Algorithmic Model Theory
SS 2010

Prof. Dr. Erich Gradel

Mathematische Grundlagen der Informatik
RWTH Aachen

©@O®SG

This work is licensed under:

http:/ /creativecommons.org/licenses/by-nc-nd/3.0/de/
Dieses Werk ist lizenziert unter:

http:/ /creativecommons.org/licenses /by-nc-nd/3.0/de/

© 2013 Mathematische Grundlagen der Informatik, RWTH Aachen.
http:/ /www.logic.rwth-aachen.de

http://creativecommons.org/licenses/by-nc-nd/3.0/de/
http://creativecommons.org/licenses/by-nc-nd/3.0/de/
http://www.logic.rwth-aachen.de

Contents

1.1
1.2
1.3
1.4

2.1
22
2.3

3.1
32
3.3

4.1
42
43
44

5.1
52
53
54
5.5

The classical decision problem for FO

Basic notions on decidability
Trakhtenbrot’s Theorem
Domino problems
Applications of the domino method

Finite Model Property

Ehrenfeucht-Fraissé Games
FMP of Modal Logic
Finite Model Property of FOZ

Descriptive Complexity

Logics Capturing Complexity Classes
Fagin’s Theorem
Second Order Horn Logic on Ordered Structures

LFP and Infinitary Logics

Ordinals
Some Fixed-Point Theory
Least Fixed-Point Logic
Infinitary First-Order Logic

Modal, Inflationary and Partial Fixed Points

The Modal p-Calculus
Inflationary Fixed-Point Logic
Simultaneous Inductions L.
Partial Fixed-Point Logic
Capturing PTIME up to Bisimulation

27
27
30
37

47
47
49
53

59
59
61
64
67

6

6.1
6.2
6.3
6.4

7

7.1
7.2
7.3

Fixed-point logic with counting 93
Logics with Counting Terms 94
Fixed-Point Logic with Counting 95
The k-pebble bijectiongame 98
The construction of Cai, Flirer and Immerman 100
Zero-one laws 109
Randomgraphs 109
Zero-one law for first-order logic 111
Generalised zero-onelaws 115

1 The classical decision problem for FO

The classical decision problem for first-order logic was considered the
main problem of mathematical logic by Hilbert and Ackermann and its
undecidability was shown by Church and Turing.

The Entscheidungsproblem is solved when we know a proce-
dure that allows for any given logical expression to decide by
finitely many operations its validity or satisfiability. [...] The
Entscheidungsproblem must be considered the main problem
of mathematical logic.

(D. Hilbert and W. Ackermann, 1928)

We introduce the classical decision problem for first-order logic,
for which we present three equivalent formulations. The importance
of the decision problem for first-order logic results from the fact that
first-order logic provides a framework to express almost all aspects of
mathematics.

Satisfiability: Construct an algorithm that decides for any given formula
of FO whether it has a model.

Validity: Construct an algorithm that decides for any given formula of
FO whether it is valid, i.e. whether it holds in all models where it
is defined.

Provability: Construct an algorithm that decides for any given formula
¢ of FO whether F 1, meaning 1 is provable from the empty set
of axioms in some formal system, e.g. sequential calculus.

Since 1 is satisfiable if and only if - is not valid, satisfiability and
validity are equivalent problems with respect to computability. The
equivalence with provability is a much more intricate result and in fact
a consequence of the following

1 The classical decision problem for FO

Theorem 1.1 (Completeness Theorem (Godel)). For any given set of
sentences ® C FO(T) and any sentence ¢ € FO(7) it holds that

Py — Py,

in particular @ |= p < @ F ¢.
As a direct consequence we get the following

Theorem 1.2. The set of valid first-order formulae is recursively enu-
merable.

1.1 Basic notions on decidability

In our formulation of the decision problem it was not precisely specified
what an algorithm is. It was not until the 1930s that Church and Kleene
Godel and Turing provided a precise definition of an abstract algorithm.
Their approaches are today known to be equivalent. We introduce the
concept of a Turing machine.

Definition 1.3. A Turing machine (TM) M is a 6-tuple
M= (Q%,T,qo,F,J), where

¢ (denotes a finite set of states,
e 3, T denote finite alphabets, where ¥ is the working alphabet with
a special blank symbol O € %,

e I' C ¥\ {O} is the input alphabet,

* g0 € Q denotes the initial state,

e F C Q is the set of final states and

¢ J:(Q\F)xX — QxXx{-1,0,1} is the transition function.
A configuration is an element C = (g, p,w = wowy ... wx) € Q x N x Z*.
The transition function § induces a partial function on the set of all

configurations
C — Next(C),

where for §(q,wp) = (q',a,m), the successor configuration of C
is defined as Next(C) = (¢, p +m,wy...w, 10w, 41 ---wg). A com-
putation of the TM M on an input word x € I'* is a configuration

1.1 Basic notions on decidability

sequence
Co,Cy, ...

where Cy = Co(x) := (40,0, x) is the input configuration and C;,; =
Next(C;) for all i.

M halts on x if the computation of M on x is finite, i.e. ends in a
final configuration C¢ = (q, p, w) with q € F.

The language accepted by M is

L(M) := {x € T* : M halts on x}.

M computes a partial function fy : I'* — Z* with domain L(M)
such that fa;(x) =y if and only if the computation of M on x ends in
(9,p,y) forsomeg € F,y € £* and p € N.

Definition 1.4. A Turing acceptor is a Turing machine M with F =
Ft U F~ where M accepts x if the computation of M on x ends in a state
in F*. M rejects x if the computation of M on x ends in a state in F~.

Definition 1.5.

e L C T is recursively enumerable (r.e.) if there exists a TM M with
L(M) = L.

e [CT* is co-recursively enumerable (co-r.e.) if L:=T*\Lisre.

* A (partial) function f : I'* — £* is (Turing) computable if there is a
™™ M with fj; = f.

o [CT* is decidable if there is a Turing acceptor M such that for all
xeT*

x € L = M accepts x

x ¢ L = M rejects x

or, equivalently, L is decidable if its characteristic function
xL: I'* — {0,1} is Turing computable.

Theorem 1.6. A language L C I'* is decidable if and only if L is re.

and co-r.e.

1 The classical decision problem for FO

Definition 1.7. Let A C I'*,B C L*. We say that A is (many-to-one)
reducible to B, A < B, if there is a total computable function f : I'* — 2*
such that for all x € T* we have x € A & f(x) € B.

Lemma 1.8.

e A < B, B decidable = A decidable
e A<B,Bre. = Are.
e A < B, A undecidable = B undecidable.

There surely are undecidable languages since there are only count-
ably many Turing machines but uncountably many languages. Un-
fortunately, among these languages there are quite relevant classes of
languages. For example we cannot even decide whether a TM halts on

a given input.

Definition 1.9 (Halting Problems). The general halting problem is defined
as

H := {p(M)#p(x) : M Turing machine, x € L(M)}

where p(M) and p(x) are encodings of the TM M and the input x over
a fixed alphabet {0,1} such that the computation of M on x can be
reconstructed from the encodings p(M) and p(x) in an effective way.

There is a universal TM U which, given p(M) and p(x), simulates
the computation of M on x and halts if and only if M halts on x. Thus,
L(U) = H from which we conclude that H is r.e..

We introduce two special variants of the halting problem

e Self-application problem

Ho := {p(M) : p(M) € L(M)}
® Halting on the empty word

He = {p(M) : ¢ € L(M)}

Theorem 1.10. H, Hy, H, are undecidable.

1.1 Basic notions on decidability

Proof.

* Hy is not co-r.e. and thus undecidable. Otherwise Hy = L(M) for
some TM Mj. Then

p(Mo) € Hy & M halts on p(Mo) = p(Mo) S Ho.

* Hj is a special case of H, Hy < H, and thus H is undecidable.

e We can reduce H to Hg, thus H, is undecidable. Q.E.D.

As a consequence of the next theorem we cannot algorithmically
prove whether a program computes a given function, i.e. we cannot
algorithmically prove the correctness of a program. Note that this
does not mean that we cannot prove the correctness of a single given
program. Instead the statement is that we cannot do so algorithmically
for all programs.

Theorem 1.11 (Rice). Let R be the set of all computable functions and
let S € R be a set of computable functions such that S # @ and S # R.
Then code(S) := {p(M) : fp € S} is undecidable.

Proof. Let { be the everywhere undefined function, i.e. Def(ft) = @.
Obviously, 1} is computable. Assume that ¢ S (otherwise consider
R\ S instead of S. Clearly if code(R \ S) is undecidable then so is
code(S).)

As § # @, there exists a function f € S . Let My be a TM that
computes f, ie. fy, = f. We define a reduction H, < code(S) by
describing a total computable function p(M) — p(M’) such that

Mhaltson e & fpp €S.

Specifically, given p(M), we construct the encoding of a TM M’ which,
given an input x, proceeds as follows:

e first simulate M on ¢ (i.e. apply the universal TM U to p(M)#e);
e then simulate My on x (ie. apply the universal TM U to

p(Mjy)#o(x))-

1 The classical decision problem for FO

It is clear that the reduction function is computable. Furthermore,
if M halts on ¢ then fyy(x) = f(x) for all inputs x, i.e. fy = f, so
famr € S. If M does not halt on ¢ then M’ does not halt on x for any x,
ie. fpr =1, s0o fmr €S. Q.E.D.

Definition 1.12 (Recursive inseparability). Let A, B C I'* be two disjoint
sets. We say that A and B are recursively inseparable if there exists no
recursive set C C I'* suchthat AC Cand BNC = @.

Example. (A, A) are recursively inseparable if and only if A is undecid-
able.

Lemma 1.13. Let A,B C I'*, AN B = @ be recursively inseparable. Let
X, Y CX,XNY =@, and let f be a total computable function such
that f(A) C X and f(B) C Y. Then X and Y are recursively inseparable.

Proof. Assume there exists a decidable set Z C X* such that X C Z
and YNZ = @. Consider C = {x € I'*: f(x) € Z}. C is decidable,
A CC,BNC =, thus C separates A, B. Q.E.D.

Notation: We write (A, B) < (X,Y) if such a function f exists.
Example. (A, A) < (B,B) & A <B.

As a preparation to prove Trakhtenbrot’s theorem, we consider a
refinement of H;

H := {p(M) : M accepts ¢}

H; := {p(M) : M rejects ¢}

H® := {p(M) : the computation of M on ¢ is infinite

and does not cycle.}

HO+ , Hy, HF are defined analogously, with respect to self-
application.

Theorem 1.14. H;,H, and H® are pairwise recursively inseparable.

Proof.

1.1 Basic notions on decidability

e (H;, H®): We show that every set C with H” C Cand H® NC =

@ is undecidable by reducing the halting problem H; to C. Define
the function p(M) — p(M') as follows. From a given code p(M)
construct the code of a TM M’ that simulates M and simultaneously
counts the number of computation steps since the start. If M halts
(accepting or rejecting), M’ accepts.
It is clear that the reduction function is computable. If M halts on &
then M’ halts on ¢ as well and accepts, so p(M’) € Hf C C. If M
does not halt on ¢ then M’ does not halt either, so p(M') € H®
and as H® N C = @, we have p(M') ¢ C.

¢ The statement for H;” and H{® is proven analogously.

* (H, H;"): Show that (H, ,Hy) < (H¢,H;") and that (H, , Hy)
are recursively inseparable.

- (Hy Hy) < (He H):
For a given input TM M construct a TM M’ that ignores its
own input and simulates M on p(M). Obviously, M’ can be
constructed effectively, say by a computable function /. Now
h(M) accepts ¢ iff M accepts p(M) and h(M) rejects ¢ iff M
rejects p(M).

- (Hy , Hy) recursively inseparable:
Assume there exists a decidable C with H; € C and Hg' cC.
Consider a machine My that decides C. There are two cases:

(1) My accepts p(Mp). Then p(My) € C by definition of Mj.
Then p(My) ¢ Hy by definition of C. On the other hand,
if My accepts p(My) then p(My) € Hy (by definition of
HO+), a contradiction.

(2) My rejects p(Mp). Then p(My) ¢ C by definition of M.
Then p(My) € H,, by definition of C. On the other hand,
if My rejects p(Mp) then p(My) € H (by definition of
Hj'), a contradiction.

Q.E.D.

1 The classical decision problem for FO

1.2 Trakhtenbrot’s Theorem

In the following, we consider FO, more precisely first-order logic with
equality. We restrict ourselves to a countable signature

o i= (R3] € NJU{f 21 € N}

where R; stands for a relation symbol of arity i and f; stands for a
function symbol of arity i.
We encode formulae over a fixed alphabet

I':= {le/xlolll [/]} U {:/ _'//\r\// —, % El/v-(/)}/

and uniquely encode the relational and functional symbols

relation symbols: R; — Rbin i][bin]
functional symbols: f; — f[bin i][bin j]
variables: Xj — x[bin j].

Thus, every formula ¢ € FO is a word in I'*.
Let X C FO be a class of formulae. We analyse the following
decision problems:

n

at(X) := {y € X : ¢ has a model}
Fin-sat(X) := {i € X : ¢ has a finite model}
Val(X) :={y € X : ¢ isvalid}
Non-sat(X) := X \ Sat(X)
Inf-axioms(X) := Sat(X) \ Fin-sat(X)
= {¢ € X: ¢ is an infinity axiom, i.e. { has a

model but no finite model}.

Theorem 1.15. Let X C FO be decidable. Then

(1) Val(X) is re.
(2) Non-sat(X) is re.
(3) Sat(X) is co-re.

1.2 Trakhtenbrot’s Theorem

(4) Fin-sat(X) is r.e.
(5) Inf-axioms(X) is co-r.e.

Proof. (1) ¢ isvalid & F ¢ (Completeness Theorem). Thus we can
systematically enumerate all proofs and halt if a proof for ¢ is
listed.

(2) @ valid < —¢ is not satisfiable.

(3) Follows from Item (2).

(4) Systematically generate all finite models and halt if a model of ¢ is
found.

(5) FO\ Inf-axioms(X) = Non-sat(X) U Fin-sat(X) is r.e. Q.E.D.

Definition 1.16. A class X C FO has the finite model property (FMP) if
every satisfiable ¢ € X has a finite model, i.e. if Sat(X) = Fin-sat(X).

Theorem 1.17. Suppose that X C FO is decidable and that X has the
FMP. Then Sat(X) is decidable.

Proof. Sat(X) is co-re. and since Sat(X) = Fin-sat(X) and Fin-sat(X) is
re. also Sat(X) is r.e. Thus Sat(X) is decidable. Q.E.D.

In this case also Fin-sat(X), Non-sat(X), Val(X) are decidable and
of course Inf-axioms(X) = @ is decidable.

Theorem 1.18 (Trakhtenbrot). There is a finite vocabulary T C T
such that Fin-sat(FO(t)), Non-sat(FO(t)) and Inf-axioms(FO(t)) are
pairwise recursively inseparable and therefore undecidable.

The proof of Trakhtenbrot’s theorem introduces a proof strategy
that can be applied in many other undecidability proofs. (Do not focus
on the technicalities but on the general idea to construct the reduction
formulae.)

Proof. Let M be a deterministic Turing acceptor. We show that there is
an effective reduction p(M) — s such that

(1) M accepts ¢ = 11 has a finite model.
(2) M rejects ¢ = 1) is unsatisfiable.

1 The classical decision problem for FO

(3) The computation of M on ¢ is infinite and non-periodic = ¥

is an infinity axiom.

Then the theorem follows by Lemma 1.13.

Let M be a Turing acceptor with states Q = {qo, . . ., g, }, initial state
qo, alphabet £ = {ay, ..., as} (where ag = 0), final states F = FT U F~
and transition function é.

P is defined over the vocabulary T = {0, f,q, p,w} where O is a
constant, f,q, p are unary functions and w is a binary function. Define
the term k as f0.

By constructing a formula we intend to have a model) =
(A,0, f,q, p,w) describing a run of M on the input ¢ where

e universe A ={0,1,2,...,nfor A=N;
o f(t)=t+1ift+1€ Aand f(t) =t if t is the last element of A;
e g(t) =i iff M is at time ¢ in state g;;
* plt

w(

) is the head position of M at time f;

s,) = i iff symbol 4; is at time ¢ on tape-cell s.

Note that we cannot enforce this model, but if 5 is satisfiable this
one will be among its models.

Py = START A COMPUTE A END

START := (40 =0 A p0 =0 A Vxw(x,0) =0).
[Enforces input configuration on ¢ at time 0]
COMPUTE := NOCHANGE A CHANGE
NOCHANGE := VxVy(py # x — w(x, fy) = w(x,y))
[content of currently not visited tape cells does not change]
CHANGE := A Vy(aij — Brom)
3:(qi,a7) > (qr,ae,m)
where
wjj = (qy =i Nw(py,y) = j)
[M is at time y in state g; and reads the symbol 4;]

Brem = (afy = k ANw(py, fy) = £ N\MOVEy,)

10

1.2 Trakhtenbrot’s Theorem

and

rfy =ry ifm=0

MOVE,, := pfy = fpy ifm=1
z(fz=pyApfy=2) ifm=-1
END := A Vy —aj
5(gi,a;) undef.
qigFt
[The only way the computation ends is in an accepting state]

Remark 1.19.

e p(M) — ¢y is an effective construction.

e If M accepts ¢, the intended model is finite and is indeed a model
Ay = Y, thus ¢y € Fin-sat(FO(T)).

e If the computation of M on ¢ is infinite, the intended model is
infinite and 2p; = Y.

It remains to show that if M rejects ¢, then 1) is unsatisfiable, and
if the computation of M on ¢ is infinite and aperiodic, then ¢, is an
infinity axiom.

Suppose B = (B,0, f, 4, p,w) = Y.

Definition 1.20. B enforces at time f the configuration (g;, j, w) with
w = aj,...4q;, € >*if

(1) B = qt =i,

2) B |=pt =],

(3) forallk <m, B = w(k,t) =iy and forall k > m, B = w(k,t) = 0.

Since B = ¢y, the following holds:

* B enforces Cy = (4o, 0,¢) at time 0 (since B = START.)

e If 9B enforces at time f a non-final configuration C;, then B enforces
the configuration C;1 = Next(Ct) at time ¢ + 1.

e Especially, the computation of M cannot reach a rejecting configu-
ration. It follows that if M rejects ¢, then P is unsatisfiable.

11

1 The classical decision problem for FO

Consider an infinite and aperiodic computation of M, and assume
B |=) is finite. Since B is finite, it enforces a periodic computa-
tion in contradiction to the assumption that the computation of M
is aperiodic.

CoF...FC F..F G
v

We have shown:

o If M accepts ¢, then ¢ps has a finite model.
* If M rejects ¢, then ¢ is unsatisfiable.
e If the computation of M is infinite and aperiodic, then) is an

infinity axiom. Q.E.D.

We now know that the sets of all finitely satisfiable, all unsatisfiable
and all only infinitely satisfiable formulae are undecidable for FO(T)
where T consists of only three unary functions and one binary function.
This raises a number of questions.

(1) For which other vocabularies o do we have similar undecidability
results for FO(c)?

(2) For which ¢ is satisfiability of FO(c) decidable?

(3) Is there a complete classification? In this case, we want to find min-
imal vocabularies ¢ such that the above problems are undecidable,
i.e. vocabularies such that any further restriction yields a class of
formulae for which satisfiability is decidable.

We first define what it means that a fragment of FO is as hard for
satisfiability as the whole FO.

Definition 1.21. X C FO is a reduction class if there exists a computable
function f : FO — X such that ¢ € Sat(FO) < f(¢) € Sat(X).

Let X,Y C FO. A conservative reduction of X to Y is a computable
function f : X — Y with

e ¢ € Sat(X) < f(y) € Sat(Y), and
®) € Fin-sat(X) < f(¢) € Fin-sat(Y).

12

1.2 Trakhtenbrot’s Theorem

X is a conservative reduction class if there exists a conservative re-
duction of FO to X.

Corollary 1.22. Let X be a conservative reduction class. Then
Fin-sat(X), Inf-axioms(X) and Non-sat(X) are pairwise recursively insep-
arable, and thus Fin-sat(X), Sat(X), Val(X), Non-sat(X), Inf-axioms(X)
are undecidable.

Proof. A conservative reduction from FO to X yields a uniform reduc-
tion from Fin-sat(FO), Inf-axioms(FO) and Non-sat(FO) to Fin-sat(X),
Inf-axioms(X) and Non-sat(X), respectively. Q.E.D.

We now observe that we can indeed give a complete classification
of signatures ¢ such that FO(c) is decidable.

Theorem 1.23. If ¢ C {Py,P;,...} U{f} consists of at most one
unary function f and an arbitrary number of monadic relations
Py, Py, ..., then Sat(FO(0)) is decidable. In all other cases, Sat(FO(0)),
Inf-axioms(FO(c)) and Non-sat(FO(c)) are pairwise recursively insepa-
rable, and FO(0) is a conservative reduction class.

A full proof of this classification theorem is rather difficult. In
particular, the decidability of the monadic theory of one unary function,
which implies the decidability part, is a difficult theorem due to Rabin.
On the other side, one has to show that Trakhtenbrot’s theorem applies
to the vocabularies

71 = {E} where E is a binary relation,
T, = {f, g} where f, ¢ are unary functions,
73 = {F} where F is a binary function,

and hence to all extensions of 11, T, T3.

Of course, we may also look at other syntactic restrictions besides
restricting the vocabulary. One possibility is to restrict the number of
variables. This is only interesting for relational formulae. If we have
functions, satisfiability is undecidable even for formulae with only one
variable as we shall see.

Define FOF as first-order logic with relational symbols only and a
fixed amount of k variables, say x1, ..., xk.

13

1 The classical decision problem for FO

Theorem 1.24.

e FO? has the finite model property and is decidable (see Chapter 2).
* FO? is a conservative reduction class.

Another possibility is to restrict the structure of quantifier prefixes.

Definition 1.25 (Prefix-Vocabulary Classes). A string in {V, 3}* is called
prefix, and an arity sequence is a sequence assigning all positive integers
values in N U {w}.

For any set of prefixes IT and any arity sequences p and f, [T, p, f]
and [I1, p, f]= denote the collection of all formulae ¢ € FO in prenex
normal form without equality and with equality, respectively, such that

e the prefix of ¢ belongs to IT,

e the number of n-ary predicate symbols in ¢ is at most p(n) and

e the number of n-ary function symbols in ¢ is at most f(n).

e Except for the logical constants true and false, ¢ has no nullary
predicate symbols, no nullary function symbols and no free vari-
ables.

The prefix set containing all prefixes and the arity sequence that assigns
w to each n will be denoted all.

We write arity sequences as tuples, e.g., (2, 1,w), (0) to express that
two predicate symbols of arity 1, one of arity 2, unboundedly many of
arity 3 and no other predicate or function symbols are allowed.

