Distinguishing graphs in Choiceless Polynomial Time and the Extended Polynomial Calculus

Benedikt Pago

CSL 2023

Mathematical Foundations of Computer Science - RWTH Aachen University

- **Proof Complexity:** Studies *proof systems* for refuting the satisfiability of propositional formulas (e.g. resolution).
- Finite Model Theory: Studies expressive power of (fixed-point) logics on finite structures.
- Given a translation between propositional formulas and finite structures, the two formalisms can simulate each other.
- **Application:** Transferring *lower-bound* results between the two fields.

Old and new connections between proof systems and logics

Theorem (Grädel, Grohe, Pakusa, P. (2019))

- Existential least fixed-point logic \equiv width-k resolution.
- Least fixed-point logic \equiv Horn resolution.
- Fixed-point logic with counting \equiv degree-k monomial calculus.
- Proof search can be implemented in fixed-point logic.
- For any fixed-point sentence ψ , there is a uniform translation from finite structures \mathfrak{A} to propositional formulas Φ such that $\mathfrak{A} \models \psi$ iff Φ has a refutation.

Old and new connections between proof systems and logics

Theorem (Grädel, Grohe, Pakusa, P. (2019))

- Existential least fixed-point logic \equiv width-k resolution.
- Least fixed-point logic \equiv Horn resolution.
- Fixed-point logic with counting \equiv degree-k monomial calculus.
- Proof search can be implemented in fixed-point logic.
- For any fixed-point sentence ψ , there is a uniform translation from finite structures \mathfrak{A} to propositional formulas Φ such that $\mathfrak{A} \models \psi$ iff Φ has a refutation.

Theorem

With respect to the graph isomorphism problem: Choiceless Polynomial Time < degree-3 Extended Polynomial Calculus.

 \Rightarrow Lower bounds for Extended Polynomial Calculus translate to CPT.

Choiceless Polynomial Time

CPT = *Fixed-point logic with counting* + construction of polynomial-size isomorphism-invariant *hereditarily finite sets*.

Syntax includes set-theoretic operations:

- $Pair(a, b) := \{a, b\}.$
- $\text{Union}(a) := \bigcup a$.
- Comprehension: $\{t : x \in a : \varphi\} := \{t(x) \mid x \in a, \mathfrak{A} \models \varphi(x)\}.$
- Card(a) = |a|, as a von Neumann ordinal.
- Iteration: Terms can be iterated until a halting-condition is met (similar to fixed-point computation).

Choiceless Polynomial Time

CPT = *Fixed-point logic with counting* + construction of polynomial-size isomorphism-invariant *hereditarily finite sets*.

Syntax includes set-theoretic operations:

- $Pair(a, b) := \{a, b\}.$
- $Union(a) := \bigcup a$.
- Comprehension: $\{t : x \in a : \varphi\} := \{t(x) \mid x \in a, \mathfrak{A} \models \varphi(x)\}.$
- Card(a) = |a|, as a von Neumann ordinal.
- Iteration: Terms can be iterated until a halting-condition is met (similar to fixed-point computation).

Open question

Can every PTIME-decidable class of finite structures be decided by a CPT-sentence?

The **Polynomial Calculus** (PC) is a sound and complete decision procedure for the (complement of the) following problem:

Satisfiability of Polynomial Equation Systems

Input: A set *P* of multilinear polynomials over a variable set \mathcal{V} . **Question:** Is there a {0,1}-assignment to the variables in \mathcal{V} that is a common zero of all polynomials in *P*?

There is a PC-derivation of the **1**-polynomial from *P*, iff *P* is unsat.

Proof rules of the Extended Polynomial Calculus

Let \mathcal{V} the set of variables, f, g polynomials.

Linear combination:	$\frac{f g}{a \cdot f + b \cdot g}$	$a,b\in\mathbb{Q}.$
Multiplication with variable:	$\frac{f}{Xf}$	$X \in \mathcal{V}.$
Extension axioms:	$\overline{X_f - f}$	<i>X_f</i> a fresh variable.

Benedikt Pago (RWTH Aachen)

Proof rules of the Extended Polynomial Calculus

Let \mathcal{V} the set of variables, f, g polynomials.

Linear combination:
$$\frac{f \ g}{a \cdot f + b \cdot g}$$
 $a, b \in \mathbb{Q}$.Multiplication with variable: $\frac{f}{Xf}$ $X \in \mathcal{V}$.Extension axioms: $\overline{X_f - f}$ X_f a fresh variable.

Polynomial calculus without extension axioms is a complete proof system. But: *Extension axioms* may allow for *shorter proofs*. For unbounded degree, extension axioms make the PC *exponentially stronger*.

Distinguishing graphs in the (extended) polynomial calculus

Let G, H be graphs. The existence of an isomorphism is expressed by the polynomials $P_{iso}(G, H)$:

A proof system \mathcal{P} distinguishes G and H if $P_{iso}(G, H)$ has a \mathcal{P} -refutation.

Definition

Let \mathcal{K} be a class of graphs. CPT distinguishes all graphs in \mathcal{K} if there exists a polynomial p(n) such that for every pair of *non-isomorphic* graphs $G_1, G_2 \in \mathcal{K}$, there exists a CPT-sentence Π with a bounded number of variables such that

 $G_1 \models \Pi \text{ and } G_2 \not\models \Pi$

and the h.f. sets constructed by Π have size $\leq p(|G_i|)$.

The main result

Theorem

If CPT distinguishes all graphs in a class \mathcal{K} , then the degree-3 extended polynomial calculus (EPC₃) distinguishes all graphs in \mathcal{K} with refutations of polynomial size.

Theorem

If CPT distinguishes all graphs in a class \mathcal{K} , then the degree-3 extended polynomial calculus (EPC₃) distinguishes all graphs in \mathcal{K} with refutations of polynomial size.

Corollary

Let ${\mathcal K}$ be a graph class such that:

- The graph isomorphism problem on ${\mathcal K}$ is in ${\sf PTIME}.$
- Distinguishing graphs in \mathcal{K} in EPC₃ requires refutations of super-polynomial size.

Then CPT \neq PTIME.

An exponential lower bound for EPC is known (not for graph isomorphism) [Alekseev, 2020].

Corollary

There exist non-isomorphic graphs $(G_n, H_n)_{n \in \mathbb{N}}$ which are distinguishable in EPC₃ but not in degree-k polynomial calculus, for any $k \in \mathbb{N}$.

Proof. Certain families of Cai-Fürer-Immerman graphs are distinguishable in CPT [Dawar, Richerby, Rossman; 2008], but not in bounded-degree PC [Berkholz, Grohe; 2015].

A Deep Weisfeiler Leman algorithm is a Turing machine whose input is a graph to which it has limited access.

A Deep Weisfeiler Leman algorithm is a Turing machine whose input is a graph to which it has limited access.

A Deep Weisfeiler Leman algorithm is a Turing machine whose input is a graph to which it has limited access.

- Deep Weisfeiler Leman (DWL) is an isomorphism-invariant computation model *equivalent to* CPT [Grohe, Schweitzer, Wiebking; 2021].
- DWL is "2-dimensional Weisfeiler Leman + construction of new vertices".
- The 2-dimensional Weisfeiler Leman algorithm can be simulated in the degree-3 polynomial calculus [Berkholz, Grohe; 2015].
- \Rightarrow These facts together allow to construct an EPC₃-refutation of $P_{iso}(G, H)$.

Stronger version of the result:

Theorem

If CPT distinguishes all graphs in a class \mathcal{K} , then the degree-3 extended polynomial calculus (EPC₃) distinguishes all graphs in \mathcal{K} with symmetric refutations of polynomial size.

- Extension axioms in the refutation of $P_{iso}(G, H)$ are closed under $Aut(G) \times Aut(H)$.
- **Question:** What is the right notion of a symmetric proof system?
- Aim: Use symmetry-dependent proof techniques from finite model theory against symmetric proof systems.

Stronger version of the result:

Theorem

If CPT distinguishes all graphs in a class \mathcal{K} , then the degree-3 extended polynomial calculus (EPC₃) distinguishes all graphs in \mathcal{K} with symmetric refutations of polynomial size.

- Extension axioms in the refutation of $P_{iso}(G, H)$ are closed under $Aut(G) \times Aut(H)$.
- **Question:** What is the right notion of a symmetric proof system?
- Aim: Use symmetry-dependent proof techniques from finite model theory against symmetric proof systems.

Thank you!