.11. T axiomatises a complete theory, i.e. for all sentences
ψ ∈ FO({E}) we have T |= ψ or T |= ¬ψ.

Proof. Assume for some sentence ψ ∈ FO({E}) it holds that T ̸|= ψ

and T ̸|= ¬ψ. Then by the downwards Löwenheim-Skolem theorem,
there exist two countable graphs G and H with G |= T ∪ {ψ} and
H |= T ∪ {¬ψ}. In particular this implies G ̸∼= H, which contradicts
Theorem 4.10. q.e.d.

Theorem 4.12. [Glebskiı̆ et al., R. Fagin] For all ψ ∈ FO({E}) it holds:

µ(ψ) = 0 or µ(ψ) = 1.

Proof. If T |= ψ, then µ(ψ) = 1. Otherwise, T |= ¬ψ, and hence µ(ψ) =

1 − µ(¬ψ) = 0. q.e.d.

In particular, we can give a precise characterisation of those first-
order properties which hold almost surely in random graphs.

66



4.2 Zero-one law for first-order logic

Corollary 4.13. Let ψ ∈ FO({E}). Then

µ(ψ) = 1 iff T |= ψ iff R |= ψ.

4.2.1 Applications

We can use Theorem 4.12 to show that certain classes of graphs are
not definable in first-order logic: if a class K of graphs has undefined
asymptotic probability or an asymptotic probability different from 0
and 1, then clearly K cannot be defined in first-order logic. More gen-
erally, this method yields non-definability of K for every logic that
has a 0-1-law, e.g. for Lω

∞ω as we see later. For instance, consider
the class EvenV = {G = (V, E) : |V| is even} with undefined asymp-
totic probability or the class EvenE = {G = (V, E) : |E| is even} with
µ(EvenE) = 1

2 . Moreover, we can use our results as a convenient method
to determine the asymptotic probability for many natural classes of
graphs.

(1) We want to determine µ(Con) where Con denotes the class of con-
nected graphs. Let s be an atomic 2-type in variables x, y containing
¬Exy and let t be the atomic 3-type in variables x, y, z which extends
s and contains Exz ∧ Eyz. Then G |= σs,t iff G has diameter at most
2. Hence, G |= σs,t implies G ∈ Con, which means that µ(Con) = 1.

(2) Let K be any class of graphs which exclude a forbidden sub-
graph H = ({v1, . . . , vk}, E). Then µ(K) = 0. To see this, we
set si(x1, . . . , xi) := tH(v1, . . . , vi) for i ≤ k and consider the ex-
tension axioms σsisi+1 . Then clearly ψ :=

∧
i<k σsisi+1 is a logical

consequence of T, which means that µ(ψ) = 1. Moreover, if G |= ψ,
then G contains H as an induced subgraph. We conclude that
µ(K) ≤ 1 − µ(ψ) = 0. As an application, consider the class of
planar graphs which exclude K5 (the complete graph on 5 vertices)
and the class of k-colourable graphs which exclude Kk+1 (where k is
fixed). To put it in words, a random graph is almost never planar
nor k-colourable.

67



4 Zero-one laws

4.3 Generalised zero-one laws

In this section we want to generalise our considerations in two different
ways. Firstly, instead of restricting ourselves to graphs, we want to work
on more general classes of structures and analyse whether the zero-one-
law for FO still holds. Secondly, as FO has rather limited expressive
power, we look for zero-one laws for more powerful logics as well.

Let τ be an arbitrary vocabulary (not necessarily relational). By
Strn(τ) we denote the set of all τ-structures over the universe {0, . . . , n −
1}. As before we define a sequence µ = (µ1, µ2, . . . ) of uniform prob-
ability distributions µn : Strn(τ) → [0, 1], i.e. for every A ∈ Strn(τ) we
set

µn(A) =
1

|Strn(τ)|
.

We claim that FO(τ) has a zero-one law if, and only if, τ contains
no function symbols. To this end, we first consider the case where τ

contains function symbols:

(1) Assume {P, c} ⊆ τ where c is a constant symbol and P a monadic
relation. Then for ψ := Pc we have µn(ψ) =

1
2 for all n ≥ 1, hence

µ(ψ) = 1
2 , i.e. the zero-one law does hold in this case.

(2) Assume f ∈ τ where f is a unary function symbol. Consider the
FO(τ)-sentence ψ := ∃x( f x = x) stating that f has a fixed point.
For n ≥ 1 we have

µn(ψ) = 1 −
n−1

∏
i=0

(
n − 1

n

)

︸ ︷︷ ︸
=Pr[ f (i) ̸=i]

= 1 −
(

1 − 1
n

)n
.

Since
(

1 − 1
n

)n
−→ e−1 for n → ∞, the zero-one law does not hold

in this case either.

For the other direction, let τ be purely relational, τ = {R1, . . . , Rk}.
The proof strategy we used over graphs generalises for this general in a
straightforward way:

• An atomic τ-type in k variables is a maximal, consistent set of τ-

68



4.3 Generalised zero-one laws

literals over variables x1, . . . , xk. For a τ-structure A and a ∈ A we
set tA(a) = {φ(x) : φ a τ-literal with A |= φ(a)}.

• The τ-extension axiom σs,t for two atomic τ-types s and t (in k and
k + 1 variables, respectively) with s ⊆ t is defined as

σs,t := ∀x(s(x) → ∃xk+1t(x, xk+1)).

As before, we let T denote the set of all τ-extension axioms

• Again we can show that µ(σs,t) = 1 for all σs,t ∈ T. Let r denote
the number of literals in t which contain xm+1. Then, for a random
structure A ∈ Strn(τ), a ∈ A and am+1 it holds

Pr[A |= t(a, am+1) |A |= s(a)] = 2−r.

Thus

µn(¬σs,t) = µn(∃x(s(x) ∧ ∀xm+1¬t(x, xm+1)))

≤ nm(1 − 2−r)n−m exp. fast−→ 0.

• T is ω-categorical: analogously!

