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Chapter 1

Introduction

The work in this thesis is motivated by the central question of descrip-
tive complexity theory: The question of whether there is a logic capturing
PTIME. Descriptive complexity theory evolved from Fagin’s result that ex-
istential second-order logic captures NP ([Fag74]), which gave rise to the
general idea of capturing complexity classes with logics. Research on a logic
capturing PTIME, which is recapitulated, for instance, in [Gro08], emerged
from database theory, more precisely from the observation made by Aho and
Ullmann ([AU79]) that SQL cannot express all queries decidable in polyno-
mial time. As a result, Chandra and Harel asked for a recursive enumeration
of the class of all polynomial-time decidable queries ([CH82]).

The slightly different question of whether there is a logic capturing PTIME
was made precise by Gurevich in [Gur85]. In particular, he gave a very gen-
eral definition of a logic, where the main difference between a logic and a
machine model is that a logic works directly on structures, whereas a ma-
chine such as a Turing machine relies on a specific encoding. More precisely, a
logic has to produce the same output on isomorphic structures. Additionally,
a logic in the sense defined by Gurevich is a decidable set of objects called
sentences. Therefore, the class of all Turing machines with polynomial time
constraints does not constitue a logic for PTIME, as isomorphism invariance
is an undecidable property of Turing machines because of Rice’s theorem.

On proposing the question, Gurevich also conjectured that a logic captur-
ing PTIME does not exist. However, the conjecture would be hard to prove:
If there is no logic capturing PTIME, then PTIME 6= NP, since, as shown
by Fagin, there is a logic capturing NP. On the other hand, if there is a
logic capturing PTIME, then the important question whether PTIME 6= NP
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2 CHAPTER 1. INTRODUCTION

can be attacked by trying to separate existential second-order logic from that
logic. So both results would have substantial consequences for complexity
theory.

Assuming the conjecture that there is no logic capturing PTIME, it re-
mains an interesting question which fragments of PTIME can be captured
by logics. This may lead to a better understanding of both the complexity
class PTIME and the logics analysed in the process.

The obvious reason why first-order logic is too weak to capture PTIME
is that it lacks a mechanism for recursion or iteration. So fixed-point logic
became a candidate for a logic for PTIME, since it enriches first-order logic
by recursive computation in the form of a fixed-point operator. Indeed,
fixed-point logic captures PTIME on ordered structures, which was shown
independently by Immerman and Vardi ([Imm86], [Var82]).

Now one might say that this result suffices for the application in databases,
since databases are ordered because of their physical representation. How-
ever, relational databases should abstract from the physical representation,
so a logic for PTIME queries is still desirable. For this and the reasons given
above, the search for a logic capturing PTIME continued.

Fixed-point logic itself does not capture PTIME because it fails to ex-
press already simple queries like the parity of a set. This query is based
on a counting property, so Immerman ([Imm87]) introduced fixed-point logic
with counting (FP + C) as a candidate for a logic capturing PTIME. But also
FP + C does not capture PTIME, as was shown by Cai, Fürer and Immer-
man, who, in [CFI92], defined for each natural number k a family of pairs
of graphs that can be distinguished in PTIME but not by the k-variable
fragment of infinitary logic with counting, and hence not in FP + C.

The candidate for a logic for PTIME that we are concerned with in this
thesis is Choiceless Polynomial Time, which was introduced by Blass, Gure-
vich and Shelah in [BGS99]. Choiceless Polynomial Time (CPT) is a re-
striction of a logic referred to as BGS logic. Like fixed-point logic it has
a mechanism for iteration. In addition to first-order expressions, the logic
has the ability to construct hereditarily finite sets over the domain of the
input structure. As a restriction, it lacks arbitrary choice (as in the pseudo
code instruction “pick an arbitrary vertex”), which is replaced by parallel
computation on isomorphic objects.

As the notion of computation suggests, BGS logic reminds of functional
programming languages (in fact, it is based on abstract state machines).
More precisely, the syntax originally introduced by Blass, Gurevich and She-
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lah consists of rules for updating functions and relations using the construc-
tion of sets. These rules are iterated until a given condition holds. Never-
theless, BGS logic is a logic in the general sense defined by Gurevich.

To obtain Choiceless Polynomial Time (CPT), BGS logic is restricted
with polynomial bounds on the length of the computation and the amount of
parallelism, which is measured in terms of the hereditarily finite sets involved
in the computation.

Blass, Gurevich and Shelah showed ([BGS99]) that CPT is strictly stronger
than the so-called relational machines ([AV91]), implying that CPT is also
strictly stronger than fixed-point logic (which is subsumed by relational ma-
chines). But, like FP, CPT cannot express the parity of a set, as shown
in [BGS99] (simplifications of parts of the proof were given by Rossman in
[Ros10]). So CPT lacks the ability to count, and therefore it is reasonable to
study the extension of CPT by a counting operation (resulting in CPT + C).

In [BGS02], it is shown that the existence of a perfect matching on bipar-
tite graphs is expressable in CPT + C, after the converse was earlier conjec-
tured by the same authors as an attempt to seperate CPT + C from PTIME
(in fact, it was shown that even FP + C can define a perfect matching on
bipartite graphs). The perfect matching problem on general graphs was then
proposed as a candidate for separating CPT + C and PTIME, but, as shown
by Anderson, Dawar and Holm in [ADH13], the existence of a perfect match-
ing on general graphs is also definable in FP + C.

Furthermore, the Cai-Fürer-Immerman query that separates FP + C from
PTIME is definable in CPT without counting ([BGS02],[DRR08]).

This suggests that CPT + C captures at least a large fragment of PTIME.
The only indication that CPT + C does not capture PTIME is that Rossman
proved in [Ros10] that there is a polynomial-time function problem not de-
finable in CPT + C.

Another indication that CPT + C is an interesting candidate for a logic
for PTIME is the fact that, like Turing machines, it benefits from padding
of the input, in [BGS99], Blass, Gurevich and Shelah described an algorithm
that constructs all linear orders on a sufficiently small subset in order to de-
cide all polynomial-time queries on this subset. In [Lau11], Laubner shows
that CPT + C captures PTIME on substructures of logarithmic size by con-
structing a canonisation of these substructures. The canonisation algorithm
only takes singly exponential time in the size of the substructure.

Although various results have been proven about the expressive power of
CPT + C, it remains open whether it can be separated from PTIME.
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Since BGS logic is defined through a machine model, it cannot be analysed
with the model theoretic techniques that are available for conventional logics.
Therefore an alternative characterisation of BGS logic and CPT is desirable.

In this thesis, we formalise an idea proposed by  Lukasz Kaiser, resulting
in a representation of BGS based on first-order interpretations. With poly-
nomial time and space restrictions, this logic, which we call interpretation
logic, is equivalent to CPT.

