\[C^k_{\omega \omega} : \text{extension of } L^{k}_{\omega \omega} \text{ by counting quantifiers } \exists^m x, \ m \geq 1 \]

\[C^\omega_{\omega \omega} = \bigcup_{k \geq 1} C^k_{\omega \omega} \]

\[\exists x_1 \cdots \exists x_m (\forall x_i \neq x_j \land \cdots) \]

Recall: \[\text{IFP} = L^\omega_{\omega \omega} \]

We want to establish the analogous result for the setting with counting:

\[\text{FPC} \preceq C^\omega_{\omega \omega} \]
Lemma: For every formula $\varphi(x, \bar{\mu}) \in \text{FPC}$, there exists $s \geq 1$ (which only depends on the number of variables in φ (including $x, \bar{\mu}$)), such that for every $n \geq 1$, every $\bar{m} \in [n+1]^k$, there exists a C^s_{oo}-formula $\varphi^*_{n, \bar{m}}(\bar{x})$ such that for every structure \mathcal{O}^l of size n, and every $\bar{a} \in \mathbb{A}^k$:

$$\mathcal{O}^l \models \varphi(\bar{a}, \bar{m}) \iff \mathcal{O}^l \models \varphi^*_{n, \bar{m}}(\bar{a})$$

Proof: We give an inductive translation:

$$\varphi(x, \bar{\mu}) \rightarrow \varphi^*_{n, \bar{m}}(\bar{x}) \in C^s_{\text{oo}}$$

for all n, \bar{m} as above and for any $s \geq 1$ which only depends on the number of variables in $\varphi(x, \bar{\mu})$.

Without loss of generality we can assume that counting terms only occur in the form \(\#r \psi(r) = \mu_i \).

\[
\begin{align*}
\left(t_1 = t_2 \right) & \rightarrow \exists \mu \left(\mu = t_1 \land \mu = t_2 \right) \\
\left(t_1 \leq t_2 \right) & \rightarrow \exists \mu \left(t_1 + \mu = t_2 \right)
\end{align*}
\]

Atomic propositions:

\(RF \quad \rightarrow \quad RF \)

\(\mu_i < \mu_j \quad \rightarrow \quad \{ \text{true} \quad , \quad \mu_i < \mu_j \} \quad \text{false} \quad , \quad \mu_i \geq \mu_j \)

Boolean connectives:

Clear by induction hypothesis.

\(\text{FO - quantifiers:} \)

\(\exists x \psi \quad \rightarrow \quad \exists x \psi^* \)

\(\exists \mu \psi(\overline{x}, \overline{\mu}, \mu) \quad \rightarrow \quad \bigvee_{\mu \in \mathbb{N}^n} \psi^*_{\mu, \overline{\mu}, \overline{\mu}}(\overline{x}) \)
Counting quantifiers:

\[\#_r \psi(\bar{x}, \bar{\mu}, r) = n_i \quad \rightarrow \]

\[\exists n_i \forall \bar{y} \in \psi_{n, \bar{\mu}}(\bar{x}, r) \land \exists n_i+1 \psi_{n, \bar{\mu}}(\bar{x}, r) \]

Fixed points

Over structures of size \(n \), an FPC induction can be expressed in FOC:

\[\psi = \left[\text{if } R \bar{x} \bar{\mu}, \psi(R, \bar{x}, \bar{\mu}) \right](\bar{x}, \bar{\mu}) \]

\[\psi^0(\bar{x}, \bar{\mu}) := \emptyset \]

\[\psi^{i+1}(\bar{x}, \bar{\mu}) := \psi^i(\bar{x}, \bar{\mu}) \lor \psi(R\bar{\mu} \bar{\bar{\mu}} / \psi^i(\bar{\omega}, \bar{\bar{\omega}}), \bar{x}, \bar{\mu}) \]

\[\psi = \psi^n(\bar{x}, \bar{\mu}) \text{ over structures of size } n \]

This translation does not increase the number of variables.
Thm. \(FPC < C^{\omega}_{\omega_0} \)

Proof. Let \(\psi \) be an FPC-sentence. By the above lemma we find \(S \models 1 \) and sentences \(\psi^*_n \in C^{\omega}_{\omega_0} \) for \(n \geq 1 \) such that for every \(\Omega \) of size \(n \):

\[
\Omega \models \psi \implies \Omega \models \psi^*_n
\]

Hence

\[
\psi = \bigvee \left[\exists x^{2^n} (x=x) \land \exists y^{2^m} (x=x) \land \psi^*_n \right]_{n \geq 1}
\]

\(e \in C^{\omega}_{\omega_0} \) (our finte structure).