Our analysis raises the question why even basic functions but not
arbitrary relations inhibit a zero-one law. The reason is that atomic
experiments are not longer stochastically independent. For instance,
consider the experiments f (a) = b and f (a) = c (for b ̸= c), then
Pr[ f (a) = c | f (a) = b] = 0 ̸= Pr[ f (a) = c].

4.3.1 Zero-one law for Lω
∞ω

We proceed to show that the zero-one law holds for Lω
∞ω as well (re-

stricted to relational vocabularies). In particular, since LFP ≤ Lω
∞ω,

this means that a random graph either almost surely has an LFP-
definable property or almost never does. With FOk we denote the
k-variable fragment of FO, i.e. FOk = FO ∩ Lk

∞ω = {φ ∈ FO :
φ only contains variables x1, . . . , xk}. If we restrict the set of extension
axioms T to FOk we obtain finite sets of approximations of T which are

69



4 Zero-one laws

again sentences in FOk; more specifically, we set

Θk :=
∧

T ∩ FOk =
∧
{σs,t : σs,t ∈ T ∩ FOk} ∈ FOk.

The central property of these approximations for T is stated in the
following theorem: in models of Θk, every Lk

∞ω-formula is equivalent to
a simple Boolean combinations of atomic k-types. In particular, every
Lk

∞ω-sentence is either true or false in all models of Θk.
Theorem 4.14. Let m ≤ k, s(x1, . . . , xm) an atomic m-type and
φ(x1, . . . , xm) ∈ Lk

∞ω. Then

either Θk |= ∀x(s(x) → φ(x))

or Θk |= ∀x(s(x) → ¬φ(x)).

Proof. We proceed by induction on φ and simultaneously show the claim
for all m ≤ k and atomic types s. If φ is atomic, then either φ ∈ s or
¬φ ∈ s. If φ = ¬ψ, the claim directly follows.

Let φ =
∧

Ψ, Ψ ⊆ Lk
∞ω. By induction hypothesis for all ψ ∈ Ψ

either Θk |= ∀x(s(x) → ψ(x))

or Θk |= ∀x(s(x) → ¬ψ(x)).

If Θk |= ∀x(s(x) → ψ(x)) for all ψ ∈ Ψ, then Θk |= ∀x(s(x) → ∧
Ψ(x)).

Otherwise, Θk |= ∀x(s(x) → ¬∧
Ψ(x)).

Let φ(x) = ∃yψ(x, y) and assume that Θk ̸|= ∀x(s(x) → ¬φ(x)). Choose
a structure A |= Θk with A |= ∃x(s(x) ∧ ∃yψ(x, y)) and consider the
following two cases

• If y ̸∈ {x1, . . . , xm}, i.e. y ∈ {xm+1, . . . , xk}; let a1, . . . , am, b ∈ A such
that A |= s(a)∧ψ(a, b). We define the atomic type t(x1, . . . , xm, y) :=
tA(a, b) with s ⊆ t. In particular,

A |= ∃x∃y(t(x, y) ∧ ψ(x, y)).

By induction hypothesis we know that

A |= ∀x∀y(t(x, y) → ψ(x, y)),

70



4.3 Generalised zero-one laws

and since σs,t = ∀x(s(x) → ∃yt(x, y)) is an extension axiom con-
tained in Θk we finally obtain

A |= ∀x(s(x) → ∃yψ(x, y)).

• If y ∈ {x1, . . . , xm}, i.e. y = xj for j ≤ m; let a ∈ A such that
A |= s(a) ∧ ∃xjψ(a), and let x∗ and a∗ denote the tuples x and a
without the j-th componenent, i.e.

x⋆ := x1 · · · xj−1xj+1 · · · xk

a⋆ := a1 · · · aj−1aj+1 · · · ak.

Similarly, let s⋆(x⋆) := tA(a⋆) be the atomic type of a⋆ in A. Then
s⋆ ⊆ s and there is b ∈ A such that

A |= s⋆(a⋆) ∧ ψ
(
a

b
aj

)
, where a

b
aj

:= a1 · · · aj−1baj+1 · · · am.

For t⋆(x) := tA(a b
aj
) we thus have A |= ∃(t⋆(x) ∧ ψ(x)), and the

induction hypothesis yields

Θk |= ∀x(t⋆(x) → ψ(x)).

As above, since s⋆ ⊆ t⋆, it holds that Θk |= ∀x⋆(s⋆(x⋆) → ∃xjt⋆(x)),
and altogether we obtain

Θk |= ∀x(s(x) → ∃xjψ(x)).

q.e.d.

Corollary 4.15. For every Lk
∞ω-sentence ψ we either have Θk |= ψ or

Θk |= ¬ψ.
Corollary 4.16. If A |= Θk and B |= Θk, then A ≡Lk

∞ω
B.

Corollary 4.17 (Kolaitis, Varidi 1992). For every sentence ψ ∈ Lω
∞ω (over

a relational signature) we have µ(ψ) = 0 or µ(ψ) = 1.

Proof. Let ψ ∈ Lk
∞ω for some k ≥ 1. Then by Corollary 4.15 we have

71



4 Zero-one laws

Θk |= ψ or Θk |= ¬ψ. Since Θk ⊆ T is finite, we have µ(Θk) = 1 and
thus the claim follows. q.e.d.

72



5 Modal, Inflationary and Partial
Fixed Points

In finite model theory, a number of other fixed-point logics, in addition
to LFP, play an important role. The structure, expressive power, and
algorithmic properties of these logics have been studied intensively, and
we review these results in this chapter.

5.1 The Modal µ-Calculus

A fragment of LFP that is of fundamental importance in many areas of
computer science (e.g. controller synthesis, hardware verification, and
knowledge representation) is the modal µ-calculus (Lµ). It is obtained
by adding least and greatest fixed points to propositional modal logic
(ML). In this way Lµ relates to ML in the same way as LFP relates to FO.
Definition 5.1. The modal µ-calculus Lµ extends ML (including proposi-
tional variables X, Y, . . . , which can be viewed as monadic second-order
variables) by the following rule for building fixed point formulae: If ψ

is a formula in Lµ and X is a propositional variable that only occurs
positively in ψ, then µX.ψ and νX.ψ are also Lµ-formulae.