The main idea of interpretation logic is to iterate the application of a first-
order interpretation to the input structure until a given first-order sentence
is true. Since interpretation logic is based on first-order logic, its defini-
tion remains relatively concise, in contrast to the definition of BGS logic.
More importantly, this may make interpretation logic, and hence CPT + C,
accessible to the tools of finite model theory.

The structure of interpretation logic also makes it possible to define some
natural fragments, for instance via fragments of first-order logic, or by re-
stricting the interpretations involved in the computation.

Since CPT without counting has already been separated from PTIME, we
define an extension of interpretation logic that is equivalent to CPT + C. A
counting operation would require interpretation logic to work on two-sorted
structures like FP + C. To avoid this, we show that it suffices to extend
interpretation logic (and CPT) by a suitable equicardinality operation.

Before going into the details of the proofs, we recapitulate important
definitions and fix the notation in Chapter 2. In Chapter 3, we then give def-
initions of Choiceless Polynomial Time as introduced in [BGS99] and [Ros10]
as a basis for later analysis. Then, in Section 3.2, we show that the extension
of CPT by an equicardinality operation is as powerful as CPT + C, using the
property that CPT works on hereditarily finite sets and therefore the finite
ordinals are accessible.

This makes it possible to define a meaningful extension of interpretation
logic by an equicardinality operation when we formalise interpretation logic
in Chapter 4. In Section 4.1, we give some examples of interpretation logic,
and in Section 4.2, we show that CPT and interpretation logic are equivalent,
and that the same holds for their extensions by the respective equicardinality
operation. Chapter 5 gives a conclusion and points out some questions for
possible future work.



Chapter 2

Preliminaries

In this chapter, we review basic concepts of finite model theory and descrip-
tive complexity theory and fix the notation used in the following chapters.

For a detailed introduction to finite model theory, the reader is referred
to [Lib04]. Furthermore, the concept of a logic for PTIME and the corre-
sponding generalised definition of logics is summarised in [Gro08].

2.1 Logics and Interpretations

A signature is a set τ = {f1, . . . , fk, R1, . . . , R`} of function symbols f1, . . . , fk
and relation symbols R1, . . . , R` where each fi is of arity si and each Ri is of
arity ri. τ is a relational signature if all elements of τ are relation symbols. A
τ -structure A is a tuple (A, fA

1 , . . . , f
A
k , R

A
1 , . . . , R

A
` ), where A is a non-empty

set called the domain or universe of A, each fA
i is a function fA

i : Asi 7→ A
and each RA

i is a relation in Ari . We also write A = (A, τ). A is finite if A
is a finite set, and A is relational if τ is relational.

Unless stated otherwise, we only consider structures that are finite and
relational.

We denote by A � τ ′ the reduct of A to the signature τ ′ ⊆ τ .

In this thesis, we introduce a logic that is based on first-order logic. First-
order logic over the signature τ is denoted by FO[τ ]. For ease of notation,
we allow nullary relation symbols and the formulae True and False.

To add an equicardinality operation to a logic based on FO, we extend
first-order logic by the Härtig quantifier with the following rule for construct-
ing formulae:
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If ϕ and ψ are formulae, then Hxyϕψ, where x occurs freely in ϕ and y
occurs freely in ψ, is a formula. The semantics is defined by A = (A, τ) |=
Hxyϕψ if and only if |{a ∈ A | A |= ϕ(a)}| = |{b ∈ A | A |= ψ(b)}|.

We denote the resulting logic by FO + H.
Since this thesis focuses on logics that are defined rather unconventionally,

we review the general definition of a logic as it was introduced by Gurevich
in [Gur85].

A logic L consists of a decidable set L[τ ] of sentences for each signature τ
and a relation |= between τ -structures and L[τ ]-sentences such that for any
structures A ∼= B and any sentence ϕ, A |= ϕ if and only if B |= ϕ.

The logics we are concerned with in the following chapters are defined
similarly to machine models. Since the output of a machine can be undefined,
the resulting logics are three-valued (a logic satisfying the previous definition
is called two-valued). L is a three-valued logic if L satisfies the conditions for
a logic and A |= ϕ is either true, false or undefined. If A ∼= B then A |= ϕ is
undefined if and only if B |= ϕ is undefined.

In analogy to the languages decidable by a machine model, descriptive
complexity theory is concerned with queries definable in a logic. A Boolean
query is a class of finite structures that is closed under isomorphism. For
a sentence ϕ ∈ L[τ ] in a two-valued logic L, the query Mod(ϕ) defined by
ϕ is the set of all τ -structures A such that A |= ϕ. If L is three-valued,
we additionally require that there is no structure B such that the value of
B |= ϕ is undefined.

A query Q is definable in L if there is an L-sentence defining Q.
One could alternatively classify the expressive power of a logic by the

pairs of queries that it can separate. However, in the context of the search
for a logic capturing PTIME, we are only interested in computations that
halt in polynomial time on every input structure and therefore do not return
undefined.

Let L1 and L2 be (two-valued or three-valued) logics. Then L1 is at least
as expressive as L2 (L2 ≤ L1) if every Boolean query definable in L2 is also
definable in L1. L1 and L2 are expressively equivalent (L1 ≡ L2) if and only
if L1 ≤ L2 and L2 ≤ L1.

To properly embed our studies in the context of the search for a logic for
PTIME, we specify the conditions for a logic for PTIME. A logic L captures
PTIME if every Boolean query that is decidable in PTIME is definable in
L and there is an algorithm that associates with each L[τ ]-sentence ϕ a
polynomial p and an algorithm that decides the query Mod(ϕ) in time p(|A|)
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for every input structure A = (A, τ). In particular, it does not suffice that
each Boolean query definable in L is decidable in PTIME.

The logic introduced in this thesis is based on logical interpretations,
which we recapitulate in the remainder of this section.

Let L be an extension of FO and let τ , σ be relational signatures. A
k-dimensional L[τ, σ]-interpretation is a sequence I =

(
ϕdom, ϕ≈, (ϕR)R∈σ

)
of L[σ]-formulae where

• ϕdom, called the domain formula, has exactly k free variables,

• ϕ≈, called the equality formula, has exactly 2k free variables,

• each ϕRi has exactly k · ri free variables (where ri is the arity of Ri).

An L[τ, σ]-interpretation defines a mapping from τ - to σ-structures as
follows: For a τ -structure A and a σ-structure B, we say that B = I(A) if
there exists a mapping h : ϕA

dom 7→ B such that

• for all a1, a2 ∈ ϕA
dom, h(a1) = h(a2) if and only if a1 = a2 or A |=

ϕ≈(a1, a2), and

• for every r-ary R ∈ σ and all a1, . . . , ar ∈ ϕA
dom, (h(a1, . . . , ar)) ∈ RB if

and only if A |= ϕR(a1, . . . , ar).

