Algorithmic Model Theory — Assignment 4

Due: Tuesday, 20 May, 12:00

Exercise 1

 ε -FO is the extension of FO by Hilbert's *choice operator* (also known as ε -operator). The syntax of FO is given by the usual rules together with an additional ε -rule: If ψ is a formula, and x is a variable, then $\varepsilon x \psi$ is a term (read "an x such that ψ "). The interpretation of ε in a structure with universe A is given by an arbitrary choice function $F : \mathcal{P}(A) \to A$ such that $F(X) \in X$ for all $X \neq \emptyset$.

- (a) Show that the quantifiers \exists and \forall can be expressed with the ε -operator.
- (b) Construct an infinity axiom φ in ε -FO² over the empty vocabulary, i.e., φ contains only the ε -operator, two variables x and y, and equality, but neither relation nor function symbols.

Exercise 2

Show that the class $[\exists^*\forall, (0), (1)]_{=}$ has the finite model property.

Hint: Consider the Skolem normal-form of such sentences φ , and try to prune a possibly infinite model of φ by considering equivalence relations between elements of the structure relating those elements that satisfy the same atomic formulae in one free variable in which the function is applied only a bounded number of times.

Exercise 3

- (a) Show that the problem whether a sentence of length n given in prenex normal form with q universal quantifiers has a model with at most s elements can be decided nondeterministically in time $p(s^q n)$ for some polynomial p.
- (b) Conclude, using the arguments from Exercise 2 of Assignment 1, that $Sat[\exists^*\forall^*, all, (0)]_{=} \in NEXPTIME.$
- (c) Show that $\operatorname{Sat}[\exists^*\forall^*, \operatorname{all}, (0)]_=$ is even NEXPTIME-complete by proving the hardness via a reduction from $\operatorname{Domino}(\mathfrak{D}, 2^n)$ to $\operatorname{Sat}[\exists^2\forall^*, \operatorname{all}, (0)]_=$.

Hint: Use sentences of the form $\exists 0 \exists 1 \forall \bar{x} \forall \bar{y} \dots (0 \neq 1 \land \varphi)$ where tuples $\bar{x} = x_0 \dots x_{n-1}$ represent coordinates and φ describes a correct tiling using appropriate relations.