The semantics of these fixed-point formulae is completely analogous
to that for LFP. The formula ψ defines on G (with universe V, and with
interpretations for other free second-order variables that ψ may have
besides X) the monotone operator Fψ : P(V) → P(V) assigning to every
set X ⊆ V the set ψG(X) := {v ∈ V : (G, X), v |= ψ}. The semantics of
fixed-points is defined by

G, v |= µX.ψ iff v ∈ lfp(Fψ)

G, v |= νX.ψ iff v ∈ gfp(Fψ).

73



5 Modal, Inflationary and Partial Fixed Points

Example 5.2. The formula µX.(φ ∨ ⟨a⟩X) asserts that there exists a path
along a-transitions to a node where φ holds.

The formula ψ := νX.
(
(
∨

a∈A⟨a⟩true) ∧ (
∧

a∈A[a]X)
)

expresses the
assertion that the given transition system is deadlock-free. In other
words, G, v |= ψ if no path from v in G reaches a dead end (i.e. a node
without outgoing transitions).

Finally, the formula νX.µY.
(
⟨a⟩

(
(φ ∧ X)∨Y

))
says that there exists

a path from the current node on which φ holds infinitely often.

The embedding from ML into FO is readily extended to a translation
from Lµ into LFP, by inductively replacing formulas of the form µX.φ
by [lfp Xx.φ∗](x).
Proposition 5.3. Every formula ψ ∈ Lµ is equivalent to a formula
ψ∗(x) ∈ LFP.

Further the argument proving that LFP can be embedded into SO
also shows that Lµ is a fragment of MSO.

As for LFP, a fixed µ-calculus formula can be evaluated on a struc-
ture A in time polynomial in |A|. The question whether evaluating
µ-calculus formulas on a structure when both the formula and the struc-
ture are part of the input is in PTIME is a major open problem. On
the other hand, it is not difficult to see that the µ-calculus does not
suffice to capture PTIME, even in very restricted scenarios such as word
structures. Indeed, as Lµ is a fragment of MSO, it can only define regular
languages, and of course, not all PTIME-languages are regular. However,
we shall see in Section 5.5 that there is a multidimensional variant of Lµ

that captures the bisimulation-invariant fragment of PTIME. Before we do
this, let us first show that Lµ is itself invariant under bisimulation. To
this end, we translate Lµ formulas into formulas of infinitary modal logic
ML∞ω, similar to the embedding of LFP into L∞ω.

5.1.1 Infinitary Modal Logic and Bisimulation Invariance

Infinitary modal logic extends ML in an analogous way as how infinitary
first-order logic extends FO.
Definition 5.4. Let κ ∈ Cn∞ be an infinite cardinal number. The infinitary
logic MLκω is inductively defined as follows.

74



5.2 Inflationary Fixed-Point Logic

• Predicates Pi are in MLκω.

• If φ ∈ MLκω, then also ¬φ, □φ, ♢φ ∈ MLκω.

• If Φ ⊆ MLκω is a set of formulae with |Φ| < κ,
then

∨
Φ,

∧
Φ ∈ MLκω.

Further, we write ML∞ω to denote
⋃

κ∈Cn∞ MLκω.
The semantics of ML∞ω on Kripke structures is defined analogously

to the semantics of ML, with the following obvious extension for the
case of infinite disjuntions and conjunctions.

• K, v |= ∧
Φ if and only if K, v |= φ for all φ ∈ Φ.

• K, v |= ∨
Φ if and only if there exists a φ ∈ Φ such that K, v |= φ.

The same proof that shows invariance of ML under bisimulation
works for ML∞ω, because the introduction of infinite conjunctions and
disjunctions does not interfere with the arguments in the proof at all.
Theorem 5.5. The logic ML∞ω is invariant under bisimulation, i.e. if
φ ∈ ML∞ω is a formula and K, v ∼ K′, v′ are two bisimilar Kripke
structures, then

K, v |= φ iff K′, v′ |= φ.

Similarly, the proof of Theorem 5.6 can be adapted to give a transla-
tion from Lµ formulas to ML∞ω, as stated below.
Theorem 5.6. Let κ ∈ Cn∞. For each formula φ ∈ Lµ there exists a
formula φ̂ ∈ MLκω such that for all transition systems K with |K| < κ

and all v ∈ K, we have K, v |= φ if and only if K, v |= φ̂.
Combining these two theorems, we get bisimulation invariance of Lµ.
Corollary 5.7. The logic Lµ is invariant under bisimulation.

5.2 Inflationary Fixed-Point Logic

LFP is only one instance of a logic with an explicit operator for forming
fixed points. A number of other fixed-point extensions of first-order
logic (or fragments of it) have been extensively studied in finite model
theory. These include inflationary, partial, non-deterministic, and alter-
nating fixed-point logics. All of these have in common that they allow

75



5 Modal, Inflationary and Partial Fixed Points

the construction of fixed points of operators that are not necessarily
monotone.

An operator G : P(B) → P(B) is called inflationary if G(X) ⊇ X
for all X ⊆ B. With any operator F one can associate an inflationary
operator G, defined by G(X) := X ∪ F(X). In particular, inflationary
operators are inductive, so iterating G yields a fixed point, called the
inflationary fixed point of F.

To be more precise, the inflationary fixed-point of any operator
F : P(B) → P(B) is defined as the limit of the increasing sequence of
sets (Rα) defined as R0 := ∅, Rα+1 := Rα ∪ F(Rα), and Rλ :=

⋃
α<λ Rα

for limit ordinals λ. The deflationary fixed point of F is constructed in the
dual way starting with B as the initial stage and taking intersections at
successor and limit ordinals.
Remark 5.8.

(1) Monotone operators need not be inflationary, and inflationary oper-
ators need not be monotone.

(2) An inflationary operator need not have a least fixed point.

(3) The least fixed point of an inflationary operator (if it exists) may be
different from the inductive fixed point.