We say that I preserves the domain if I =
(
ϕdom, ϕ≈, (ϕR)R∈σ

)
is a

one-dimensional interpretation where ϕdom is valid and ϕ≈(x, y) is equiva-
lent to x = y, and I preserves a relation R if I preserves the domain and
ϕR(x1, . . . , xr) is equivalent to Rx1 . . . xr. If I preserves the domain and all
relations in σ, we say that I is the identity.

An interesting property of interpretations is that they define not only
a mapping between structures, but an FO[τ, σ]-interpretation also defines a
mapping from τ -formulae to σ-formulae. An FO[τ, σ]-interpretation I maps
each τ -formula ϕ to the σ-formula ϕI , which is obtained by relativising all
quantifiers in ϕ to ϕdom, replacing each formula t1 = t2 by ϕ≈(t1, t2), and
replacing every formula Rt by the formula ϕR(t). Then the following holds:

Lemma 1 (Interpretation Lemma). For every FO[τ, σ]-interpretation I and
every τ -structure A, it holds that

A |= ϕI if and only if I(A) |= ϕ .
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2.2 Set Theory

Next, we briefly introduce the set-theoretic concepts that form the basis for
BGS logic, as well as some notation for set-theoretic encoding that we use
in our BGS programs. These basic concepts that are used in the context of
BGS logic are summarised in [BGS99].

We denote by [n] the von Neumann ordinal associated with the natural
number n, i.e. [0] = ∅ and [n + 1] = {[i] | i ≤ n}, and by ω the first infinite
ordinal. The notation [n] is used to make the set-theoretic encoding explicit,
especially when defining BGS programs. We identify the cardinality |A| of a
finite set A with the respective von Neumann ordinal.

The sets used in BGS computations are built from atoms. We assume
that the domain of any structure that is used as the input structure of a BGS
program only consists of atoms. An object is either an atom or a set.

A set A is transitive if x ⊆ A for every set x ∈ A. The transitive closure
TC(A) of an object A is the least transitive set B with A ∈ B.

BGS programs operate on the hereditarily finite sets over the domain of
the input structure. An object is hereditarily finite if its transitive closure is
finite. The collection HF(A) of hereditarily finite sets over a set A of atoms
is defined as the set of all objects x such that x ∈ A or x is a hereditarily
finite set such that all atoms in TC(x) are elements of A.

In the BGS programs constructed in the following chapters, we frequently
represent data in the form of ordered pairs and tuples of finite length. As BGS
works on sets, we encode ordered pairs and tuples as follows: The pair 〈a, b〉
of objects a, b is identified with the set {a, {a, b}}. Tuples 〈a1, . . . , ak〉 of ar-
bitrary finite length are encoded inductively: 〈a1〉 = a1, and 〈a1, . . . , ak+1〉 =
〈〈a1, . . . , ak〉, ak+1〉. These encodings are later transformed to terms in BGS
logic.



Chapter 3

Choiceless Polynomial Time

In this chapter, we give two definitions of Choiceless Polynomial Time and the
underlying logic, which is denoted by BGS logic. Choiceless Polynomial Time
(CPT) was originally defined by Blass, Gurevich and Shelah in [BGS99]. A
more concise definition was presented, for instance, by Rossman in [Ros10].
We will denote the latter by BGS, respectively CPT, and the logic originally
defined by Blass, Gurevich and Shelah by BGSorig, respectively CPTorig.

The core of the logic in both versions is to combine an iteration mech-
anism with the ability to construct arbitrary hereditarily finite sets (within
constraints given by polynomial bounds). The construction of sets is re-
alised by the terms of the logic, a fragment that is similar to first-order logic,
where, instead of quantification, constructs of the form {s(x) : x ∈ t : ϕ(x)}
for terms s, t, ϕ are possible. The concept that constitutes a sentence in other
logics is called a program in BGS and BGSorig, reflecting the property that
the logic is defined like a machine model.

In BGSorig, a program consists of a set of rules that modify dynamic
functions and predicates, and that are iterated until a given condition is
true. According to the newer definition, the computation of a BGS program
is simply the application of a single term until the halting condition is true,
which shortens the definition.

CPT and CPTorig are the fragments of BGS and BGSorig defined by re-
stricting the computations with certain polynomial bounds. The main idea
is to bound the number of sets that are involved in the computation, which
are called active objects.

We start with a few general definitions that form the basis of both BGS
and BGSorig.

9
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As BGS and BGSorig work on hereditarily finite sets, the terms are con-
structed over a signature extended by set-theoretic function and relation
symbols:

Definition 2. Let σ be a relational signature. We denote by σHF the signa-
ture σ extended by the following function and relation symbols:

• A binary relation symbol In,

• nullary function symbols Empty and Atoms,

• unary function symbols Union and TheUnique,

• a binary function symbol Pair.

Futhermore, we denote by σHF
EqCard the signature σHF ∪ {EqCard}, where

EqCard is a 2-ary relation symbol, and by σHF
Card the signature σHF ∪{Card},

where Card is a unary function symbol.

The predicates in σ are called input predicates.

The constant symbol Empty is sometimes abbreviated to ∅.
The corresponding functions and relations are defined by the hereditarily

finite expansion of each structure:

Definition 3. Let A = (A, σ). Then the hereditarily finite expansion HF(A)
of A is the structure with universe HF(A) and

• (a, b) ∈ InHF(A) if and only if a ∈ b,

• EmptyHF(A) = ∅,

• AtomsHF(A) = A,

• UnionHF(A)(a) =
⋃
b∈a b,

• TheUniqueHF(A)({b}) = b and TheUniqueHF(A)(a) = ∅ if a is not a
singleton, and

• PairHF(A)(a, b) = {a, b}.
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Let HFEqCard(A) be the σHF
EqCard-expansion of HF(A) with

EqCardHFEqCard(A) = {(a, b) | a, b are sets and |a| = |b|} ,

and let HFCard(A) be the σHF
Card-expansion of HF(A) with

CardHFCard(A)(a) = |a| .

Both BGS and BGSorig are based on the concept of terms. Since the
definition of terms in both versions of the logic differs only by small variations
of the syntax, we give the same definition for both BGS and BGSorig terms.

Definition 4. The set of terms over a signature σHF
ext ⊇ σHF is defined in-

ductively as follows:

Induction Base:

• A variable is a term,

• each constant symbol c ∈ σHF
ext is a term.