Theorem 1.26 (Gurevich). Let X be a prefix class, p,q two arity se-
quences and X = [I1, p,q]-.

* X is a conservative reduction class if it contains any of

1) [¥,(0), (2)]=
2) [v,(0),(0,1)]=
(3) [v?3, (w,1), (0)]=
@) [3V23,(0,1), (0)]=
(3) [v?3%,(0,2), (0))=
e If X is contained in one of the following classes, then Sat(X) and
Inf-axioms(X) are decidable

14

1.3 Domino problems

(6) [3*Vv*,all, (0)]=
(7) [3*,all,all]

®) [all, (w), (1)]=
(9) [3*V3*, all, (1)]—.

This gives a complete classification.

1.3 Domino problems

Domino problems are a simple and yet general tool for proving unde-
cidability without talking about Turing machines.

The informal idea is the following: a domino (type) is an oriented
square with unit length and coloured edges. We consider the following
decision problem.

Given: a finite set of domino types (infinite supply of each).

Question: does there exist a tiling of IN X IN such that adjacent

edges have the same colour?
The undecidability of the stated problem is established by encoding
computations of Turing machines in an appropriate way. A row of the
tiling represents a configuration of a Turing machine.

Definition 1.27. A domino system is a structure D = (D, H, V) with

¢ a finite set D,
e horizontal and vertical compatibility relations H,V C D x D.
The meaning of H and V is that

* (d,d") € H if the right colour of d is equal to the left colour of d’,

e (d,d’) € V if the top colour of d is equal to the bottom colour of d’
(see Figure 1.1).

A tiling of N x IN by D is a function ¢ : N x IN — D such that for all
x,y €N

e (o(x,y),0(x+1,y)) € Hand
e (o(x,y),0(x,y+1)) eV.

15

1 The classical decision problem for FO

A periodic tiling of IN X IN by D is a tiling ¢ for which two integers
h,v € N exist such that for all x,y € N it holds o(x,y) = o(x+h,y) =
o(x,y 4+ v). The decision problem DOMINO is described as

DOMINO := {D : there exists a tiling of N x IN by D}

.
. .
b
b .
a clc .
d .

Figure 1.1. Domino adjacency condition

An important variant is the origin constrained tiling.

Definition 1.28. An origin constrained domino system is a system (D, Dy)
with Dy C D. A tiling with origin constraint Dy is a tiling ¢ such that
7(0,0) € Dy. The corresponding decision problem is

CORNER-DOMINO := {(D, Dy) : there exists a tiling of N x N

with origin constraint Dy }.

Theorem 1.29 (Wang, Biichi). CORNER-DOMINO is undecidable.

Proof. We reduce HY = {p(M) : the computation of M on ¢ is infinite},
which is co-r.e., to CORNER-DOMINO.

Consider a 1-tape TM M = (Q, %, qo,d, F), and construct (D, Dy)
such that the computation of M on ¢ is infinite if and only if there exists
a tiling of IN x IN by D with origin constraint D.

Assume w.l.o.g. that M never moves off-tape to the left, i.e. in
configurations (g,0, w) it is never the case that 6(g, wg) = (4,4, —1).

16

D consists of the following domino types.

Foreacha e &

For each (g,4) € Q x ¥ with
8(q,a) = (q',a’,0)

For each (g,a) € Q x ¥ with
5(q,a) = (¢q',d’,1), for each
beX

For each (g,a) € Q x ¥ with
5(q,a) = (q',a’,—1) for each
beX

Additionally

dominoes

there exist

The origin constraint Dy con-
sists of

1.3 Domino problems

A d <
a
(q',4")
< <
(q,a)
a’ (q',b)
(q,a)| |(q,a) ©
(q,a) b
(q,b) a’
(q,a)| |(q,a) o
b (q,a)
(40/ D) g
0 <0]
1 1L
(qOr D)
- <0
1L

Note that (D, Dy) can be constructed effectively from M.

There is precisely one way of tiling the first row:

17

1 The classical decision problem for FO

(90,00) 0
F <0l |70 <0
1 1
(0,0) o (0,1) foralli >0

Assume the first j rows have been tiled correctly. Then the top edge of
row j reads

wo - .. Wi 1 (q, W) W41 - ..

for Ci= (g,i,wp, w1, ...), the jth configuration of M on e.

This tiling can be extended to a tiling of row j + 1 if and only if
there exists Cj ;1 = Next(C;).

Conclusion: The computation of M on ¢ is infinite if and only if
there exists a tiling of N x IN by (D, Dy). Q.E.D.

Stronger forms of this result are the following

Theorem 1.30 (Berger, Robinson). DOMINO (without origin constraint)
is co-r.e. and undecidable.

Theorem 1.31. The problem of tiling Z x Z is reducible to the problem
of tiling IN X IN. (Proof via Kénig’s Lemma).

Theorem 1.32. The set of domino systems admitting a periodic tiling
of IN x IN, those that admit no tiling of N x IN and those that admit a
tiling but not a periodic one are pairwise recursively inseparable.

Definition 1.33. A computable function f is a reduction from domino
systems to X if, for all domino systems D, f(D) = ¢p is in X and the
following holds:

® D admits a periodic tiling of N x IN = ¢p has a finite model
¢ D admits no tiling of IN X IN = ¢p is unsatisfiable
® D admits a tiling of IN x IN but no periodic one = pp is an infinity

axiom.

18

1.4 Applications of the domino method

Remark 1.34. Let X € FO. If there exists a reduction from domino
systems to X then X is a conservative reduction class.

Proof. Since Fin-sat(FO) and Non-sat(FO) are recursively enumerable
and Inf-axioms(FO) is co-recursively enumerable, we can associate with
every first-order formula ¢ a Turing machine M such that

e i € Fin-sat(FO) = p(M) € H;,
e ¢ € Non-sat(FO) = p(M) € H,
e ¢ € Inf-axioms(FO) = p(M) € H°.
The proof of 1.32 reduces the halting problems H,H;, H, to the

domino problems. There exists a recursive function that associates with
every TM M a domino system D satisfying

e If M € H then D admits a periodic tiling of N x IN.
e If M € H; then D admits no tiling of IN x IN.
e If M € HY then D admits a tiling of IN x IN but no periodic one.

Finally, according to to the assumption, there is a reduction D
¢@p from domino systems to X Thus, the domino method yields a
conservative reduction from FO to X.

Q.E.D.

1.4 Applications of the domino method

We now apply the domino method to obtain several reduction classes.

Theorem 1.35. [V3V, (0,w), (0)] is a conservative reduction class.

Proof. Due to Remark 1.34 it suffices to give a reduction from domino
systems to X, i.e. find a mapping D — ¢pp over a vocabulary consisting
of binary relation symbols (P;);ecp such that

(1) D admits a periodic tiling of N x IN = 1p has a finite model
(2) D admits no tiling of IN X IN = ¢ is unsatisfiable
(3) D admits a tiling of IN x IN but no periodic one = ¥ is an infinity

axiom

19

1 The classical decision problem for FO

The intended model is IN with intended interpretation of P; =
{(i,j) e N xN: 7(i,j) = d} for all d € D. We define yp by

Yp = Vxﬂsz(/\ Pixz = —Pyxz

dtd
AN (PaxzAPpyz) A \/ (Pgzx A Pd/zy)).
(dd')eH (dd)ev

Obviously p is of the desired format, i.e. ¢p € [V3IV, (0, w), (0)].

(1) If D admits a periodic tiling of IN x IN, then ¢p has a finite model.
Let 7 : IN x IN — D be a periodic tiling such that for some 1,v € IN
T(x,y) =t(x+hy) =1t(x,y+0) forall x,y. Let t :== lcm(h,v) be
the least common multiple of & and v. Then T induces a tiling

T:Z/tZ X Z/tZ — D

with 7(x,y) = t(x(mod t),y(mod t)).
Thus, A = (Z/tZ, (P;)4ep) with Py = {(i,j) : T'(i,j) = d} is a
finite model (for x in ¥p choose y := x +1 (mod t) in ¢p.)

(2) If ¢p has a model, then D admits a tiling.

(8) We want to show: if ip has a finite model, then D admits a periodic
tiling. (In the case that ¢p is unsatisfiable, we show with the same
arguments as in (1) that if D admits a tiling of N x N, then ¢p
has a model 2 = (N, (P;)4ep)-)

Let now ip have a finite model. To show that if ¢p has a (finite)
model, then D admits a (periodic) tiling we consider the Skolem normal

form ¢p of ¢p:

¢op = Vavz(/\ Pyjxz — —Pyxz
dAd

A\ (PaxzAPpfxz) A \/ (Pgzx APpzfx).
(dd"eH (ddev

e Suppose B = (B, f, (Py)4ep) | @p- Define a tiling 7 : N x N —
D as follows: choose b € B, and set 7(i,j) := d for the unique

20

1.4 Applications of the domino method

d € D such that B |= P;(f'b, fib) for all i,j € N. Since B |= ¢p, T
is a correct tiling.

e Suppose that B |= ¢p is finite:

A
f

Choose b € B such that, for some t > 1, f th = b. Then the defined
tiling T is periodic.

Q.E.D.

Corollary 1.36. FO? is a conservative reduction class.

Later we show that FO? has the EMP.
Consider sets of formulae X C FO over functional vocabularies.
FO(7) is a conservative reduction class if T contains

* two unary functions or

¢ one binary function.

This is even true for sentences of the form Vx¢ where ¢ is quantifier-
free.

Theorem 1.37. [V, (0),(2)]= and [V, (0), (0,1)]= are conservative reduc-
tion classes.

Proof. We apply the domino method for formulae Vx¢ where ¢ is
quantifier-free with any number of unary functions, and then apply
a reduction/interpretation to reduce this to two unary/one binary
function/s.

Define a mapping D = (D,H,V) — ¢p where ¢p is a formula
over the vocabulary {f,g, (h4)sep} where all function symbols are
unary. The intended model is N x IN with successor functions f and g.
The subformula Vx(fgx = gfx) ensures that the models of ip contain
a two-dimensional grid. The fact that a position x is tiled by d € D is

21

1 The classical decision problem for FO

expressed by requiring that hyx = x, i.e. that x is a fixed point of h;.
Now define

¥p = Vx(fgx = gfx A)\ (hgx = x — hgx # x)

dAd

AN\ (hgx =xAhgfx = fx)
(dd)eH

A\ (hgx =xANhgpgx = gx)) .
@dd)ev

We claim that there exists a tiling ¢ : IN x N — D if and only if
Yp is satisfiable.

” = ” Assume o is a correct tiling. Construct the (intended) model
A= (NxN,f,g (ha)aep) with
- fli,j) = (i+1,)),
- g(i,j) = (L,j+1),
— (i,j) ifoli,) =d

= hq(i,j)
) # (i,j) otherwise.

Clearly 2 = p.

” <" Consider B = (B, f, g, (hg)aep) E ¥p.
Choose an arbitrary b € B and define

c:NxN—D:o(i,j):=diff B =hyfiglb = figih.

Note that every position is in exactly one of the h;. Then o is
a correct tiling. If B is finite, then ¢ is periodic, and thus the
reduction is conservative.

We now show that we can sharpen the results, i.e. show that two
unary function symbols are sufficient

Consider Vx¢ € [V, (0), (w)]= with monadic function symbols
fi, -+, fm. Transform @ into ¢ := @[x/hx, f;/hg'] where h, g are fresh
unary function symbols. This procedure transforms formulae over the
vocabulary {fi, ..., fu} into formulae over the vocabulary {h, g}. The
idea is to replace an application of f; by i applications of g. The second
function & takes care of unwanted equalities.

22

1.4 Applications of the domino method

VAN

X
d
hx
%
S 10729

Claim: Vx¢ is (finitely) satisfiable < Vx@ is (finitely) satisfiable.

" <" Let B = (B,h,g) = Vx@. Construct A = (A4, f1,..., fm) with
- A={hb:be B}
- fi(a) = (hg")(a)
Then 2 |= Vx¢.
"= LetA= (A, f1,..., fm) = Vx¢. Construct B = (B, g, h) with
~B=Ax(Z/(m+1)Z),
-g(ai)=(ai+1),
- h(a,0) = (a,0),
- h(a,i) = (f;a,0).
This transformation preserves the meaning of terms: Let t(x) =
fi, ... fi,x be a term in ¢. Then F(x) = hg"* ... hg'hx, and it holds
that F2[a,0] = (t*[a],0). Now the claim follows via induction over
the structure of ¢.

We now show that we need at most one binary function. The idea

is to find an interpretation of g,h : A — A in a structure A = (A, F)
with F: Ax A — Avia

* g(a) = F(a, F(a,a)),
* h(a) = F(F(a,a),a)

23

1 The classical decision problem for FO

where F(a,a) # a.
Formally, consider a formula Vx¢ with unary function symbols
£, 8. Introduce a new binary function symbol F and translate

¢ = Pg Ay
where
pg = olx/g"x,8/8" h/I"],
on = @x/h*x,g/¢", h/h]
with
¢t = F(t Ftt),
h*t = F(FtH,).

Claim: Vx¢ (finitely) satisfiable < Vx(@g A @) (finitely) satisfi-
able.

7= " LetA = (A, g h) |E Vxp be a model. Set B = (B, F) with

- B:=AXZ/3Z
- F((a,i),(a,i)) :==(a,i+1)
- F((a,i),(a,i+1) (ga,0)

)=
- F((a,i+1),(a,i)) := (ha,0).
Now, for all (a,i) € B

87 (a,i) = F((a,1), F(a,0) (a,1)) = F((a,i), (a,i+1)) = (g0,0)
and

h*(a,i) = (ha,0).
Thus A is isomorphic to a copy of A defined in B.
A=A := ({(a,0) :a € A}, g%, h").
Therefore, for all (a4, 1)

B | gg(a,i) & A = ¢(ga,0)

24

1.4 Applications of the domino method

<A = ¢p(ga) and
B = gn(a,i) & A" = ¢(ha,0)
<A = p(ha).
Thus, 2 |= Vx¢ implies B |= Vx(¢q A ¢x).

" <" For B = (B,F) = Vx(pg A @) let A = (A, g, h) with
- A:=g¢*(B)Uh*(B)

-8:=g
- h:=h
Then 2 |= Vx¢. Q.E.D.

25

2 Finite Model Property

We study the finite model property for fragments of FO as a mean to
show that these fragments are decidable, and also to better understand
their expressive power and algorithmic complexity.

Recall that a class X C FO has the finite model property if Sat(X) =
Fin-sat(X). Since for any decidable class X, Fin-sat(X) is r.e. and Sat(X)
is co-re., it follows that Sat(X) is decidable if X has the FMP. In many
cases, the proof that a class has the finite model property provides a
bound on the model’s cardinality, and thus a complexity bound for the
satisfiability problem. To prove completeness for complexity classes we
make use of a bounded variant of the domino problem.

2.1 Ehrenfeucht-Fraissé Games
2.1.1 Atomic Types
Definition 2.1. The atomic k-type of ay, ..., a; in 2 is defined as

atpy (a1, ..., ar) == {y(x1...,x) : v atomic formula or negated

atomic formula such that 2 = y(ay,...,a¢)}

We assume that all structures contain unary or binary relations only.
Hence, to describe a structure it suffices to define its universe and to
specify the atomic 1-types and 2-types for all of its elements.

Example 2.2. Let 2 be the structure (A, Ey,...,Eyn) where the E; are
binary relations. Then for a € A:

atpy(a) = {Ejxx : A }= Ejaa} U {—E;xx : 2 |= ~E;aa}.

Definition 2.3. Let 2 and B be structures over the same signature and

27

2 Finite Model Property

aC Aand b C B. We say that 2, a is locally isomorphic to B,b and
write 2, =g B, b if 4 has the same atomic type in 2 as b in 8.

2.1.2 The Game EF,, (2, B)

The Ehrenfeucht-Fraissé game EF,(2,B) is played by two players
according to the following rules.

The arena consists of the structures 2 and 8. We assume that
AN B = @. The players are called Spoiler and Duplicator, and a play of
EE, (2, B) consists of m moves.

In the i-th move, Spoiler chooses either an element a; € A or an
element b; € B. Duplicator answers by choosing an element in the other
structure.

After m moves, elements ay,...,a, from 2 and by,..., by, from
B are chosen. Duplicator wins the play if 2, (ay,az,...,4m) =0
B, (b1,by,...,by). Otherwise Spoiler wins.

After i moves in EF,, (%, B) are made, a position (a1, ...,4;,by,...,b;)
is reached. We denote the remaining subgame in which m — i moves
are left by EF,,_; (%, a1,...,a;,B,b1,...,b;).

A winning strategy of Spoiler for such a subgame is a function
which, for every reachable position, determines a move such that Spoiler
wins each play which is consistent with this strategy, no matter how
Duplicator plays. Winning strategies for Duplicator are defined analo-
gously.

We say that Spoiler (respectively, Duplicator) wins the game EF,, (2, B)
if this player has a winning strategy for EF,;;(2,%B). By induction on
the number of moves it is easy to show that for every (sub)game exactly
one of the two players has a winning strategy.

Example 2.4.
e LetA = (Z,<),B = (R, <). Then Duplicator wins EF, (2, B), but
Spoiler wins EF3(2, 9B).
e For a relational signature T = {E, P} (where P has arity one and

E has arity two), consider the structures 2 and B in Figure 2.1.
Spoiler wins the game EF;3(2,B), but Duplicator wins EF, (2, B).

28

2.1 Ehrenfeucht-Fraissé Games

A p B: p

PN
OV OV OV

Figure 2.1. Two structures and B with A =, B and A #3 B

2.1.3 The Game EF(21,B)

An important variant is the Ehrenfeucht-Fraissé game EF(2,B) in
which plays of arbitrary length are possible. In each play, Spoiler first
chooses an m € IN, and then the players play the game EF,, (2, B).

Spoiler wins the game EF (2, *B) if and only if there exists an m € IN
such that he wins the game EF,(2,B). In other words: Duplicator
wins EF (2, 9B) if and only if she has a winning strategy for each of the
games EF,; (2, B).

Recall that two structures 2 and B are said to be elementarily m-
equivalent, written A =, 9B, if no first-order formula of quantifier rank at
most m can separate both structures. If 2 =, B for all m € IN we write
2 =B and say that 2 and B are elementarily equivalent. The following
theorem shows that elementary equivalence and Ehrenfeucht-Fraissé
games are in some sense equivalent concepts.

Theorem 2.5 (Ehrenfeucht, Fraissé). Let T be finite and relational, and
let 2,8 be T-structures.
(1) The following statements are equivalent:
(i) A=>B.
(ii) Duplicator wins the Ehrenfeucht-Fraissé game EF (2, 9B).
(2) For all m € IN the following statements are equivalent:
(i) A=y B.
(ii) Duplicator wins EF;, (2, B).
In fact, even the following, somewhat stronger proposition holds
(for a proof see the lecture notes of mathematical logic).

29

2 Finite Model Property

Theorem 2.6. Let A, B be t-structures, @ = ay,...,a, € A, b =
by,..., by € B.If there exists a formula (%) with qr(y) = m such
that 2 = (@) and B = —¢(b) holds, then Spoiler has a winning
strategy for the game Gy, (2,4, B, b).

We use the above to prove finite model property of the following
fragment of FO.

Theorem 2.7. If T contains only unary predicates then FO[t] has FMP.

Proof. Let A = (A, Py,...,P,) and let qr(¢) = m. For each sequence of
bits &« = a1 ...a, we define P, = Q1 N Q>N ...N Qy, where Q; = P; if
«; = 1 and Q; is the complement of P; else.

Note that {a | x € P,} determines all atomic types of x. We
construct B by taking min(|P,|, m) elements into each P.2. Observe
that 8 is defined in this way (take P® = Un|a;=1 PZ). We show that
2A =, B using the Ehrenfeucht-Fraissé Theorem.

The following is a winning strategy for Duplicator in EF(2, B):
Answer each Spoiler’s choice of an element with an element of the same
atomic type in the other structure. Due to the construction it is possible
to do that for m moves. It also follows from the construction that = is
never violated and Duplicator wins the game. Q.E.D.

You can see from the proof that the constructed finite model B is a
sub-model of 2. It is not always the case, sometimes it is not possible
to find a finite sub-model, even for fragments with FMP.

2.2 FMP of Modal Logic

We proceed with proving that propositional modal logic (ML), which
is an important fragment of FO?, has the finite model property. In
fact we establish an even stronger result showing that every satisfiable
ML-formula has a finite model that is a tree. Hence, we prove that ML
has the finite tree model property.

30

2.2 FMP of Modal Logic

2.2.1 Modal Logic

Let us first briefly review the syntax and semantics of propositional
modal logic (ML).

Definition 2.8. For a given set of actions A and atomic properties
{P; :i € I}, the syntax of ML is inductively defined as:

¢ All propositional logic formulae with propositional variables P; are
in ML.

e If ¢, 9 € ML, then also ¢, (A @) and (¢ V @) € ML.

e If p € ML and a € A, then (a)y and [a]y € ML.

Remark 2.9. If there is only one action a € A, we write ¢y and Oy
instead of (a)y and [a]y, respectively.

Definition 2.10. A transition system or Kripke structure with actions from
a set A and atomic properties {P; : i € I} is a structure

K = (V,(Ea)aca, (Py)icr)

with a universe V of states, binary relations E; C V x V describing
transitions between the states, and unary relations P; C V describing
the atomic properties of states.

A transition system can be seen as a labelled graph where the
nodes are the states of I, the unary relations are labels of the states,
and the binary transition relations are the labelled edges.

Definition 2.11. Let K = (V, (Ey)qea, (P;)icr) be a transition system,
¢ € ML a formula and v a state of K. The model relationship KC,v |= 1,
i.e. 1 holds at state v of K, is inductively defined:

e K,vl=DPifand onlyif v € P;.
K,v |= — if and only if IC, v [~ 9.
KvkEyVeifandonlyif K,v =y or K,v = ¢.
K,oEypAgifandonlyif K, v = ¢ and K,v = ¢.
K, v |= (a)y if and only if there exists w such that (v, w) € E,; and
K,wl= 1.
K, v |= [a] y if and only if IC, w |= ¢ holds for all w with (v, w) € E,.

31

2 Finite Model Property

Definition 2.12. For a transition system K and a formula ¢ we define
the extension

[y]* = {o: Ko = ¢}

as the set of states of K where ¢ holds.

2.2.2 Bisimulation

One of the most important notions in the analysis of modal logics is
bisimulation. In fact bisimulation is closely related to logical equivalence
of Kripke structures with respect to formulae from ML.

Definition 2.13. Let K = (V, (Ea)aea, (Py)icr) and K = (V/, (EL) sca, (Pi/)z‘el)
be transition systems. A bisimulation between K and K’ is a relation
Z C V x V' such that for all (v,7') € Z
(Pred) v € P; if and only if v’ € P! foralli € I,
(Forth) foralla € A, w € V with v - w there exists a w’ € V' with
o L w and itis (w,w) € Z,
(Back) foralla € A, w' € V' with v/ - @' there exists a w € V with
v 5 wand itis (w,w') € Z.