(4) However, if F is a monotone operator, then its inflationary fixed
point and its least fixed point coincide.

The logic IFP is defined with a syntax similar to that of LFP, but
without the requirement that the fixed-point variable occurs only posi-
tively in the formula defining the operator, and with semantics given by
the associated inflationary operator.
Definition 5.9. IFP is the extension of first-order logic by the following
fixed-point formation rules. For every formula ψ(R, x), every tuple
x of variables, and every tuple t of terms (such that the lengths of x
and t match the arity of R), we can build formulas [ifp Rx . ψ](t) and
[dfp Rx . ψ](t).

Semantics. For a given structure A, we have that A |= [ifp Rx . ψ](t) and
A |= [dfp Rx . ψ](t) if tA is contained in the inflationary and deflationary
fixed point of Fψ, respectively.

76



5.2 Inflationary Fixed-Point Logic

By the last item of Remark 5.8, least and inflationary inductions are
equivalent for positive formulae, and hence IFP is at least as expressive
as LFP. On finite structures, inflationary inductions reach the fixed point
after a polynomial number of iterations, hence every IFP-definable class
of finite structures is decidable in polynomial time.
Proposition 5.10. IFP captures PTIME on ordered finite structures.

5.2.1 Least Versus Inflationary Fixed-Points

As both logics capture PTIME, IFP and LFP are equivalent on ordered
finite structures. What about unordered structures? It was shown by
Gurevich and Shelah that the equivalence of IFP and LFP holds on all
finite structures. Their proof does not work on infinite structures, and
indeed there are some important aspects in which least and inflationary
inductions behave differently. For instance, there are first-order operators
(on arithmetic, say) whose inflationary fixed point is not definable as
the least fixed point of a first-order operator. Further, the alternation
hierarchy in LFP is strict, whereas IFP has a positive normal form (see
Proposition 5.17 below). Hence it was conjectured by many that IFP
might be more powerful than LFP. However, Kreutzer showed recently
that IFP is equivalent to LFP on arbitrary structures. Both proofs, by
Gurevich and Shelah and by Kreutzer, rely on constructions showing
that the stage comparison relations of inflationary inductions are definable
by lfp inductions.
Definition 5.11. For every inductive operator F : P(B) → P(B), with
stages Xα and an inductive fixed point X∞, the F-rank of an element
b ∈ B is |b|F := min{α : b ∈ Xα} if b ∈ X∞, and |b|F = ∞ otherwise.
The stage comparison relations of G are defined by

a ≤F b iff |a|F ≤ |b|F < ∞

a ≺F b iff |a|F < |b|F.

Given a formula φ(R, x), we write ≤φ and ≺φ for the stage compar-
ison relations defined by the operator Fφ (assuming that it is indeed
inductive), and ≤inf

φ and ≺inf
φ for the stage comparison relations of the

associated inflationary operator Gφ : R 7→ R ∪ {a : A |= φ(R, a)}.

77



5 Modal, Inflationary and Partial Fixed Points

Example 5.12. For the formula φ(T, x, y) := Exy ∨ ∃z(Exz ∧ Tzy) the
relation ≺φ on a graph (V, E) is distance comparison:

(a, b) ≺φ (c, d) iff dist(a, b) < dist(c, d).

Stage comparison theorems are results about the definability of
stage comparison relations. For instance, Moschovakis proved that the
stage comparison relations ≤φ and ≺φ of any positive first-order formula
φ are definable by a simultaneous induction over positive first-order
formulae. For results on the equivalence of IFP and LFP one needs a
stage comparison theorem for IFP inductions.

We first observe that the stage comparison relations for IFP in-
ductions are easily definable in IFP. For any formula φ(T, x̄) with free
variables x and free occuring predicate T, the stage comparison relation
≺inf

φ is defined by the formula

ψ(x′y′) = [ifp w ≺ z . φ[Tu/u ≺ w](w) ∧ ¬φ[Tu/u ≺ z](z)](x′, y′).

Here we syntactically substitute T, u by u ≺ w in φ(Tx) and, additionally,
free variables again by w. (Note that u may contain free variables.) In
¬φ(T, x), we substitute T, u by u ≺ z and, additionally, free variables
again by z. Thus free variables become parameter variables of the fixed-
point. Now, for the first iteration, T0 is empty as well as ≺0, so the
formula φ(T0, w) is satisfied by the same a as φ(≺0, w). So in the first
interation, the first components of ≺1 contain the same elements as T1.
The second components of ≺1 contain all other elements. In general, in
the i-th iteration, ≺i consists of pairs (a, b) such that a ∈ Ti and b ̸∈ Ti.
In the next step, precisely those a satisfy φ[Tu/u ≺ w](≺i) that satisfy
φ(Ti) (instead of φ[T, u] we now have φ[u ≺ w], i.e. Ta holds if and only
if u ≺ a holds if and only if a has come to T in the previous steps). So
those b that do not satisfy φ[Tu/u ≺ w](≺i), satisfy ¬φ[Tu/u ≺ w](≺i).
Summing up, pairs a, b are included to ≺i+1 if and only if a is included
into Ti+1, but not earlier, and b is not in Ti+1.

However, what we need to show is that the stage comparison relation
for IFP inductions is in fact LFP-definable.
Theorem 5.13 (Inflationary Stage Comparison). For any formula φ(R, x)

78



5.2 Inflationary Fixed-Point Logic

in FO or LFP, the stage comparison relation ≺inf
φ is definable in LFP. On

finite structures, it is even definable in positive LFP.

From this result, the equivalence of LFP and IFP follows easily.
Theorem 5.14 (Kreutzer). For every IFP-formula, there is an equivalent
LFP-formula.

Proof. For any formula φ(R, x),

[ifp Rx . φ](x) ≡ φ({y : y ≺inf
φ x}, x).

This holds because, by definition, an inductive fixed-point can only
increase. Thus a tuple is added to it if and only if there is a stage,
at which the relation R contains all previously added elements (thus
R = {y : y ≺inf

φ x}), and at that stage φ(R, x) holds. Due to Theorem 5.13,
the relation {y : y ≺inf

φ x} is definable in LFP, so the statement follows
directly. q.e.d.