Induction Step:

• If t1, . . . , tr are terms, then f(t1, . . . , tr) is a term for each r-ary function
symbol f ∈ σHF

ext ,

• if t1, . . . , tr are terms, then R(t1, . . . , tr) is a Boolean term,

• if t1, t2 are terms, then t1 = t2 is a Boolean term,

• if t1, t2 are Boolean terms, then t1∧t2, t1∨t2 and ¬t1 are Boolean terms,

• if s and t are terms, ϕ is a Boolean term and x is a variable that does not
occur freely in t, then {s(x) : x ∈ t : ϕ(x)} is a term. This term binds
the variable x. We say that {s(x) : x ∈ t : ϕ(x)} is a comprehension
term. Instead of {s(x) : x ∈ t : ϕ(x)} we also write {s(x) : x ∈ t} if ϕ
is a tautology.

When constructing terms for e.g. set-theoretic operations, we want to
replace arbitrary terms for the free variables. Therefore, if s(x1, . . . , xk) and
t1, . . . , tk are terms, then we denote by s(t1, . . . , tk) the modified version of s
where each free variable xi is replaced with the term ti. The same notation
is applied for replacing the free variables by values a1, . . . , ak from HF(A).

The evaluation of a term yields a value in HF(A), using the functions and
relations of the respective expansion of HF(A). For Boolean terms, the value
is either {∅} or ∅, where {∅} encodes True and ∅ encodes False.
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Definition 5. Let σHF
ext ⊇ σHF, and let HFext(A) be a σHF

ext -expansion of HF(A)
for a σ-structure A. The semantic operator J·KA assigns to each term over σHF

ext

with an assignment of free variables x = x1, . . . , xk to values a = a1, . . . , ak
in HF(A) its evaluation for the input structure A. The operator is defined
inductively as follows:

Induction Base

• If t(x) = x, then Jt(a)KA = a.

• If t(x) = c, then JtKA = cHFext(A).

Induction Step

• Jf(t1(a), . . . , tr(a))KA = fHFext(A)(Jt1(a)KA, . . . , Jtr(a))KA).

• JR(t1(a), . . . , tr(a))KA = {∅} if (Jt1(a)KA, . . . , Jtr(a)KA) ∈ RHFext(A), and
JR(t1(a), . . . , tr(a))KA = ∅ otherwise.

• Analogous for Jt1(a) = t2(a)KA and Boolean connectives, with the obvi-
ous semantics.

• J{s(x, a) : x ∈ t(a) : ϕ(x, a)}KA is the set of all Js(b, a)KA such that
b ∈ Jt(a)KA and Jϕ(b, a)KA is true.

Both BGS and BGSorig heavily rely on terms to construct sets in HF(A).
Apart from that, the approach of these logics differs in several aspects, which
will be defined in the following.

The definition of BGSorig The computations of BGSorig programs are
based on updating dynamic functions. Therefore, we further expand the
signature σHF by a finite set of dynamic function symbols which contains at
least the nullary predicates Halt and Out. Note that dynamic predicates are
encoded as dynamic functions which can only take the values {∅} (True) and
∅ (False). So, for the definition of BGSorig, we only consider signatures σHF

ext

containing dynamic functions, specifically Halt and Out.
BGSorig programs are constructed from rules that perform certain up-

dates on the states of the computation, so before introducing rules and their
semantics, we define BGSorig states:

A BGSorig state B is a σHF
ext -expansion of HF(A) (respectively HFEqCard(A)

if EqCard ∈ σHF
ext and HFCard(A) if Card ∈ σHF

ext), where, for every dynamic
function symbol f ∈ σHF

ext , the set {(a0, . . . , ar) : fB(a0, . . . , ar−1 = ar 6= ∅}
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is finite. B is an initial state if each dynamic function takes the value ∅ for
each tuple a0, . . . , ar−1.

States are used to define the semantics of rules. In the following, we first
define rules syntactically:

Definition 6. The set of BGSorig transition rules over a signature σHF
ext is

defined inductively as follows (where all terms are terms over σHF
ext ):

Induction Base

• Skip is a rule.

• Update rules: If f is an r-ary dynamic function symbol and t0, . . . , tr
are terms, then f(t1, . . . , tr) := t0 is a rule.

Induction Step

• Conditional rules: If ϕ is a Boolean term and R1, R2 are rules, then if

ϕ then R1 else R2 endif is a rule.

• Do-forall rules: If x is a variable, t is a term where x does not occur
freely, and R0(x) is a rule, then do forall x ∈ t, R0(x) enddo is a
rule.

The semantics of BGSorig rules is defined in terms of actions, i.e. each rule
assigns an action to each state. This action will then define the sequel of a
state, i.e. that state obtained from the current state by using the rule, which
is later on used to define the computation of a program. To define actions,
and, finally, the denotation of a rule, we need the following prerequisites.

Actions are defined on structures with variable assignments, formally: Let
A be a state and let β be a variable assignment. Then (A, β) is an expanded
state. Let (A, β) be an expanded state. Then (A, β)(x 7→ a) is the expanded
state obtained from (A, β) by extending β such that a is assigned to x.

Actions consist of updates. An update of (A, β) is a tuple (f, a, b), where
f is an r-ary dynamic function, a ∈ Ar and b ∈ A. To fire an update (f, a, b)
at (A, β), redefine f in A such that f(a) = b and f remains unchanged on all
other tuples. The resulting state is called the sequel of (A, β) with respect
to (f, a, b).

The updates (f, a, b) and (f, a, c) clash if b 6= c.
An action of an expanded state (A, β) is a set of updates of (A, β). An

action α is performed by firing all updates if α contains no clashing updates,
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and by doing nothing otherwise. Again, the resulting expanded state is called
the sequel of (A, β) with respect to α.

The denotation Den(R) of a rule R is a function mapping each expanded
state (A, β) that is appropriate for R (i.e. where R contains only function
symbols in the signature of A, and β assigns all free variables in R) to an
action. We write Den(R, (A, β)) instead of Den(R)((A, β)).

To fire R at (A, β), perform the action Den(R, (A, β)) at A. The sequel of
(A, β) with respect to R is the sequel of (A, β) with respect to Den(R, (A, β)).

The denotation of rules is defined inductively:

• Den(Skip, (A, β)) = ∅, so Skip is always mapped to no action.

• For R = f(s) := t, Den(R, (A, β)) = {(f, JsKA, JtKA)}, i.e. the denota-
tion is the set containing only the update that redefines f as specified
by R.

• If R = if ϕ then R1 else R2 endif, then

Den(R, (A, β)) =

{
Den(R1, (A, β)) if JϕKA is true,
Den(R2, (A, β)) otherwise.

• If R =do forall x ∈ t, R0(x) enddo, then

Den(R, (A, β)) =
⋃
{Den(R0(x), (A, β)(x 7→ a)) : a ∈ JtKA} ,

so the action assigned to a do-forall rule is the set of all updates defined
by the subcomputations.

The notion of the denotation of a rule makes it possible to define BGSorig

programs and their computations:

Definition 7. A BGSorig[σ
HF
ext ] program Π is a rule without free variables

over σHF
ext .