Example 2.14.

v
P
!/ / /
w; wy U 1% w

Q Q p Q

Z ={(v,7"), (wy,w'), (wy,w')} is a bisimulation.

Definition 2.15. Let K, K’ be Kripke structures and letu € V, u’ € V'.
(K,u) and (K',u’) are bisimilar (for short, K, u ~ K',u), if there exists
a bisimulation Z between K and K’ such that (u,u’) € Z.

2.2.3 Bisimulation Invariance of Formulae of Modal Logic

The fundamental importance of bisimulation origins in the fact that
formulae of modal logic are not able to distinguish between bisimilar

32

2.2 FMP of Modal Logic

states. A more refined analysis considers the modal depth of formulae,
i.e. the maximal depth of nesting of modal operators in a formula.

Definition 2.16. The modal depth of a formula ip € ML is defined induc-
tively by

(1) md(y) = 0 for propositional formulae ¢,

(2) md(~¢) = md(y),

(3) md(¢ o ¢) = max(md(¢), md(¢)) foro € {A,V,—},
(4) md({a)p) = md([a]y) = md(y) +1

Definition 2.17. Let K and K’ be two Kripke structures and let v €
K, v eK.
(1) K,v =\ K/, v if for all p € ML we have K, v = ¢ if and only if
Ko .
(2) K,v =}y K, if for all ¢ € ML with md(y) < n we have K, v |=
P if and only if K/, o' = ¢

One can refine the definition of the bisimilarity relation between
transition systems as well. We say that (1C,u) and (K’, u) are n-bisimilar
(for short, K, u ~,, K',u’), if there exists a relation Z between K and K’
such that (u,u’) € Z and Z has the property 'Pred” and the ‘Forth” and
"Back’ property for all pairs of nodes (v,v’) € Z with distance at most
from (u,u"). For a formal (game theoretical) definition, see the lectures
notes of mathematical logic.

Theorem 2.18. For Kripke structures K, K’ and u € K, u’ € K’ the
following holds:

M Ku~K,u =K,u :ML K, u’

() K~y Kou' = Ku=ly K'u
Statement (1) is called the bisimulation invariance of modal logic:

K, vEyand K0~ K, v/, then K',0' =9

The reverse only holds for finitely branching systems. A transition
system is finitely branching if for all states v and all actions a the set
vE, :={w: (v,w) € E,} of a-successors of v is finite. (for proofs see
the lecture notes of mathematical logic).

33

2 Finite Model Property

Theorem 2.19. Let K, K’ be finitely branching transitions systems. Then

K,u" ~ K’ v if and only if K, u =\ K',u/'.

2.2.4 Tree Model Property

Definition 2.20. A transition system K = (V, (Ez)qea, (Pi)icr) with a
marked node w is a tree if

(1) E;NE, = @ for all actions a # b,
(2) (V,E) is a (directed) tree with root w in the graph theoretical sense,
where E = (J,c4 Ea.

Definition 2.21. Let @ be a set of formulae (of some logic, e.g. of modal
logic or first-order logic) over a signature which contains at most binary

relations and no functions.

(1) @ has the finite model property (FMP) if every satisfiable formula
@ € ® has a finite model.

(2) @ has the tree model property (TMP) if every satisfiable formula in
@ has a tree as a model.

(8) @ has finite tree model property if every satisfiable formula in ® has
a finite tree as a model.

We shall prove that formulae of modal logic have the finite tree
model property. For that consider unfoldings of transition systems. The
unfolding of K from state v consists of all paths in /C that start with
v. Hereby every path is considered as a distinguished object, i.e. even
if two paths intersect, the unfolding 7 contains several copies of the
intersection points and each state from K that is reachable from v via
a path is added to the unfolding, no matter whether is has already
been reached. Self-loops in K correspond thus to infinite paths in the
unfolding. Formally, unfoldings are defined as follows.

Definition 2.22. Let K = (VX, (EX),ca, (Pl-’c),-e[) be a Kripke structure
and let v € VK. The unfolding of K from v is the Kripke structure
Tico = (VT (E])aca, (P)icr) with

1

vT = {0 = vgagv1a1v3 ... V14 _10m : m €N,

34

2.2 FMP of Modal Logic

v =0, v; e VN, a; € A, (vi,vi11) € E,’lf foralli < m}
El = {(5,@) € VT x VT : @ = daw for some w € V¥,a € A}
Pl-T ={0=vpag...vm € vT o, € PZ-K}.

We write End () for the last state on the path 3, so we have 3 € Pl-T
if and only if End(9) € PZ.’C.

Lemma 2.23. For all Kripke structures K and all states v in X we have

K,v~ Tky 0.

Proof. Z := {(w,®) € VK x VT : End(@) = w} is a bisimulation from
K to Ti,, with (v,v) € Z. Q.E.D.

Theorem 2.24. ML has the tree model property.

Proof. Let ¢ be an arbitrary satisfiable formula from ML. Then there is a
model I, v |= . Let T := Tx, be he unfolding of K,v. As K,v ~ T, v,
due to the bisimulation invariance of modal logic we have 7,v = ¢.
Thus 1 has a tree model. Q.E.D.

The same argument shows that every class of bisimulation invariant
formulae has the tree model property.

2.2.5 Finite Model Property

For ML, we can prove a stronger result. For this, we use the notion of
the closure C(¢) of a formula ¢.

Definition 2.25. For every formula 1y € ML we inductively define for
all n € N the sets of formulae C,, () as follows:

1) y € Coly).

(2) If ¢ € Cu(9) then also ¢ € Cy(9).

B) If (p AB) € Cu(yp) or (p V) € Cp(¢p) then also ¢ € Cy(y) and
¥ € Cu(y).

@) If (a)g € Cu(y) or [a] € Ca($) then @ € Gy (9):

Finally let C(¢) := Upen Cj(9).

35

2 Finite Model Property

The closure C(¢) contains those formulae from ML that are sub-
stantial for the evaluation of i; C;() are hereby formulae that appear in
¢ within j nested modal operators. Notice that |C(¢)| < 2|y| (negated
formulas are added) and that C,,(¢) = @ for all n > md(¢).

Theorem 2.26. For every satisfiable formula ¢ € ML there is a finite
tree structure 7, v of depth < md(¢) and branching factor < |C(y)|
such that 7,v |= i. Thus ML has finite tree model property.

Proof. Without loss of generality we can assume that ¢ is in negation
normal form. As ¢ is satisfiable, there exists a tree model 7, u = ¢.
The depth of a node of 7 is its distance from the root. We define now a
labelling function S which assigns a subset of Cy, (1) to every node v of
T of depth m, namely

5(0) :={9 € Cu(y): T, v |= ¢}

We transform 7 in a finite tree structure by successively deleting
unnecessary subtrees. Let 7/ C T be some subtree of 7 and let v be a
node of 7'. Notice that 7,v |= S(v). The following lemma provides a
sufficient condition for 77,v = S(v).

Lemma 2.27. Let the subtree 7’ C T be constructed in a way that the
following conditions are fulfilled.

(1) For every successor w of v in T’ we have T/, w |= S(w).
(2) For every formula of the form (a)¢ € S(v) there exists an a-
successor w), of v in the tree 7' such that 77, w ,), = ¢.

Thenitis 77,v |= S(v).

Proof. Each formula in S(v) is a combination of formulae of the form
P;,—P;, {(a)¢ and [a]¢ that are built with A and V. So it suffices to show
for every formula ¢ of this form that 7,v |= @ implies 77, v |= 9. For
¢ = P; and ¢ = —P; this is clear as the atomic properties of the node v
are the same in 7 and 7”. For formulae [a] ¢ this follows from condition
(1) and for formulae (a) ¢ from condition (2). Q.E.D.

36

2.3 Finite Model Property of FO?

Now we can construct a finite subtree 7’ as follows. First, let v be
the root of 7. For every formula of the form (a)¢ € S(v) we choose
an a-successor w), € vE, such that 7, w,, = ¢ holds and delete all
not chosen successor nodes of v and the trees that have those nodes
as roots from 7. We continue this process for all remaining nodes of
depth 1,2,.... As the labelling S(v) of nodes of depth m = md(¢) only
consists of formulae P; and —P;, the resulting tree has depth at most
m. Every node v has at most |S(v)| < C(¥) successors such that the
branching factor of 77 is bounded by |C(¥)].

It follows by inductively proceeding from leaves to the root of 7’
that 77,v = S(v), in particular, 77,0 = ¢. Q.E.D.

2.3 Finite Model Property of FO?
We denote relational first-order logic over k variables by FOk, ie.
FO' := {¢ € FO : ¢ relational, ¢ only contains k variables}.

One result of the previous chapter was that [v3V,all, (0)] € FO? is a
conservative reduction class. We now prove that FO? has the finite
model property and is thus decidable. Note that FO formulae are not
necessarily in prenex normal form. A further motivation for the study
of FO? is that propositional modal logic can be viewed as a fragment of
FO? (in fact ML can be proven to be precisely the bisimulation invariant
fragment of FO?).

Before we proceed to prove the finite model property for FO?, as a
first step we establish a normal form for formulae in FO?.

Lemma 2.28 (Scott). For each sentence ¢ € FO? one can construct in
polynomial time a sentence ¢ € FO? of the form

n
¢ :=VaVya A J\ Vx3yp;
i=1

such that «, Bq,..., B, are quantifier free and such that ¢ and ¢ are
satisfiable over the same universe. Moreover, we have |¢| = O(|y| -

log [i])-

37

2 Finite Model Property

Proof. First of all, we can assume that formulae ¢ € FO? only contain
unary and binary relation symbols. This is no restriction since relations
of higher arity can be substituted by introducing new binary and unary
relation symbols. For example, if R is a relation of arity three, one could
add a unary relation Ry and three binary relations Ry xy, Ryy,x and
Ry,y,y and replace each atom R(x, x, x) (or R(y,y,y)) by Rx(x) (or Ry(y))
and atoms as R(x, x,y) or R(x,y,x) by Ryxy(x,y) and Ryyx(x,y) re-
spectively. By adding appropriate new subformulae one can ensure that
the semantics are preserved, i.e. that the newly introduced relations
partition a ternary relation in the intended sense. For example we
would introduce as a new subformula Vx(Ry (x) <+ Ryxy(x, x)).

With ¢ containing at most binary relations, we iterate the following
steps until ¢ has the desired form. We choose a subformula Qy# of ¢
(Q € {V, 3}, y quantifier free) and add a new unary relation R:

¢ = $lQyn/Rx]
v — P AVx(Rx < Quyn).

R captures those x that satisfy Qy#. The resulting formula ¢ is not yet
of the desired form, but it is equivalent to the following;:

(a) if Q = 3, then
@ = ¢ AVaVy(n — Rx) AVx3y(Rx — 1)
(b) else if Q =V, then
¢ = AVxVy(Rx —) AVaxTy(y — Rx)
Now use that conjunctions of VV-formulae are equivalent to a VV-

n
formula and obtain ¥ = VxVya A A Vx3yp;. Q.E.D.
i=1

Theorem 2.29. FO? has the finite model property. In fact, every satisfi-
able formula i € FO? has a model with at most 2/ elements.

Proof. The proof strategy is as follows: we start with a model of ¢ and

38

2.3 Finite Model Property of FO?

proceed by constructing a new model B of i such that |B| < 2001y,
For the construction the following definitions will be essential.

An element a € A is said to be a king of 2 if its atomic 1-type is
unique in 2, i.e. if atpy (b) # atpy (a) for all b # a. We let

e K:={a € A:aisaking of A} be the set of kings of 2, and
* P:= {atpy(a) :a € A,a ¢ K} be the set of atomic 1-types which
are realized at least twice in 2.

Since A = Vx3yB; for i = 1,...,n, there exist (Skolem) functions
fi,--o fu: A — Asuch that A |= B;(a, fia) for all a € A. The court of
2 is defined as

C:=KU{fik:keK,i=1,...,n}.

Let € be the substructure of 2 induced by C. We construct a model
B |= 1 with universe B=CU (P x {1,...,n} x {0,1,2}).

A B

ONO
0

To specify B we set B|c = € and for all other elements we spec-
ify the 1- and 2-types (in this way fixing B on the remaining part).
However,

(1) This must be done consistently:
e atpy (b,V') and atpy (b, b”) must agree on atpy (b), and
* 1(x,y) € atpy (b, V') & 7(y,x) € atpy (¥, b).

(2) Of course we have to ensure that B |= .

39

2 Finite Model Property

We illustrate the construction with the following example.

Example 2.30. Consider the formula ¢ over the signature T = {R, B}
(red edges and blue edges).

¢ = dx(Rxx A Bxx)
A VaxVy((Rxx A Bxx ARyy AByy — x =y)

A(Rxx V Bxx)
A(Rxy ARyx — x = y)
A(Bxy AByx — x = y)
A(Bxy Ax #y — Ryy))
Vx3y(x # y A (Rxx — Rxy)
(Bxx — Bxy)).

Let 2 = ¢, then A looks like follows:

D N (O A ¢

o —|>0-—-->0 —> -

In this case P = {{Rxx, 7Bxx}, {-Rxx, Bxx}} and the universe of
Bis B=CU (P x {1} x{0,1,2}).

We proceed to construct B by specifying the 1-types and 2-types
of its elements as follows.

(1) The atomic 1-types of elements (p, i,j) are set to atpg ((p,1,])) = p.
(2) The atomic 2-types atpy, (b, b’) will be set so that B |= Vx3yp; for
i=1,...,m.
Choose for each p € P an element h(p) € A with atpy (h(p)) = p.
Find for each b € B and each i a suitable element b’ such that
B = Bi(b, V') (by defining atpg (b, b') appropriately).
(a) If b is a king, set b’ := f;(b) € C C B. Then B |= B;(b,V').
(b) If b € C\ K (non-royal member of the court), distinguish:
e If f;(b) € K, then set V' := f;(b) € K C B.

40

2.3 Finite Model Property of FO?

e Otherwise it holds that atpy (f;j(b)) = p € P.
In this case, set b’ := (p,i,0). Now set atpy (b, V') :=
atpg (b, i(b). Thus B = (b,) since 2 = (b, fi(b))
() Ifb=(p,j¢) forsome p € P,j e {1,...,n},¢ € {0,1,2}, let
a:= h(p) and consider f;(a).
If fi(a) € K, set b = fi(a) and atpy (b, V') := atpy (a, V).
If fi(a) ¢ K, then atpy (fi(a)) = p' € P.
Sett := (p/,i,(£+1) (mod 3)).
Then set atpy (b, 1) := atpy (4, fi(a)), and thus B |= B;(b, V).

To complete the construction of B, let by, b, € B be such that
atpg (b1, by) is not yet specified. Choose a1,a, € A so that

atpy(a1) = atpgy(by) and
atpy(a2) = atpgy(b)

and set

atpgs (b1, b2) := atpy (a1, a2).

Since 2 |= a(ay,a3), also B |= a(by, by).
For the previously considered example, ‘B looks as follows:

Overall, we obtain B |= VxVya A 7\ Vx3yB; = ¢, and the size of B
i=1

1=

41

2 Finite Model Property

is restricted by

|Bl|=|C| +3n|P|=0O(n-# (atomic 1-types)).
~~
<[K|(n+1)
For k relation symbols, there are 2k atomic 1-types, hence |B| = 20(¥)).
Q.E.D.

This result implies that Sat(FO?) is in NEXPTIME (indeed it is
NEXPTIME-complete), since we can simply guess a finite structure
21 of exponential size (in the length of) and verify that 2 = ¢.

Corollary 2.31. Sat(FO?) € NEXPTIME = (|JNTIME(2"")).
k

This is a typical complexity level for decidable fragments of FO.
In fact, Sat(FOZ) is even complete for NEXPTIME. For showing this,
we reduce a bounded version of the domino problem to Sat(FO?).

Definition 2.32. Let D = (D, H, V) be a domino system and let Z(t)
denote Z/tZ x Z/tZ. For a word w = wy, ..., w,_1 € D" we say that
D tiles Z(t) with initial condition w if there is T : Z(t) — D such that
e if T(x,y) =dand 1(x+1,y) =d then (d,d') € H
for all (x,y) € Z(t) ,
e if t(x,y) =d,t(x,y+1) =d then (d,d') eV
for all (x,y) € Z(t) and
e 7(i,0) =w; foralli=0,...,n—1.

Let D be a domino system and T : IN — IN a mapping. Define

DOMINO(D, T) := {w € D* : D tiles Z(T(|w|)) with initial

condition w} .

As before we describe a computation of a (in this case non-
deterministic) Turing machine by a domino tiling in such a way that
the input condition of the domino problem relates to the initial configu-
ration of the Turing machine. The restrictions on the size of the tiled
rectangle correspond to the time and space restrictions of the Turing

42

2.3 Finite Model Property of FO?

machine. To prove that a problem A is NEXPTIME-hard, it suffices to
show that DOMINO(D, 2") <, A.

Our goal is to show that DOMINO(D, 2") reduces to Sat(X) for
relatively simple classes X C FO. Set

X = {p € FO?: ¢ = Va¥ya AVx3y B, sit. a, B quantifier-free,

without =, and with only monadic predicates} .

We show that Sat(X) is NEXPTIME-complete and hence also
Sat(FO?) is NEXPTIME-complete.

Lemma 2.33. For each domino system D = (D, H, V) there exists a
polynomial time reduction w € D" — 1, € X such that D tiles Z(2")
with initial condition w if and only if ¥, is satisfiable.

Proof. The intended model of ¢, is a description of a tiling 7 : Z(2") —
D in the universe Z(2").

n—1 .
Py b;2'. Encode

n—1 .
Letz = (a,b) € Z(2") witha = ¥ 4,2 and b =
i=0 i=0

the tuple as (ao,...,a,-1,by, ..., by—1) € {0,1}2".

To encode the tiling, we define ;, with the monadic predicates X;,
X!, Y;, Y, N; for 0 < i < nand Py(d € D) with the following intended
meaning:

Xz iff a;=1.
Xz iff aj=1forallj<i
Yz iff b=l
Yz iff bj=1forallj<i.

Niz iff z=(i0).
Pz iff t(z)=d.
Y, will have the form ¢, = VxVya A Vx3yB, where B accounts
for the correct interpretation of X;, X7, Y;, Y, N; and ensures that every

element has a successor, and « accounts for the description of a correct
tiling.

43

2 Finite Model Property

Now B is the the following formula:

B=XyxNYgx
n—1
AN Xix e (X x AXiox)
i=1
n—1
AN Yo (Y x AYiax)
i=1
n—1
AN\ Xiy < (Xix ® XFx)
i=0
n—1
AN\ Yy e (Yix® (Y x AXyo1x A X _qx))
i=0
n—1
A Nox < (\ —Xjx A=Yix)
i=0
n—1
A /\ Nijx <+ Niy1y.
i=0

We define the following shorthands for use in a:

n—1 n—1

H(xy) = N\ ye Yi)a \ Xy (Xix @ X/ x))
i=0 i=0
1 n—1

Viny) = N\ Xy Xix)A N\ Yy < (Yix @ Yix)).

Now « is defined to be

a= /\ =(PsxAPyx)

d4d’

N ((X y) — \/ PdX/\Pd/))
(dd')eH

A (Vixy)— \/ (PaxAPyy))
(ddev

A (n/_\l(N,«x S Pyx)).

i=i

44

2.3 Finite Model Property of FO?

Claim 2.34. 1, is satisfiable if and only if D tiles Z(2") with initial
condition w.
Proof. We show both directions.
(«) Consider the intended model, ¢, holds in it.
(=) Consider ¢ = (C, Xy, ...) = $» and define a mapping
f: C —=Z (2”)

c —(ab)=(ag,...,a4-1,bo,...,by_1)

witha; =1 iff €E X;c and
bi=1 iff €& Y.
As € = Vx3yp, f is surjective. Choose for each z € Z(2") an

element ¢ € f~!(z) and set 7(z) = d for the unique d that satisfies
¢ = Pjc. Then 7 is a correct tiling with initial condition w. Q.E.D.

Since the length of ¢y, is || = O(nlogn), the above claim com-
pletes the proof of the lemma. Q.E.D.

45

3 Descriptive Complexity

In this chapter we study the relationship between logical definability
and computational complexity on finite structures. In contrast to the
theory of computational complexity we do not measure resources as
time and space required to decide a property but the logical resources
needed to define it. The ultimate goal is to characterize the complexity
classes known from computational complexity theory by means of logic.

We first define what it means for a logic to capture a complexity
class. One of the main results is due to Fagin, stating that existential
second order logic captures NP, while it is still unknown whether there
exists a logic capturing PTIME on all finite structures. A deeper analysis
of the proof of Fagin’s Theorem shows that SO-HORN logic captures
PTIME on all ordered finite structures.

We further introduce least-fixed point logic, LFP, and prove the
result of Immerman and Vardi which states that least fixed-point logic
also captures PTIME on all ordered finite structures. We compare LFP
to inflationary fixed-point logic (IFP), which turns out to be equivalent
to LFP. Finally, we present partial fixed-point logic PFP and logics with
counting.

3.1 Logics Capturing Complexity Classes

Assume we have a class of finite T-structures. To measure the complexity
of problems we have to represent the structures by strings over a finite
alphabet ¥ so that they can be used as inputs for Turing machines. Since
Turing machines accept words and logics do not distinguish between
isomorphic structures, for encoding a structure it is necessary to fix an
ordering on the universe before.

By Ord(t) we denote the class of all finite structures (2, <), where

47

3 Descriptive Complexity

2 is a T-structure and < is a linear order on its universe. For any
structure 2 € Ord(t) with universe of size n, and for a fixed k, we can
identify AF with the set {0,1,..., nk — 1}. This is done by associating
each k-tuple 2 with its rank in the lexicographic ordering induced by <
on A¥. When we talk about the @-th element, we understand it in this

sense.

Definition 3.1. An encoding is a function mapping ordered structures to
words. An encoding code(-) : Ord(T) — £* is good if it identifies iso-
morphic structures, is polynomially bounded, first-order definable and
allows to compute the values of atomic statements efficiently. Formally,
the following abstract conditions must be satisfied.

e code(2, <) = code(B, <) iff (A, <) = (B,).

¢ There is a fixed polynomial p such that |code(2, <)| < p(]A|) for
all (2, <) € Ord(7).

e For all k € IN and all ¢ € X there exists a first-order formula
Bo(x1,...,x;) of vocabulary T U {<} so that for all (%, <) and all
a € AF it holds that

(2, <) = Bo(a) & the a-th symbol of code(2, <) is 0.

