Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, W. Pakusa, F. Reinhardt, M. Voit

Algorithmic Model Theory — Assignment 12

Due: Friday, 15 July, 13:00

Remark: Structures are finite and relational and graphs are undirected in this exercise.

Exercise 1

A lazy engineer has designed a system \mathfrak{A} (a τ -structure) which should satisfy a first-order specification $\forall x \varphi(x) \in FO(\tau)$. Unfortunately, $\mathfrak{A} \not\models \forall x \varphi(x)$.

The lazy engineer doesn't want to start from the beginning and thus he defines the substructure \mathfrak{A}' of \mathfrak{A} induced on all elements $A' = \{a \in A : \mathfrak{A} \models \varphi(a)\}$ in \mathfrak{A} which satisfy $\varphi(x)$. If he is very lucky, then $A' \neq \emptyset$ and $\mathfrak{A}' \models \forall x \varphi(x)$. In this case he found a system which meets the specification. Otherwise he continues in this way until he finds an appropriate system (or until he obtains the "empty structure").

Construct an IFP(τ)-sentence which holds in a τ -structure \mathfrak{A} if the lazy engineer finds, starting with \mathfrak{A} , a (non-empty) system $\mathfrak{B} \subseteq \mathfrak{A}$ such that $\mathfrak{B} \models \forall x \varphi(x)$ by following his strategy.

Exercise 2

A graph $\mathcal{G} = (V, E^{\mathfrak{A}})$ encodes an $(V \times V)$ -matrix $M^{\mathcal{G}}$ over \mathbb{F}_2 which is

$$M^{\mathcal{G}}(a,b) = \begin{cases} 0, & \text{if } (a,b) \notin E\\ 1, & \text{if } (a,b) \in E. \end{cases}$$

In other words, $M^{\mathcal{G}}$ is the adjacency matrix of the graph \mathcal{G} . In the same way, every FPC-formula $\varphi(x, y)$ defines an $(V \times V)$ -matrix $\varphi^{\mathcal{G}}$ over \mathbb{F}_2 in the graph \mathcal{G} . We want to show that matrix multiplication (over \mathbb{F}_2) is definable in FPC.

- (a) Construct a formula $\varphi(x, y) \in FPC(E)$ such that for all graphs \mathcal{G} it holds $\varphi^{\mathcal{G}} = (M^{\mathcal{G}})^2$.
- (b) Construct a formula $\psi(x, y) \in FPC(E)$ such that for all graphs \mathcal{G} it holds $\psi^{\mathcal{G}} = (M^{\mathcal{G}})^{2^{|V|}}$.

Exercise 3

Let \mathfrak{A} be a τ -structure. We make the following convention: we interpret numerical tuples $\bar{\nu} = (\nu_{k-1}, \ldots, \nu_1, \nu_0) \in \{0, \ldots, |A| - 1\}^k$ as numbers in the |A|-adic representation, i.e. we associate the number $\sum_{i=0}^{k-1} \nu_i |A|^i$ to each tuple $\bar{\nu} \in \{0, \ldots, |A| - 1\}^k$.

Show that the expressive power of FPC does not increase if we allow counting quantifiers of higher arity, i.e. formulas $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1}) \leq (\nu_{k-1},\ldots,\nu_0)$ where in a structure \mathfrak{A} the value of $\#_{x_0x_1\cdots x_{k-1}}\varphi(x_0,\ldots,x_{k-1})$ is the number of tuples \bar{a} such that $\mathfrak{A} \models \varphi(\bar{a})$ (with respect to the encoding introduced above). For simplicity, it suffices to consider the case k = 2.