States of Π are states over the signature σHF
ext .

Let A be a σ-structure. Without loss of generality, we assume that the
domain of A only consists of atoms. The run of a BGSorig[σ

HF
ext ] program Π

on A is a sequence (Ai)i<κ, where κ is a natural number or ω, such that

• A0 is an initial state with domain HF(A),
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• Ai+1 is a sequel of Ai with respect to Π for i+ 1 < κ,

• HaltAi is false for i < κ− 1,

• if κ is finite, then HaltAκ−1 is true.

If κ is finite, then Π accepts A if and only if OutAκ−1 is true. If κ is
infinite, then the output of Π is ⊥.

The polynomial-time restriction of BGSorig, which we denote by CPTorig,
is defined in terms of the objects that are involved in a computation:

Definition 8. Let B be a BGSorig state with universe HF(A) for some struc-
ture A = (A, σ).

An object a ∈ HF(A) is critical at B if

• a is an atom,

• a ∈ {∅, {∅}},

• a is the value of a dynamic function, or

• there is a dynamic function f and a tuple b such that a is a component
of b and fB(b) 6= ∅.

An object a ∈ HF(A) if active at A if it is in TC(b) for some critical
object b. If b is a value of the dynamic function f , or b is a component of a
tuple where f takes a value different from ∅, we say that a is activated by f .

An object is active in a run ρ is it is active at some state of ρ.

The polynomial-time restriction CPTorig of BGSorig is now defined by
restricting the length and the number of active objects of a run of a program.

Definition 9. A CPTorig[σ
HF
ext ] program is a tuple Π = (Π, p, q), where Π is

a BGSorig[σ
HF
ext ] program and p : N 7→ N and q : N 7→ N are polynomials.

The run of Π on a structure A = (A, σ) is the maximal initial segment
ρ = (Ai)i<n of the run of Π on A such that n < p(|A|) and at most q(|A|)
many objects are active in ρ.

If HaltAn−1 is true, then Π accepts A if and only if Π accepts A. Otherwise,
the output of Π is ⊥.
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A program Π is in BGSorig + EqCard (resp. CPTorig + EqCard) if it is in
BGSorig[σHF

ext ] (resp. CPTorig[σHF
ext ]) for some signature where EqCard ∈ σHF

ext ,
and Π is in BGSorig + C (resp. CPTorig + C) if Π is a BGSorig (resp. CPTorig)
program over a signature σHF

ext where Card ∈ σHF
ext .

Note that both BGSorig and CPTorig are three-valued logics, since the set
of valid programs is defined syntactically and is therefore decidable.

The definition of BGS In the definition of BGS logic given by Rossman
in [Ros10], the rules are omitted and programs are constructed directly from
terms.

Definition 10. Let σHF
ext be a signature with σHF

ext ⊇ σHF. A BGS[σHF
ext ] pro-

gram is a tuple Π = (Πstep,Πhalt,Πout), where Πstep(x) is a non-Boolean BGS
term over σHF

ext with one free variable and Πhalt and Πout are Boolean BGS
terms over σHF

ext without free variables.
Let A = (A, σ) be a σ-structure. The run of Π on A is the sequence

(ai)i<κ of elements of HF(A), where κ is a natural number or ω, and

• a0 = ∅,

• ai+1 = JΠstep(ai)K for 0 < i+ 1 < κ,

• JΠhalt(ai)K is false for all i < κ− 1,

• if κ is finite, then JΠhalt(aκ−1)K is true.

If κ is finite, then the output of Π is Π(A) = JΠout(aκ−1)K, and otherwise,
Π(A) = ⊥.

The polynomial-time restriction of BGS only depends on the number of
objects involved in the computation. Since a computation of a BGS program
consists of evaluations of terms, the set of active objects is now defined as a
property of a term.

Definition 11. Let σHF
ext ⊇ σHF, and let HFext(A) be the σHF

ext -expansion of
HF(A) for a σ-structure A = (A, σ). The operator 〈〈 · 〉〉A denotes the set of
active objects of a term evaluated in the structure A. It is defined inductively
for every term t(x1, . . . , xk) and assignment of variables x = x1, . . . , xk to
values a = a1, . . . , ak in HF(A):
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Induction Base:

• If t(xi) = xi, then 〈〈 t(a)〉〉A = a.

• If t = c for a constant symbol c ∈ σHF
ext , then 〈〈 t〉〉 = {cHFext(A)}.

Induction Step:

• 〈〈f(t1(a), . . . , tr(a))〉〉A = {Jf(t1(a), . . . , tr(a))KA} ∪
⋃r
i=1 〈〈 ti(a)〉〉A.

• 〈〈R(t1(a), . . . , tr(a))〉〉A =
⋃r
i=1 〈〈 ti(a)〉〉A.

• 〈〈¬ϕ(a)〉〉A = 〈〈ϕ(a)〉〉A.

• 〈〈ϕ(a) ∧ ψ(a)〉〉A = 〈〈ϕ(a) ∨ ψ(a)〉〉A = 〈〈ϕ(a)〉〉A ∪ 〈〈ψ(a)〉〉A.

• 〈〈 t1(a) = t2(a)〉〉A = 〈〈 t1(a)〉〉A ∪ 〈〈 t2(a)〉〉A.

• 〈〈{s(x, a) : x ∈ t(a) : ϕ(x, a)}〉〉A = 〈〈 t(a)〉〉A ∪
⋃
b∈Jt(a)KA 〈〈ϕ(b, a)〉〉A ∪

{J{s(x, a) : x ∈ t(a) : ϕ(x, a)}KA} .

The logic CPT is defined as the restriction of BGS to programs with
runs of finite length and a polynomially bounded number of active objects
on every structure.

Definition 12. A CPT[σHF
ext ] program is a tuple Π = (Π, q), where Π is a

BGS[σHF
ext ] program and q : N 7→ N is a polynomial.

The run of Π on a structure A = (A, σ) is the maximal initial segment
ρ = (ai)i<n of the run of Π on A such that no state occurs twice and the
cardinality of the set

Active(Π,A) = 〈〈Πhalt(an−1)〉〉 ∪ 〈〈Πout(an−1)〉〉 ∪
n−2⋃
i=0

(〈〈Πstep(ai)〉〉 ∪ 〈〈Πhalt(ai)〉〉)

is at most q(|A|).
If JΠhalt(an−1)K is true, then Π(A) = Π(A). Otherwise, Π(A) = ⊥.