¢ Given code(2l, <) a relation symbol R of T and a tuple @ one can
efficiently decide whether 2 |= Ra.

The meaning of “efficiently” in the last condition may depend on
the context, here we understand it is as evaluated in linear time and
logarithmic space.

Example 3.2. Let A = (A, Ry, ..., Ry) be a structure with a linear order
< on A. Let |A| = n and let s; be the arity of R;. Let ¢ be the maximal
arity of Ry, ..., Ry,. For each relation we define

X(R]) =wg... wns/_lon(_nSi S {O, 1}}1[,
where w; = 1 if the i-th element of A% is in R;. Now

code(2, <) := 170" ""x(Ry) ... x(Ru)-

48

3.2 Fagin's Theorem

When we say that an algorithm decides a class K of finite T-structures
we actually mean that it decides

code(K) = {code(2, <) : A € K, < alinear order on A}.

Definition 3.3. A model class is a class K of structures of a fixed vocabu-
lary 7 that is closed under isomorphism, i.e. if 2 € K and 2 = B, then
B e K.

A domain is an isomorphism closed class D of structures where the
vocabulary is not fixed. For a domain D and vocabulary T, we write
D(7) for the class of T-structures in D.

Definition 3.4. Let L be a logic, Comp a complexity class and D a
domain of finite structures. L captures Comp on D if

(1) For every vocabulary T and every (fixed) sentence i € L(7), the
model-checking problem for ¢ on D(7) is in Comp.

(2) For every vocabulary T and any model class K C D(7) whose
membership problem is in Comp, there exists a sentence ¢ € L(T)
such that

K={AeD(r): % =p}

3.2 Fagin’s Theorem

Existential second-order logic (£}) is the fragment of second-order logic
consisting of formulae of the form 3R;...3R;;¢ where ¢ € FO and
Ry,..., Ry are relation symbols. As we will see in this chapter, the
logic Z% captures the complexity class NP on the domain of all finite

structures.

Example 3.5. 3-Colorability of a graph G = (V, E) is in NP and indeed
there is a Z%—formula defining the class of graphs which possess a valid
3-coloring:

JR3IBIAY (Vx(RxVBxVYx)
A VaVy(Exy — =((Rx ARy) V (Bx A By) V (Yx A Yy))

49

3 Descriptive Complexity

Theorem 3.6 (Fagin). Existential second-order logic captures NP on the
domain of all finite structures.

Proof.

The proof consists of two parts. First of all, let y = IRy ... 3R, € Z%
be an existential second-order sentence. We show that it can be decided
in non-deterministic polynomial time whether a given structure 2 is a
model of .

In a first step, we guess relations Ry,...,R;; on A. Recall that
relations can be identified with binary strings of length n®, where
s; is the arity of R;. Then we check whether (2, Ry,...,Ry) = ¢
which can be done in LOGSPACE and hence in PTIME. Thus the
computation consists of guessing a polynomial number of bits followed
by a deterministic polynomial time computation, showing that the
problem is in NP.

For the other direction, let K be an isomorphism-closed class of
T-structures and let M be a non-deterministic TM deciding code(K) in
polynomial time. We construct a sentence i € Z% such that for all finite
T-structure 2 it holds that

2 |= i < M accepts code(2, <) for any linear order < on A.

Let M = (Q,%,qo, FT, F~, 6) with accepting and rejecting states F* and
F-and 6: (QxX) —» P(Qx X x{0,1,—1}) which, given an input
code (%, <), decides in non-deterministic polynomial time whether 2
belongs to K or not. We assume that all computations of M reach an
accepting or rejecting state after precisely n¥ steps (1 := | A)).

We encode a computation of M on code(2l, <) by relations X and
construct a first-order sentence ¢ € FO(t U {<} U {X}) such that for
every linear order < there exists X with (2, <, X) = ¢ if and only if
code(2, <) € L(M). To this end we show that

* If X represents an accepting computation of M on code(%, <) then

@ < X) = om-
o If (A, <, X) = @um then X contains a representation of an accepting
computation of M on code(%, <).

50

3.2 Fagin's Theorem

Accordingly the desired formula ¢ is then obtained via existential
second-order quantification

Y := (3 <)(3X)(”< is a linear order ” A gp).
Details:

* We represent numbers up to 1¥ as tuples in AX.

¢ For each state g € Q we introduce a predicate
X, := {f € A" : at time f the TM M is in state q}.
¢ For each symbol o € ¥ we define
= {(t,@) € AF x AF: at time the cell 7 contains ¢}.
® The head predicate is

Z = {(t,4) € A* x AF: at time f the head of M

is at position a}.

Now ¢y is the universal closure of START A COMPUTE A END.

START := X,,(0) AZ(0,0) A A (Bo(X) = Yo (0, %)).
gEL

Recall that B states that the symbol at position X in code(2, <) is 0.
The existence of the formulae B, is guaranteed by the fact that code(-)
is a good encoding. In what follows, we denote by x +1and x — 1 a
first-order formula that defines the direct successor and predecessor of
the tuple X (in the lexicographical ordering on tuples that is induced by
the linear order <), respectively.

COMPUTE := NOCHANGE N CHANGE.

51

3 Descriptive Complexity

NOCHANGE := A\ (Yo (£%) A Z(EY) AT #%

oeL
AT =F+1—= Y, (F,%)).
CHANGE = /\ (PRE[q, 0’] — \/ POST[!]/,U/,TVZD,
geQ,ueR (q'0',m)ed(q,0)

where

PRE[q,0] := X, (F) A Z(£,%) A Yo(£X) AT =141,

POST(q, o', m] := Xy (f') A Yo (F, %) A MOVE,[t, 7],
and

WE—1=7 A Z(,y), m=-1
MOVE,, [, %] := { z(¥, %), m=0
WE+1=7A Z({,y), m=1.

Finally, we let

END:= A —X;(f).
qeF-

It remains to show the following two claims.

Claim 1. If X represents an accepting computation of M on code(%, <)
then (2, <,X) = @um. This, however, follows immediately from the
construction of ¢y;.

Claim 2. If (%, <,X) = ¢u, then X contains a representation of an
accepting computation of M on code(2, <). We define

CONF(C,] == Xy () A ZG) A A\ Yo G

for configurations C = (wy...wx_q,4,p) (tape content wy...w,x_1,
state g, head position p), i.e. the conjunction of the atomic statements
that hold for C at time j. Let Cy be the input configuration of M on
code(2l, <). Since (2, <, X) = START it follows that

52

3.3 Second Order Horn Logic on Ordered Structures

(2, <, X) = CONF|Cy,0].

Since (2, <, X) = COMPUTE and (2, <, X) = CONF[C,, t], for some
C; F Ciyq it holds that (2, <, X) = CONF[C;, 1, t + 1].

Finally, no rejecting configuration can be encoded in X because
(2, <, X) = END. Thus an accepting computation

CobCib ... FCy_q

of M on code (%, <) exists, with (2, <,X) | CONF|[C;,i] for all i <
nk — 1. This completes the proof of Fagin’s Theorem. Q.E.D.

Theorem 3.7 (Cook, Levin). SAT is NP-complete.

Proof. Obviously SAT € NP. We show that for any X}-definable class K
of finite structures the membership problem 2 € K can be reduced to
SAT. By Fagin’s Theorem, there exists a first-order sentence ¢ such that

K={2eFin(t) : A = 3Ry ... IR,y }.

Given 2l, construct a propositional formula g as follows.

e replace 3x;@ by V,ca @[x;/4a],

* replace Vx;¢ by Asea ¢[xi/al,

¢ replace all closed T-atoms Pz in i with their truth values,
¢ replace all atoms Ra with propositional variables Prj.

This is a polynomial transformation and it holds that
Ae e AE=TRy ... IR, & Py € SAT.

Q.E.D.

3.3 Second Order Horn Logic on Ordered Structures

The problem of whether there exists a logic capturing PTIME on all
finite structures is still open. The theorem of Immerman and Vardi
states that least fixed-point logic captures PTIME on the class of all
ordered finite structures. We first present the result of Gradel that

53

3 Descriptive Complexity

on ordered finite structures SO-HORN captures PTIME. This result
follows from a careful analysis of the proof of Fagin’s Theorem (indeed,
the construction we used in its proof is not the standard one, but an
optimized version so that it can be adapted for showing that SO-HORN
captures PTIME on ordered structures).

Definition 3.8. Second-order Horn logic, denoted by SO-HORN, is the
set of second-order sentences of the form

t
Q1R1 e QmRmvyl .. Vys /\ Ci,
i=1

where Q; € {3,V} and the C; are Horn clauses, i.e. implications
ﬁl/\.../\‘Bm — H,

where each f; is either a positive atom Rz or an FO-formula that does
not contain Ry, ..., Ry. H is either a positive atom R]-Z or the Boolean
constant 0.

£1-HORN denotes the existential fragment of SO-HORN, i.e. the
set of SO-HORN sentences where all second-order quantifiers are exis-
tential.

Theorem 3.9. Every sentence 1p € SO-HORN is equivalent to a sentence
' € Z1-HORN.

Proof. 1t suffices to prove the theorem for formulae of the form
¢ = VP3R; ... 3R, VZg,

where ¢ is a conjunction of Horn clauses and m > 0 (for m = 0, the
formula has the form VPVzg). Indeed we can then eliminate universal
quantifiers beginning with the inner most one by considering only the
part starting with that universal quantifier.

Lemma 3.10. A formula 3RVz¢(P,R) € Z}-HORN holds for all rela-
tions P on a structure 2 if and only if it holds for those P that are false
at at most one point.

54

3.3 Second Order Horn Logic on Ordered Structures

Proof. Let k be the arity of P. For every k-tuple @, let P* = AK — {a}, i.e.
the relation that is false at 7 and true at all other points. By assumption,
there exist R" such that

(21, P%,R") |= Vzg.

Now consider any P # AF and let R; := Magp R?. We show that
(A, P,R) |= Vzp where R is the tuple consisting of all R;.

Suppose that this is false, then there exists a relation P # Ak,
a clause C of ¢ and an assignment p : {zq,...,25} — A such that
(A, P,R) |= =C[p]. We proceed to show that in this case there exists a
tuple @ such that (2, P?,R") = —~Clp] and thus

(2, P, R") = —Vzg
which contradicts the assumption.

e If the head of C[p] is P, then take @ =% ¢ P.
o If the head of Clp] is R;i, then choose @ ¢ P such that @ ¢ R?,
which exists because u ¢ R;.

¢ If the head is 0, take an arbitrary @ & P.

The head of C[p] is clearly false in (2, P?, EE). Pz does not occur
in the body of C[p], because 7 ¢ P and all atoms in the body of C[p] are
true in (2, P, F). All other atoms of the form P; that might occur in the
body of the clause remain true for P?. Moreover, every atom R;7 in the
body remains true if R; is replaced by R because R; C R?. This implies
(24, P, R") = ~Clp). Q.E.D.

Using the above lemma, the original formula ¢y = VP3R; ...3R,;,Vz¢
is equivalent to

IR Vze|Pu/u = u) AVYy IR VZe|Pu/u # 7.

This formula can be converted again to Z% -HORN; in the second part
we push the external first-order quantifiers inside while increasing the

55

3 Descriptive Complexity

arity of quantified relations by || to compensate it, i.e. we get
IR’ Vyze[Pu/u # ¥, R(%)/R (%, 7)].
QE.D.

Theorem 3.11. If € SO-HORN, then the set of finite models of ¢,
Mod (), is in PTIME.

Proof. Given ¢’ € SO-HORN, transform it to £1-HORN, y =
IR;...3RuVZ A\; C;. Given a finite structure 2 reduce the problem
of whether 2 |= to HORNSAT (as in the proof of the theorem of Cook
and Levin).

® Omit quantifiers 3R;.

¢ Replace the universal quantifiers Vz;1(z;) by Agea 11(zi/a].

e If there is a clause that is already made false by this interpretation,
ie. C=1A...AN1 = 0, reject ¢. Else interpret atoms R;u as
propositional variables.

The resulting formula is a propositional Horn formula with length
polynomially bounded in |A| and which is satisfiable iff 2 |= ¢. The
satisfiability problem HORNSAT can be solved in linear time. Q.E.D.

Theorem 3.12 (Griadel). On ordered finite structures SO-HORN and
Z%-HORN capture PTIME.

Proof. We analyze the formula @) constructed in the proof of Fagin’s
Theorem in the case of a deterministic TM M. Recall that ¢y is the uni-
versal closure of START A NOCHANGE A CHANGE A END. START,
NOCHANGE and END are already in Horn form. CHANGE has the

form

A (PRE[go] = \/ POST[¢,c’,m)).
qEQUES (q.0",m)€d(q,0)

For a deterministic M for each (g,0) there is a unique d(g,0) =
(q',0',m). In this case PRE[g,0] — POST[q/,0’,m] can be replaced
by the conjunction of the Horn clauses

56

3.3 Second Order Horn Logic on Ordered Structures

Q.E.D.

Remark 3.13. The assumption that a linear order is explicitly available
cannot be eliminated, since linear orderings are not definable by Horn
formulae.

57

4 LFP and Infinitary Logics

One of the distinguishing features of finite model theory compared
with other branches of logic is the eminent role of various kinds of
fixed-point logics. Fixed-point logics extend a basic logical formalism
(such as first-order logic, conjunctive queries, or propositional modal
logic) by a constructor for expressing fixed points of relational operators.

What do we mean by a relational operator? Note that any formula
(R, X) of vocabulary T U {R} where R is a relational symbol of arity k
and X is a k-tuple of variables that are free in 1 can be viewed as defining,
for every T-structure 2, an update operator Fy : P(AK) — P(A¥) on
the class of k-ary relations on A, namely

Fy:R—={a: (%R) Ey¢(R,a)}.

A fixed point of Fy is a relation R for which Fy(R) = R. In general,
a fixed point of Fy need not exist, or there may exist many of them.
However, if R happens to occur only positively in ¢, then the operator
Fy is monotone, and in that case there exists a least relation R C Ak
such that Fy(R) = R. The most influential fixed-point formalisms in
logic are concerned with least (and greatest) fixed points, so we shall
discuss these first. We start by reviewing the necessary mathematical
foundations and we also show how least fixed-point logic is related to
infinitary first-order logic.

4.1 Ordinals

The standard basic notion used in mathematics is the notion of a set,
and all mathematical theorems follow from the axioms of set theory. The
standard set of axioms is known as Zermelo-Fraenkel Set Theory ZF. These

axioms guarantee, for instance, the existence of an empty set, an infinite

59

4 LFP and Infinitary Logics

set, the power set of any set, and that no set is a member of itself (i.e.
Vx —x € x). It is common in mathematics to extend ZF by the axiom of
choice AC and to denote the resulting set of axioms by ZFC.

In particular, the notion of numbers can be formalised by sets. The
standard way to do this is to start with the empty set, i.e. let 0 = @, and
proceed by induction, defining #n +1 = nU {n}. Here are the first few
numbers in this representation:

e 0=0Q,

1= {0},

2= {0{2}},

« 3= {0,{0}, {0, {2}}).

In this way we can construct all natural numbers. Observe that for each
such number n (viewed as a set) it holds that

men — mCn.

In particular, the relation € is transitive in such sets, i.e. if k € m and
m € n then k € n. We use this property of sets to define a more general
class of numbers.

Definition 4.1. A set « is an ordinal number if € is transitive in a.

Besides natural numbers, what other ordinal numbers are there?
The smallest example is w = U, 1, the union of all natural numbers.
Indeed, it is easy to check that the union of ordinals is always an ordinal
as well (as long as it is a set).

What is the next ordinal number after w? We can again apply the
+1 operation in the same way as for natural numbers, so

w+l=wuU{w}=1{0,1,2,...,{0,1,...} }.

But does it make sense to say that w + 1 is the next ordinal, or, to
put it more generally: is there an order on ordinals? In fact both, each
ordinal as a set and all ordinals as a class, are well-ordered, i.e. the
following holds:

e for any two ordinal numbers « and f either « C Bor f C «;

60

4.2 Some Fixed-Point Theory

e there exists no infinite descending sequence of ordinals
®o 20 243200

¢ each ordinal « is well-ordered by €.

Ordinals are intimately connected to well-orders, in fact any struc-
ture (A, <) where < is a well-order is isomorphic to some ordinal a.
To get an intuition on how ordinals look like, consider the following
examples of countable ordinals: w + 1, w + w, w?, w3, w¥.

The well-order of ordinals allows to define and prove the principle
of transfinite induction. This principle states that the class of all ordinals
is generated from @ by taking the successor (+1) and the union on limit
steps, as shown on the examples before. Specifically, for each ordinal «

it holds that either

e there exists an ordinal B < « such thata = +1 = U {B}, or
* there exist ordinals f, < a such that « = U, B.

Besides ordinals, we sometimes need cardinal numbers Cn which
formalise the notion of cardinalities of sets. A cardinal number x € Cn
is a smallest ordinal number, i.e. x is an ordinal number with which no
strictly smaller ordinal number can be put into bijection. For example,
every natural number and w itself are cardinal numbers, but w? ¢ Cn.
We denote the class of infinite cardinal numbers by Cn®.

4.2 Some Fixed-Point Theory

There is a well-developed mathematical theory of fixed points of mono-
tone operators on complete lattices. A complete lattice is a partial order
(A, <) such that each set X C A has a supremum (a least upper bound)
and an infimum (a greatest lower bound). Here we are interested
mainly in power set lattices (P(A), C) (where A is the universe of a
structure), and later in product lattices (P(By) X - - - X P(By), €). For
simplicity, we shall describe the basic facts of fixed-point theory for
lattices (P(B), C), where B is an arbitrary (finite or infinite) set.

Definition 4.2. Let F : P(B) — P(B) be an operator.

61

4 LFP and Infinitary Logics

(1) X C B is a fixed point of F if F(X) = X.
(2) A least fixed point or a greatest fixed point of F is a fixed point X of F
such that X C Y or Y C X, respectively, for each fixed point Y of F.

(3) F is monotone, if X CY = F(X) C F(Y) forall X,Y C B.

Theorem 4.3 (Knaster and Tarski). Every monotone operator F :
P(B) — P(B) has a least fixed point Ifp(F) and a greatest fixed point
gfp(F). Further, these fixed points may be written as

Ifp(F)
gtp(F)

({X:F(X)=X}=({X:F(X) C X}
H{X:F(X) =X} = {X: F(X) 2 X}.

Proof. Let S={X CB: F(X) C X} and Y = S. We first show that Y

is a fixed point of F.

F(Y) CY. Clearly, Y C X for all X € S. As F is monotone, it follows
that F(Y) C F(X) C X. Hence F(Y) CNS =Y.

Y CF(Y). AsF(Y) CY,wehave F(F(Y)) C F(Y), and hence F(Y) € S.

Thus Y =S C F(Y).

By definition, Y is contained in all X such that F(X) C X. In
particular Y is contained in all fixed points of F. Hence Y is the least
fixed point of F.

The argument for the greatest fixed point is analogous. Q.E.D.

Least fixed points can also be constructed inductively. We call an
operator F : P(B) — P(B) inductive if the sequence of its stages X*
(where « is an ordinal), defined by

xX0:=q,
X**1:= F(X%), and
XA = U X* for limit ordinals A,

a<A

is increasing, i.e. if X# C X* for all < «. Obviously, monotone
operators are inductive. The sequence of stages of an inductive operator
eventually reaches a fixed point, which we denote by X*. The least

62

4.2 Some Fixed-Point Theory

ordinal for which X# = XP*1 = X* is called cl(F), the closure ordinal
of F.

Lemma 4.4. For every inductive operator F : P(B) — P(B), |cl(F)| <
|BI.

Proof. Let |B|* denote the smallest cardinal greater than |B|. Suppose
that the claim is false for F. Then for each & < |B|T there exists an
element x, € X**!1 — X% The set {x, : « < |B|T} is a subset of B of
cardinality |B|™ > |B|, which is impossible. Q.E.D.

Proposition 4.5. For monotone operators, the inductively constructed
fixed point coincides with the least fixed point, i.e. X* = lfp(F).

Proof. As X* is a fixed point, lfp(X) C X*. For the converse, we show
by induction that X* C lfp(F) for all w. As lfp(F) = N{Z: F(Z) C Z},
it suffices to show that X" is contained in all Z for which F(Z) C Z.
For @« = 0, this is trivial. By monotonicity and the induction
hypothesis, we have X**! = F(X*) C F(Z) C Z. For limit ordinals A
with X% C Z for all & < A we also have X* = Ua<r € Z. Q.E.D.

The greatest fixed point can be constructed by a dual induction,
starting with Y = B, by setting Y**! := F(Y*) and Y* = N, Y* for
limit ordinals. The decreasing sequence of these stages then eventually
converges to the greatest fixed point Y* = gfp(F).

The least and greatest fixed points are dual to each other. For

every monotone operator F, the dual operator F? : X + F(X) (where X
denotes the complement of X) is also monotone, and we have that

Ifp(F) = gfp(F?) and gfp(F) = lfp(F?).

Everything said so far holds for operators on arbitrary (finite or
infinite) power set lattices. In finite model theory, we consider opera-
tors F : P(AX) — P(AK) for finite A only. In this case the inductive
constructions will reach the least or greatest fixed point in a polyno-
mial number of steps. As a consequence, these fixed points can be
constructed efficiently.

63

4 LFP and Infinitary Logics

Lemma 4.6. Let F : P(A¥) — P(A¥) be a monotone operator on a
finite set A. If F is computable in polynomial time (with respect to |A|),
then so are the fixed points 1fp(F) and gfp(F).

4.3 Least Fixed-Point Logic

LFP is the logic obtained by adding least and greatest fixed points to
first-order logic.

Definition 4.7. Least fixed-point logic (LFP) is defined by adding to the
syntax of first-order logic the following least fixed-point formation rule: If
(R,) is a formula of vocabulary T U {R} with only positive occur-
rences of R, if X is a tuple of variables, and if f is a tuple of terms (such
that the lengths of X and f match the arity of R), then

[ifp Rx .] (¢) and [gfp RX . 9] (¥)

are formulae of vocabulary 7. The free first-order variables of these
formulae are those in (free(y) \ {x : x in x}) U free(t).

Semantics. For any T-structure 2 providing interpretations for all free
variables in the formula, we have that 2 |= [Ifp RX . ¢]({) if ™ (the
tuple of elements of 2 interpreting ¢) is contained in Ifp(Fy), where Fy
is the update operator defined by ¢ on 2. The semantic for greatest
fixed point operators is defined analogously.

Example 4.8. Here is a fixed-point formula that defines the transitive
closure of the binary predicate E:

TC(u,v) := [lfp Txy . Exy V 3z(Exz A Tzy)](u, v).

Note that in a formula [Ifp RX . ¢](f), there may be free variables in
¢ additional to those in X, and these remain free in the fixed-point
formula. They are often called parameters of the fixed-point formula.
For instance, the transitive closure can also be defined by the formula

¢(u,v) = [lfp Ty . Euy V 3x(Tx A Exy)](v)

which has u as a parameter.

