Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, W. Pakusa, F. Reinhardt, M. Voit

Algorithmic Model Theory — Assignment 11

Due: Friday, 9 July, 13:00

Remark: Structures are finite and graphs are undirected in this exercise.

Exercise 1

Prove or disprove that the following classes are $L^{\omega}_{\infty\omega}$ -definable (over the appropriate signatures).

- (a) the class of all connected graphs,
- (b) the class of all graphs with an odd number of edges,
- (c) the class of all cyclic groups,
- (d) for every $P \subseteq \mathbb{N}$, the class of all linear orderings (A, <) such that $|A| \in P$,
- (e) the class of all structures (A, P) (with a monadic predicate P) such that $|P| \ge |A|/2$,
- (f) the class consisting of all pairs $((V, E, <_G), (W, F, <_H))$ of ordered graphs $G = (V, E, <_G)$ and $H = (W, F, <_H)$ such that G is isomorphic to H (as ordered graphs). Before you solve this part of the exercise, explain how you would encode such pairs of ordered graphs as usual relational structures.

Exercise 2

Construct IFP-formulas which define in a rooted tree $\mathcal{T} = (V, E, r)$, where r denotes its root, the following relations.

- (a) $R_1 = \{(x, y) : \text{the subtrees rooted in } x \text{ and } y \text{ have the same height} \}$
- (b) $R_2 = \{(x, y) : \text{the nodes } x \text{ and } y \text{ are on the same level of the tree} \}$
- (c) $R_3 = \{x : \text{the subtree rooted in } x \text{ has a perfect matching}\}.$

Exercise 3

- (a) Let \mathcal{K} be a class of finite structures. We say that \mathcal{K} is *fixed-point bounded* if for every firstorder formula $\varphi(X, \bar{x})$ (positive in X and the arity of X coincides with the length of \bar{x}) there is a constant m_{φ} such that for all structures $\mathfrak{A} \in \mathcal{K}$ the inductive construction for the least fixed point of the monotone operator $F_{\varphi}^{\mathfrak{A}}$ defined by φ on \mathfrak{A} reaches the least fixed point after at most m_{φ} many steps (the closure ordinal is $\leq m_{\varphi}$). Show that LFP \equiv FO over every fixed-point bounded class of structures \mathcal{K} .
- (b) Show that $LFP \equiv FO$ over the class of all complete graphs.

Hint: Make use of (a) and the fact that complete graphs have the symmetric group as automorphism group.

http://logic.rwth-aachen.de/Teaching/AMT-SS16/