Note that, according to Rossman’s definition, a CPT program does not
explicitly incorporate the polynomial q. However, the above definition en-
sures that CPT is still a three-valued logic, in contrast to the language defined
by the property that there exists a polynomial q that bounds the number of
active objects, where the set of programs is not decidable. Using the above
definition, both BGS and CPT are three-valued logics.
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As for BGSorig, we denote by BGS + EqCard (resp. CPT + EqCard) the
logic BGS[σHF ∪ {EqCard}] (resp. CPT[σHF ∪ {EqCard}]), and by BGS + C
the logic BGS[σHF ∪ {Card}] (resp. CPT[σHF ∪ {Card}]).

Note that this definition does not bound the length of a run. Therefore
we show that the bound on the number of active objects already implies a
bound on the length of the run.

Lemma 13. Let Π = (Π, q) be a CPT program, and let A = (A, τ) be a finite
structure. Then the length of the run of Π on A is bounded by q(|A|).

Proof. For any state ai of the run ρ of Π on A, ai = ∅ or ai = JΠstep(a)K for
some object a, so ai is in Active(Π,A). By definition, no state occurs twice.
So there are at most q(|A|) states in ρ.

3.1 Basic Set-Theoretic Operations

To illustrate the use of BGS logic and the computation of active objects and
to simplify the BGS programs defined later, we demonstrate how to express
some set-theoretic operations with BGS (and thus BGSorig) terms.

First, we define a term defining the set {a} for any object a in the hered-
itarily finite expansion of the input structure.

Lemma 14. There is a BGS term tsing(x) such that for any term t, Jtsing(t)K =
{JtK} and |〈〈 tsing(t)〉〉| = |〈〈 t〉〉|+ 2.

Proof. Let tsing(x) = Pair(x, x). Clearly, the term has the required semantics,
and |〈〈 tsing 〉〉| = |{JPair(t, t)K} ∪ 〈〈 t〉〉| = |〈〈 t〉〉|+ 1.

For ease of notation, we write {t} instead of tsing(t).
The Union function in BGS is only defined as the union over a set. Next,

we define the union of two sets as a special case of that function.

Lemma 15. There is a BGS term t∪(x, y) such that for any terms t1, t2,
Jt∪(t1, t2)K = Jt1K ∪ Jt2K and |〈〈 t∪(t1, t2)〉〉| ≤ |〈〈 t1 〉〉 ∪ 〈〈 t2 〉〉|+ 2.

Proof. Let t∪(x, y) = Union (Pair (x, y)). Then by definition Jt∪(t1, t2)K =
Jt1K ∪ Jt2K, and

〈〈 t∪(t1, t2)〉〉 = {Jt∪(t1, t2)K} ∪ 〈〈Pair(t1, t2)〉〉
= {Jt1K ∪ Jt2K} ∪ {{Jt1K, Jt2K}} ∪ 〈〈 t1 〉〉 ∪ 〈〈 t2 〉〉 ,

so |〈〈 t∪(t1, t2)〉〉| = |〈〈 t1 〉〉 ∪ 〈〈 t2 〉〉|+ 2.
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Instead of t∪(x, y), we use the standard notation x ∪ y.

The BGS programs formulated later encode data in ordered pairs and
tuples. In the following, we present BGS terms defining ordered pairs and
tuples using the set-theoretic encoding specified in Section 2.2. Whenever
a tuple or pair occurs in a BGS term, it will denote an application of the
respective term.

Lemma 16. There is a BGS term OrderedPair(x, y) such that, for any terms
s, t, JOrderedPair(s, t)K = 〈JsK, JtK〉 and |〈〈OrderedPair(s, t)〉〉| = |〈〈s〉〉 ∪ 〈〈 t〉〉|+2.

Proof. Let OrderedPair(x, y) = Pair(x,Pair(x, y)). Then, by definition, the
term constructs an ordered pair, and, for any terms s, t,

〈〈OrderedPair(s, t)〉〉 = 〈〈s〉〉 ∪ 〈〈Pair(s, t)〉〉 ∪ {JOrderedPair(s, t)K}
= 〈〈s〉〉 ∪ 〈〈 t〉〉 ∪ {{s, t}} ∪ {{s, {s, t}}} ,

so |〈〈OrderedPair(s, t)〉〉| = |〈〈s〉〉 ∪ 〈〈 t〉〉|+ 2.

To handle ordered pairs correctly, we also need a way to project a set
encoding an ordered pair to the first and second element of the pair:

Lemma 17. There are BGS terms proj1 and proj2 such that, for any term t
with JtK = 〈a, b〉 for some a, b ∈ HF(A) (where A is the domain of the input
structure), Jproj1(t)K = a, Jproj2(t)K = b, |〈〈proj1(t)〉〉| = |〈〈 t〉〉| + |a| + 5 and
|〈〈proj2(t)〉〉| = |〈〈 t〉〉|+ |a|+ 8.

Proof.

proj1(x) = TheUnique ({x1 : x1 ∈ Union(x) : In(x1, x)})
proj2(x) = TheUnique({x2 : x2 ∈ Union(x) :

x2 6= proj1(x) ∧ ¬ In(x2, proj1(x))}) .
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Let t be a term with JtK = 〈a, b〉. Then

|〈〈proj1(t)〉〉| =

∣∣∣∣∣∣∣∣{J{x1 : x1 ∈ Union(t) : In(x1, proj1(t)}K}∪ {Jproj1(t)K}∪

{JUnion(t)K} ∪ 〈〈 t〉〉 ∪
⋃

a1∈JUnion(t)K

〈〈 In(a1, t)〉〉 ∪

⋃
a1∈JUnion(t)K:JIn(a1,t)}K=True

〈〈a1 〉〉

∣∣∣∣∣∣
≤ 3 +

∣∣∣∣∣∣〈〈 t〉〉 ∪
⋃

a1∈JaK∪{JaK,JbK}

(〈〈a1 〉〉 ∪ 〈〈 t〉〉)

∣∣∣∣∣∣
= 3 + |〈〈 t〉〉 ∪ JaK ∪ {JaK, JbK}|
≤ |〈〈 t〉〉|+ |a|+ 5 .

Given the number of active objects of the subterm proj1, it is now possible
to compute that number for proj2. Let t be a term such that JtK = 〈a, b〉.

|〈〈proj2(t)〉〉| =

∣∣∣∣∣∣∣∣{J{x2 : x2 ∈ Union(t) : x2 6= proj1(t) ∧ ¬ In(x2, proj1(t))}K}∪

{Jproj2(t)K} ∪ 〈〈Union(t)〉〉 ∪⋃
a2∈JUnion(t)K

〈〈a2 6= proj1(t) ∧ ¬ In(a2, proj1(t))〉〉 ∪

⋃
a2∈JUnion(t)K:

Ja2 6=proj1(t)∧¬ In(a2,proj1(t))K=True

〈〈a2 〉〉

∣∣∣∣∣∣∣∣
=3 +

∣∣∣∣∣∣
⋃

a2∈JUnion(t)K

〈〈a2 〉〉 ∪ 〈〈proj1(t)〉〉

∣∣∣∣∣∣
≤3 + |〈〈proj1(t)〉〉| = |〈〈 t〉〉|+ |a|+ 8 ,

which shows the bound given in the lemma.
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The terms for ordered pairs can now be used to define tuples of arbitrary
fixed length. Note that we do not compute the number of active objects of
these terms here, since we only use them in BGSorig programs (recall that an
object is active in an BGSorig program if it is involved in changing a dynamic
function).