Positive LFP. While LFP and the modal µ-calculus allow arbitrary nest-
ing of least and greatest fixed points, and arbitrary interleaving of fixed
points with Boolean operations and quantifiers, we can also ask about
their more restricted forms. Let LFP1 (sometimes also called positive
LFP) be the extension of first-order logic that is obtained by taking least
fixed points of positive first-order formulae (without parameters) and
closing them under disjunction, conjunction, and existential and uni-
versal quantification, but not under negation. LFP1 can be conveniently
characterized in terms of simultaneous least fixed points, defined in the
next chapter.
Theorem 5.15. A relation is definable in LFP1 if and only if it is definable
by a formula of the form [lfp R : S](x), where S is a system of update
rules Rix := φi(R, x) with first-order formulae φi. Moreover, we can
require, without diminishing the expressive power, that each of the
formulae φi in the system is either a purely existential formula or a
purely universal formula.

One interesting consequence of the stage comparison theorems is
that on finite structures, greatest fixed points (i.e. negations of least fixed

79



5 Modal, Inflationary and Partial Fixed Points

points) can be expressed in positive LFP. This gives a normal form for
LFP and IFP.
Theorem 5.16 (Immerman). On finite structures, every LFP-formula
(and hence also every IFP-formula) is equivalent to a formula in LFP1.

This result fails on infinite structures. On infinite structures, there
exist LFP formulae that are not equivalent to positive formulae, and in
fact the alternation hierarchy of least and greatest fixed points is strict.
This is not the case for IFP.
Proposition 5.17. It can be proven that every IFP-formula is equivalent
to one that uses ifp-operators only positively.

Proof. Assume that structures contain at least two elements and that a
constant 0 is available. Then a formula ¬[ifp Rx . ψ(R, x)] is equivalent to
an inflationary induction on a predicate Tx y which, for y ̸= 0, simulates
the induction defined by ψ, checks whether the fixed point has been
reached, and then makes atoms Tx0 true if x is not contained in the
fixed point. q.e.d.

In finite model theory, owing to the Gurevich-Shelah Theorem, the
two logics LFP and IFP have often been used interchangeably. However,
there are significant differences that are sometimes overlooked. Despite
the equivalence of IFP and LFP, inflationary inductions are a more
powerful concept than monotone inductions. The translation from IFP-
formulae to equivalent LFP-formulae can make the formulae much more
complicated, requires an increase in the arity of fixed-point variables
and, in the case of infinite structures, introduces alternations between
least and greatest fixed points. Therefore it is often more convenient to
use inflationary inductions in explicit constructions, the advantage being
that one is not restricted to inductions over positive formulae. For an
example, see the proof of Theorem 5.29 below. Furthermore, IFP is more
robust, in the sense that inflationary fixed points remain well defined
even when other non-monotone operators (e.g. generalized quantifiers)
are added to the language.

80



5.3 Simultaneous Inductions

5.3 Simultaneous Inductions

A more general variant of LFP permits simultaneous inductions over
several formulae. A simultaneous induction is based on a system of
operators of the form

F1 : P(B1)× · · · × P(Bm) → P(B1)

...

Fm : P(B1)× · · · × P(Bm) → P(Bm),

forming together an operator

F = (F1, . . . , Fm) : P(B1)× · · · × P(Bm) → P(B1)× · · · × P(Bm).

Inclusion on the product lattice P(B1)× · · · × P(Bm) is componentwise.
Accordingly, F is monotone if, whenever Xi ⊆ Yi for all i, then also
Fi(X) ⊆ Fi(Y) for all i.

Everything said above about least and greatest fixed points carries
over to simultaneous induction. In particular, a monotone operator F has
a least fixed point lfp(F) which can be constructed inductively, starting
with X0

= (∅, . . . , ∅) and iterating F until a fixed point X∞ is reached.
One can extend the logic LFP by a simultaneous fixed point forma-

tion rule.
Definition 5.18. Simultaneous least fixed-point logic, denoted by S-LFP, is
the extension of first-order logic by the following rule.

Syntax. Let ψ1(R, x1), . . . , ψm(R, xm) be formulae of vocabulary τ ∪
{R1, . . . , Rm}, with only positive occurrences of R1, . . . , Rm, and, for each
i ≤ m, let xi be a sequence of variables matching the arity of Ri. Then

S :=





R1x1 := ψ1
...

Rmxm := ψm

is a system of update rules, which is used to build formulae [lfp Ri : S](t)
and [gfp Ri : S](t) (for any tuple t of terms whose length matches the
arity of Ri).

81



5 Modal, Inflationary and Partial Fixed Points

Semantics. On each structure A, S defines a monotone operator
SA = (S1, . . . , Sm) mapping tuples R = (R1, . . . , Rm) of relations on A to
SA(R) = (S1(R), . . . , Sm(R)) where Si(R) := {a : (A, R) |= ψi(R, a)}.
As the operator is monotone, it has a least fixed point lfp(SA) =

(R∞
1 , . . . , R∞

m). Now A |= [lfp Ri : S](a) if a ∈ R∞
i . Similarly for greatest

fixed points.
As in the case of LFP, one can also extend IFP and PFP (defined in

the next section) by simultaneous inductions over several formulae. In
all of these cases, simultaneous fixed-point logics S-LFP, S-IFP and S-PFP
are not more expressive than their simple variants. This can be proven
easily by taking a fixed-point over a relation R with bigger arity, e.g. one
higher than the maximum arity of R1, . . . , Rm. The atoms Ri(x) can then
be replaced by R(ci, x) for chosen m constants c1, . . . , cm. The fixed-point
of R is then sufficient to describe the simultaneous fixed-point of S,
yielding the following.
Theorem 5.19. For every formula φ ∈ S-LFP (φ ∈ S-IFP,S-PFP) there
exists an equivalent formula φ ∈ LFP (φ ∈ IFP,PFP).

