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1 Bedlewo 2003

1.1 Fixed-point logic with counting — Andreas Blass

Can either of the following be expressed in fixed-point logic plus counting:

1. Given a graph, does it have a perfect matching, i.e., a set M of edges such that
every vertex is incident to exactly one edge from M?

2. Given a square matrix over a finite field (regarded as a structure in the natural
way, as described in [1]), what is its determinant?

It is known that (1) is expressible if restricted to bipartite graphs and that (2) is ex-
pressible if the field has only two elements. Both these results are in [1].

Reference

[1] A. Blass, Y. Gurevich, and S. Shelah, On polynomial time computation over unordered
structures, J. Symbolic Logic 67 (2002) 1093–1125.

T

1.2 Monadic second-order transductions — Bruno Courcelle

For definitions, see www.labri.fr/˜courcell/ActSci.html.

1. Conjecture (Seese): If C is a class of finite graphs for which the satisfiability problem
for monadic second-order logic (MS logic) is decidable, then this class is the image of
a set T of finite trees under a monadic second-order transduction, equivalently C has
bounded clique-width.

Reference: D. Seese, The structure of the models of decidable monadic theories of graphs,
Ann. Pure Appl. Logic 53 (1991) 169-195.

Observation. For proving Seese’s Conjecture, one need to find a monadic second-order
compatible graph transformation S and a function f such that, for every graph G, if G
has clique-width more than f(k), then S(G) is a k × k square grid.

1
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2. A stronger conjecture: If C and T are as above, then T is also the image of C under
a monadic second-order transduction. Hence a decision algorithm for the satisfiability
problem for MS logic in graphs of C can be derived from one for T and vice-versa.

3. Reductions between specific cases.

Let C and D be two classes of graphs. We write C ≥ D, if one can prove the conjecture
for all subsets of D assuming it is proved for all subsets of C.

Do we have “finite graphs” ≥ “countable graphs” (the conjecture is actually stated by
D. Seese for finite and infinite graphs)?

Do we have “finite graphs” ≥ “finite relational structures with relations of arity more
than 2”?

4. Which structure transformations are monadic second-order compatible (MS compat-
ible)?

The following transformations are known to be MS compatible: MS transductions, the
Shelah-Stupp-Muchnik tree expansion. Compositions of MS compatible transformations
are MS compatible. (Unfolding is a composition of an MS-transduction and a tree-
expansion.)

Question. Can one find MS-compatible transformations that cannot be obtained as
finite compositions of transformations of the above two basic forms.

5. For a Noetherian and confluent term rewriting system, the normal form mapping goes
from finite terms to finite terms.

Question. When is it an MS-transduction? When is it MS-compatible?

T

1.3 Monadic second-order logic with cardinality predicates
— Bruno Courcelle

The problem concerns the extension of Monadic Second Order Logic (over a binary
relation representing the edge relation) with the following atomic formulas:

“Card(X) = Card(Y )”

“Card(X) belongs to A”

where A is a fixed recursive set of integers.

Let us fix k and a closed formula F in this language. Is it true that the validity of F for
a graph G of tree-width at most k can be tested in polynomial time in the size of G?

Remark. With the equicardinality predicate, MS logic becomes undecidable on words
because satisfiability of Post Correspondence Problem can be encoded.

T
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1.4 ESO arity hierarchy — Etienne Grandjean

For any first-order signature σ, let Ntimeσ(n) denote the class of σ-problems (= sets of
σ-structures) that are recognized by nondeterministic RAMs in time O(n) where n is the
cardinality of the domain of the input σ-structure. Let ESOσ(∀ 1) (resp. ESOσ(arity 1))
denote the class of σ-problems defined by ESO (Existential Second Order) formulas with
only one first-order variable (resp. with ESO function and relation symbols of arity non
greater than 1). The class ESOσ(arity 1,∀ 1) is defined similarly.

The following equalities are proved in [1] for any signature σ:

Ntimeσ(n) = ESOσ(∀ 1) = ESOσ(arity 1,∀ 1).

(Note: This class is denoted vertexNLINσ.)

Conjecture. For any signature σ of arity 1, the following equality also holds:

ESOσ(∀ 1) = ESOσ(arity 1).

Remark. By Cook’s theorem on time hierarchy and by Fagin’s padding technics in FMT,
that conjecture would imply that the following “Fagin’s arity hierarchy” is strict at each
level: For any signature σ of arity 1 and any d greater than or equal to 1, ESOσ(arity d)
is strictly included in ESOσ(arity d + 1).

Reference

[1] E. Grandjean and F. Olive, ”Graph properties checkable in linear time in the number
of vertices” (56 pages), to appear in JCSS

T

1.5 A gap in the complexity of natural problems
— Etienne Grandjean

All the natural graph or digraph problems (given by their adjacency nxn matrix, i.e.
as {E}-structures where E is a binary relation) that are presented in [1] are either in
Ntime{E}(n) (= ESOσ(∀ 1)) or in Ntime{E}(Ω(n2)).

Question. Exhibit a natural graph or digraph problem that is neither in Ntime{E}(n)
(= ESOσ(∀ 1)) nor in Ntime{E}(Ω(n2)), that means: is recognized (by some nondeter-
ministic RAM) in time o(n2) but not in time O(n).

Remark. The ”nonnatural” set of graphs that have at least n3/2 edges (where n is the
number of vertices) obviously belongs to Ntime{E}(n3/2).
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Reference

[1] E. Grandjean and F. Olive, ”Graph properties checkable in linear time in the number
of vertices” (56 pages), to appear in JCSS

T

1.6 Three open problems concerning dynamic complexity
— Neil Immerman

1. Are Reachu or Reach(acyclic) in DynQFree?

2. Reach is not complete via bfop’s for DynFO(count); but is it complete for this
class via slightly stronger reductions?

3. Is Reach restricted to graphs of bounded tree width in DynFO?

References

William Hesse and Neil Immerman: Complete Problems for Dynamic Complexity Classes.
LICS 2002: 313 –

A positive answer to (1) – Bill Hesse

Bill Hesse has proved that Reachu — undirected graph reachability — is in fact in
DynQFree.