64

4.3 Least Fixed-Point Logic

It can be shown that every LFP-formula is equivalent to one with-
out parameters (at the cost of increasing the arity of the fixed-point
variables). The proof is left to the reader.

Example 49. Let ¢ := Vy(y < x — Ry) and let (A, <) be a partial
order. The formula [Ifp Rx . ¢](x) then defines the well-founded part
of <. The closure ordinal of F, on (A, <) is the length of the longest
well-founded initial segment of <, and (4, <) | Vx[lfp Rx . ¢](x) if,
and only if, (4, <) is well-founded.

Example 4.10. The LFP-sentence
¢ := Yy3zFyz AVy[lfp Ry . Vx(Fxy — Rx)](y)

is an infinity axiom, i.e. it is satisfiable but does not have a finite model.

Example 4.11. The GAME query asks, given a finite game § =
(V,V, V4, E), to compute the set of winning positions for Player 0.
The GAME query is LFP-definable, by use of [Ifp Wx . ¢](x) with

(W, x) == (Vox AJy(Exy A Wy)) vV (V1 AVy(Exy — Wy)).

The GAME query plays an important role for LFP. It can be shown that
every LFP-definable property of finite structures can be reduced to
GAME by a quantifier-free interpretation. Hence GAME is complete for
LFP via this notion of reduction, and thus a natural candidate if one is
trying to separate a weaker logic from LFP.

Example 4.12. Maximal bisimulation B on a Kripke structure K =
(K, {E;j},{P;}) is defined by the formula (u,v) =

1

{gfp Bxy.(N\ (Pix <> Py) A
N\ (V2 (Ej(x,x") = 3y (E;(y,y') AB(x', /)N
]

Wy (Ei(y, o) — 3¢ (j(x,) A B<x’,y'>>>>)} (4,0),

i.e. " and v* are bisimilar if and only if K, u*, v |= ¢ (u,0).

65

4 LFP and Infinitary Logics

The duality between the least and greatest fixed points implies that
for any formula ¢,

[gfp Rx . 9]() = —[lfp Rx . ~p[R/=R]|(E),

where [R/—R] is the formula obtained from ¢ by replacing all occur-
rences of R-atoms by their negations. (As R occurs only positively in ¢,
the same is true for —[R/—R].) Because of this duality, greatest fixed
points are often omitted in the definition of LFP. On the other hand, it is
sometimes convenient to keep the greatest fixed points, and to use the
duality (and de Morgan’s laws) to translate LFP-formulae to negation
normal form, i.e. to push negations all the way to the atoms.

4.3.1 Capturing Polynomial Time

From the fact that first-order operations are polynomial-time com-
putable and from Lemma 4.6, we can conclude that every LFP-definable
property of finite structures is computable in polynomial time.

Proposition 4.13. Let i be a sentence in LFP. It is decidable in polyno-
mial time whether a given finite structure 2 is a model of . In short,
LFP C PTIME.

Obviously LFP, is a fragment of second-order logic. Indeed, by the
Knaster-Tarski Theorem,

1fp R¥ . (R, %)) (7) = YR((VE($(R, %) — R¥)) — R7).
We next relate LFP to SO-HORN.
Theorem 4.14. Every formula 1y € SO-HORN is equivalent to some

formula ¢* € LFP.

Proof. By Theorem 3.9, we can assume that ¢ = (3R;)--- (IRy)¢ €
Z%-HORN. By combining the predicates Ry, ..., R;; into a single predi-
cate R of larger arity and by renaming variables, it is easy to transform

66

4.4 Infinitary First-Order Logic

1 into an equivalent formula

¢ = avay/\ Ci A /\ D;,
!]

where the C; are clauses of the form RX «+ «;(R,%,7) (with exactly
the same head RX for every i) and the D; are clauses of the form
0« /Sj(R, X,7). The clauses C; define, on every structure 2, a monotone
operator F : R — {¥ : \/; 3yu;(X,7)}. Let R¥ be the least fixed point
of this operator. Obviously 2 = — if and only if % = B;(R¥,a,b)
for some i and some tuple a, b. But RY is defined by the fixed-point
formula

a?(x) := [lfp Rx . \/ Ty (x,7)](%)-

Hence, for p := 3x3y V; B;(X,), ¢ is equivalent to the formula ¢* :=
—B[RzZ/a“(Z)] obtained from —p by substituting all occurrences of
atoms Rz by a“(z). Clearly, this formula is in LFP. Q.E.D.

Hence SO-HORN < LFP < SO. As an immediate consequence of
Theorems 3.12 and 4.14 we obtain the Immerman-Vardi Theorem.

Theorem 4.15 (Immerman and Vardi). On ordered structures, least
fixed-point logic captures polynomial time.

However, on unordered structures, SO-HORN is strictly weaker
than LFP.

4.4 Infinitary First-Order Logic

Definition 4.16. Let x € Cn® be an infinite cardinal number and 7 a
signature. The infinitary logic Ly, (7) is inductively defined as follows.

¢ Each atomic formula in FO(T) is in Ly (7).

e If ¢ € Lyw(7), then also —¢, Ixg, Vx¢ € Liw(T).

e If & C Lyw(7) is a set of formulae with |®| < «,
then V ®, AP € Ly (T).

Further, we write Loow (T) for Uyccn® Liw (T)-

67

4 LFP and Infinitary Logics

Note that the second parameter w is always fixed as an index of our
logics. This indicates that we only allow finite sequences of quantifiers.

The logic Ly (T) is precisely the logic FO(T). The logic Ly, (7),
in which disjunctions and conjunctions can be built over countable sets
of formulae, is denoted by L, w-

The semantics of the infinitary logic is defined in an obvious way.
Clearly, we only have to treat the cases of A ® and \/ ®. Leta C A be
an assignment of at most x free variables, then

e Aa= APifand only if 2,7 |= ¢ for all ¢ € .
e 2,7 =\ @ if and only if there exists a ¢ € @ such that 2,7 |= ¢.

In all other cases the semantics of infinitary logic coincides with that of
first-order logic.

Example 4.17. Finiteness can be expressed in Ly, . Let

Qopi=3x1... 30, N\ (x5 # %))
1<i<j<n

and ¢gn = V{—¢>n | n < w} € Luyw- Then for each structure 2,
2 = ¢y, if and only if 2 is finite.

Remark 4.18. The Compactness Theorem does not hold for the logic
Ly, w- Consider for example the set of formulas g, U {¢>y | n < w}.
It is unsatisfiable, but each of its finite subsets is satisfiable.

Theorem 4.19. Let x € Cn®. For each formula ¢(X) € LFP there is a
formula § € Ly, such that for all structures 2 with |2 < x and all
a C A, we have 2 |= ¢(a) if and only if 2 = §(a).

Proof. By using the duality between least and greatest fixed points we
may assume that formulas in LFP only contain operators expressing
least fixed points. We inductively define the translation from LFP to
formulas of Le as follows:

e for atomic formulas ¢ we set) = ¢,
L4 —/|‘l\/) = —nj)\,
* Y1Ada =1 Ay, and 1 Vg = 1 V.

68

4.4 Infinitary First-Order Logic

—

For the case of [lfp Rx.9](t), we build by transfinite induction a sequence
of formulas ¢*(X) for all ordinals @ < k. These formulas intuitively
correspond to the stages in the inductive evaluation of the least fixed-
point. Accordingly, we start with the empty relation and set y°(¥) = L.
The induction proceeds as follows:

« pHI(F) = g[R2/y"(2)],
o for o = Up<y B, let (X) = Vo (9P (T) | B < a}.

Using induction on « and the definition of the semantics of Leow, We
see that the formulas ¢* correspond exactly to the stages of fixed-point
induction, i.e. R* = {¥ | ¢*(¥)}.

On structures 2 with || < k we have R* = R® is the least fixed-
point and which is thus defined by ¢*(¥). The claim follows. Q.E.D.

In general we can not drop the condition of bounded cardinality of
the structures. In fact, the class of all well-orderings is definable in LFP
by the following sentence:

Pwo 1= @1in A Vx[lip Wx(Vy(y < x = Wy))](x),

where ¢y, is a formula that expresses that < is a linear order. One can
show that this class is not definable in Leo.

We also observe that the structure (w,0,S) is axiomatizable in
LFP(0,S) up to isomorphism. To see this, note that {S"(0) |n < w} is
the least fixed-point of the expression x = 0V Jy(Ry A Sy = x) (with
respect to the variable R). Thus, (w,0, S) can be axiomatized by

VaVy(Sx = Sy — x = y) A (VxSx # 0)A
Vx[lfp Rx(x = 0V Jy(Ry A Sy = x))](x).
(The two first formulae in the conjunction are the first Peano axioms.)
We conclude that the upward Lowenheim-Skolem theorem for LFP fails:

Remark 4.20. There exists a sentence ¢ € LFP that has an infinite model
and no uncountable model.

Next, we want to show that the Compactness Theorem does not

69

4 LFP and Infinitary Logics

hold for LFP either. For this we give an LFP(S)-sentence ¢ such that ¢
has arbitrary large finite models, but no infinite one.

Theorem 4.21. There is a sentence ¢ € LEP(S) where S is a function
symbol of arity one such that ¢ has arbitrary large finite models, but
no infinite one.

Proof. Define

P(x,z) := [fp Rx.(x =z V Iy(Ry A Sy = x))](x).

If 2 is an S-structure then for all elements a,b € A, we have A |= (b, a)
if and only if there is some 1 < w such that (S*)"(a) = b. Now let

@ == YxTy(Sy = x) A IxVyy(y, x).

For some S-structure 2I, we have 2 = ¢ if and only if S is surjec-
tive and there is an 4 € A that generates the whole structure in the
sense that A = {(5*)"(a) |n < w}. For any n < w, the structure
2= ({1,...,n},S%) where S¥*(k) = k+1fork € {1,...,n—1} and
S%(n) = 1 is a model of ¢. Thus, ¢ has arbitrary large finite models.
On the other hand, ¢ has no infinite model. Let 2l = (A, Sm) be an
S-structure with an infinite universe A such that there is an 2 € A with
A = {(8®")"(a)|n < w}, then a ¢ Img(S%), so S* is not surjective.
Indeed, assume that a € Img(S%). Then a = S*(b) for some b € A.
Because A = {(5*)"(a) |n < w}, it would follow b = (S*)"(a), so
(8*)"*1(a) = a. Then it would be |{(s®)"(a) | n < w}| < n, in
contradiction to the fact that A is infinite and A = {(S%)"(a) |n < w}.
It follows that 2 [~ ¢, and the statement is proven. Q.E.D.

Corollary 4.22. There exists an unsatisfiable set of sentences & C LFP
such that every finite subset of ® is satisfiable, i.e. the Compactness
Theorem fails for LFP.

Proof. According to Theorem 4.21 there is a sentence ¢ € LFP(S) that
has arbitrary large finite models, but no infinite one. As before, consider
the set of sentences ® = {¢} U {Ix1... vy \icjx; # xj : 1 € w}.

Q.E.D.

70

4.4 Infinitary First-Order Logic

We mention yet another property of LFP, that we do not prove
here: the downward Lowenheim-Skolem theorem holds for LFP.

Theorem 4.23. Let ¢ € LFP be a satisfiable sentence. Then ¢ has a
countable model.

In particular, it follows that there is a sentence in ¢ € Leo, (T) for
some appropriate signature 7 that is not equivalent to any sentence
¢ € LFP(7). For example, we can choose an uncountable set of constant
symbols as T and a conjunction of all sentences ¢ # d for pairwise
distinct ¢,d € T as ¢, which has no countable model.

71

5 Modal, Inflationary and Partial Fixed
Points

In finite model theory, a number of other fixed-point logics, in addition
to LFP, play an important role. The structure, expressive power, and
algorithmic properties of these logics have been studied intensively, and
we review these results in this chapter.

5.1 The Modal p-Calculus

A fragment of LFP that is of fundamental importance in many areas of
computer science (e.g. controller synthesis, hardware verification, and
knowledge representation) is the modal p-calculus (Ly). It is obtained
by adding least and greatest fixed points to propositional modal logic
(ML). In this way L, relates to ML in the same way as LFP relates to
FO.

Definition 5.1. The modal py-calculus L, extends ML (including proposi-
tional variables X, Y, ..., which can be viewed as monadic second-order
variables) by the following rule for building fixed point formulae: If i
is a formula in L, and X is a propositional variable that only occurs
positively in ¢, then uX.p and vX.¢ are also L,-formulae.

The semantics of these fixed-point formulae is completely analo-
gous to that for LFP. The formula i defines on G (with universe V, and
with interpretations for other free second-order variables that ¢ may
have besides X) the monotone operator Fy : P(V) — P(V) assigning
to every set X C V the set ©(X) := {v € V : (G,X),v = ¢}. The
semantics of fixed-points is defined by

G,v |= uX.piff v € lfp(Fy)
G,v = vX.ypiff v € gfp(Fy).

73

5 Modal, Inflationary and Partial Fixed Points

Example 5.2. The formula pX.(¢ V (a)X) asserts that there exists a path
along a-transitions to a node where ¢ holds.

The formula ¢ := vX. <(\/,l€A(a>true) A (Naea [a]X)) expresses the
assertion that the given transition system is deadlock-free. In other
words, G, v |= ¥ if no path from v in G reaches a dead end (i.e. a node
without outgoing transitions).

Finally, the formula vX.uY. ((@)((p AX)V Y)) says that there ex-
ists a path from the current node on which ¢ holds infinitely often.

The embedding from ML into FO is readily extended to a transla-
tion from L, into LFP, by inductively replacing formulas of the form

uX.¢ by [lp Xx.¢*](x).

Proposition 5.3. Every formula ¢ € L, is equivalent to a formula
*(x) € LFP.

Further the argument proving that LFP can be embedded into SO
also shows that L, is a fragment of MSO.

As for LFP, a fixed pi-calculus formula can be evaluated on a struc-
ture 2 in time polynomial in |A|. The question whether evaluating
p-calculus formulas on a structure when both the formula and the
structure are part of the input is in PTIME is a major open problem.
On the other hand, it is not difficult to see that the y-calculus does
not suffice to capture PTIME, even in very restricted scenarios such as
word structures. Indeed, as L, is a fragment of MSQO, it can only define
regular languages, and of course, not all PTIME-languages are regular.
However, we shall see in Section 5.5 that there is a multidimensional
variant of L, that captures the bisimulation-invariant fragment of PTIME.
Before we do this, let us first show that L, is itself invariant under
bisimulation. To this end, we translate L, formulas into formulas of
infinitary modal logic MLeo, similar to the embedding of LFP into Leoe-

5.1.1 Infinitary Modal Logic and Bisimulation Invariance

Infinitary modal logic extends ML in an analogous way as how infinitary
first-order logic extends FO.

74

5.1 The Modal u-Calculus

Definition 5.4. Let x € Cn® be an infinite cardinal number. The
infinitary logic MLy, is inductively defined as follows.

¢ Predicates P; are in MLy, .
o If p € MLy, then also —¢, Og, 09 € MLy.

e If & C MLy, is a set of formulae with |®| < x,
then \V &, AP € MLy

Further, we write MLeo to denote Uyecn® MLyw.

The semantics of MLe on Kripke structures is defined analo-
gously to the semantics of ML, with the following obvious extension
for the case of infinite disjuntions and conjunctions.

e K,v= A®ifand only if K,v |= ¢ forall ¢ € ®.
e K,v =V @ if and only if there exists a ¢ € @ such that K, v |= ¢.

The same proof that shows invariance of ML under bisimulation
works for MLeo, because the introduction of infinite conjunctions and
disjunctions does not interfere with the arguments in the proof at all.

Theorem 5.5. The logic ML, is invariant under bisimulation, i.e. if
¢ € MLeoy is a formula and K,v ~ K',v" are two bisimilar Kripke
structures, then

Ko ¢ iff K',v' E¢.

Similarly, the proof of Theorem 5.6 can be adapted to give a trans-
lation from L, formulas to MLeo, as stated below.

Theorem 5.6. Let x € Cn™. For each formula ¢ € L, there exists a
formula ¢ € MLy, such that for all transition systems K with |[K| < «
and all v € K, we have K, v |= ¢ if and only if K, v |= .

Combining these two theorems, we get bisimulation invariance of Lj,.

Corollary 5.7. The logic L, is invariant under bisimulation.

75

5 Modal, Inflationary and Partial Fixed Points

5.2 Inflationary Fixed-Point Logic

LEP is only one instance of a logic with an explicit operator for forming
fixed points. A number of other fixed-point extensions of first-order
logic (or fragments of it) have been extensively studied in finite model
theory. These include inflationary, partial, non-deterministic, and alter-
nating fixed-point logics. All of these have in common that they allow
the construction of fixed points of operators that are not necessarily
monotone.

An operator G : P(B) — P(B) is called inflationary if G(X) O X
for all X C B. With any operator F one can associate an inflationary
operator G, defined by G(X) := X UF(X). In particular, inflationary
operators are inductive, so iterating G yields a fixed point, called the
inflationary fixed point of F.

To be more precise, the inflationary fixed-point of any operator
F: P(B) — P(B) is defined as the limit of the increasing sequence of
sets (R*) defined as R? := @, R**1 := R* U F(R%), and R* := [Jy) R®
for limit ordinals A. The deflationary fixed point of F is constructed in the
dual way starting with B as the initial stage and taking intersections at
successor and limit ordinals.

Remark 5.8.

(1) Monotone operators need not be inflationary, and inflationary
operators need not be monotone.

(2) An inflationary operator need not have a least fixed point.

(8) The least fixed point of an inflationary operator (if it exists) may
be different from the inductive fixed point.

(4) However, if F is a monotone operator, then its inflationary fixed
point and its least fixed point coincide.

The logic IFP is defined with a syntax similar to that of LFP, but
without the requirement that the fixed-point variable occurs only posi-
tively in the formula defining the operator, and with semantics given
by the associated inflationary operator.

Definition 5.9. IFP is the extension of first-order logic by the following
fixed-point formation rules. For every formula (R, X), every tuple

76

5.2 Inflationary Fixed-Point Logic

% of variables, and every tuple f of terms (such that the lengths of ¥
and f match the arity of R), we can build formulas [ifp Rx . ¢](#) and
[dfp Rx .] (¥).

Semantics. For a given structure 2, we have that 2 |= [ifp RX . 9](f)
and 2 = [dfpRx . ¢](¢) if 7 is contained in the inflationary and
deflationary fixed point of Fy, respectively.

By the last item of Remark 5.8, least and inflationary inductions are
equivalent for positive formulae, and hence IFP is at least as expressive
as LFP. On finite structures, inflationary inductions reach the fixed point
after a polynomial number of iterations, hence every IFP-definable class
of finite structures is decidable in polynomial time.

Proposition 5.10. IFP captures PTIME on ordered finite structures.

5.2.1 Least Versus Inflationary Fixed-Points

As both logics capture PTIME, IFP and LFP are equivalent on ordered
finite structures. What about unordered structures? It was shown by
Gurevich and Shelah that the equivalence of IFP and LFP holds on all
finite structures. Their proof does not work on infinite structures, and
indeed there are some important aspects in which least and inflationary
inductions behave differently. For instance, there are first-order opera-
tors (on arithmetic, say) whose inflationary fixed point is not definable
as the least fixed point of a first-order operator. Further, the alternation
hierarchy in LFP is strict, whereas IFP has a positive normal form (see
Proposition 5.17 below). Hence it was conjectured by many that IFP
might be more powerful than LFP. However, Kreutzer showed recently
that IFP is equivalent to LFP on arbitrary structures. Both proofs, by
Gurevich and Shelah and by Kreutzer, rely on constructions showing
that the stage comparison relations of inflationary inductions are definable
by Ifp inductions.

Definition 5.11. For every inductive operator F : P(B) — P(B), with
stages X* and an inductive fixed point X, the F-rank of an element
b eBis |blp:=min{a:b e X*}if b € X*°, and |b|r = co otherwise.

77

5 Modal, Inflationary and Partial Fixed Points

The stage comparison relations of G are defined by

a<pb iff \a|p§|b|p<oo

a<pb iff ‘a|p< |b|p

Given a formula ¢(R,X), we write <y and <, for the stage compar-
ison relations defined by the operator F, (assuming that it is indeed
inductive), and Sg‘f and %iq‘,‘f for the stage comparison relations of the
associated inflationary operator G, : R — RU{a: A |= ¢(R,a)}.

Example 5.12. For the formula ¢(T,x,y) := Exy V 3z(Exz A Tzy) the
relation <, on a graph (V, E) is distance comparison:

(a,b) =g (c,d) iff dist(a, b) < dist(c, d).

Stage comparison theorems are results about the definability of
stage comparison relations. For instance, Moschovakis proved that
the stage comparison relations <, and <, of any positive first-order
formula ¢ are definable by a simultaneous induction over positive first-
order formulae. For results on the equivalence of IFP and LFP one
needs a stage comparison theorem for IFP inductions.

We first observe that the stage comparison relations for IFP in-
ductions are easily definable in IFP. For any formula ¢(T, ¥) with free
variables ¥ and free occuring predicate T, the stage comparison relation
~<inf is defined by the formula

W(xY) = [ifpw < . ¢[Tu/u < | (W) A ~¢[Tu/u < z)(2)](x, 7).

Here we syntactically substitute T,% by # < @ in ¢(T¥) and, addition-
ally, free variables again by w. (Note that % may contain free variables.)
In —¢(T, %), we substitute T, % by # < Zz and, additionally, free variables
again by z. Thus free variables become parameter variables of the
fixed-point. Now, for the first iteration, Ty is empty as well as <, so
the formula ¢(Ty,) is satisfied by the same @ as ¢(=<o, @). So in the
first interation, the first components of <; contain the same elements
as T1. The second components of <; contain all other elements. In
general, in the i-th iteration, <; consists of pairs (7,b) such thata € T;

78

5.2 Inflationary Fixed-Point Logic

and b ¢ T;. In the next step, precisely those 7 satisfy ¢[Tu/% < @](<;)
that satisfy ¢(T;) (instead of ¢[T, %] we now have ¢[u < @], i.e. Ta
holds if and only if # < 7 holds if and only if @ has come to T in the
previous steps). So those b that do not satisfy ¢[T#u/u < W|(=<;), satisfy
—¢[Tu/u < W|(=<;). Summing up, pairs , b are included to <; 1 if and
only if 7 is included into T;;, but not earlier, and b is not in Tit1.

However, what we need to show is that the stage comparison
relation for IFP inductions is in fact LFP-definable.

Theorem 5.13 (Inflationary Stage Comparison). For any formula ¢(R, X)
in FO or LFP, the stage comparison relation <iq§‘f is definable in LFP.
On finite structures, it is even definable in positive LFP.

From this result, the equivalence of LFP and IFP follows easily.

Theorem 5.14 (Kreutzer). For every IFP-formula, there is an equivalent
LFP-formula.

Proof. For any formula ¢(R,X),
ifp R¥ . ¢](%) = ({7 : 7 <" %}, %).

This holds because, by definition, an inductive fixed-point can only
increase. Thus a tuple is added to it if and only if there is a stage, at
which the relation R contains all previously added elements (thus R =
{7 <i(;‘f X}), and at that stage ¢(R,¥) holds. Due to Theorem 5.13,
the relation {7 : ¥ -<iq§‘f X} is definable in LFP, so the statement follows
directly. Q.E.D.

Positive LFP. While LFP and the modal p-calculus allow arbitrary
nesting of least and greatest fixed points, and arbitrary interleaving
of fixed points with Boolean operations and quantifiers, we can also
ask about their more restricted forms. Let LFP; (sometimes also called
positive LFP) be the extension of first-order logic that is obtained by
taking least fixed points of positive first-order formulae (without param-
eters) and closing them under disjunction, conjunction, and existential
and universal quantification, but not under negation. LFP; can be

79

5 Modal, Inflationary and Partial Fixed Points

conveniently characterized in terms of simultaneous least fixed points,
defined in the next chapter.

Theorem 5.15. A relation is definable in LFP; if and only if it is de-
finable by a formula of the form [lfp R : S§](X), where S is a system of
update rules R;X := ¢;(R,x) with first-order formulae ¢;. Moreover,
we can require, without diminishing the expressive power, that each of
the formulae ¢; in the system is either a purely existential formula or a
purely universal formula.

One interesting consequence of the stage comparison theorems is
that on finite structures, greatest fixed points (i.e. negations of least
fixed points) can be expressed in positive LFP. This gives a normal form
for LFP and IFP.

Theorem 5.16 (Immerman). On finite structures, every LFP-formula
(and hence also every IFP-formula) is equivalent to a formula in LFP;.

This result fails on infinite structures. On infinite structures, there
exist LFP formulae that are not equivalent to positive formulae, and in
fact the alternation hierarchy of least and greatest fixed points is strict.
This is not the case for IFP.

Proposition 5.17. It can be proven that every IFP-formula is equivalent
to one that uses ifp-operators only positively.

Proof. Assume that structures contain at least two elements and that a
constant 0 is available. Then a formula —[ifp R¥ . (R, X)] is equivalent
to an inflationary induction on a predicate Txy which, for y # 0,
simulates the induction defined by 1, checks whether the fixed point
has been reached, and then makes atoms Tx0 true if ¥ is not contained
in the fixed point. Q.E.D.

In finite model theory, owing to the Gurevich-Shelah Theorem, the
two logics LFP and IFP have often been used interchangeably. However,
there are significant differences that are sometimes overlooked. Despite
the equivalence of IFP and LFP, inflationary inductions are a more
powerful concept than monotone inductions. The translation from IFP-
formulae to equivalent LFP-formulae can make the formulae much more

80

5.3 Simultaneous Inductions

complicated, requires an increase in the arity of fixed-point variables
and, in the case of infinite structures, introduces alternations between
least and greatest fixed points. Therefore it is often more convenient
to use inflationary inductions in explicit constructions, the advantage
being that one is not restricted to inductions over positive formulae.
For an example, see the proof of Theorem 5.29 below. Furthermore, IFP
is more robust, in the sense that inflationary fixed points remain well
defined even when other non-monotone operators (e.g. generalized
quantifiers) are added to the language.

5.3 Simultaneous Inductions

A more general variant of LFP permits simultaneous inductions over
several formulae. A simultaneous induction is based on a system of
operators of the form

Fl : P(Bl) X oo X P(Bm) — P(Bl)

Fy:P(By) X ---xP(By) — P(Bm),
forming together an operator
F = (Fl,...,Fm) : P(Bl) X o X P(Bm) — P(Bl) X e X P(Bm)

Inclusion on the product lattice P(B1) X - - - X P(By,) is componentwise.
Accordingly, F is monotone if, whenever X; C Y; for all i, then also
E(X) C E(Y) for all i.

Everything said above about least and greatest fixed points carries
over to simultaneous induction. In particular, a monotone operator
F has a least fixed point lfp(F) which can be constructed inductively,
starting with X’ = (@,...,@) and iterating F until a fixed point X" is
reached.

One can extend the logic LFP by a simultaneous fixed point forma-
tion rule.

81

5 Modal, Inflationary and Partial Fixed Points

Definition 5.18. Simultaneous least fixed-point logic, denoted by S-LFP, is
the extension of first-order logic by the following rule.

Syntax. Let ¥1(R,%1),...,m(R, %) be formulae of vocabulary
TU{Ry,..., Ry}, with only positive occurrences of Ry, ..., Ry, and, for
each i < m, let X; be a sequence of variables matching the arity of R;.
Then

Rixy = ¢

RyXy = PYm

is a system of update rules, which is used to build formulae [Ifp R; : S](f)
and [gfp R; : S](f) (for any tuple f of terms whose length matches the
arity of R;).

Semantics. On each structure 2, S defines a monotone operator
LR (S1,...,Sm) mapping tuples R = (Ry,...,Ry) of relations on A
to S*(R) = (S1(R), ..., Sm(R)) where S;(R) := {a: (A, R) = ¢;(R,a)}.
As the operator is monotone, it has a least fixed point lfp(S%) =
(RY,...,Ry). Now 2 |= [lfp R; : S](a) if @ € R{°. Similarly for greatest
fixed points.

As in the case of LFP, one can also extend IFP and PFP (defined
in the next section) by simultaneous inductions over several formulae.
In all of these cases, simultaneous fixed-point logics S-LFP, S-IFP and
S-PFP are not more expressive than their simple variants. This can
be proven easily by taking a fixed-point over a relation R with bigger
arity, e.g. one higher than the maximum arity of Ry, ..., Ry. The atoms
R;(X) can then be replaced by R(c;, X) for chosen m constants ¢y, ..., Cp.
The fixed-point of R is then sufficient to describe the simultaneous
fixed-point of S, yielding the following.

Theorem 5.19. For every formula ¢ € S-LFP (¢ € S-IFP,S-PFP) there
exists an equivalent formula ¢ € LFP (¢ € IFP,PFP).

82

5.4 Partial Fixed-Point Logic

5.4 Partial Fixed-Point Logic

Another fixed-point logic that is relevant to finite structures is the
partial fixed-point logic (PFP). Let §(R,X) be an arbitrary formula
defining on a finite structure 2[a (not necessarily monotone) operator
Fy : R— {a: A ¢(R,a)}, and consider the sequence of its finite
stages R0 := @, R™*1 = Fy(R™).

This sequence is not necessarily increasing. Nevertheless, as 2l is
finite, the sequence either converges to a fixed point, or reaches a cycle
with a period greater than one. We define the partial fixed point of Fy
as the fixed point that is reached in the former case, and as the empty
relation otherwise. The logic PFP is obtained by adding to first-order
logic the partial-fixed-point formation rule, which allows us to build from
any formula ¢(R,X) a formula [pfp RX . ¢(R,¥)|(f), saying that f is
contained in the partial fixed point of the operator Fy.

Note that if R occurs only positively in ¢, then

ifp Rx . 9(R,%)](f) = [pfp Rx. (R, 7)](F),

so we have that LFP < PFP. However, PFP seems to be much more
powerful than LFP. For instance, while a least-fixed-point induction on
finite structures always reaches the fixed point in a polynomial number
of iterations, a partial-fixed-point induction may need an exponential
number of stages.

Example 5.20. Consider the sequence of stages R defined by the for-
mula

P(R,x) == (RxAEIy(y < x/\ﬁRy)) v <ﬁRx/\Vy(y <x— Ry)) V YyRy

on a finite linear order (A, <). It is easily seen than the fixed point
reached by this induction is the set R = A, but before this fixed point is
reached, the induction goes in lexicographic order through all possible
subsets of A. Hence the fixed point is reached at stage 2" — 1, where
n=|Al.

83

5 Modal, Inflationary and Partial Fixed Points

ComrLExiTY. Although a PFP induction on a finite structure may go
through exponentially many stages (with respect to the cardinality of
the structure), each stage can be represented with polynomial storage
space. As first-order formulae can be evaluated efficiently, it follows by
a simple induction that PFP-formulae can be evaluated in polynomial
space.

Proposition 5.21. For every formula ¢ € PFP, the set of finite models
of ¢ is in PSPACE; in short: PFP C PSPACE.

On ordered structures, one can use techniques similar to those used
in previous capturing results, to simulate polynomial-space-bounded
computation by PFP-formulae.

Theorem 5.22 (Abiteboul, Vianu, and Vardi). On ordered finite struc-
tures, PFP captures PSPACE.

Proof. It remains to prove that every class K of finite ordered structures
that is recognizable in PSPACE, can be defined by a PFP-formula.

Let M be a polynomially space-bounded deterministic Turing ma-
chine with state set Q and alphabet %, recognizing (an encoding of)
an ordered structure (2, <) if and only if (2, <) € K. Without loss of
generality, we can make the following assumptions. For input structures
of cardinality n, M requires space less than 1k — 2, for some fixed k. For
any configuration C of M, let Next(C) denote its successor configura-
tion. The transition function of M is adjusted so that Next(C) = C if,
and only if, C is an accepting configuration.

We represent any configuration of M with a current state
q, tape inscription wj ---wy, and head position i, by the word
#wy - w1 (qw;)wiiq - - wy_1# over the alphabet I' ;==X U (Q x) U
{#}, where m = nk and # is merely used as an end marker to make the
following description more uniform. When moving from one configura-
tion to the next, Turing machines make only local changes. We can there-
fore associate with M a function f : T3 — T such that, for any configu-
ration C = ¢p - - - ¢, the successor configuration Next(C) = ¢, - - - ¢y, is
determined by the rules

q=c,=# and ¢ = f(c;i1,¢,¢4q1)forl<i<m-—1.

84

5.4 Partial Fixed-Point Logic

Recall that we encode structures so that there exist first-order
formulae B, () such that (2, <) = Bo(a) if and only the ath symbol
of the input configuration of M for input code(()2, <) is . We now
represent any configuration C in the computation of M by a tuple

C = (Cg)ger of k-ary relations, where
Cy :={@: the a-th symbol of C is ¢’}.

The configuration at time ¢ is the stage ¢ + 1 of a simultaneous pfp
induction on (2, <), defined by the rules

Cay :==V2(§ <Z) VVI(Z < 7))

and, for all o € T — {#},

Colf 1= (ﬁg(y) AN Wﬁcyf) v
yer
Hﬁz<i+ 1=gA7+1=2A \/ GIACHA C,,z))
flapr)=c

The first rule just says that each stage represents a word starting and
ending with #. The other rules ensure that (1) if the given sequence
C contains only empty relations (i.e. if we are at stage 0), then the
next stage represents the input configuration, and (2) if the given se-
quence represents a configuration, then the following stage represents
its successor configuration.

By our convention, M accepts its input if and only the sequence of
configurations becomes stationary (i.e. reaches a fixed point). Hence
M accepts code(()2, <) if and only if the relations defined by the
simultaneous pfp induction on 2 of the rules described above are non-
empty. Hence K is PFP-definable. Q.E.D.

5.4.1 Least Versus Partial Fixed-Point Logic

From the capturing results for PTIME and PSPACE we immediately
obtain the result that PTIME = PSPACE if, and only if, LFP = PFP on

85

5 Modal, Inflationary and Partial Fixed Points

ordered finite structures. The natural question arises of whether LFP
and PFP can be separated on the domain of all finite structures. For a
number of logics, separation results on arbitrary finite structures can
be established by relatively simple methods, even if the corresponding
separation on ordered structures would solve a major open problem
in complexity theory. For instance, we have proved by quite a simple
argument that DTC C TC, and it is also not very difficult to show that
TC C LFP (indeed, TC is contained in stratified Datalog, which is also
strictly contained in LFP). Further, it is trivial that LFP is less expressive
than 2! on all finite structures. However the situation is different for
LFP vs. PFP.

Theorem 5.23 (Abiteboul and Vianu). LFP and PFP are equivalent on
finite structures if, and only if, PTIME = PSPACE.

5.5 Capturing PTIME up to Bisimulation

In mathematics, we consider isomorphic structures as identical. Indeed,
it almost goes without saying that relevant mathematical notions do
not distinguish between isomorphic objects. As classical algorithmic
devices work on ordered representations of structures rather than the
structures themselves, our capturing results rely on an ability to reason
about canonical ordered representations of isomorphism classes of finite
structures.

However, in many application domains of logic, structures are
distinguished only up to equivalences coarser than isomorphism. Per-
haps the best-known example is the modelling of the computational
behaviour of (concurrent) programs by transition systems. The meaning
of a program is usually not captured by a unique transition system.
Rather, transition systems are distinguished only up to appropriate
notions of behavioural equivalence, the most important of these being
bisimulation.

In such a context, the idea of a logic capturing PTIME gets a new
twist. One would like to express in a logic precisely those properties of
structures that are

86

5.5 Capturing PTIME up to Bisimulation

(1) decidable in polynomial time, and

(2) invariant under the notion of equivalence being studied.

A class S of rooted transition systems or Kripke structures is invari-
ant under bisimulation if, whenever K,v € S and K,v ~ K’, v/, then also
K',v' € S. We say that a class S of finite rooted transition systems is in
bisimulation-invariant PTIME if it is invariant under bisimulation, and
if there exists a polynomial-time algorithm deciding whether a given
pair K, v belongs to S. A logic L is invariant under bisimulation if all
L-definable properties of rooted transition systems are.

Clearly, L, C bisimulation-invariant PTIME. However, as pointed
out in Section 5.1, L, is far too weak to capture this class, mainly
because it is essentially a monadic logic. Instead, we have to consider a
multidimensional variant L(H" of Ly.

But before we define this logic, we should explain the main tech-
nical step, which relies on definable canonization, but of course with
respect to bisimulation rather than isomorphism. For simplicity of
notation, we consider only Kripke structures with a single transition
relation E. The extension to the case of several transition relations E; is
straightforward.

With a rooted Kripke structure K = (V, E, (P,)pcp), 1, we associate
a new transition system

K = Vi, E7, (Py)ven),

where V" is the set of all ~-equivalence classes [v] of nodes v € V that
are reachable from u. More formally, let [v] denote the bisimulation
equivalence class of a node v € V. Then

{[v] : there is a path in G from u to v}
={lv] e Vi :ve R}
([o], [w]) : (v,w) € E}.

The pair Ky, [u] is, up to isomorphism, a canonical representant of
the bisimulation equivalence class of K, u. To see this one can prove

87

5 Modal, Inflationary and Partial Fixed Points

that (1) (K, u) ~ (Ky, [u]), and (2) if (K, u) ~ (G,v), then (K, [u]) =
(Go, [0))-

It follows that a class S of rooted transition systems is bisimulation-
invariant if and only if S = {(IC,u) : (K}, [u]) € S}. Let CR™ be the
domain of canonical representants of finite transition systems, i.e.

CR™ :={K,ul| (K, [u]) = (K u)}.

Proposition 5.24. CR™~ admits LFP-definable linear orderings, i.e. for
every vocabulary T = {E} U{DP, : b € B}, there exists a formula
¢(x,y) € LFP(t) which defines a linear order on every transition
system in CR™ (7).

Proof. Recall that bisimulation equivalence on a transition system is a
greatest fixed point. Its complement, bisimulation inequivalence, is a
least fixed point, which is the limit of an increasing sequence 7; defined
as follows: u ¢ v if u and v do not have the same atomic type, i.e. if
there exists some b such that one of the nodes u,v has the property
P, and the other does not. Further, u ;1 v if the sets of ~;-classes
that are reachable in one step from u and v are different. The idea is
to refine this inductive process, by defining relations <; that order the
~i-classes. On the transition system itself, these relations are pre-orders.
The inductive limit < of the pre-orders <; defines a linear order of
the bisimulation equivalence classes. But in transition systems in CR"™,
bisimulation classes have only one element, so < actually defines a
linear order on the set of nodes.

To make this precise, we choose an order on B and define < by
enumerating the 2Bl atomic types with respect to the propositions P,
ie.

x <0y := \/ <ﬁPbx A Pyy A /\ Pyx < Pb/y).
beB b'<b

In other words, there is some b such that P, separates x from y and for
the least such b, P, holds on y and not on x.

88

5.5 Capturing PTIME up to Bisimulation

In what follows, x ~; y can formally be taken as an abbreviation for
—(x <; ¥y Vy <; x), and similarly for x ~ y. We define x <; 1 y by the
condition that either x <; y, or x ~; y and the set of ~;-classes reachable
from x is lexicographically smaller than the set of ~;-classes reachable
from y. Note that this inductive definition of < is not monotone, so it
cannot be directly captured by an LFP-formula. However, as we know
that LFP = IFP, we can use an IFP-formula instead. Explicitly, < is
defined by [ifpx <y . (<, x,y)](x,y), where

P(=<,x,y) =x =<0y V (x ~ YA
(Hy’.Eyy/)<(Vx/.Exx/)x/ 2 YA
(Vzz < y') (3" (Exx" Ax" ~ z)
W' (Eyy" Ay ~72)))):

Q.E.D.

Corollary 5.25. On the domain CR", LFP captures PTIME.

Since LFP is not invariant under bisimulation, we will strengthen
the above result and capture bisimulation-invariant PTIME in terms of
a natural logic, the multidimensional p-calculus L;f.

Definition 5.26. The syntax of the k-dimensional p-calculus L’;‘, (for tran-
sition systems K = (V,E, (Py)pep)) is the same as the syntax of the
usual p-calculus L, with modal operators (i), [i], and (c), [o] for every
substitution o : {1,...,k} — {1,...,k}. Let S(k) be the set of all these
substitutions.

The semantics is different, however. A formula ¥ of L’;t is in-
terpreted on a transition system K = (V,E, (Py)pcp) at node v by
evaluating it as a formula of L, on the modified transition system

K* = (VX (E)i<i<i (Eo)pesqr)r (Poi)beBi<izk)

89

5 Modal, Inflationary and Partial Fixed Points

atnode v := (v,v,...,v). Here VEk=Vx...x Vand

E; == {(8,@) € VF x V¥: (v;,w;) € E and v; = w; for j # i}
Er:={(@,@) € VEx VF 1 w; = 0y (i) for all i}

Py ;= {ve % v; € Py}

That is, K, v |:L£ P iff Kk, (v,...,0) |:L” ¢. The multidimensional y-
calculus is L = Ur<w L’Ii.

Remark. Instead of evaluating a formula ¢ € L]]j at single nodes
v of G, we can also evaluate it at k-tuples of nodes: K,7 |= Lk Yy iff

k = —
K , 0 ‘— Ly, l/)
Example 5.27. Bisimulation is definable in L% (in the sense of the remark
just made). Let

P~ =vX. (N (Poa < Pop) A1](2)X A 2](1)X).
beB
For every transition system K, we have that XC, v1, v, |= ™ if, and only
if, v1 and v, are bisimilar in K. Further, we have that

Ko b nY . 2) (™ Vv (2)Y)

if, and only if, there exists in K a point w that is reachable from v (by a
path of length > 1) and bisimilar to v.

One can see that L}/ is invariant under bisimulation (because if
K, v; ~ G, u; for all i then also Kk T~ G, u) and that L}‘j can be embed-
ded in LFP. This establishes the easy direction of the desired result:
Ll‘j C bisimulation-invariant PTIME.

For the converse, it suffices to show that LFP and Ll‘j are equivalent
on the domain CR™. Let S be a class of rooted transition systems in
bisimulation-invariant PTIME. For any /C, u, we have that KC,u € S if
its canonical representant K7, [u] € S. If LFP and L;} are equivalent
on CR™, then there exists a formula ¢ € L such that K7, [u] = ¢
iff K, [u] € S. By the bisimulation invariance of , it follows that
KukEyiff C,ues.

90

5.5 Capturing PTIME up to Bisimulation

The width of an LFP-formula ¢ is the maximal number of free
variables occuring in a subformula of ¢.

Proposition 5.28. On the domain CR™, LFP < L}/. More precisely, for
each formula (xq,...,x;) € LFP of width < k, there exists a formula
AS L’;ﬂ'l such that for each K, u € CR™, we have that K |= (u,) iff
K,u,7 = ¢*.

Note that although, ultimately, we are interested only in formulae
(x) with just one free variable, we need more general formulae, and
evaluation of L’;{-formulae over k-tuples of nodes, for the inductive
treatment. In all formulae, we shall have at least x| as a free variable,
and we always interpret x; as u (the root of the transition system).
We remark that, by an obvious modification of the formula given in
Example 5.27, we can express in L’]j the assertion that x; ~ x; for any
ij.

Atomic formulae are translated from LFP to L} according to

(XXp(1) " Xo(r)

Boolean connectives are treated in the obvious way, and quantifiers
are translated by use of fixed points. To find a witness x; satisfying a
formula 1, we start at u (i.e. set xj = x1), and search along transitions
(i.e. use the p-expression for reachability). That is, let j/1 be the
substitution that maps j to 1 and fixes the other indices, and translate
Jxjp (%) into

(G/1)uy 9" v (Y.

Finally, fixed points are first brought into normal form so that variables
appear in the right order, and then they are translated literally, i.e.
[lfp XX . ¢](X) translates into uX . ¢*.

The proof that the translation has the desired property is a straight-

91

5 Modal, Inflationary and Partial Fixed Points

forward induction, which we leave as an exercise. Altogether we have
established the following result.

Theorem 5.29 (Otto). The multidimensional p-calculus captures
bisimulation-invariant PTIME.

Otto has also established capturing results with respect to other
equivalences. For finite structures 2, B, we say that A =, B if no first-
order sentence of width k can distinguish between 2 and 9. Similarly,
2 =C 9B if 2 and B are indistinguishable by first-order sentences of
width k with counting quantifiers of the form 3='x, for any i € IN.

Theorem 5.30 (Otto). There exist logics that effectively capture =,-
invariant PTIME and E%—invariant PTIME on the class of all finite
structures.

92

6 Fixed-point logic with counting

The (machine-independent) characterisation of complexity classes by
logics (in the sense of Definition 3.4) yields deep insights into the
structure of the classified problems. The theorem of Fagin (cf. Chapter 3)
is a seminal result in the field of descriptive complexity theory, and
gives such a correspondence between algorithmic and logical resources
for the important class NP. If we restrict to ordered structures, we
can also find such characterisation for PTIME as shown e.g. in the
Immerman-Vardi theorem (cf. Chapter 4). However, it is still one of the
major open questions in finite model theory whether there is a logic
capturing PTIME on all finite structures. Note that if no such logic
exists this would necessarily imply PTIME # 3SO = NP.

