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Capturing polynomial time with a logic

Yuri Gurevich (1988): A logic is a set of sentences L such that:

• L is decidable.

• E�ectiveness: Given ψ ∈ L, one can compute a program Aψ which evaluates ψ in any given
structure A.

• Isomorphism-invariance: For any two isomorphic structures A and B, and every ψ ∈ L, it holds
A |= ψ ⇔ B |= ψ.

A logic L captures Ptime if:

• For every sentence ψ ∈ L, the model-checking problem is in Ptime.
• Every Ptime-decidable class of structures can be defined by a sentence ψ ∈ L.

Open question: Does there exist a logic that captures Ptime?

Benedikt Pago (RWTH Aachen) 2



Capturing polynomial time with a logic

Yuri Gurevich (1988): A logic is a set of sentences L such that:

• L is decidable.

• E�ectiveness: Given ψ ∈ L, one can compute a program Aψ which evaluates ψ in any given
structure A.

• Isomorphism-invariance: For any two isomorphic structures A and B, and every ψ ∈ L, it holds
A |= ψ ⇔ B |= ψ.

A logic L captures Ptime if:

• For every sentence ψ ∈ L, the model-checking problem is in Ptime.
• Every Ptime-decidable class of structures can be defined by a sentence ψ ∈ L.

Open question: Does there exist a logic that captures Ptime?

Benedikt Pago (RWTH Aachen) 2



Capturing polynomial time with a logic

Yuri Gurevich (1988): A logic is a set of sentences L such that:

• L is decidable.

• E�ectiveness: Given ψ ∈ L, one can compute a program Aψ which evaluates ψ in any given
structure A.

• Isomorphism-invariance: For any two isomorphic structures A and B, and every ψ ∈ L, it holds
A |= ψ ⇔ B |= ψ.

A logic L captures Ptime if:

• For every sentence ψ ∈ L, the model-checking problem is in Ptime.
• Every Ptime-decidable class of structures can be defined by a sentence ψ ∈ L.

Open question: Does there exist a logic that captures Ptime?

Benedikt Pago (RWTH Aachen) 2



Landscape of polynomial time logics

First-order logic (FO)

Least fixed-point logic (LFP)

Fixed-point logic with counting (FPC)

Rank logic Choiceless Polynomial Time (CPT)
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Choiceless Polynomial Time

CPT is an extension of fixed-point logic with symmetric hereditarily finite sets of polynomial size
(Blass, Gurevich, Shelah; 1999).

Intuitive “definitions”:

• Turing machines operating on finite structures, storing sets in their registers, with
FOC-definable state updates.

• The class of all PTIME “combinatorial” algorithms on graphs (as opposed to, say, algebraic
ones).

Benedikt Pago (RWTH Aachen) 4



Choiceless Polynomial Time

CPT is an extension of fixed-point logic with symmetric hereditarily finite sets of polynomial size
(Blass, Gurevich, Shelah; 1999).

Intuitive “definitions”:

• Turing machines operating on finite structures, storing sets in their registers, with
FOC-definable state updates.

• The class of all PTIME “combinatorial” algorithms on graphs (as opposed to, say, algebraic
ones).

Benedikt Pago (RWTH Aachen) 4



Choiceless Polynomial Time

CPT is an extension of fixed-point logic with symmetric hereditarily finite sets of polynomial size
(Blass, Gurevich, Shelah; 1999).

Intuitive “definitions”:

• Turing machines operating on finite structures, storing sets in their registers, with
FOC-definable state updates.

• The class of all PTIME “combinatorial” algorithms on graphs (as opposed to, say, algebraic
ones).

Benedikt Pago (RWTH Aachen) 4



The problem

Goal: Develop techniques towards proving CPT 6= Ptime.

Candidate problem: CFI-query on unordered base graphs as a “logically hard” Ptime-problem.
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Connection with symmetric circuits

Theorem (P., to appear at MFCS 2023)
The CFI-query on a class G of base graphs can only be decided by a CPT-algorithm using “parity
summation” if there exists for each G ∈ G a Boolean XOR-circuit CG satisfying:

1. The size of CG is polynomial in |G|.
2. CG has the same symmetries as G.
3. The fan-in is logarithmic in |G|.
4. CG computes the sum mod 2 over (almost) all its inputs.
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Theorem
Let G be the family of n-dimensional hypercubes. There do not exist circuits as in the above
theorem if two of the assumptions are strengthened.
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Conclusion

Does CPT capture Ptime?

Can CPT decide the unordered CFI-query?

Answer: If circuit lower bound can be improved, then no parity summation algorithm succeeds.

Future work: Lift this to all CPT-algorithms...

Benedikt Pago (RWTH Aachen) 7



Conclusion

Does CPT capture Ptime?

Can CPT decide the unordered CFI-query?

Answer: If circuit lower bound can be improved, then no parity summation algorithm succeeds.

Future work: Lift this to all CPT-algorithms...

Benedikt Pago (RWTH Aachen) 7