This result along with much related work can be found in his Ph.D. thesis a draft of
which is already on-line: http://www.cs.umass.edu/˜whesse/thesis.ps.

T

1.7 Frail 0-1 laws — Jean-Marie Le Bars

0-1 laws are usually obtained by considering the uniform distribution. Is it possible to
change the issue by a slight modification of the distribution?

Let R be a relational vocabulary. For each natural number n, we denote by M(n,R)
the set of R-structures with domain n = {0, . . . , n − 1}. Let a constant 0 < p < 1,
the following experiment yields a random structure Mn of M(n,R) over the probability
space E(n, p) : for any natural number k, any S ∈ R of arity k and any tuple ak of k
elements of n, we choose at random with probability p whether the tuple ak is in the
relation S. For any property P on R-structures, we denote by µn,p(P) the probability
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that P holds on Mn. Let L a logic, a 0-1 law holds for L over E(n, p) when, for each
property P expressible in L, the limit of µn,p(P) is 0 or 1, when n → +∞.

Does there exist a (natural) logic L such that

• the 0-1 law holds for the uniform distribution (p = 1/2).

• there exists ε > 0 such that the 0-1 law fails over E(n, p), where p = 1/2 + ε or
p = 1/2 − ε.

T

1.8 Random graphs with specified degree sequence
— Jim Lynch

The degree sequence of an n-vertex graph is d0, ..., dn−1, where each di is the number of
vertices of degree i in the graph. A random graph with degree sequence d0, ..., dn−1 is a
randomly selected member of the set of graphs on {0, ..., n−1} with that degree sequence,
all choices being equally likely. Let λ0, λ1, . . . be a sequence of nonnegative reals summing
to 1. A class of finite graphs has degree sequences approximated by λ0, λ1, . . . if, for every
i and n, the members of the class of size n have λin + o(n) vertices of degree i. There
is a convergence law for random graphs with degree sequences approximated by some
sequence λ0, λ1, . . . . If

∑∞
i=1 iλi is finite and certain other conditions on the sequence

λ0, λ1, . . . hold, then the probability of any first-order sentence on random graphs of size
n converges to a limit as n grows.

Some open problems suggested by this convergence law are:

1. What are the possible values that the probability can converge to ?

2. What is the complexity of computing this limit?

3. If
∑∞

i=1 iλi = ∞, does the convergence law still hold?

4. Does the convergence law hold for any logical languages more powerful than first-
order logic?

5. Of particular interest to internet applications, physics, and biology, is there a gen-
eral characterization of random graph processes that result in power law distribu-
tions?

Reference

James F. Lynch, Convergence Law for Random Graphs with Specified Degree Sequence,
LICS 2003.

T
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1.9 Arity of LFP-queries — Greg McColm

Greg McColm
Department of Mathematics
University of South Florida
email: mccolm@chuma1.cas.usf.edu

One of the characterizations of Least Fixed Point logic over positive elementary formulas
(LFP(FO), see [7]) consists of taking an operative system of positive elementary formulas,

ϕ0(x0,S), . . . , ϕν(xν ,S),

where:

• for each i, xi = xi,1, . . . , xi,di
is a tuple of first order variables,

• the tuple S̄ = S0, . . . , Sν is a tuple of second order variables, where for each i, Si

ranges over di-ary relations, and

• for each i, the formula ϕi is positive in S0, . . . , Sν , i.e., there are no ¬ symbols “in
front of” any term Si(ū).

The arity, or dimension, or number of recursion variables of this system is max{di: i =
0, 1, . . . , ν}. (A game-theoretic version can be found in [5].)

In [1], there appears the question: suppose that the arity of a LFP(FO) query is the
least arity of any operative system ϕ̄ that has that query in its least fixed point. Do the
arities of the LFP(FO) expressible queries generate an infinite hierarchy?

This question was answered affirmatively by [2], which exhibited a a sequence of queries
such that for each d, there was a boolean-valued LFP(FO)-expressible query R of minimal
arity greater than d. Grohe then asked if we restricted our attention to the class of
structures with successor relations, does the hierarchy still fail to collapse? In fact, he
proved that if the arity hierarchy does not collapse over the class of structures with
successor relations, then DLOGSPACE 6= PTIME.

In [6], I generalized his question. Suppose that we have a class of structures which admit
a LFP(FO) expressible query that is not FO expressible. Is it true that for any such class
of structures, the arity hierarchy does not collapse? I then proved that this conjecture
was true when all quantification was “weakly guarded” on a class of structures with
a “sparse and uniformly connected” guard relation: the proof used a diagonalization
technique.

It should be noted that there is a difference between the arity hierarchy and the Number
of Variables hierarchy. In [4], it is proven that over any class of structures admitting an
unbounded LFP induction, the Number of Variables hierarchy does not collapse (this
proof also uses diagonalization). However, in [3], it is proven that there is a class of
structures admitting unbounded LFP inductions, but on which all LFP(FO) queries are
FO expressible, and thus of arity 0, so that the arity hierarchy does collapse.
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References

[1] A. Chandra & D. Harel, Structure and complexity of relational queries J. Comp.
Sys. Sci. 25 (1982) 99–128.

[2] M. Grohe, Arity hierarchies, Ann. Pure and Applied Logic 82 (1996), 103–163.

[3] Y. Gurevich, N. Immerman, S. Shelah, McColm’s Conjecture, Proc. 9th IEEE
Symp. Logic in Comp. Sci. (LICS’1994), 10–19.

[4] G. McColm, Parametrization over inductive relations of a bounded number of vari-
ables, Ann. Pure and Applied Logic 48 (1990), 103–134.

[5] G. McColm, Dimension Versus Number of Variables, and Connectivity, too, Math.
Log. Quart. 41 (1995), 111–134

[6] G. McColm, The Arity of Least Fixed Point Queries in Guarded Quantification
Logic, in preparation.

[7] Y. Moschovakis, Elementary Induction over Abstract Structures (North-
Holland, 1974).