Lemma 18. For each k ∈ N, there is a BGS term Tupk such that for any
terms t1, . . . , tk, JTupk(t1, . . . , tk)K = 〈Jt1K, . . . JtkK〉.

Proof. Induction on k.

Induction Base: Tup1(x1) = x1.

Induction Step:

Tupk+1(x1, . . . , xk+1) = OrderedPair
(
Tupk(x1, . . . , xk), xk+1

)
.

As for ordered pairs, we also define terms that project tuples to each
of their components. One such term is defined for each combination of the
length k of a tuple and the number i of the component.

Lemma 19. For each i, k ∈ N with i ≤ k, there is a BGS term Tupki , such
that for any term t with JtK = 〈a1, . . . , ak〉, JTupki (t) = aiK.

Proof. Induction on k.

Induction Base: Tup1
1(x) = x.

Induction Step:

Tupkk(x) = proj2(x), Tupki (x) = Tupk−1
i (proj1(x)) for i < k .

Terms for ordered pairs also make it possible to define the Cartesian
product of two sets as a set of ordered pairs.

Lemma 20. There is a BGS term t× such that Jt×(t1, t2)K = Jt1K× Jt2K and
|〈〈 t×(t1, t2)〉〉| ≤ |〈〈 t1 〉〉|+ |〈〈 t2 〉〉|+ |Jt2K| · (3 |Jt1K|+ 2)+2 for any BGS terms t1, t2.
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Proof. Let t×(x, y) = Union ({{〈z1, z2〉 : z1 ∈ x} : z2 ∈ y}). By definition,
the semantics of the term is as required. Let t1, t2 be BGS terms. Then the
bound for the number of active objects is obtained as follows:

|〈〈 t×(t1, t2)〉〉| = |〈〈Union ({{〈z1, z2〉 : z1 ∈ t1 :} : x2 ∈ t2})〉〉|

=

∣∣∣∣∣ {Jt×(t1, t2)K} ∪ {J{{〈z1, z2〉 : z1 ∈ t1} : z2 ∈ t2}K}∪

〈〈 t2 〉〉 ∪
⋃

a2∈Jt2K

(
{J{〈z1, t2〉 : z1 ∈ t1}K}∪

〈〈 t1 〉〉 ∪
⋃

a1∈Jt1K

〈〈OrderedPair(a1, a2)〉〉

)∣∣∣∣∣
=

∣∣∣∣∣ {Jt×(t1, t2)K} ∪ {J{{〈z1, z2〉 : z1 ∈ t1} : z2 ∈ t2}K}∪

〈〈 t1 〉〉 ∪ 〈〈 t2 〉〉 ∪
⋃

a2∈Jt2K

(
{J{〈z1, t2〉 : z1 ∈ t1}K}∪

⋃
a1∈Jt1K

({{Ja1K, {Ja1K, Ja2K}}} ∪ 〈〈a1 〉〉 ∪ {{Jx1K, Jx2K}})

)∣∣∣∣∣
≤2 + |〈〈 t1 〉〉|+ |〈〈 t2 〉〉|+ |Jt2K| · (3 |Jt1K|+ 2)

We also write t1 × t2 instead of t×(t1, t2).
With these operations, we have defined the necessary tools for construct-

ing the BGS and BGSorig programs used in the proofs in the remainder of
this thesis.

3.2 Counting and Equicardinality

In the following, we show that the cardinality operation in CPT can be
replaced by an equicardinality operation without loss of expressive power.

Theorem 21. CPT + EqCard ≡ CPT + C
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It is easy to see that there is an equivalent CPT + C program for each
CPT + EqCard program (express EqCard using the function Card). For the
other direction, we use the fact that CPT programs work on hereditarily
finite sets, which makes it possible to define finite ordinals. So the value of
Card(x) will be defined as the unique ordinal that has the cardinality |x| for
any set x.

Recall that a CPT program applies some BGS term Πstep to a set xi in
each step i. The CPT + EqCard program simulating a CPT program will use
a term that works on the ordered pair 〈[n], xi〉 instead of the set xi, where
[n] contains all ordinals necessary during the computation, and simulates the
application of Πstep to xi. Since the number of active objects of each run, and
thus the cardinality of the occuring sets, is bounded by a given polynomial,
it is possible to determine [n] in an initialisation step before the computation
of the original program is simulated.

To initialise such an ordinal [n], the program starts with the empty set
and constructs the successor ordinal until there is an ordinal with cardinality
q(|A|) (where q is the bound on the number of active objects and A the
domain of the input structure). So we first show how to construct successor
ordinals in BGS logic.

Lemma 22. There is a BGS term Suc such that for each term tn with JtnK =
[n] it holds that JSuc(tn)K = [n+ 1] and |〈〈Suc(tn)〉〉| ≤ |〈〈 tn 〉〉|+ 3.

Proof. Let Suc(x) = x∪ {x}. By definition, Suc computes the successor of a
finite ordinal, and

|〈〈Suc(t)〉〉| = |〈〈Union (Pair (t,Pair(t, t)))〉〉|
= |{t ∪ {t}} ∪ {{t, {t}}} ∪ {t} ∪ 〈〈 t〉〉|
≤ |〈〈 t〉〉|+ 3 .

In order to represent the cardinality of any set occuring in the compu-
tation, the ordinal in the first component of the pair should be [q(|A|) + 1],
with q and A defined as above. Therefore the program initialises the ordinals
until one with cardinality q(|A|) has been constructed. This is determined
using a term that outputs a set with cardinality q(|A|).
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Lemma 23. For every polynomial q over the natural numbers, there is a
BGS term tq(x) and a polynomial activeq such that for any term t with no
free variables where JtK is a set, |Jtq(t)K| = q(|JtK|) and |〈〈 tq(t)〉〉| ≤ activeq(〈〈 t〉〉).

Proof by induction on polynomials.

Induction Base:

• q = x, where x is a variable: tq(x) = x. Clearly, |Jtq(t)K| = |JtK| =
q(|JtK|) and |〈〈 tq(t)〉〉| = |〈〈 t〉〉|, which is a polynomial in |〈〈 t〉〉|.
• q = c, where c is a constant: tq = Succ(∅). By Lemma 22, which

specifies the term Suc, the number of active objects is bounded by a
polynomial.