5.4 Partial Fixed-Point Logic

Another fixed-point logic that is relevant to finite structures is the partial
fixed-point logic (PFP). Let ψ(R, x) be an arbitrary formula defining on
a finite structure A a (not necessarily monotone) operator Fψ : R 7→ {a :
A |= ψ(R, a)}, and consider the sequence of its finite stages R0 := ∅,
Rm+1 = Fψ(Rm).

This sequence is not necessarily increasing. Nevertheless, as A is
finite, the sequence either converges to a fixed point, or reaches a cycle
with a period greater than one. We define the partial fixed point of Fψ

as the fixed point that is reached in the former case, and as the empty
relation otherwise. The logic PFP is obtained by adding to first-order
logic the partial-fixed-point formation rule, which allows us to build from
any formula ψ(R, x) a formula [pfp Rx . ψ(R, x)](t), saying that t is
contained in the partial fixed point of the operator Fψ.

Note that if R occurs only positively in ψ, then

[lfp Rx . ψ(R, x)](t) ≡ [pfp Rx . ψ(R, x)](t),

82



5.4 Partial Fixed-Point Logic

so we have that LFP ≤ PFP. However, PFP seems to be much more
powerful than LFP. For instance, while a least-fixed-point induction on
finite structures always reaches the fixed point in a polynomial number
of iterations, a partial-fixed-point induction may need an exponential
number of stages.
Example 5.20. Consider the sequence of stages Rm defined by the formula

ψ(R, x) :=
(

Rx∧∃y(y < x∧¬Ry)
)
∨
(
¬Rx∧∀y(y < x → Ry)

)
∨∀yRy

on a finite linear order (A,<). It is easily seen than the fixed point
reached by this induction is the set R = A, but before this fixed point is
reached, the induction goes in lexicographic order through all possible
subsets of A. Hence the fixed point is reached at stage 2n − 1, where
n = |A|.

Complexity. Although a PFP induction on a finite structure may go
through exponentially many stages (with respect to the cardinality of
the structure), each stage can be represented with polynomial storage
space. As first-order formulae can be evaluated efficiently, it follows by
a simple induction that PFP-formulae can be evaluated in polynomial
space.
Proposition 5.21. For every formula ψ ∈ PFP, the set of finite models of
ψ is in PSPACE; in short: PFP ⊆ PSPACE.

On ordered structures, one can use techniques similar to those used
in previous capturing results, to simulate polynomial-space-bounded
computation by PFP-formulae.
Theorem 5.22 (Abiteboul, Vianu, and Vardi). On ordered finite struc-
tures, PFP captures PSPACE.

Proof. It remains to prove that every class K of finite ordered structures
that is recognizable in PSPACE, can be defined by a PFP-formula.

Let M be a polynomially space-bounded deterministic Turing ma-
chine with state set Q and alphabet Σ, recognizing (an encoding of)
an ordered structure (A,<) if and only if (A,<) ∈ K. Without loss of
generality, we can make the following assumptions. For input structures
of cardinality n, M requires space less than nk − 2, for some fixed k. For

83



5 Modal, Inflationary and Partial Fixed Points

any configuration C of M, let Next(C) denote its successor configuration.
The transition function of M is adjusted so that Next(C) = C if, and
only if, C is an accepting configuration.

We represent any configuration of M with a current state
q, tape inscription w1 · · ·wm, and head position i, by the word
#w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the alphabet Γ := Σ ∪ (Q × Σ) ∪
{#}, where m = nk and # is merely used as an end marker to make the
following description more uniform. When moving from one configu-
ration to the next, Turing machines make only local changes. We can
therefore associate with M a function f : Γ3 → Γ such that, for any con-
figuration C = c0 · · · cm, the successor configuration Next(C) = c′0 · · · c′m
is determined by the rules

c′0 = c′m = # and c′i = f (ci−1, ci, ci+1) for 1 ≤ i ≤ m − 1.

Recall that we encode structures so that there exist first-order for-
mulae βσ(y) such that (A,<) |= βσ(a) if and only the ath symbol of the
input configuration of M for input code(()A,<) is σ. We now represent
any configuration C in the computation of M by a tuple C = (Cσ)σ∈Γ of
k-ary relations, where

Cσ := {a : the a-th symbol of C is σ}.

The configuration at time t is the stage t + 1 of a simultaneous pfp
induction on (A,<), defined by the rules

C#y :=∀z(y ≤ z) ∨ ∀z(z ≤ y)

and, for all σ ∈ Γ − {#},

Cσy :=
(

βσ(y) ∧
∧

γ∈Γ

∀x¬Cγx
)
∨

∃x∃z
(

x + 1 = y ∧ y + 1 = z ∧
∨

f (α,β,γ)=σ

Cαx ∧ Cβy ∧ Cγz)
)

The first rule just says that each stage represents a word starting and
ending with #. The other rules ensure that (1) if the given sequence

84



5.5 Capturing PTIME up to Bisimulation

C contains only empty relations (i.e. if we are at stage 0), then the
next stage represents the input configuration, and (2) if the given se-
quence represents a configuration, then the following stage represents
its successor configuration.

By our convention, M accepts its input if and only the sequence of
configurations becomes stationary (i.e. reaches a fixed point). Hence M
accepts code(()A,<) if and only if the relations defined by the simulta-
neous pfp induction on A of the rules described above are non-empty.
Hence K is PFP-definable. q.e.d.

5.4.1 Least Versus Partial Fixed-Point Logic

From the capturing results for PTIME and PSPACE we immediately
obtain the result that PTIME = PSPACE if, and only if, LFP = PFP on
ordered finite structures. The natural question arises of whether LFP
and PFP can be separated on the domain of all finite structures. For a
number of logics, separation results on arbitrary finite structures can
be established by relatively simple methods, even if the corresponding
separation on ordered structures would solve a major open problem
in complexity theory. For instance, we have proved by quite a simple
argument that DTC ⊊ TC, and it is also not very difficult to show that
TC ⊊ LFP (indeed, TC is contained in stratified Datalog, which is also
strictly contained in LFP). Further, it is trivial that LFP is less expressive
than Σ1

1 on all finite structures. However the situation is different for
LFP vs. PFP.
Theorem 5.23 (Abiteboul and Vianu). LFP and PFP are equivalent on
finite structures if, and only if, PTIME = PSPACE.