T

1.10 Generic queries — Luc Segoufin

Let G be a finite colored graph. Let < be a linear order on G. G is a string if it is a tree
with only one branch.

A property is said to be generic if it is independent of the linear order. Consider FOg(<),
the generic first-order definable properties over the signature of colored graphs. Gurevich
showed that, over finite graphs, FOg(<) is strictly more expressive than FO.

Question. Does FOg(<) = FO over finite strings? What about finite trees?

T

1.11 Locally generic queries — Michael Abram Taitslin

Conjecture 1. If, in an expansion of (N, <,+), locally generic extended queries express
more than restricted ones, the first order theory of the expanded domain is undecidable.

Conjecture 2. If, in an expansion of (N, <,+), locally generic extended queries express
more than restricted ones, then there is a first-order formula Φ(x, y) in the language of the
expansion such that for any finite subset A of natural numbers, there is a natural number



8 1. Bedlewo 2003

b such that A = {a ∈ N | Φ(a, b)}. In particular, the Random Graph is interpretable in
the expansion.

Conjecture 3. Does the collapse theorem hold for < N, <,+, |p >?

T

1.12 Bracketing-invariant properties — Jan Van den Bussche

Consider strings over a finite alphabet Σ, represented in the well-known way as finite
structures over (<,Σ), where < is a total order and each letter in Σ serves as a unary
relation. Expand such strings with a “bracketing:” this is a bijection B from one half
of the elements to the other half, such that the situation x < y < B(x) < B(y) never
occurs. Only even-length strings have bracketings.

Call a first-order sentence over (<,Σ, B) invariant if it does not distinguish between two
different bracketings of the same string.

Question. Is every invariant first-order sentence over (<,Σ, B) equivalent, on even-
length strings, to a first-order sentence just over (<,Σ)?

Solved – Christof Löding and Thomas Wilke

A positive solution to this problem has in the meantime been announced by Christof
Löding and Thomas Wilke. When a preprint of the proof becomes available, a reference
will be added to this source.

1.13 A partial (negative) answer to Specker’s problem
— Janos A. Makowsky, Eldar Fischer

E. Fischer has solved the open problem concerning the Specker-Blatter Theorem, which I
had contributed some 3-4 years ago (Problem 2.5); more precisely, he has given a counter
example, to the extension of the Specker-Blatter Theorem to relation symbols of arity ≥
4.. The solution is posted on my preprint page. I also have a joint paper with E. Fischer
on further developments concerning the same material.

The case of arity 3 remains open.

T



1. Bedlewo 2003 9

1.14 New results concerning Ash’s Conjecture
— Malika More, Annie Chateau

Annie Chateau and Malika More
LLAIC, IUT Info, BP 86, Campus des Cézeaux,
63172 Aubière Cedex, France,
e-mail : chateau,more@llaic3.u-clermont1.fr

Reference

Christopher J. Ash. A conjecture concerning the spectrum of a sentence. Mathematical
Logic Quarterly, 40:393-397, 1994.

See also the related Problem 3.2.

Let σ denote a relational signature containing the identity relation and k ≥ 2 a quantifier
depth for first-order σ-sentences. For all n ∈ N, let Nσ,k(n) be the number of non k-
equivalent σ-structures of size n.

Conjecture 1. ∀σ, ∀k, the Ash function n 7→ Nσ,k(n) is eventually constant. (Ash 1994)

Conjecture 2. ∀σ, ∀k, the Ash function n 7→ Nσ,k(n) is eventually periodic. (Ash 1994)

Theorem 3. If σ is unary, then ∀k, Nσ,k is eventually constant. (Ash 1994)

Theorem 4. If k = 2, then ∀σ, Nσ,2 is eventually constant.

Let Φ be a first-order sentence. The first-order spectrum of Φ, denoted by Sp(Φ), is
the set of cardinalities of finite models of Φ. Let NE be the class of binary languages
accepted in time O(2cn) by a non-deterministic Turing machine, where c is a constant
and n is the size of the input. Jones and Selman (1974) proved that NE is the class of
all first-order spectra.

Conjecture 5. ∀Φ, ∃Ψ, N \ Sp(Φ) = Sp(Ψ) (Asser 1955)

Thus Asser conjecture is the FMT version of NE =? coNE.

Theorem 6. If (the periodic) Ash conjecture holds, then Asser conjecture holds. (Ash
1994)

For all i ∈ N, let Fi = {n / Nσ,k(n) = i}. Note that only a finite number of Fi’s are
nonempty.

Conjecture 7 (very weak Ash conjecture). ∀σ, ∀k, ∀i, Fi ∈ NE

Theorem 8. The very weak Ash conjecture holds iff Asser conjecture holds. Moreover,
if σ only contains one binary relation and ∀k, ∀i, Fi ∈ NE, then Asser conjecture holds.
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Let T be a σ-theory. Let NT ,k(n) denotes the number of non k-equivalent models of T
of size n. More precisely, let us consider the following theories :

• σ = {E, =}

Tb = “the binary relation E is bijective”

Tf = “the binary relation E is functional”

T2 = “the binary relation E has total degree less than or equal to 2”

T2u = “the binary relation E is symmetric, irreflexive and has degree less than or equal
to 2”

T≡ = “the binary relation E is an equivalence relation”

• σ = {E1, E2, =}

T⊆ = “the binary relations E1 and E2 are equivalence relations and E1-classes are subsets
of E2-classes”

Theorem 9. For all k ≥ 2, the Ash functions NTb,k, NTf ,k, NT2,k, NT2u,k, NT≡,k, NT⊆,k

are eventually periodic. (Chateau 2003)

Theorem 10. For all k ≥ 3, the Ash functions NTb,k are not eventually constant.
(Chateau 2003)
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2.1 Successor- vs. order-invariance — Heinz-Dieter Ebbinghaus

Submitted by H. D. Ebbinghaus who attributes the problem to S. Abiteboul, R. Hull
and V. Vianu; A. Dawar.

In the following, sentence means first-order sentence.

A sentence ϕ of vocabulary τsucc := τ∪{succ} is called successor-invariant (in the finite)
if for every (finite) τ -structure A and successor-relations succ1, succ2 on A,

(A, succ1) |= ϕ iff (A, succ2) |= ϕ.

The definition of order-invariance (in the finite) is similar. By the interpolation theorem,
order-invariant sentences of vocabulary τ< and successor-invariant sentences of vocabu-
lary τsucc are equivalent to τ -sentences. On the other hand, there are τ<-sentences that
are order-invariant in the finite, but in the finite are not equivalent to a sentence of
vocabulary τ .

Question. Is any τsucc-sentence that is successor-invariant in the finite, equivalent in
the finite to a τ -sentence?

T

2.2 Strategies for EF-games — Ron Fagin

Find a winning strategy for the duplicator for some EF game that involves more than one
coloring round, and use it to prove an inexpressibility result. Two examples of formulas
whose EF game involves more than one coloring round are:

1. ∃A1∀x∃A2φ, where A1 and A2 are unary second-order (set) variables, where x
is a first-order (individual) variable, and where φ is a first-order formula. Such a
formula represents some class in NP (in fact, in closed monadic NP).

2. ∃A1∀A2φ, where A1 and A2 are unary second-order (set) variables, and where φ
is a first-order formula. Such a formula represents some class in the second level of
the monadic hierarchy.

T

11



12 2. Luminy 2000

2.3 Circular order — Bruno Courcelle

Mail: courcell@labri.fr, URL: www.labri.fr/Perso/˜courcell/ActSci.html.

Let D be a finite set of size at least 3. A circular order on D is a ternary relation R such
that, there exists on D a strict linear order < such that:

Rxyz iff x < y < z or y < z < x or z < x < y.

A circular order satisfies the following properties for all x, y, z, t ∈ D:

A1: Rxyz implies Ryzx;

A2: Rxyz and Rytz imply Rxyt and Rxtz;

A3: Rxyz implies that Rxzy does not hold;

A4: either Rxyz or Rxzy or x = y or y = z or x = z.

Let C be a ternary relation on D. It is consistent, if it is included in some circular
order R.

Deciding whether C is consistent is NP-complete by Galil et Megiddo (Theoretical
Computer Science 5 (1977) 179-182).

Question 1. Is the consistency of C expressible by a formula of monadic second-order
logic (with C the only relation and without any other constant or relation symbol)?

(This is true if C contains the union of two circular orders on two subsets of D the union
of which is D.)

If C is consistent, its **closure** f(C) is defined as the intersection of all circular orders
containing C; we let C∗ denote its transitive closure i.e., the least set of triples satisfying
A1 and A2. Using the fact that the transitive closure can be computed in polynomial
time, and unless P = NP, C∗ = f(C) does not hold in general.

Question 2. Exhibit a smallest consistent set C such that C∗ differs from f(C).

Unless P = NP, f(C) is not the least fixed point of any monotone operator on sets of
triples over D having a polynomial complexity.

We say that C is strongly consistent if it is consistent and f(C) is a circular order, which
means that C generates a unique circular order.

Question 3. Characterize the strongly consistent sets C.

T
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2.4 Fine spectrum — John Baldwin

Submitted by John Baldwin, University of Illinois at Chicago, www.math.uic/˜jbaldwin.

Solve the fine spectrum problem for Lk theories.

That is, analogously to Shelah’s work for arbitrary stable theories find all functions from
ω to ω such that there is complete Lk theory which has f(n) models with cardinality n.

Work of Djordjevic shows under suitable amalgamation hypotheses every such theory
is either unstable or ω-stable. This removes many of the cases in the infinite analysis.
But such interesting cases as multidimensionality remain. There should also be a close
connection with the theory of homegeneous models as developed by Cherlin, Hrushovski
and Lachlan. (See Cherlin’s webpage: http://www.math.rutgers.edu/˜cherlin/).

Note that this problem and the following problem submitted by Makowsky differ essen-
tially in counting labeled versus unlabeled structures.

T

2.5 Specker’s Problem — Janos A. Makowski

Contributed1 by J.A. Makowsky.

Counting Labeled Structures mod m

Let C be a class of finite structures for one binary relation symbol R. We define for
A = {1, . . . , n}

FC(n) =| {RA ⊆ A2 : 〈A, RA〉 ∈ C} |

Examples:

1. If C = U consists of all R-structures, fU (n) = 2n2

.

2. If C = B consists of bijections, fB(n) = n!

3. If C = G is the class of all (undirected, simple) graphs, fG(n) = 2(n
2
).

4. If C = E is the class of all equivalence relations,
fE(n) = Bn, the Bell Numbers.

5. If C = E2 is the class of all equivalence relations with two classes only, of the same
size, fE2

(2n) = 1
2 ·

(

2n
n

)

. Clearly, fE2
(2n + 1) = 0.

6. If C = T is the class of all trees, fT (n) = nn−2, Caley.

1Our exposition follows closely [Blatter and Specker, 1984]
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We observe the following:

fC(n) = 2n2

= (−1)n2

(mod 3)

fC(n) = n! = 0 (mod m) for n ≥ m

And for each m the functions, fG(n) = 2(n
2
), fE(n) = Bn, fT (n) = nn−2 are ultimately

periodic (mod m).

However, fE2
(2n) = 1

2 ·
(

2n
n

)

= 1 (mod 2) iff n = 22k, hence is not periodic (mod 2).

Enter Monadic Second Order Logic

The first four examples (all relations, all bijections, all graphs, all equivalence relations)
are definable in First Order Logic FOL. The trees are definable in Monadic Second
Order Logic MSOL..

E2 is definable in Second Order Logic SOL, but not MSOL-definable. If we expand E2

to have the bijection between the classes we get structures with two binary relations. The
class is now FOL-definable. Let us denote the corresponding counting function FE2

(2n).
We have

fE2
(2n) · n! = FE2

(n) = 0 (mod m)

for n large enough.

