Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, W. Pakusa, F. Reinhardt, M. Voit

Algorithmic Model Theory — Assignment 8

Due: Friday, 17 June, 13:00

Exercise 1

Let $r \leq s$. Show that every FO(τ)-formula $\varphi(\bar{x})$ which is r-local is also s-local.

Exercise 2

In this exercise we want to apply Hanf's Theorem to show that connectivity of graphs cannot be defined in *existential monadic second-order logic (EMSO)*, that is in the logic consisting of all Σ_1^1 -sentences of the form

$$\exists P_1 \cdots \exists P_k \vartheta, \vartheta \in \mathrm{FO}$$

where the existential quantifiers over the second-order variables P_i are restricted to *monadic* predicates P_i .

- (a) Show that EMSO can define the class of all (finite) graphs which are *not* connected.
- (b) Show that EMSO cannot define the class of all (finite) graphs which are connected.
 - Assume that some sentence $\psi = \exists P_1 \cdots \exists P_k \vartheta \in \text{EMSO}$ defines this class.
 - For n ≥ 1, consider a connected graph G_n consisting of a directed cycle of lenght n, i.e. G_n ⊨ ψ.
 - Think of the predicates P_i as colours of the nodes of this cycle and determine the number of isomorphishm types of r-neighbourhoods (to get the appropriate value of r apply Hanf's Theorem to ϑ).
 - Choose the parameter n large enough such that at least two nodes on the (coloured) cycle have disjoint and isomorphic r-neighbourhoods. Use these two nodes to construct a new graph consisting of two disjoint cycles which is a model of ψ .

Exercise 3

We consider the class \mathcal{K}_d of (undirected, finite) graphs G = (V, E) with degree $\leq d$ for some constant d. We want to apply Gaifman's Theorem to show that for each fixed first-order sentence $\varphi \in FO(\{E\})$, the model-checking problem $G \models \varphi$ for graphs $G \in \mathcal{K}_d$ is decidable in linear time.

• Explain why it suffices to solve this problem for basic local sentences

$$\exists x_1 \cdots \exists x_\ell (\bigwedge_{i \neq j} d(x_i, x_j) > 2r \land \bigwedge_i \psi^r(x_i)).$$

• Show that one can compute in linear time, given a graph $G = (V, E) \in \mathcal{K}_d$, the set P_{ψ} of elements $v \in V$ such that $G \models \psi^r(v)$.

Hint: Use that r and d are constants.

• Show that one can decide in linear time, given a graph $G = (V, E) \in \mathcal{K}_d$, whether the set P_{ψ} (as defined above) contains an *r*-scattered tuple of length ℓ .

Hint: Use the fact that the 2*r*-neighbourhood of a maximal *r*-scattered tuple of P_{ψ} elements covers P_{ψ} .