Induction Step:

• q = q1 + q2: By induction hypothesis, there are terms tq1 and tq2 for q1

and q2 and polynomials activeq1 and activeq2 bounding |〈〈 tq1 〉〉| and |〈〈 tq2 〉〉|.
Let

tq(x) = ({∅} × tq1(x)) ∪ ({{∅}} × tq2(x) ) .

Let t be a term without free variables that evaluates to a set. By
definition, |Jtq(t)K| = |Jtq1(t)K|+ |Jtq2(t)K| = q(|JtK|) (using the induction
hypothesis). Furthermore,

|〈〈 tq(t)〉〉| = |〈〈{∅} × tq1(t) ∪ {{∅}} × tq2(t)〉〉|
≤ |〈〈{∅} × tq1(t)〉〉|+ |〈〈{{∅}} × tq2(t)〉〉|+ 2 (3.1)

≤ (|〈〈{∅}〉〉|+ |〈〈 tq1(t)〉〉|+ |Jtq1(t)K| · (3 |J{∅}K|+ 2) + 2) +

(|〈〈{{∅}}〉〉|+ |〈〈 tq2(t)〉〉|+ |Jtq2(t)K| · (3 |J{{∅}}K|+ 2) + 2) + 2
(3.2)

= (|〈〈 tq1(t)〉〉|+ 5 |Jtq1(t)K|+ 4) + (|〈〈 tq2(t)〉〉|+ 5 |Jtq2(t)K|+ 5) + 2
(3.3)

≤ activeq1(|JtK|) + activeq2(|JtK|) + 5q1(|JtK|) + 5q2(|JtK|) + 11 .
(3.4)

Inequality (3.1) holds because of the bound for the number of active
objects of t∪ obtained from Lemma 15. Similarly, Step (3.2) follows
from the bound for t× in Lemma 20. In Step (3.3), we use that, by
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Lemma 14, the number of active objects of the terms for {∅} and {{∅}}
is constant.

Finally, Inequality (3.4) follows from the fact that the polynomials
activeq1 and activeq2 bound the number of active objects of tq1 and tq2 ,
respectively. Furthermore, as observed above, the cardinality of Jtq1(t)K
(resp. Jtq2(t)K) is exactly q1(|JtK|) (resp. q2(|JtK|)).
So there is also a polynomial activeq bounding the number of active
objects of tq.

• q = q1 · q2: By induction hypothesis, there are terms tq1 and tq2 for q1

and q2 and polynomials activeq1 and activeq2 that bound |〈〈q1 〉〉| and |〈〈q2 〉〉|.
Let

tq = tq1 × tq2 .

Let t be a term without free variables such that JtK is a set. Clearly,
|Jtq(t)K| = |Jtq1(t)K|·|Jtq2(t)K| = q1(|JtK|)·q2(|JtK|) = q(|JtK|). The number
of active objects is bounded by the following polynomial:

|〈〈 tq(c)〉〉| = |〈〈 tq1 × tq2 〉〉|
≤ |〈〈 tq1 〉〉|+ |〈〈 tq2 〉〉|+ |Jtq2K| · (3 |Jtq1K|+ 2) + 2 (3.5)

≤ activeq1(|JtK|) + activeq2(|JtK|) + 3q1(|JtK|) + 2q2(|JtK|) + 2 .
(3.6)

Note that Inequality (3.5) again follows from the bound for the number
of active objects of t× (Lemma 20), and Inequality (3.6) follows from
the induction hypothesis.

By induction, there is a term tq for every polynomial q that computes a set
with cardinality q(|JtK|) for any input set defined by a term t.

With these terms, it is possible to initialise the necessary ordinals. For
the actual simulation of the given CPT program, we modify Πstep to obtain
a term that assumes as input both an ordinal [n] and a set x and where each
occurence of the function symbol Card is replaced by a term that defines the
cardinality using EqCard and the input ordinal.

Lemma 24. Let t(x) be a BGS + C term with free variables x = x1, . . . , xk.
Then there is a BGS + EqCard term tEqCard(x0, x) with k + 1 free variables
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such that, if
∣∣〈〈t(t)〉〉∣∣ is bounded by q(|A|) and Jt0K = [q(|A| + 1] for some

input structure A = (A, τ) and terms t0 and t = t1, . . . , tk that substitute the
free variables,

q
tEqCard(t0, t)

y
=

q
t(t)

y
. Moreover, there is a constant c such

that for all such terms t0, t,
∣∣〈〈tEqCard(t0, t)

〉〉∣∣ ≤ |〈〈 t0 〉〉|+ 2q(|A|) + c.

Proof. We show by induction on t that there is a term tEqCard where the
semantics is as required by the lemma and

〈〈
tEqCard(t0, t)

〉〉
⊆
〈〈
t(t)
〉〉
∪〈〈 t0 〉〉∪ [q(|A|) + 1]∪

{{∣∣t′(t)∣∣} | t′ is a subterm of t
}

if
∣∣qt(t)y∣∣ is bounded by q(|A|). Since

〈〈
t(t)
〉〉

is bounded by q(|A|) and the
number of subterms is constant, this implies the required bound of |〈〈 t0 〉〉| +
2q(|A|) + c, where c depends only on t.

For atomic terms, it is clear that tEqCard(x0, x) = t(x) fulfills the require-
ments.

For t(x) = f(s1(x), . . . , sr(x)), where f is a function symbol, define
tEqCard(x) = f(sEqCard

1 (x), . . . , sEqCard
r (x)), where sEqCard

i is the BGS + EqCard
term for si. By induction hypothesis, tEqCard satisfies the requirements of the
lemma. The cases of relation symbols, Boolean connectives and comprehen-
sion terms are analogous.

For t(x) = Card(s(x)), let

tEqCard(x0, x) = TheUnique
({
z : z ∈ x0 : EqCard

(
z, sEqCard (x0, x)

)})
,

where sEqCard is the BGS + EqCard term for s that exists by induction hy-
pothesis.

Let A = (A, τ) and t = t1, . . . , tk be such that
∣∣〈〈t(t)〉〉∣∣ is bounded by the

polynomial q(|A|). Then
∣∣qt(t)y∣∣ ∈ [q(|A|) + 1], and thus tEqCard(t0, t) for

Jt0 = [q(|A|) + 1]K defines the correct ordinal.
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Now consider the number of active objects of tEqCard
(
t0, t
)
.〈〈

TheUnique
({
z : z ∈ t0 : EqCard

(
z, sEqCard

(
t0, t
))})〉〉

=
{∣∣qs (t)y∣∣} ∪ 〈〈{z : z ∈ t0 : EqCard

(
z, sEqCard

(
t0, t
))}〉〉

=
{∣∣qs (t)y∣∣} ∪ {{∣∣qs (t)y∣∣}} ