Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, W. Pakusa, F. Reinhardt, M. Voit

Algorithmic Model Theory — Assignment 2

Due: Friday, 29 April, 13:00

Exercise 1

Let X be the class of all relational FO-formulas φ in prenex normal form

 $\varphi = \exists x_1 \cdots \exists x_r \, \forall y_1 \cdots \forall y_s \, \eta(\bar{x}, \bar{y}),$

where η is quantifier-free.

We saw that X has the finite model property (see Assignment 1, Exercise 2). Hence, Sat(X), Fin-Sat(X), and Non-Sat(X) are decidable. Prove or disprove that Val(X) is decidable.

Exercise 2

Prove that for every finite relational vocabulary τ and for every $k \ge 1$ the set $X = X[\tau, k]$ consisting of all FO-sentences of quantifier-rank at most k the satisfiability problem Sat(X) is decidable. Does X has the finite model property for all choices of τ and $k \ge 1$?

Exercise 3

(a) Let X denote the set of all relational FO-formulas φ with binary relation symbols only and in prenex normal form

$$\varphi = \forall x \forall y \forall z \exists v \, \eta(x, y, z, v),$$

where η is quantifier-free.

Show that X is a conservative reduction class.

Hint: Use the same technique as in the reduction from the domino problem to the KMW-class $(\forall \exists \forall)$, but use a binary relation to describe the successor function.

(b) Show that this even holds for the subclass $Y \subseteq X$ of formulas in X without equality.

Hint: Try to substitute equality by an appropriate congruence relation.

Exercise 4

From the lecture we know that the following problems are pairwise recursively inseparable:

- (i) DOMINO-NT = { \mathcal{D} : there is no tiling of $\mathbb{N} \times \mathbb{N}$ by \mathcal{D} }
- (ii) DOMINO-PER = { \mathcal{D} : there is a periodic tiling of $\mathbb{N} \times \mathbb{N}$ by \mathcal{D} }
- (iii) DOMINO-NPER = { \mathcal{D} : there is an aperiodic tiling of $\mathbb{N} \times \mathbb{N}$ by \mathcal{D} , but no periodic one}

Which of these problems are r.e. and which of them are co-r.e.? Justify your answer (by using the undecidability of the domino problem).

http://logic.rwth-aachen.de/Teaching/AMT-SS16/