Lower bounds for Choiceless Polynomial Time via Symmetric XOR-circuits

Benedikt Pago Highlights 2023

Mathematical Foundations of Computer Science - RWTH Aachen University

Yuri Gurevich (1988): A logic is a set of sentences $\mathcal L$ such that:

- \mathcal{L} is decidable.
- Effectiveness: Given $\psi \in \mathcal{L}$, one can compute a program A_{ψ} which evaluates ψ in any given structure \mathfrak{A} .
- **Isomorphism-invariance:** For any two isomorphic structures \mathfrak{A} and \mathfrak{B} , and every $\psi \in \mathcal{L}$, it holds $\mathfrak{A} \models \psi \Leftrightarrow \mathfrak{B} \models \psi$.

Yuri Gurevich (1988): A logic is a set of sentences $\mathcal L$ such that:

- \mathcal{L} is decidable.
- Effectiveness: Given $\psi \in \mathcal{L}$, one can compute a program A_{ψ} which evaluates ψ in any given structure \mathfrak{A} .
- Isomorphism-invariance: For any two isomorphic structures \mathfrak{A} and \mathfrak{B} , and every $\psi \in \mathcal{L}$, it holds $\mathfrak{A} \models \psi \Leftrightarrow \mathfrak{B} \models \psi$.

A logic \mathcal{L} captures PTIME if:

- For every sentence $\psi \in \mathcal{L}$, the *model-checking problem* is *in* PTIME.
- Every PTIME-decidable class of structures can be defined by a sentence $\psi \in \mathcal{L}$.

Yuri Gurevich (1988): A logic is a set of sentences $\mathcal L$ such that:

- \mathcal{L} is decidable.
- Effectiveness: Given $\psi \in \mathcal{L}$, one can compute a program A_{ψ} which evaluates ψ in any given structure \mathfrak{A} .
- Isomorphism-invariance: For any two isomorphic structures \mathfrak{A} and \mathfrak{B} , and every $\psi \in \mathcal{L}$, it holds $\mathfrak{A} \models \psi \Leftrightarrow \mathfrak{B} \models \psi$.

A logic \mathcal{L} captures PTIME if:

- For every sentence $\psi \in \mathcal{L}$, the *model-checking problem* is *in* PTIME.
- Every PTIME-decidable class of structures can be defined by a sentence $\psi \in \mathcal{L}$.

Open question: Does there exist a logic that captures PTIME?

Landscape of polynomial time logics

CPT is an extension of fixed-point logic with symmetric *hereditarily finite sets* of polynomial size (Blass, Gurevich, Shelah; 1999).

CPT is an extension of fixed-point logic with symmetric *hereditarily finite sets* of polynomial size (Blass, Gurevich, Shelah; 1999).

Intuitive "definitions":

• Turing machines operating on finite structures, storing sets in their registers, with FOC-definable state updates.

CPT is an extension of fixed-point logic with symmetric *hereditarily finite sets* of polynomial size (Blass, Gurevich, Shelah; 1999).

Intuitive "definitions":

- Turing machines operating on finite structures, storing sets in their registers, with FOC-definable state updates.
- The class of all PTIME "combinatorial" algorithms on graphs (as opposed to, say, algebraic ones).

Goal: Develop techniques towards proving CPT \neq PTIME.

Goal: Develop techniques towards proving CPT \neq PTIME.

Candidate problem: *CFI-query* on unordered base graphs as a "logically hard" PTIME-problem.

Connection with symmetric circuits

Theorem (P., to appear at MFCS 2023)

The CFI-query on a class G of base graphs can only be decided by a CPT-algorithm using "**parity** summation" if there exists for each $G \in G$ a Boolean XOR-circuit C_G satisfying:

- 1. The size of C_G is polynomial in |G|.
- 2. C_G has the same **symmetries** as G.
- 3. The fan-in is logarithmic in |G|.
- 4. C_G computes the sum mod 2 over (almost) all its inputs.

Theorem (P., to appear at MFCS 2023)

The CFI-query on a class G of base graphs can only be decided by a CPT-algorithm using "**parity** summation" if there exists for each $G \in G$ a Boolean XOR-circuit C_G satisfying:

- 1. The size of C_G is polynomial in |G|.
- 2. C_G has the same **symmetries** as G.
- 3. The fan-in is logarithmic in |G|.
- 4. C_G computes the sum mod 2 over (almost) all its inputs.

Theorem

Let G be the family of n-dimensional hypercubes. There do not exist circuits as in the above theorem if two of the assumptions are strengthened.

Conclusion

Conclusion

Future work: Lift this to *all* CPT-algorithms...