5.5 Capturing PTIME up to Bisimulation

In mathematics, we consider isomorphic structures as identical. Indeed,
it almost goes without saying that relevant mathematical notions do
not distinguish between isomorphic objects. As classical algorithmic
devices work on ordered representations of structures rather than the
structures themselves, our capturing results rely on an ability to reason

85



5 Modal, Inflationary and Partial Fixed Points

about canonical ordered representations of isomorphism classes of finite
structures.

However, in many application domains of logic, structures are distin-
guished only up to equivalences coarser than isomorphism. Perhaps the
best-known example is the modelling of the computational behaviour of
(concurrent) programs by transition systems. The meaning of a program
is usually not captured by a unique transition system. Rather, transition
systems are distinguished only up to appropriate notions of behavioural
equivalence, the most important of these being bisimulation.

In such a context, the idea of a logic capturing PTIME gets a new
twist. One would like to express in a logic precisely those properties of
structures that are

(1) decidable in polynomial time, and

(2) invariant under the notion of equivalence being studied.

A class S of rooted transition systems or Kripke structures is invari-
ant under bisimulation if, whenever K, v ∈ S and K, v ∼ K′, v′, then also
K′, v′ ∈ S. We say that a class S of finite rooted transition systems is
in bisimulation-invariant PTIME if it is invariant under bisimulation, and
if there exists a polynomial-time algorithm deciding whether a given
pair K, v belongs to S. A logic L is invariant under bisimulation if all
L-definable properties of rooted transition systems are.

Clearly, Lµ ⊆ bisimulation-invariant PTIME. However, as pointed
out in Section 5.1, Lµ is far too weak to capture this class, mainly be-
cause it is essentially a monadic logic. Instead, we have to consider a
multidimensional variant Lω

µ of Lµ.

But before we define this logic, we should explain the main technical
step, which relies on definable canonization, but of course with respect
to bisimulation rather than isomorphism. For simplicity of notation, we
consider only Kripke structures with a single transition relation E. The
extension to the case of several transition relations Ea is straightforward.

With a rooted Kripke structure K = (V, E, (Pb)b∈B), u, we associate
a new transition system

K∼
u := (V∼

u , E∼, (P∼
b )b∈B),

86



5.5 Capturing PTIME up to Bisimulation

where V∼
u is the set of all ∼-equivalence classes [v] of nodes v ∈ V that

are reachable from u. More formally, let [v] denote the bisimulation
equivalence class of a node v ∈ V. Then

V∼
u := {[v] : there is a path in G from u to v}

P∼
b := {[v] ∈ V∼

u : v ∈ Pb}
E∼ := {([v], [w]) : (v, w) ∈ E}.

The pair K∼
u , [u] is, up to isomorphism, a canonical representant of the

bisimulation equivalence class of K, u. To see this one can prove that (1)
(K, u) ∼ (K∼

u , [u]), and (2) if (K, u) ∼ (G, v), then (K∼
u , [u]) ∼= (G∼

v , [v]).
It follows that a class S of rooted transition systems is bisimulation-

invariant if and only if S = {(K, u) : (K∼
u , [u]) ∈ S}. Let CR∼ be the

domain of canonical representants of finite transition systems, i.e.

CR∼ := {K, u | (K∼
u , [u]) ∼= (K, u)}.

Proposition 5.24. CR∼ admits LFP-definable linear orderings, i.e. for
every vocabulary τ = {E} ∪ {Pb : b ∈ B}, there exists a formula
ψ(x, y) ∈ LFP(τ) which defines a linear order on every transition system
in CR∼(τ).

Proof. Recall that bisimulation equivalence on a transition system is a
greatest fixed point. Its complement, bisimulation inequivalence, is a
least fixed point, which is the limit of an increasing sequence ̸∼i defined
as follows: u ̸∼0 v if u and v do not have the same atomic type, i.e. if
there exists some b such that one of the nodes u, v has the property Pb

and the other does not. Further, u ̸∼i+1 v if the sets of ∼i-classes that are
reachable in one step from u and v are different. The idea is to refine this
inductive process, by defining relations ≺i that order the ∼i-classes. On
the transition system itself, these relations are pre-orders. The inductive
limit ≺ of the pre-orders ≺i defines a linear order of the bisimulation
equivalence classes. But in transition systems in CR∼, bisimulation
classes have only one element, so ≺ actually defines a linear order on
the set of nodes.

To make this precise, we choose an order on B and define ≺0 by

87



5 Modal, Inflationary and Partial Fixed Points

enumerating the 2|B| atomic types with respect to the propositions Pb,
i.e.

x ≺0 y :=
∨

b∈B

(
¬Pbx ∧ Pby ∧

∧

b′<b

Pb′x ↔ Pb′y
)

.

In other words, there is some b such that Pb separates x from y and for
the least such b, Pb holds on y and not on x.

In what follows, x ∼i y can formally be taken as an abbreviation for
¬(x ≺i y ∨ y ≺i x), and similarly for x ∼ y. We define x ≺i+1 y by the
condition that either x ≺i y, or x ∼i y and the set of ∼i-classes reachable
from x is lexicographically smaller than the set of ∼i-classes reachable
from y. Note that this inductive definition of ≺ is not monotone, so it
cannot be directly captured by an LFP-formula. However, as we know
that LFP ≡ IFP, we can use an IFP-formula instead. Explicitly, ≺ is
defined by [ifp x ≺ y . ψ(≺, x, y)](x, y), where

ψ(≺, x, y) := x ≺0 y ∨
(

x ∼ y∧

(∃y′ . Eyy′)
(
(∀x′ . Exx′)x′ ̸∼ y′∧

(∀z.z ≺ y′)
(
∃x′′(Exx′′ ∧ x′′ ∼ z) ↔

∃y′′(Eyy′′ ∧ y′′ ∼ z)
)))

.

q.e.d.

Corollary 5.25. On the domain CR∼, LFP captures PTIME.

Since LFP is not invariant under bisimulation, we will strengthen
the above result and capture bisimulation-invariant PTIME in terms of a
natural logic, the multidimensional µ-calculus Lω

µ .
Definition 5.26. The syntax of the k-dimensional µ-calculus Lk

µ (for tran-
sition systems K = (V, E, (Pb)b∈B)) is the same as the syntax of the
usual µ-calculus Lµ with modal operators ⟨i⟩, [i], and ⟨σ⟩, [σ] for every
substitution σ : {1, . . . , k} → {1, . . . , k}. Let S(k) be the set of all these
substitutions.

88



5.5 Capturing PTIME up to Bisimulation

The semantics is different, however. A formula ψ of Lk
µ is interpreted

on a transition system K = (V, E, (Pb)b∈B) at node v by evaluating it as
a formula of Lµ on the modified transition system

Kk = (Vk, (Ei)1≤i≤k, (Eσ)σ∈S(k), (Pb,i)b∈B,1≤i≤k)

at node v := (v, v, . . . , v). Here Vk = V × · · · × V and

Ei := {(v, w) ∈ Vk × Vk : (vi, wi) ∈ E and vj = wj for j ̸= i}
Eσ := {(v, w) ∈ Vk × Vk : wi = vσ(i) for all i}

Pb,i := {v ∈ Vk : vi ∈ Pb}

That is, K, v |=Lk
µ

ψ iff Kk, (v, . . . , v) |=Lµ ψ. The multidimensional µ-

calculus is Lω
µ =

⋃
k<ω Lk

µ.

Remark. Instead of evaluating a formula ψ ∈ Lk
µ at single nodes

v of G, we can also evaluate it at k-tuples of nodes: K, v |=Lk
µ

ψ iff

Kk, v |=Lµ ψ.
Example 5.27. Bisimulation is definable in L2

µ (in the sense of the remark
just made). Let

ψ∼ := νX .
(∧

b∈B

(Pb,1 ↔ Pb,2) ∧ [1]⟨2⟩X ∧ [2]⟨1⟩X
)
.

For every transition system K, we have that K, v1, v2 |= ψ∼ if, and only
if, v1 and v2 are bisimilar in K. Further, we have that

K, v |= µY . ⟨2⟩(ψ∼ ∨ ⟨2⟩Y)

if, and only if, there exists in K a point w that is reachable from v (by a
path of length ≥ 1) and bisimilar to v.

One can see that Lω
µ is invariant under bisimulation (because if

K, vi ∼ G, ui for all i then also Kk, v ∼ G, u) and that Lω
µ can be embedded

in LFP. This establishes the easy direction of the desired result: Lω
µ ⊆

bisimulation-invariant PTIME.

For the converse, it suffices to show that LFP and Lω
µ are equivalent

on the domain CR∼. Let S be a class of rooted transition systems in

89



5 Modal, Inflationary and Partial Fixed Points

bisimulation-invariant PTIME. For any K, u, we have that K, u ∈ S if
its canonical representant K∼

u , [u] ∈ S. If LFP and Lω
µ are equivalent

on CR∼, then there exists a formula ψ ∈ Lω
µ such that K∼

u , [u] |= ψ iff
K∼

u , [u] ∈ S. By the bisimulation invariance of ψ, it follows that K, u |= ψ

iff K, u ∈ S.

The width of an LFP-formula φ is the maximal number of free
variables occuring in a subformula of φ.
Proposition 5.28. On the domain CR∼, LFP ≤ Lω

µ . More precisely, for
each formula ψ(x1, . . . , xk) ∈ LFP of width ≤ k, there exists a formula
ψ∗ ∈ Lk+1

µ such that for each K, u ∈ CR∼, we have that K |= ψ(u, v) iff
K, u, v |= ψ∗.

Note that although, ultimately, we are interested only in formulae
ψ(x) with just one free variable, we need more general formulae, and
evaluation of Lk

µ-formulae over k-tuples of nodes, for the inductive
treatment. In all formulae, we shall have at least x1 as a free variable,
and we always interpret x1 as u (the root of the transition system).
We remark that, by an obvious modification of the formula given in
Example 5.27, we can express in Lk

µ the assertion that xi ∼ xj for any i, j.

Atomic formulae are translated from LFP to Lω
µ according to

(xi = xj)
∗ := xi ∼ xj

(Pbxi)
∗ := Pb,ix

(Exixj)
∗ := ⟨i⟩xi ∼ xj

(Xxσ(1) · · · xσ(r))
∗ := ⟨σ⟩X.

Boolean connectives are treated in the obvious way, and quantifiers
are translated by use of fixed points. To find a witness xj satisfying a
formula ψ, we start at u (i.e. set xj = x1), and search along transitions (i.e.
use the µ-expression for reachability). That is, let j/1 be the substitution
that maps j to 1 and fixes the other indices, and translate ∃xjψ(x) into

⟨j/1⟩µY . ψ∗ ∨ ⟨j⟩Y.

Finally, fixed points are first brought into normal form so that variables
appear in the right order, and then they are translated literally, i.e.

90



5.5 Capturing PTIME up to Bisimulation

[lfp Xx . ψ](x) translates into µX . ψ∗.
The proof that the translation has the desired property is a straight-

forward induction, which we leave as an exercise. Altogether we have
established the following result.
Theorem 5.29 (Otto). The multidimensional µ-calculus captures bisimulation-
invariant PTIME.

Otto has also established capturing results with respect to other
equivalences. For finite structures A,B, we say that A ≡k B if no first-
order sentence of width k can distinguish between A and B. Similarly,
A ≡C

k B if A and B are indistinguishable by first-order sentences of
width k with counting quantifiers of the form ∃≥ix, for any i ∈ N.
Theorem 5.30 (Otto). There exist logics that effectively capture ≡2-
invariant PTIME and ≡C

2 -invariant PTIME on the class of all finite
structures.

91