Periodicity and Linear Recurrence Relations

The periodicity of fC(n) (mod m) is usually established by exhibiting a Linear Recur-
rence Relation:

There exists 1 ≤ k ∈ N and integers a1, . . . , ak such that for all n

fC(n) =
k

∑

j=1

aj · fC(n − j) (mod m)

Examples:

1. In the case of fC(n) = 2n2

we have

fC(n) = fC(n − 2) + 2 · fC(n − 1) (mod 3)

2. In the case of fC(n) = n! we have for all m

fC(n) = 0 · fC(n − 1) (mod m)

In this case we say that fC trivializes.
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Blatter-Specker Theorem

Theorem: Let τ be a binary vocabulary, i.e. all relation symbols are at most binary. If
C is a class of finite τ -structures which is MSOL-definable, then for all m ∈ N fC(n) is
ultimately periodic (mod m).

Moreover, there exists 1 ≤ k ∈ N and integers a1, . . . , ak such that for all n

fC(n) =
k

∑

j=1

aj · fC(n − j) (mod m)

i.e we have a linear recurrence relation.

Problem: Does this hold also for ternary (arbitrary finitary) relation symbols?

References

• C. Blatter and E. Specker, Recurrence relations for the number of labeled structures
on a finite set. In Logic and Machines: Decision Problems and Complexity, E.
Börger, G. Hasenjaeger and D. Rödding, eds, LNCS 171 (1984) pp. 43-61

• E. Specker, Application of Logic and Combinatorics to Enumeration Problems, In:
Trends in Theoretical Computer Science, E. Br̈ger ed., Computer Science Press,
1988, pp. 141-169 Reprinted in: Ernst Specker, Selecta, Birkhäuser 1990, pp. 324-
350.

A partial (negative) answer – Janos A. Makowsky, Eldar Fischer

Communicated by Janos A. Makowsky

This problem was solved by E. Fischer; more precisely, he has given a counter example,
to the extension of the Specker-Blatter Theorem to relation symbols of arity ≥4.. The
solution is posted on my preprint page. I also have a joint paper with E. Fischer on
further developments concerning the same material.

The case of arity 3 remains open.
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3.1 Homomorphic embeddings — Moshe Vardi et al.

Let B be a finite relational structure. Let CB be the set of finite A that can be homo-
morphically embedded on A.

Conjecture. CB is either decidable in polynomial time or NP-complete (depending on
the choice of B). (It is sufficient to consider directed graphs.)

Reference

Vardi and Feder: see Vardi’s homepage.

T

3.2 A spectrum conjecture — Christopher J. Ash

Fix a finite relational vocabulary τ . Consider the (finite) list of all equivalence classes of
finite τ defined by equivalence by formulas of quantifier rank at most k. (This is NOT
prefix rank). Let Sτ,k(n) be the number of such classes which are realized by a structure
of size n. As a function of n for fixed k and τ is each such function eventually constant?
(NP = co-NP implies the functions are not eventually constant.) Try to work out the
functions for a single binary function and k = 3.

Reference

C.J. Ash, A conjecture concerning the spectrum of a sentence, Math Logic Quarterly
(1994) 393-397.
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4.1 Three questions — Scott Weinstein

The first two problems are posed for k ≥ 3. Martin Otto has shown that these problems
reduce to the case k = 3.

1. A finite structure A is k-small if and only if no structure of size less than A is Lk-
equivalent to A. The set of k-small finite structures is co-NP. Is it co-NP complete?

2. A finite structure A is k-categorical if and only if every finite structure that is
Lk-equivalent to A is isomorphic to A. The set of k-categorical finite structures is
co-r.e. Is it co-r.e. complete?

3. Let EXT be the class of boolean queries that are closed under extensions. Is FO
∩ EXT ⊆ Lω

∞ω(∃)?

One answer - Martin Grohe

Martin Grohe answered question 3 negatively. A proof, which generalizes an idea Rosen
and Weinstein used to prove the failure of existential preservation for Lω

∞ω, can be found
in the paper ”Existential least fixed-point logic and its relatives”. It is available via www
on page www.dcs.ed.ac.uk/home/grohe/.

T

4.2 Is TC∩Datalog = pos∃TC ? — Martin Grohe

Is TC ∩ Datalog = pos∃TC ?

Remark. It is known that FO ∩ Datalog = pos∃FO,
but also that TC ∩ Datalog(¬, 6=) ⊃ ∃TC.

Notation. TC denotes transitive closure logic, ∃TC its existential fragment, and
pos∃TC its positive existential fragment. The notation is similar for the fragments

19
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pos∃FO and ∃FO of first–order logic FO. Datalog is pure Datalog without any nega-
tion symbols, and Datalog(¬, 6=) the extension where negation symbols are allowed in
front of extensional relation symbols and equalities.

T

4.3 Cofinite laws — Ron Fagin

The spectrum of a first-order sentence σ is the set of cardinalities of the finite structures
that satisfy σ. Let us say that a logic has a cofinite law if for every sentence σ of the logic,
either σ or ¬σ has a cofinite spectrum. In my original 0-1 law paper, I noted that the
0-1 law implies the cofinite law. The same is true for any logic with a limit law (Proof:
any sentence with positive asymptotic probability has a cofinite spectrum). There is also
an easy direct proof (see my 0-1 law paper). There are logics with a cofinite law but
no limit law. For example, Pacholski noted that a logic without equality has a cofinite
law, but, as in the case of monadic existential second-order logic without equality, not
necessarily a limit law. Tyszkiewicz noted that even logics with equality can have a
cofinite law without a limit law (example: Lω

∞,ω over a unary function: this has a cofinite
law by a similar easy argument to that given in my 0-1 law paper). A cofinite law is
capable of giving an inexpressibility result (for example, it implies that EVENNESS is
not definable). Can we find an interesting application of a cofinite law in some logic (say,
to prove a nontrivial inexpressibility result)?

T

4.4 Spectra of categorical sentences — Ron Fagin

A sentence is categorical if it has at most one model of each finite cardinality. Is every
spectrum the spectrum of a categorical sentence? This is true if P = NP (or even if
UEXP = NEXP). This problem is discussed in my survey paper.

T

4.5 Hanf and Löwenheim numbers in the finite — Anuj Dawar

For the relevant definitions of Lk-types and equivalence, refer to: [A. Dawar, S. Lindell,
and S. Weinstein. Infinitary logic and inductive definability over finite structures. Tech-
nical Report MS-CIS-91-97, University of Pennsylvania, 1991. Revised version to appear
in Information and Computation.]
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1. Is there a recursive function fk, for every k, such that, for every finite structure
A which realizes n distinct Lk-types, there is a B such that card(B) ≤ fk(n) and
A ≡k B?

2. Is there a recursive function gk for every k, such that, if A is a finite structure
realizing n distinct Lk-types, and card(A) ≥ gk(n), then there are arbitrarily large
finite B such that A ≡k B?

Solved – Martin Grohe, Russel Barker

The first question was answered negatively by Martin Grohe, in [2].

The second question was answered negatively by Russel Barker, in [1].

References

[1] Russel Barker: There is no recursive link between the k-size of a model and its
cardinality. Ann. Pure Appl. Logic 118 (2002), no. 3, 235–247.

[2] Martin Grohe: Large finite structures with few Lk-types. Information and Compu-
tation 179(2): 250-278, 2002.

T

4.6 Monadic second-order logic with auxiliary invariant linear
order — Bruno Courcelle

Let L be a class of finite structures 〈D, R, <〉, where D is the domain, R a binary relation,
< a linear order on D. Assume that for any two orders < and <′ 〈D, R, <〉 belongs to
L iff 〈D, R, <′〉 does. Assume that L is definable by a monadic second-order formula
(among all finite structures of same type). Let L′ be the corresponding set of structures
〈D, R〉 (i.e., such that 〈D, R, <〉 belongs to L for some <).

Is it always true that L′ is definable by a formula of counting monadic second-order logic,
i.e., a formula of monadic second-order logic using also special quantifiers saying that
”the number of elements x of D satisfying ...” has is a multiple of some fixed integer n.
Conjecture is NO.

See more details in: B. Courcelle, The monadic second-order logic X: Linear orders,
URL: www.labri.fr/˜courcell/ActSci.html, Mail: courcell@labri.u-bordeaux.fr

T
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4.7 Definability of NP graph properties, revisited — John Lynch

In the Oberwolfach Conference on Finite Model Theory, two of the problems that were
posed were:

8. (E. Grandjean) Investigate the class of graph properties π that can be defined by an
existential second-order formula with unary functions only, i.e.

G = (V, E) belongs to π

iff G satisfies a formula of the form ∃f1, . . . , fk ψ(E, f1, . . . , fk)

(where the fi are unary functions).

10. (J. Lynch) Let Lk be the fragment of binary second-order language of graphs con-
sisting of sentences of the form

∃R1 . . .∃Rk∀x1 . . .∀xk∃y1 . . .∃yk τ(x1, . . . , xk, y1, . . . , yk, E, R1, . . . , Rk)

where R1, . . . , Rk are binary second-order variables and E is interpreted as the
graph edge relation. Let L =

⋃

k Lk.

(a) Find an isomorphism invariant property of graphs that is not definable in L.
That is, find a collection of graphs C such that there is no σ ∈ L for which

G ∈ C ⇐⇒ G |= σ .

(b) Similar, but for Lk. For what k does this become hard?

These problems are still unsolved, and they appear to be difficult. So here are some
restricted versions of them. Whether they are easier than the original problems remains
to be seen.

(a) S is a successor relation if it is isomorphic to the usual successor relation on a finite
segment of the natural numbers. Investigate the class of graph properties π that can be
defined by an existential second-order formula with successor relations only, i.e.

G = (V, E) belongs to π

iff G satisfies a formula of the form ∃S1, . . . , Sk ψ(E, S1, . . . , Sk)

(where the Si are successor relations).

(b) Let Lk be the second-order language of graphs consisting of sentences of the form

∃S1 . . .∃Sk∀x1 . . .∀xk∃y1 . . .∃yk τ(x1, . . . , xk, y1, . . . , yk, E, S1, . . . , Sk)

where S1, . . . , Sk are second-order variables interpreted as successor relations, and E is
interpreted as the graph edge relation. Let L =

⋃

k Lk.

Find an isomorphism invariant property of graphs that is not definable in L. Also, for a
given k, find a property not definable in Lk.

T
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4.8 About Convergence Laws For Finite Structures
— John Lynch

4.8.1 Tree-like structures

1. Is there an extended convergence law for the first-order theory of several random
unary functions? An extended convergence law, as defined in j. Lynch, An extension
of 0-1 laws, Random Structures and Algorithms 5, 155–172 1994, states that for every
sentence of the language in question, its probability is asymptotic to βn−γ for some
β > 0 and γ ≥ 0, or it is smaller than the reciprocal of any polynomial in n.

2. Is there an extended convergence law for the monadic second-order theory of one
random unary function?

3. Are there convergence laws for the first-order theory of several weighted random
mappings (as in the thesis of A. Broder, Weighted Random Mappings; Properties and
Applications, Stanford University 1985)?

4. Are there convergence laws for the monadic second-order theory of one weighted
random mapping?

5. Is there a convergence law for the first-order theory of several random partial functions
(as in Jaworski’s thesis, or J. Jaworski, On a Random Digraph, Ann. Disc. Math. 33,
111–127, 1987)?

6. Is there a convergence law for the monadic second-order theory of one random partial
function?

7. Is there a convergence law for languages recognized by probabilistic tree automata
(analogous to Markov chains with variable transitions)?

8. Are there convergence laws for theories of complete trees, or trees with bounded
degree?

4.8.2 Graphs

1. Is there a convergence law for the monadic second-order theory of a random regular
graph?

2. Is there a strong 0-1 law for graphs, having the same relationship to the 0-1 law
that the strong law of large numbers has to the weak law of large numbers (posed by
Mycielski)?

3. Is there an extended convergence law for the first-order theory of a random graph
with edge probability n−1?

4. Is there a 0-1 law for the first-order theory of pseudo-random graphs (posed by
Grädel)?



24 4. Luminy 1995

4.8.3 Other structures, with variable probabilities

1. Are there convergence laws for first-order theories of several relations of degree greater
than two (posed by Dolan)?

2. Is there an extended convergence law for first-order theories about random relations
with a built-in successor relation (posed by Lynch)?
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5.1 Characterization theorems — Heinz-Dieter Ebbinghaus

In classical model theory, the methodological scope of important logics has been clari-
fied by characterization theorems such as Lindström’s theorems on first-order logic or
Barwise’s theorem on L∞ω. In order to explore model theoretic properties in the fi-
nite, one should try to perform a similar program for this case. In particular, is there a
Lindström-type theorem for fixed-point logic ?

T

5.2 Monadic NP quantifier hierarchy — Ron Fagin

A monadic NP class is a class defined by an existential monadic second-order sentence.

Problem: Does one unary relation symbol suffice ? That is, is every monadic NP class
(such as 3-colorability) definable as ∃Sφ, where S is a single unary relation symbol?

Solved – M. Otto

This problem was solved by M. Otto: The number of monadic quantifiers in monadic
existential second-order logic gives rise to a strict hierarchy in the finite. The proof
appeared in Information Processing Letters 53(1995), pp. 337–339.

T

5.3 Monadic quantifier alternation hierarchy — Ron Fagin

The monadic hierarchy consists of classes definable by sentences Q1S1 . . . QkSkφ, where
the Si’s are unary relation symbols, the Qi’s are ∃ or ∀, and φ is first-order.

Problem: Is the hierarchy strict? Or does it collapse to some fixed number of alternations
of second-order quantifiers?

Fact: If the polynomial hierarchy is strict then so is the monadic hierarchy. But we would
like to prove this without complexity assumptions.

25
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Solved – Oliver Matz, Wolfgang Thomas, and Nicole Schweikardt

This problem was solved by Oliver Matz, Wolfgang Thomas, and Nicole Schweikardt:
Matz and Thomas showed that the monadic hierarchy is strict for the class of finite
structures, the class of finite graphs, and the class of coloured grids (LICS 1997, “The
monadic quantifier alternation hierarchy over graphs is infinite”). Schweikardt refined
their proof and showed that the monadic hierarchy is strict even for the class of un-
coloured grids (CSL 1997, “The monadic quantifier alternation hierarchy over grids and
pictures”). A joint paper which combines and extends these results, will appear in a
LICS 1997 special issue of Information and Computation (Matz, Schweikardt, Thomas,
“The monadic quantifier alternation hierarchy over grids and graphs”).

T

5.4 0 – 1 laws for 2-variable logics — Jörg Flum

FO2, the fragment of FO consisting of sentences with at most two variables, is decidable.

Does Σ1
1 over FO2 have a 0–1-law?

Solved – Jean-Marie le Bars

This question was solved negatively by Jean-Marie le Bars.

Reference

Jean-Marie Le Bars: Fragments of Existential Second-Order Logic without 0-1 Laws.
LICS 1998: 525-536

T

5.5 Definability of NP-complete problems
— Erich Grädel and Anuj Dawar

Question 1. Is Planarity in FP or Lω
∞ω?

Question 2. Is 3-Colourability in Lω
∞ω?

Question 3. Similarly for other natural NP-complete problems on unordered struc-
tures . . .
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Solved – Martin Grohe, Anuj Dawar

The first question was answered positively by Martin Grohe in [2].

The second question was answered negatively by Anuj Dawar in [1].

References

[1] Anuj Dawar: A Restricted Second-Order Logic for Finite Structures, Information
and Computation, 143 (1998) 154-174.

[2] Martin Grohe: Fixed-point logics on planar graphs, in Proceedings of the 13th
Annual IEEE Symposium on Logic in Computer Science, 1998.

T

5.6 Linear reduction between theories — Etienne Grandjean

Prove that the decision problem T2 of the first-order random theory of two binary re-
lations is reducible to the similar problem T1 for only one binary relation via a linear
time bounded reduction. That would imply that T1 and T2 have exactly the same time
complexity.

T

5.7 Complexity of sorting circuits — Etienne Grandjean

Show that for each n there is a boolean circuit Cn that can sort n integers (in binary
notation) in the range 0, . . . , nk (k fixed) so that the circuit Cn

• has O(n(log n)2) gates

• and is computable in time O(n(log n)3) (that means: in time linear in the length
of its description) on a Turing machine.

Remark: We hope to get this result by a careful inspection of the sorting network of [Ajtai,
Komlos, Szemeredi, 1993] which sorts n integers in time O(log n) with n registers.

T
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5.8 NP graph properties definable with unary functions
— Etienne Grandjean

Investigate the class of graph properties π that can be defined by an existential second-
order formula with unary functions only, i.e.

G = (V, E) belongs to π

iff G satisfies a formula of the form ∃f1, . . . , fk ψ(E, f1, . . . , fk)

(where the fi are unary functions).

(a) Study the extent and the robustness of this class.

(b) Prove that some problems do not belong to it. (E.g. is G edge-colorable with d colors
where d = degree(G) ?)

T

5.9 A Preservation Problem in Finite Model Theory
— Phokion Kolaitis

Suppose φ is a first-order sentence that is preserved under extensions and homomor-
phisms on finite models. Is φ equivalent to an existential positive sentence on finite
models ?

Background: (a) preservation under extensions fails finitely (Tait/Gurevich & Shelah)

(b) preservation under homomorphisms fails finitely (Ajtai & Gurvich)

(c) A positive answer to the above problem will yield as an easy corollary the theorem of
Ajtai & Gurevich that a Datalog program is bounded if and only if it defines a first-order
property.

T

5.10 NP graph properties definable with binary relations
— John Lynch

Let Lk be the fragment of binary second-order language of graphs consisting of sentences
of the form

∃R1 . . .∃Rk∀x1 . . .∀xk∃y1 . . .∃yk τ(x1, . . . , xk, y1, . . . , yk, E, R1, . . . , Rk)

where R1, . . . , Rk are binary second-order variables and E is interpreted as the graph
edge relation. Let L =

⋃

k Lk.
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(a) Find an isomorphism invariant property of graphs that is not definable in L. That
is, find a collection of graphs C such that there is no σ ∈ L for which

G ∈ C ⇐⇒ G |= σ .

