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Propositional Proof Complexity and Finite Model Theory

• Proof Complexity: Studies proof systems for refuting the satisfiability of propositional
formulas (e.g. resolution).

• Finite Model Theory: Studies expressive power of (fixed-point) logics on finite structures.

• Given a translation between propositional formulas and finite structures, the two formalisms
can simulate each other.

• Application: Transferring lower-bound results between the two fields.
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Old and new connections between proof systems and logics

Theorem (Grädel, Grohe, Pakusa, P. (2019))

• Existential least fixed-point logic ≡ width-k resolution.
• Least fixed-point logic ≡ Horn resolution.
• Fixed-point logic with counting ≡ degree-k monomial calculus.

• Proof search can be implemented in fixed-point logic.

• For any fixed-point sentence ψ, there is a uniform translation from finite structures A to
propositional formulas Φ such that A |= ψ i� Φ has a refutation.

Theorem
With respect to the graph isomorphism problem:
Choiceless Polynomial Time < degree-3 Extended Polynomial Calculus.

⇒ Lower bounds for Extended Polynomial Calculus translate to CPT.
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Choiceless Polynomial Time

CPT = Fixed-point logic with counting + construction of polynomial-size isomorphism-invariant
hereditarily finite sets.

Syntax includes set-theoretic operations:

• Pair(a,b) := {a,b}.
• Union(a) :=

⋃
a.

• Comprehension: {t : x ∈ a : ϕ} := {t(x) | x ∈ a,A |= ϕ(x)}.
• Card(a) = |a|, as a von Neumann ordinal.

• Iteration: Terms can be iterated until a halting-condition is met (similar to fixed-point
computation).

Open question
Can every Ptime-decidable class of finite structures be decided by a CPT-sentence?
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The (Extended) Polynomial Calculus

The Polynomial Calculus (PC) is a sound and complete decision procedure for the (complement of
the) following problem:

Satisfiability of Polynomial Equation Systems
Input: A set P of multilinear polynomials over a variable set V .
Question: Is there a {0, 1}-assignment to the variables in V that is a common zero of all
polynomials in P?

There is a PC-derivation of the 1-polynomial from P, i� P is unsat.
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Proof rules of the Extended Polynomial Calculus

Let V the set of variables, f ,g polynomials.

Linear combination: f g
a · f + b · g

a,b ∈ Q.

Multiplication with variable: f
Xf

X ∈ V.

Extension axioms:
Xf − f

Xf a fresh variable.

Polynomial calculus without extension axioms is a complete proof system.
But: Extension axioms may allow for shorter proofs.
For unbounded degree, extension axioms make the PC exponentially stronger.
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Distinguishing graphs in the (extended) polynomial calculus

Let G,H be graphs. The existence of an isomorphism is expressed by the polynomials Piso(G,H):

∑
v∈V(G)

Xvw − 1 for all w ∈ V(H).

∑
w∈V(H)

Xvw − 1 for all v ∈ V(G).

XvwXv′w′ for all v, v′ ∈ V(G),w,w′ ∈ V(H)

such that (v, v′) 7→ (w,w′) is not

a local isomorphism.

A proof system P distinguishes G and H if Piso(G,H) has a P-refutation.
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Distinguishing graphs in Choiceless Polynomial Time

Definition
Let K be a class of graphs. CPT distinguishes all graphs in K if there exists a polynomial p(n) such
that for every pair of non-isomorphic graphs G1,G2 ∈ K, there exists a CPT-sentence Π with a
bounded number of variables such that

G1 |= Π and G2 6|= Π

and the h.f. sets constructed by Π have size ≤ p(|Gi|).
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The main result

Theorem
If CPT distinguishes all graphs in a class K, then the degree-3 extended polynomial calculus (EPC3)
distinguishes all graphs in K with refutations of polynomial size.

Corollary
Let K be a graph class such that:

• The graph isomorphism problem on K is in Ptime.
• Distinguishing graphs in K in EPC3 requires refutations of super-polynomial size.

Then CPT 6= Ptime.

An exponential lower bound for EPC is known (not for graph isomorphism) [Alekseev, 2020].
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A consequence for proof complexity

Corollary
There exist non-isomorphic graphs (Gn,Hn)n∈N which are distinguishable in EPC3 but not in
degree-k polynomial calculus, for any k ∈ N.

Proof. Certain families of Cai-Fürer-Immerman graphs are distinguishable in CPT [Dawar, Richerby,
Rossman; 2008], but not in bounded-degree PC [Berkholz, Grohe; 2015].
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Proof of the main result

CPT distinguishes all graphs in K.

Fix any G,H ∈ K,G 6∼= H.

There exists Π ∈ CPT with G |= Π and H 6|= Π,
constructing h.f. sets of polynomial size.

There exists a polynomial time Deep Weisfeiler Leman algorithm
distinguishing G and H.

Turn the constructed sets into an EPC3-refutation of Piso(G,H).
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Deep Weisfeiler Leman (Grohe, Schweitzer, Wiebking; 2021)

A Deep Weisfeiler Leman algorithm is a Turing machine whose input is a graph to which it has
limited access.

2-dimensional Weisfeiler Leman colouringaddPair(red)
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Proof continued

• Deep Weisfeiler Leman (DWL) is an isomorphism-invariant computation model equivalent to
CPT [Grohe, Schweitzer, Wiebking; 2021].

• DWL is “2-dimensional Weisfeiler Leman + construction of new vertices”.

• The 2-dimensional Weisfeiler Leman algorithm can be simulated in the degree-3 polynomial
calculus [Berkholz, Grohe; 2015].

• ⇒ These facts together allow to construct an EPC3-refutation of Piso(G,H).
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Outlook: Symmetric proof systems

Stronger version of the result:

Theorem
If CPT distinguishes all graphs in a class K, then the degree-3 extended polynomial calculus (EPC3)
distinguishes all graphs in K with symmetric refutations of polynomial size.

• Extension axioms in the refutation of Piso(G,H) are closed under Aut(G)× Aut(H).

• Question: What is the right notion of a symmetric proof system?

• Aim: Use symmetry-dependent proof techniques from finite model theory against symmetric
proof systems.

Thank you!
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