As we will see, fixed-point logics, such as LFP or IFP, do not suffice
to capture PTIME on arbitrary structures, and most of the naturally
considered examples to separate them from PTIME involve some kind
of counting. For instance, the simple class EVEN = {2 : |A] is even}
turns out to be not definable in LFP. Therefore Immerman proposed
that counting quantifiers should be added to logics and asked whether
a suitable variant of fixed-point logic with counting would suffice to
capture PTIME.

Although Cai, Fiirer and Immerman eventually answered this
question negatively, the extension of fixed-point logic by counting
terms (FPC) has turned out to be an important and robust logic, that
defines a natural level of expressiveness. In this chapter we study the
logic FPC and present the construction of Cai, Fiirer and Immerman
which yields the separation of FPC from PTIME. To be precise, we
even present a slightly more general result which uses the concept of
treewidth and which is due to Dawar and Richerby.

93

6 Fixed-point logic with counting

6.1 Logics with Counting Terms

There are different ways of adding counting mechanisms to a logic,
which are not necessarily equivalent. The most straightforward pos-
sibility is the addition of quantifiers of the form 322 323 etc., with
the obvious meaning. While this is perfectly reasonable for bounded-
variable fragments of first-order logic or infinitary logic it does not
increase the expressiveness of logics such as FO or LFP, since they are
closed under the replacement of 3> by i existential quantifiers. For
fixed-point logic another severe restriction is that it does not allow for
recursion over the counting parameters i in quantifiers 3>’x. These
counting parameters should therefore be considered as variables that
range over natural numbers. To define in a precise way a logic with
counting and recursion, one extends the original objects of study, namely
finite (one-sorted) structures 2, to two-sorted auxiliary structures 2*
with a second numerical (but also finite) sort.

Definition 6.1. With any one-sorted finite structure 2 with universe A,
we associate the two-sorted structure 2* := A U ({0, ...,|A[}; <,0,¢),
where < is the canonical ordering on {0, ..., |A|}, and 0 and e stand for
the first and the last element. Thus, 2* is the disjoint union of 2 with a
linear order of length |A| + 1.

For all logics we studied so far, we naturally obtain two-sorted vari-
ants definining properties of the extended structures 2*. For instance,
formulas of two-sorted first-order logic over two-sorted vocabularies
cU{<,0, ¢} are evaluated in structures 2* where semantics are defined
in the obvious way. From now on, we stick to the convention to use
Latin letters x,y,z, ... for the variables over the first sort, and Greek
letters A, pi, v, ... for variables over the second sort (the numerical sort).
In counting logics, these two sorts are related by counting terms, defined
by the following rule. Let ¢(x) be a formula with a variable x (over the
first sort) among its free variables. Then #,[¢] is a term in the second
sort, with the set of free variables free(#[¢]) = free(¢) — {x}. The
value of #,[¢] is the number of elements a that satisfy ¢(a).

We introduce counting logics starting with first-order logic with

94

6.2 Fixed-Point Logic with Counting

counting, denoted by FOC, which is the closure of two-sorted first-
order logic under counting terms. Here are two simple examples that
illustrate the use of counting terms.

Example 6.2. On an undirected graph G = (V,E), the formula
VxVy(#,[Exz] = #,[Eyz]) expresses the assertion that every node has
the same degree, i.e., that G is regular.

Example 6.3. We present below a formula ¢(E;, E;) € FOC which ex-
presses the assertion that two equivalence relations E; and E; are
isomorphic; of course a necessary and sufficient condition for this is
that for every i, they have the same number of elements in equivalence
classes of size i:

W(E1, Eo) = (V) (#x [#hy [Erxy| = p] = #x[Hy [Exxy] = p).

6.2 Fixed-Point Logic with Counting

We now define (inflationary) fixed point logic with counting (FPC) and
partial fixed point logic with counting PFPC by adding to FOC the usual
rules for building inflationary or partial fixed points, ranging over both
sorts.

Definition 6.4. Inflationary fixed point logic with counting, FPC, is the
closure of two-sorted first-order logic under the following rules:

(1) The rule for building counting terms.
(2) The usual rules of first-order logic for building terms and formulae.

(3) The fixed-point formation rule. Suppose that (R, ¥, 7) is a formula
of vocabulary T U{R} where X = xy,..., %, # = p1,..., g, and R
has mixed arity (k,£), and that (%,7V) is a k + {-tuple of first- and
second-sort terms, respectively. Then

lifp R¥7r.](8,7)
is a formula of vocabulary 7.

The semantics of [ifp RXJi .] on A* is defined in the same way as

95

6 Fixed-point logic with counting

for the logic IFP, namely as the inflationary fixed point of the operator
Fy:R— RU{(a,i) | (A", R) = (a,i)}.

The definition of PFPC is analogous, where we replace inflationary
fixed points by partial ones. In the literature, one also finds different
variants of fixed-point logic with counting where the two sorts are
related by counting quantifiers rather than counting terms. Counting
quantifiers have the form (3ix) for ‘there exist at least i different x’,
where i is a second-sort variable. It is obvious that the two definitions
are equivalent. In fact, FPC is a very robust logic. For instance, its
expressive power does not change if one permits counting over tuples,
even of mixed type, i.e. terms of the form #z ;¢ (see exercise class). One
can of course also define least fixed-point logic with counting, LFPC,
but one has to be careful with the positivity requirement (which is more
natural when one uses counting quantifiers rather than counting terms).
The equivalence of LFP and IFP readily translates to LFPC = IFPC.

Example 6.5. An interesting example of an FPC-definable query is the
method of stable colourings for graph-canonization. Given a graph G
with a colouring f : V — {0,...,7r} of its vertices, we define a refine-
ment f' of f, giving to a vertex x the new colour f'x = (fx,ny,...,n;)
where n; = #y[Exy A (fy = i)]. The new colours can be sorted lex-
icographically so that they again form an initial subset of IN. Then
the process can be iterated until a fixed point, the stable colouring of
G is reached. It is easy to see that the stable colouring of a graph is
polynomial-time computable and uniformly definable in FPC.

On many graphs, the stable colouring uniquely identifies each
vertex, i.e. no two distinct vertices (i.e. vertices in different orbits of the
automorphism group) get the same stable colour. In this way stable
colourings provide a polynomial-time graph canonization algorithm for
such classes of graphs. For instance, this is the case for the class of all
trees or, more generally, any class of graphs with bounded treewidth.

We now discuss the expressive power and evaluation complex-
ity of fixed-point logic with counting. We are mainly interested in
FPC-formulae and PFPC-formulae without free variables over the sec-

96

6.2 Fixed-Point Logic with Counting

ond sort, so that we can compare them with the usual logics without

counting.

Exercise 6.1. Even without making use of counting terms, IFP over
two-sorted structures 2* is more expressive than IFP over 2. To prove
this, construct a two-sorted IFP-sentence ¢ such that 2* |= v if, and
only if, |A] is even.

It is clear that counting terms can be computed in polynomial-time.
Hence the data complexity remains in PTIME for FPC and in PSPACE
for PFPC. We shall see below that these inclusions are strict.

Theorem 6.6. On finite structures,

(1) IFP C FPC C PTIME.
(2) PFP C PFPC C PSPACE.

6.2.1 Infinitary Logic with Counting

Let CK,, be the infinitary logic with k variables Lk, ,, extended by the
quantifiers 3=™ (‘there exist at least m’) for all m € IN. Further, let

Céew = Ug Cooar-
Proposition 6.7. PFPC C CY .

Due to the two-sorted framework, the proof of this result is a bit
more involved than for the corresponding result without counting, but
not really difficult (see exercise class).

The separation of FPC from PTIME has been established by Cai,
Fiirer, and Immerman. Their proof also provides an analysis of the
method of stable colourings for graph canonization. We have described
this method in its simplest form in Example 6.1. More sophisticated
variants compute and refine colourings of k-tuples of vertices. This is
called the k-dimensional Weisfeiler—Lehman method and, in logical terms,
it amounts to labelling each k-tuple by its type in k 4 1-variable logic
with counting quantifiers. It was conjectured that this method could
provide a polynomial-time algorithm for graph isomorphism, at least
for graphs of bounded degree. However, Cai, Fiirer, and Immerman
were able to construct two families (Gy),en and (Hy)nen of graphs

97

6 Fixed-point logic with counting

such that on one hand, G, and H,, have O(n) nodes and degree three,
and admit a linear-time canonization algorithm, but on the other hand,
in first-order (or infinitary) logic with counting,)(n) variables are
necessary to distinguish between G, and H,. In particular, this implies
Theorem 6.6.

6.3 The k-pebble bijection game

In Chapter 2 we introduced Ehrenfeucht-Fraissé games to characterize
the equivalence of structures (or, to put it in another way, definability of
classes) in first-order logic. More specifically, two relational structures A
and 9B can be distinguished by an FO-sentence of quantifier-rank < m if,
and only if, Spoiler has a winning strategy in the m-move Ehrenfeucht-
Fraissé game played on 2 and B which was denoted by EFy, (2, B).

Our next aim is to introduce the k-pebble bijection game which is
an extension of the standard Ehrenfeucht-Fraissé game to capture de-
finability in C%,. We will use these games to show that a certain
(polynomial-time decidable) class of graphs is not definable in Cg,. In
particular, this yields the separation of FPC from PTIME by Proposi-
tion 6.7.

Definition 6.8. The k-pebble bijection game k-BG(2,B) is a two-player
game played on relational structures 2 and 9B using k pairs of peb-
bles (x1,y1),...,(Xn,yn) that can be placed on pairs of elements
(a1,b1),...,(an, by) € A x B during a play. The goal of Player I, who is
called Spoiler, is to show that 2 %C&w B while Player II, the Duplicator,
claims that 2 =Cae B,

A position in the game k-BG(2,B) is a (partial) assignment
(a1,b1),...,(an,by) of pebbles on A x B, so formally, a position is a
(partial) mapping p : {1,...,k} — A x B. The initial position is p = @.

At position p a play proceeds as follows: First, Spoiler selects a
pair of pebbles i < k. Duplicator has to react with a bijection h : A — B
which respects all remaining pairs of pebbled elements (except for i), i.e.
for all i # j € dom(p) and p(j) = (aj, b;) we have h(a;) = b;. Spoiler

98

6.3 The k-pebble bijection game

then chooses a4 € A and the position is updated to (p|i — (a;,b;)) where

s sy AP TET
(pli = (a;,5))) {(M(ﬂ)) L

Spoiler wins a play, if either |A| # |B| (i.e. Duplicator cannot respond
with a bijection), or the play eventually reaches a position p such that
the induced mapping p({1,...,k}) is not a partial isomorphism of
A and B, ie. if p({1,...,k}) € Loc(,B). Infinite plays are won by
Duplicator.

Theorem 6.9. If Duplicator wins the game k-BG(2(,B), then 2 =Cho 5B,

Proof. We prove by induction that for all formulae ¢(x,...,x;) € Ck,,
structures 2 and B and all aq,...,a; € A and by,...,br € B we have
that if A = ¢(ay,...,a;) and B [~ @(ay,...,a;) then Spoiler has a
winning strategy for k-BG(2, B) starting from position p(i) = (a;, ;).

The cases of quantifier-free formulae, Boolean connectivities and
first-order quantifier follow as in the case of Ehrenfeucht-Fraissé games
(cf. lecture notes of mathematical logic). Hence, we only consider
Q= Elzilep(xl, ..., x). For this case, a winning strategy for Spoiler
can be defined in the following way:

e Spoiler selects the pair j < k.
¢ Duplicator reacts with a bijection & : A — B respecting the remain-
ing pebbled pairs.

Weset X ={a € A: A= ¢,...,an)}and Y = {b € B: B [
P(by,...,by)}. From the assumption we know that |X| > i and |Y| <
i, hence there is an 4 € X such that h(a) ¢ Y. Spoiler selects the
element a and the position is updated to (p|j — (a;,b;)). As we have
A= ¢(ay,...,an) and B £ @(by, ..., bj_1,h(a),bj1,...,by) the claim
follows by induction. Q.E.D.

We can use Theorem 6.9 to show that a class K of finite structures
is not definable in C¥,. In particular, note that K ¢ C%, also implies
that }C ¢ FPC since we have FPC < C&,.

99

6 Fixed-point logic with counting

Proposition 6.10. Let (2)r>1 and (By)r>1 be two sequences of struc-
tures such that for infinitely many k we have 2, € K, B, ¢ K and
Duplicators wins k-BG(2lg, B). Then K cannot be defined in C&%,,.

6.4 The construction of Cai, Fiirer and Immerman

We now present the construction of Cai, Fiirer and Immmerman which
yields the separation of FPC from PTIME. Throughout this section, let
G = (V,E) denote a connected graph with deg(v) > 2 forall v € V.
Starting from G we define a family of graphs (Xs(G))gcg that result by
replacing every vertex v in a G by a gadget Z(v) and interconnecting
different gadgets according to edge relation in G.

For every v we define the set of new vertices Z(v) as

Z(v) = {avw, bow, Cow, dvw : w € vE} U {vX : X C vE, |X| even}.

Vertices of the form ayy, byw are called outer vertices and they are
intended to connect the two gadgets Z(v) and Z(w). The vertices
Cow, dvw are colour vertices which are used only to make the set of outer

S are called the

nodes first-order definable. The remaining vertices v
inner vertices.
Let X (G) denote the graph over the vertex set U,cy Z(v) with

the following edges:

b (ﬂvwr va)/ (bvun va)/ (dvun va) for (U/ ZU) cE,
o (ayw, vX) for w € X,

. (bvw,vx) forw ¢ X, and

® (ayw, awy) and (byw, byy) for all (v, w) € E.

In Figure 6.1 the construction of a gadget Z(v) is illustrated for the
case of a vertex v with degree three. The pairs of outer nodes ayy, boy,
vy, byy and ayz, by, are connected to the corresponding outer nodes of
the gadgets Z(x), Z(y) and Z(z), respectively (this is indicated by the
dashed lines in the figure).

We now extend the construction: for any (symmetric) set S C E
we define X5(G) to be the graph X (G) in which for all (v, w) € S the
edges (dyw, Awy) and (byw, byo) are replaced by (apw, buwo) and (awo, bwo)-

100

6.4 The construction of Cai, Fiirer and Immerman

o U . U® . v{x,y} . U{X,Z} L U{y,Z}

Ye ° X

Figure 6.1. Example: gadget for a vertex v of degree three
We say that the edges in S have been twisted. In this way we obtain for
every subset S C E of edges a CFI-graph Xg(G). Interestingly, we are

going to show that these CFI-graphs Xs(G) are completely determined
by the parity of the set S:

Lemma 6.11. For all S,T C E we have:
Xs(G) 2 Xr(G) & S| =|T] mod 2.

Before we prove this claim in general, we consider some special
cases. First of all, let all twisted edges be incident with a single vertex v.

Lemma 6.12. Let S, T C vE be sets of neighbours of some vertex v € V.
If SAT = (S\ T)U(T\S) is even, then

X‘(]XS(G) = XUXT(G)'

Proof. The mapping 7y.s.1 : Xyx5(G) = Xyx1(G) defined by

z, z ¢ Z(v) or z colour vertex,

z, z € {ayw, bow}, (v,w) € SNT,
Tu5,7(2) == < bow, Z = apw, (v, w) € SAT,

Avw, z = byy, (v, w) € SAT,

pXB(SAT) 5 — X

is an isomorphism (use that since X and SAT are even, the same holds
for the symmetric difference XA(SAT)). Q.E.D.

101

6 Fixed-point logic with counting

We proceed to explain how one obtains an isomorphism between
X} (G) and X, (G) for two distinct edges e and f of G.

Lemma 6.13. X{e}(G) = X{f}(G)

Proof. If e and f are incident with the same vertex v, then the claim
follows by Lemma 6.12. Hence, let e = (u,v) and f = (x,y) be such that
{u,v} N{x,y} = @. Choose a path v = v1,vy,...,vy = x connecting v
and x with v; & {u,y} for all i > 1. Then

Tlors f += Tlop;u;vy © Tlog;u1;03 © O Tlop_q;01_9;x O Tlojui_q;yr

is an isomorphism of X} (G) = X4 (G): the twist at edge (u,v) is
moved along the path to the twist at edge (x,y) where both twists
cancel out each other. Note than along the path, at every inner node v;
we have precisely two twists of edges for the gadget Z(v;) which, again
by Lemma 6.12, preserves the structure of the inner nodes. Q.E.D.

We are now ready to prove Lemma 6.11.

Proof (of Lemma 6.11). First of all, let |S| = |T| mod 2. If |S| = |T| =1,
then the claim follows by Lemma 6.13, so assume that |S| > 2 (or
analogously, |T| > 2). Choose e, f € S withe # f. If e and f are
incident with the same vertex v € V we know that X\ 1, £} (G) = X5(G)
by Lemma 6.13. In the other case, we use the isomorphism 7, s and
see that X\ (., ¢} (G) = X5(G). The claim follows by induction on [SAT]|.

For the other direction assume that 77 : X(¢_(,,)1(G) = Xp(G) is
an isomorphism. Clearly, 7w maps outer (inner, colour) nodes to outer
(inner, coulour) nodes, and since 7 also induces an isomorphism of
G, we can assume that for all v € V we have 71(Z(v)) = Z(v) and
7T({avw, bow}) = {avw, bow } for all (v, w) € E. At this point we observe
that if 7T interchanges ay, and by it necessarily interchanges 4., and
by for all edges (v, w) € E except for (x,y). Hence, the total number
of interchanges of a’s and b’s in 7t is odd. This contradicts, Lemma 6.12,
however, as the number of interchanges of a’s and b’s in 7 for each
gadget has to be even. Q.E.D.

102

6.4 The construction of Cai, Fiirer and Immerman

We conclude that, up to isomorphism, there are precisely two
CFl-graphs for G and we fix two canonical representatives from the
isomorphism classes:

¢ X(G) := Xp(G) (the even CFI-graph for G)
* X(G) := X{}(G) for some edge ¢ € E (the odd CFI-graph for G)

The CFI-query is to decide, given a CFI-graph Xs(G), whether X5(G) is

even or odd, i.e. whether X5(G) = X(G) or X5(G) = X(G).
Theorem 6.14. The CFI-query can be decided in polynomial time.

Proof. In order to count the number of twists, we need to identify the
a and b-vertices. To this end it suffices to fix in every gadget Z(v)
an arbitrary inner node and to associate the intended labeling to the
gadget Z(v) (e.g. declare this node to be v? and assign to all connected
vertices b-labels and to the remaining outer ones a-labels). Then it is
straightforward to count the number of twists modulo two. Lemma 6.11
guarantees that the isomorphism class of the resulting {4, b}-labeled
graph is independent of the initial choice of inner vertices. Q.E.D.

We conclude that the even and odd CFl-graphs can be distin-
guished in polynomial time. However, we are going to show that they
cannot be separated by sentences in C%, if we start from a class of
graphs G with sufficient complexity. In order to measure the complex-
ity of graphs we introduce the important and well-studied concept of
treewidth. Intuitively the treewidth of a graph formalises to what extent
an (undirected) graph resembles a tree, and one of the reasons for its im-
portance is that many NP-hard problems (and even some PSPACE-hard
ones) become tractable on classes of graphs with bounded treewidth.
There are various equivalent ways to characterize the treewidth of a
graph, of which we sketch two: an algebraic and a game theoretic
approach.

Definition 6.15. Let G = (V, E) be an undirected graph. A tree decom-
position of G is an undirected tree 7 = (T, Er) where T is a family of
subsets of V, i.e. T C P(V) and

(@ UT =YV, and

103

6 Fixed-point logic with counting

(b) for all (u,v) € E there is some X € T so that {u,v} C X, and
(c) for every vertex v € V the set {X € T : v € X} is connected in 7.

Nodes in the tree T are called bags. The width of the tree decompo-
sition 7 = (T, Er) is (max{|X|: X € T} — 1), and the treewidth of G,
denoted by tw(G), is defined to be the minimal width for which a tree
decomposition of G exists.

Next, we describe a game which characterises the notion of
treewidth. The k-cops and robber game on G is played by two play-
ers, Player I (the cops) and Player II (the robber). The rules are as
follows: the cops possess k pebbles (cops) which they can place on
vertices of the graph. The robber has one pebble which is moved along
paths. In each move the cops first choose some pebble which is either
currently not placed on a vertex of the graph or which is removed from
its current position w. Secondly, the cops determine a vertex v to be the
new position for this pebble. After that, the robber reacts by moving
his pebble along a path to a new vertex (which may be the old one).
The chosen path has to be cop-free where the vertices v and w count as
cop-free for the current move. The cops win a play if, and only if, they
can reach a position such that the robber cannot move. All other plays,
i.e. all infinite ones, are won by the robber.

Seymour proved that a graph G has treewidth k if, and only if, the
cops have a winning strategy in the game with k 4 1 pebbles, but the
robber wins the game if the cops are restricted to k pebbles. We use this
game-theoretic characterisation of to show:

Theorem 6.16. Let G = (V,E) be graph with §(G) > 2 and tw(G) > k.
Then

X(G) = X(G).

Proof. For two vertices u,v let ofu,v] be the permutation which ex-
changes u and v and fixes all other points. We say that a bijection
h:X(G) — X(G) is good except at node u € V if

* h(Z(v)) =Z(v) forallv eV,

104

6.4 The construction of Cai, Fiirer and Immerman

* /1 maps inner vertices to inner vertices and outer vertices to outer

vertices,

* 1 is an isomorphism between the subgraphs X(G) \ {vX : X C vE}
and X(G)\ {v¥X : X C vE}, and

e for every pair (a,0,buw) € Z(1), the mapping h o 0{ayy, byy] is an
isomorphism from X(G)[Z(u)] to X(G)[Z(u)].

Let X(G) = X(4,)(G)- Then for instance o[auy, buy| is good except
at u and o[ayy, byy] is good except at v. Note that if 7 € Aut(X(G))
with #(Z(v)) = Z(v) for all v € V and h is good except at vertex u,
then 1 o 7 is good except at u as well.

The property of being good at some vertex can be propagated
along path in G: let P be a simple path in G from u to v, P : u =
v1,02,...,0,_1,0; = v, and let h be a bijection which is good except at
vertex u. Then the bijection #’ := h o 5jp where

Ip ‘= U[QW&I buvz] O Tluy;01;03 © ** * © Thyy_y;0;_o;0,mel © a[avvl—l’ bvvl—l]/

is good except at v and for w & P,x € Z(w) we have I’(x) = h(x).
Finally, we describe a winning strategy for Duplicator in the k-
pebble bijection game played on X(G) and X(G). The strategy satisfies
that pairs of pebbles (a;,b;) are always placed on vertices in a common
gadget Z(v). First of all, we initialize an instance of the k-cops and
robber game played on G where we identify each of the k pairs of
pebbles with one of the cops, and we assume that the robber makes his
moves according to a fixed winning strategy (recall that tw(G) > k).
The positions in the two games are related as follows: the vertex in G
occupied by the i-th cop is precisely the vertex v € V for which the
corresponding gadget Z(v) in X(G) and X(G) is pebbled with the i-th
pair (a;,b;) of pebbles in the k-pebble bijection game. We update the
positions in the cops and robber game after each round of the k-pebble
bijection game accordingly. Furthermore, whenever the robber is at
some vertex v € V, then Duplicator chooses in her current move some
bijection which is good except at vertex v. For convenience, we assume
that the robber starts at node u, and that in the first round Duplicator

105

6 Fixed-point logic with counting

answers with the bijection ¢[ayy, byy]. Recall that this bijection is good
except at vertex u.