(b) Similar, but for Lk. For what k does this become hard?

T

5.11 Random structures — John Lynch

What classes of random finite structures have relevance to:

(a) database theory;

(b) statistical verification of programs;

(c) algorithm analysis.

T

5.12 Effective syntax for order-invariance — Janos A. Makowsky

Let L be a logic, φ ∈ L[τ ∪ R].

Definition: φ is invariant under order if for every finite τ -structure A and two linear
orderings <A

1 , <A
2 on it we have (A, <A

1 ) |= φ⇐⇒(A, <A
2 ) |= φ.

Problem: Is there a logic L ⊂ FP or ⊂ Lω
∞ω such that for every order invariant φ there

is ψ ∈ L[τ ] (without order symbol) such that φ ≡ ψ ?

Notes: (a) If L satisfies the Interpolation Theorem (∆-Interpolation suffices) then this
is true.

(b) There is an order-invariant φ in FOL such that no such ψ exists (Gurevich).

T

5.13 Generalized Quantifiers and 0-1 laws — Iain Stewart

Take an arbitrary NP-complete problem Ω and incorporate the corresponding sequence
of Lindström quantifiers into first-order logic to get the logic (±Ω)∗[FO] (there is a
quantifier for each arity à la Immerman’s transitive closure logic, but no built-in relations
such as successor; also “±” tells us that we can apply Ω within negation signs and “∗”
tells us that we may nest applications of Ω as we like).
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Question 1. Is there a logic (±Ω)∗[FO] with a 0–1-law ?

Note that HP∗[FO] = NP (Dahlhaus) if we have two constants available. (HP = Hamil-
tonian Path)

Partially solved by Anuj Dawar and Erich Grädel

A solution to the first part is implied by results of A. Dawar and E. Grädel: Generalized
Quantifiers and 0-1 Laws, Proc. LICS’95. The paper is available from a.dawar@swansea.
ac.uk or graedel@cs.rwth-aachen.de.

Question 2. Does there exist a complete problem for NP via quantifier-free translations
without constants or built-in relations ?

This second question harks back to Lovász and Gács (1977). Also, Blass an Harary have
asked for a logic L which can express Hamilton Cycle and which has a 0–1–law.

Solved – Henrik Imhof

This problem has been solved by Henrik Imhof:

A modification of the class of satisfiable Boolean circuits yields a problem which is NP-
complete with respect to quantifier free reductions. This class had also been studied by
Lovasz and Gacs, who considered slightly different reductions. A completeness proof and
a presentation of circuit quantifiers for a variety of logics (including the case NP) can
be found in ”Fixed Pont Logics, Generalized Quantifiers, and Oracles.” This paper is
available at www.dcs.ed.ac.uk/home/grohe/pub.html.

T

5.14 0-1 laws and collaps to FO: I — Jurek Tyszkiewicz

Is the following conjecture true:

If for a recursive distribution µ on the class of all finite models of a signature τ 0-1 laws
hold both for MSO and FP, then for every formula φ(~x) in MSO∪FP there is a formula
ψ(~x) in FO such that µ(∀~x φ ↔ ψ) = 1.

This problem was solved by Monica McArthur mcarthur@math.ucla.edu.

Answer: No. We give a sketch of the counterexample.

Let Tk be the conjunction of all extension axioms (in the language with one binary
relation) with ≤ k variables. Let b(k) be a recursive function such that for all m ≥ b(k),
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there is a model of Tk of cardinality m. Now, we define a sequence {Ai} of connected
directed graphs, |Ai| = i; each Ai, i ≥ b(3) has the essential property that it satisfies Tj

for all j such that b(j) ≤ i. It is clear that the set A = {Ai} is recursive. A has an Lω
∞,ω

0-1 law but not an MSO 0-1 law; the lack of an MSO 0-1 law is due to a theorem of
Tyszkiewicz that a class with a recursive measure on which the extension axioms have
probability 1 does not have an MSO convergence law.

Now, we define a class A∗ in such a way that A∗ has exactly one member, Bn, of size
n for each n, and for each k there is an n such that each structure of A∗ of size greater
than n has more than k copies of each Ai, i < b(k), and more than k structures taken
from the set {Ab(k), Ab(k)+1, . . .}; because of this property A∗ has both Lω

∞,ω and MSO
0-1 laws. A∗ also clearly has a recursive measure. However, it is fairly easy to see that
MSO does not reduce to first-order on any subset of A∗ of measure 1. To see this, let θ
be a sentence of MSO with no probability on A. Let ψ(x) be a formula which says “there
is a connected set U with diameter 2 such that x ∈ U and θ relativized to U is true”.
The truth of ψ(x) depends only on the isomorphism class of the connected component
that x is in. Suppose that ψ(x) is equivalent to some first-order formula σ(x) on some
subset S of A∗ of measure 1. Then the sentence ∃xσ(x) (perhaps slightly modified to
avoid vacuous quantification) will be true on a structure Ai in A, i ≥ b(3), if and only
if θ is true in that structure, and thus it will not have a probability. But A has an Lω

∞,ω

0-1 law, and so ∃xσ(x) must have probability either 0 or 1, a contradiction.

Note that the first-order random theory of A∗, like that for equivalence classes, has
finitely many Lk types for each k but infinitely many 1-types, and thus is not ℵ0-
categorical. Thus the following modification of the original conjecture may still be true.

T

5.15 0-1 laws and collaps to FO: II — Monica McArthur

Let C be a class of finite models whose first-order random theory is ℵ0-categorical. Then
C has an MSO 0-1 law if and only if MSO reduces to FO on C with probability 1.

T

5.16 0-1 laws and collaps to FO: III — Jurek Tyszkiewicz

Concerning previous 2 problems, it is still the case, that there are many examples,
when the first-oder random theory is not ℵ0-categorical, and yet the hypothesis of both
conjectures is true. So the noncategorical case is also likely to have a true modification.
The question is: how to modify it?