We proceed to show that Duplicator can maintain the following
invariant during each play: let ((ay,...,ax), (b1, ..., b)) be the current
position in the k-pebble bijection game, then

there is a bijection g : X(G) — X(G) with g(a;) = b; for i < k such that
g is good except at a vertex u € V and for i < k we have a;,b; & Z(u)
(u is the robber’s position in the cops and robber game).

This can be seen as follows: assume Spoiler chooses the i-th pair of
pebbles. Duplicator answers with the bijection ¢ and Spoiler puts the
i-th pair of pebbles onto some tuple (a,¢(a)). By the condition on g of
being good except at 1, the new position in the k-pebble bijection game
is indeed a partial isomorphism (g is an isomorphism except at gadget
Z(u), and Spoiler would need more than one pebble there to uncover
the difference). The move of Spoiler induces an update for the ith cop
in the cops and robber game, which yields a respond of the robber
according to his winning strategy, i.e. a move along a cop-free path P
to some vertex v. Hence, as shown above, the bijection ¢’ := gop
respects all pebbled pairs of elements and is good except at v. Since,
Z(v) is cop-free (and hence not pebbled), the claim follows. Q.E.D.

Theorem 6.17. FPC C PTIME on every class of graphs which contains
CFl-graphs X(G) and X(G) for graphs G of arbitrary large treewidth.

In fact, Grohe and Marino proved that FPC = PTIME on every
class of graphs with bounded treewidth. Their theorem allows us to
reformulate the result in a very neat way.

We first observe that the treewidth of X(G) is bounded by
(O)(tw(G)): from a tree-decomposition of G one obtains a tree de-
composition of X(G) by replacing in all bags the vertices by their
corresponding gadgets. Furthermore, the size of a gadget Z(v) in X(G)
is bounded by (4A(G) -22(6)=1) € O(A(G)). Now let G, be the n x n
grid, then tw(Gy,) = n, A(G,) = 4 and

tw(X(G)) < (4A(G) - 2201 tw(G,) = 24n € O(|G)).

106

6.4 The construction of Cai, Fiirer and Immerman

For a function f : IN — IN we define the class of graphs
TWy = {G : tw(G) < f(|G])}.
Theorem 6.18. FPC = PTIME on TW¢ if, and only if, f € O(1).

Proof. The direction from right two left is mentioned theorem due to
Marino and Grohe. For the other direction, assume f ¢ O(1); then for
every n > 0, there exists k > |X(Gy)| with f(k) > 24n. Hence, TW¢
contains X(G,) and X(G,) for every n > 0. Q.E.D.

107

7 Zero-one laws

Introduction, maybe we can use the introduction from the seminar?

7.1 Random graphs
We consider the class G, of (undirected) graphs over {0,...,n —1}, i.e.
Gn:={G=(V,E):Ggraph,V={0,...,n —1}},

In order to introduce random graphs we consider a sequence of proba-
bility distributions 7 = (p1, 42,...) on (G1,Ga,...), i-e. pn : G — [0,1]
and Y geg, #(G) = 1 for all n > 1. This defines a sequence of prob-
ability spaces (G1, 1), (G2, i2), - .. on classes of graphs of increasing

size.

Example 7.1.
(1) The uniform distribution p, assigns equal probability to each graph:

(2) Let p : N — [0,1] be an arbitrary mapping. Then the probability
space Gn,p = (Gn, pipn) is defined by the following random experi-
ment: determine for every pair (u1,v) with 0 < u < v < n whether
(u,v) € E using a random variable X taking values 0,1 (False and
True) with Pr[X = 1] = p(n) and Pr[X = 0] = (1 — p(n)). Observe
that for p = % one obtains the uniform distribution.

We make the following convention: unless otherwise stated, j, denotes
the uniform distribution. For a class K of graphs we set

n(K) := pn (KN Gu) = Z pn(G).
Gekng,

109

7 Zero-one laws

This definition formalises what it means that a random graph G €
Gy has a certain property K. However, in what follows, we are not
interested in random graphs of some fixed size n € IN but much more
in the behaviour of the probability u,(K) if we increase the size of
graphs, i.e. if we let n approach infinity.

Definition 7.2. The asymptotic probability of a class K of graphs (with
respect to 7) is defined as

() := lim u,(K),

n—oo

in the case that this sequence has a limit. In particular, if ¢ is a sentence
over vocabulary {E} in some logic £, then the asymptotic probability of
1§ (with respect to 7) is defined as

u(p) = nhg}oﬂn({c €Gn:GFE ¢},

again only for the case that the limit exists.
Example 7.3.
(1) Let £ = {G : G is a clique}. Then

lim p,(K) = lim !

n—oo n—eo 2(3)

=0.

(2) Let H be a graph and let Ky = {G : G contains H as subgraph}.
For n > k- |H| we have

n(Krr) > 1= (1= (27 FH)E,

hence y(Kpy) = 1 since k — oo for n — co.
(3) Let £ = {G : G is three-colourable}. Then

lim p,(K) <1- r}ijgoyn({G € Gy, : G contains K4 }) = 0.

n—oo

(4) Recall that we have lim, 0 1 ({G : (3,17) € E}) = 1.

(5) The asymptotic probability is not defined for every class of graphs.
For instance, consider K = {G : G has an even number of nodes}.
Then the sequence (4, (KC)),>1 = (0,1,0,1,...) has no limit.

110

7.2 Zero-one law for first-order logic

7.2 Zero-one law for first-order logic

In this section we prove the zero-one law for first-order logic:

Theorem 7.4. For sentences ip € FO (over relational vocabulary) we
have

p(p) =0 or p(y) =1

To put it in words, every first-order definable property of graphs either
holds almost never or almost surely on random graphs of increasing size.

Definition 7.5. An atomic graph k-type is a maximal consistent set ¢ of
FO({E})-literals in variables x1,...,x}, i.e. Ex;xj, =Ex;Xj, X; = Xj, X; #
xj, which is consistent with the graph axioms (Vxq Vo (mExpx1 A
Exyx; ¢+ Expx;). Furhtermore, for a graph G = (V,E) and @ € V* we
define the atomic graph k-type of @ by

tc(@) == {¢(x;, xj) : ¢ an FO({E})-literal such that G |= ¢(a;,4;)}.

Formally, an atomic k-type t is a set but we frequently identify
it with the formula ¢(X) = Aye; ¢(%) (this formula is an FO-formula,
since there are only finitely many {E }-literals in k variables).

In what follows, let s(¥) and #(X) denote atomic graph types of
tuples of distinct elements, i.e. s,t = Ni<j<k Xi # Xx. We say that
an atomic (m + 1)-type t(x1,...,Xm, Xyt1) extends an atomic m-type
s(x1,...,xp) if s C t, or equivalently, if ¢ |= s.

Definition 7.6. Let s(xy,...,xy) and #(xq,...,X%m, X,;;+1) be atomic
types such that s C t. We define the extension axiom os; by

Ot 1= Vx1 -+ Yy (s(X) = T 1H(X, Xi1))-

Furthermore, we let T be the set of all extension axioms together with
the graph axioms.

The proof of the zero-one law for FO relies on the following prop-
erties of the extension axioms and the set T

(1) p(oss) =1forallos € T.

111

7 Zero-one laws

(2) T is w-categorical, i.e. there is, up to isomorphism, only one count-
able model of T. This structure is known as the Rado graph.
(3) T is complete, i.e. forall € FOeither T = or T |= .

We proceed to establish these three properties.

Lemma 7.7. Let o5 € T be an extension axiom. Then (o) = 1.

Proof. Let o5y = Vx1---Vau(s(¥) — Ixy18(X, x41)). For every
i=1,...,m we have t = Exjx;;;1 or t = —Ex;x,,11. Let G € G,
be a random graph and ay,...,a,; € {0,...,n—1}. For every fixed
amy1 € V\{a1,...,an}, the experiments G |= Ea;a,, 11 are stochasti-
cally independent and have probability % Hence

Pr(G = £(@ ay1)IG = 5@)] = oy

Thus, probability that no element a,,11 € V \ {ay,...,a,} extends a
realisation @ of s to a realisation of (4@, a,,41) of tis (1 — 2)" ™. In
conclusion, we obtain

pn(—0st) = pn(Fxy -+ 320 ((X) A VX1 7H (X, X r1)))
1 .
Snm’(lfzfm)”_m engst
and thus p(ost) = 1. Q.E.D.

The compactness theorem implies that also every logical conse-
quence of the extensions axioms almost surely holds in a random graph.

Corollary 7.8. If T |= ¢ then u(p) = 1, and the set T is satisfiable.

Proof. If T |= 1, then by the compactness theorem there is a finite
set Ty C T such that Ty = ¢. Hence, we have u,(¢) > [Tyer, in(0)
for all n > 1 and thus lim,—«(¥) = 1 by Lemma 7.7. In particular
T = Vx(x # x) since p(Vx(x # x)) = 0. Q.E.D.

Interestingly, one can give explicit description of models of T and
we present two different possibilities here. However, as we show later
that T is w-categorical, these models are isomorphic.

112

7.2 Zero-one law for first-order logic

Definition 7.9 (Rado graph). The following graphs are models of T.
(1) Let p; denote the i-th prime number. We define G = (N, E) with

E:={(i,j) ENxN:p;|jorp;|i}

We claim that G |= T. To see this, we choose an arbitrary extension
axiom 0y 4 := Vx1 - - V(s (%) = Iy 1t(X, x41)) € T.
Let IU] = {1,...,m} be the partition defined by t with respect to
the following condition

o Ift = Ex;x; 41 theni € I, and

e if t = —Exjx;, .1 theni € J.
Let ay,...,ar € A such that G = s(ay,...,a;). We set a1 =
ILic1 pa;q where g is a prime number with g > pg, - - - pg,,. Then it
is easy to check that G |= Ea;ay, 1 foralli € I and G = —Eaja, 1
foralljeJ.

(2) The set HF of heriditarily finite sets is defined by:

e @ € HF

e Ifay,...,a; € HF, then also {ay,...,a,} € HF.
Let G = (HF,E) with E := {(a,b) : a € bor b € a}. Similarly as
above, one can show that G = T.

Theorem 7.10. Let G = (Vg, Eg) and H = (Vy, Eg) be two countable
models of T. Then G = H. The unique countable model of T is known
as the Rado graph R.

Proof. First of all, it is clear that T has no finite models, hence G and
H are infinite graphs. We fix two enumerations of Vs and Vy and
inductively construct a sequence of partial isomorphism pg, p1, p2, . ..
between G and H such that py C p; € p» C ---. For the base case,
we set po := @. For the induction step let p; = {(a1,b1),...,(a;,b;)} €
Loc(G, H) be already defined. We distinguish between the following
two cases:

e If i is even, choose 4,11 € Vs to be the minimal element (with
respect to the enumeration of V) which is not in the domain
of pi, ie. aj1q ¢ {al,...,ai}. Let s := tG(alr---rai) and t :=

113

7 Zero-one laws

tg(ay,...,a;11). Since p; is a partial isomorphism we know that
H [=s(by,...,b;). Since H |= 05 there exists an element b; ;1 € Vi
such that H ‘: t(bl,. . '/bi+1)' We set Pit1 = p;i U {(di+1,bi+1)}
and obtain a partial isomorphism extending p;.

e If i is odd, we proceed analogously, but this time we let b; ;1 € Vg
be the minimal element (with respect to the enumeration of V)
which is not in the image of p;, ie. b1 & {by,...,b;}. For
s:=ty(by,...,b;) and t:=ty(by,...,bi11), the same reasoning as
above yields an element ;.1 € V; such that G |= t(ay,...,a;41.
Again we obtain an extended partial isomorphism by setting
piv1 = piU{(ai41,biy1)}-

Finally we let p := J;>(pi- By construction we have that dom(p) = V;
and im(p) = Vg, hence p : G =5 H. Q.E.D.

In particular, w-categorical theories are complete:

Theorem 7.11. T axiomatises a complete theory, i.e. for all sentences
p € FO({E}) wehave T =g or T | —9.

Proof. Assume for some sentence i € FO({E}) it holds that T [~ ¢
and T [~ —¢. Then by the downwards Léwenheim-Skolem theorem,
there exist two countable graphs G and H with G = T U {¢} and
H = TU{-y}. In particular this implies G ¥ H, which contradicts
Theorem 7.10. Q.E.D.

Theorem 7.12. [Glebskii et al., R. Fagin] For all ¢ € FO({E}) it holds:

u(y)=0 or pu(y)=1

Proof. If T |= ¢, then u(¢) = 1. Otherwise, T |= —¢, and hence
u(y) =1—pu(-y) =0. Q.E.D.

In particular, we can give a precise characterisation of those first-
order properties which hold almost surely in random graphs.

Corollary 7.13. Let ¢y € FO({E}). Then

pp)=1 iff Ty iff REyp.

114

7.3 Generalised zero-one laws

7.2.1 Applications

We can use Theorem 7.12 to show that certain classes of graphs are
not definable in first-order logic: if a class K of graphs has undefined
asymptotic probability or an asymptotic probability different from 0 and
1, then clearly K cannot be defined in first-order logic. More generally,
this method yields non-definability of K for every logic that has a 0-1-law,
e.g. for LY, as we see later. For instance, consider the class EvenV =
{G = (V,E) : |V] is even} with undefined asymptotic probability or
the class EvenE = {G = (V,E) : |E|is even} with p(EvenE) = 1.
Moreover, we can use our results as a convenient method to determine
the asymptotic probability for many natural classes of graphs.

(1) We want to determine y(Con) where Con denotes the class of
connected graphs. Let s be an atomic 2-type in variables x,y
containing —Exy and let t be the atomic 3-type in variables x,y, z
which extends s and contains Exz A Eyz. Then G |= oy iff G has
diameter at most 2. Hence, G |= 05 implies G € Con, which
means that 3(Con) = 1.

(2) Let K be any class of graphs which exclude a forbidden sub-
graph H = ({v1,...,v},E). Then u(K) = 0. To see this, we set
si(xq,...,x;) == tyg(vy,...,v;) for i <k and consider the extension
axioms 0y, ,. Then clearly @ := A;x0s;s,, is a logical conse-
quence of T, which means that u(y) = 1. Moreover, if G = 1,
then G contains H as an induced subgraph. We conclude that
u(K) <1—pu(p) = 0. As an application, consider the class of
planar graphs which exclude K5 (the complete graph on 5 vertices)
and the class of k-colourable graphs which exclude Ky 1 (where k
is fixed). To put it in words, a random graph is almost never planar
nor k-colourable.

7.3 Generalised zero-one laws

In this section we want to generalise our considerations in two different
ways. Firstly, instead of restricting ourselves to graphs, we want to
work on more general classes of structures and analyse whether the

115

7 Zero-one laws

zero-one-law for FO still holds. Secondly, as FO has rather limited
expressive power, we look for zero-one laws for more powerful logics
as well.

Let T be an arbitrary vocabulary (not necessarily relational).
By Str,(t) we denote the set of all T-structures over the universe
{0,...,n —1}. As before we define a sequence i = (1, p,...) of
uniform probability distributions py : Str,(7) — [0,1], i.e. for every
2l € Str,, (T) we set

1

Fn) = o]

We claim that FO(7) has a zero-one law if, and only if, T contains
no function symbols. To this end, we first consider the case where T
contains function symbols:

(1) Assume {P,c} C T where ¢ is a constant symbol and P a monadic
relation. Then for ¢ := Pc we have p,(y) = § for all n > 1, hence
u(p) = 3, i.e. the zero-one law does hold in this case.

(2) Assume f € T where f is a unary function symbol. Consider the
FO(1)-sentence 1 := 3x(fx = x) stating that f has a fixed point.
For n > 1 we have

—Pr{f(i) 41

n
Since (1 — %) —— e ! for n — oo, the zero-one law does not hold
in this case either.

For the other direction, let T be purely relational, T = {Ry,..., R}
The proof strategy we used over graphs generalises for this general in a
straightforward way:

® An atomic t-type in k variables is a maximal, consistent set of -
literals over variables x1, ..., x;. For a T-structure 2(and @ € 2 we
set ty (7) = {@(X) : ¢ a t-literal with A |= ¢(a)}.

¢ The T-extension axiom o for two atomic T-types s and t (in k and

116

7.3 Generalised zero-one laws

k + 1 variables, respectively) with s C t is defined as
Ot := VX(s(X) — g1 (X, X p1))-

As before, we let T denote the set of all T-extension axioms

* Again we can show that y(cs;) = 1 for all o5 € T. Let r denote
the number of literals in + which contain x,, 1. Then, for a random
structure 21 € Str, (1), @ € A and a,,1 it holds

Pr[2 = 1@, as1) |2 | s(@)] =277,

Thus

pn(—0s,t) = pn (FX((X) A V1 7H(E, Xpg1)))

< nm(l _ Zfr)nfm efosst

¢ T is w-categorical: analogously!

Our analysis raises the question why even basic functions but not
arbitrary relations inhibit a zero-one law. The reason is that atomic
experiments are not longer stochastically independent. For instance,
consider the experiments f(a) = b and f(a) = ¢ (for b # ¢), then

Prf(a) = c|f(a) = b] = 0 # Pr[f(a) = c].

7.3.1 Zero-one law for LY,

We proceed to show that the zero-one law holds for LY, as well (re-
stricted to relational vocabularies). In particular, since LFP < LY,
this means that a random graph either almost surely has an LFP-
definable property or almost never does. With FO¥ we denote the
k-variable fragment of FO, i.e. FO¥ = FON L5, = {9 € FO :
¢ only contains variables x1, ..., x; }. If we restrict the set of extension
axioms T to FOX we obtain finite sets of approximations of T which are

again sentences in FOX; more specifically, we set

@y := A\ TNFO* = \{oss : 054 € TNFO'} € FOX.

117

7 Zero-one laws

The central property of these approximations for T is stated in the
following theorem: in models of ®y, every LK, -formula is equivalent
to a simple Boolean combinations of atomic k-types. In particular, every
Lk, ,-sentence is either true or false in all models of .

Theorem 7.14. Let m < k, s(xy,...,Xxy) an atomic m-type and
o(x1,...,xm) € Lléow‘ Then

either O = VX(s(X) = ¢(%))
or O = VX(s(X) = —p(X)).

Proof. We proceed by induction on ¢ and simultaneously show the
claim for all m < k and atomic types s. If ¢ is atomic, then either ¢ € s
or —¢ € s. If p = —p, the claim directly follows.

Let 9 = A'¥, ¥ C Lk, By induction hypothesis for all ¢y € ¥
either O = VX(s(X) — 9(%))
or O = Vx(s(X) — —9p(X)).

If O = VX (s(X) — (%)) for all p € ¥, then O |= VX (s(X) — A (X)).
Otherwise, Oy = VX (s(x) = " A¥(X)).

Let ¢(¥) = Jyyp(X,y) and assume that O £ VX(s(X) — —¢(X)).
Choose a structure 2l = O, with A = 3%(s(%) A Iy (X, y)) and consider
the following two cases

e Ify & {x1,...,xm}, ie.y € {xps1,...,x¢}; let ay,...,am, b €
A such that A |= s(a) A (@ b). We define the atomic type
H(X1, ..., Xm, y) := ty(a,b) with s C t. In particular,

A = I3y (t(x,y) A (X y)).
By induction hypothesis we know that

A Vavy(t(x,y) — ¢(x,y)),

and since 05 = Vx(s(x) — Jyt(X,y)) is an extension axiom con-

118

7.3 Generalised zero-one laws

tained in ©; we finally obtain

A = Vx(s(x) = Fyy(x,y))-

Ify € {x1,...,xn}, Lle. y = xj for j < m; leta € A such that
2 = s(a) A Jxjp(a), and let ¥* and @* denote the tuples X and @
without the j-th componenent, i.e.

:xl"'xj—lxj-‘y-l"'xk

S A

= ul...a]'—la]'-‘rl...ak'

Similarly, let s* (¥*) := tg(@*) be the atomic type of @* in 2. Then
s* C s and there is b € A such that

2 |: S*(ﬁ*) A lp(ﬁak), where ﬁ; =4y a]-,lbajﬂ s .
]]

For t*(X) := ty (E%) we thus have 2 |= 3(#*(X) A (X)), and the
induction hypothesis yields

O = Vx(t"(x) = ¢(3)).

As above, since s* C t*, it holds that @ [= Vx*(s*(x*) — Jx;t* (%)),
and altogether we obtain

O = Vx(s(x) — 3xjy(x)).

Q.E.D.

Corollary 7.15. For every LK, -sentence ¢ we either have ®; = ¢ or
Ok = 9.
Corollary 7.16. If 2 = ©; and B |= O, then A=, B.

Corollary 7.17 (Kolaitis, Varidi 1992). For every sentence ¢ € Ly, (over

a relational signature) we have p(¢) = 0 or u(¢) = 1.

Proof. Let ¢ € LK, for some k > 1. Then by Corollary 7.15 we have
Ok = ¢ or O = —p. Since O C T is finite, we have u(®;) = 1 and
thus the claim follows. Q.E.D.

119

	The classical decision problem for
	Basic notions on decidability
	Trakhtenbrot's Theorem
	Domino problems
	Applications of the domino method

	Finite Model Property
	Ehrenfeucht-Fraïssé Games
	FMP of Modal Logic
	Finite Model Property of FO2

	Descriptive Complexity
	Logics Capturing Complexity Classes
	Fagin's Theorem
	Second Order Horn Logic on Ordered Structures

	LFP and Infinitary Logics
	Ordinals
	Some Fixed-Point Theory
	Least Fixed-Point Logic
	Infinitary First-Order Logic

	Modal, Inflationary and Partial Fixed Points
	The Modal -Calculus
	Inflationary Fixed-Point Logic
	Simultaneous Inductions
	Partial Fixed-Point Logic
	Capturing PTIME up to Bisimulation

	Fixed-point logic with counting
	Logics with Counting Terms
	Fixed-Point Logic with Counting
	The k-pebble bijection game
	The construction of Cai, Fürer and Immerman

	Zero-one laws
	Random graphs
	Zero-one law for first-order logic
	Generalised zero-one laws

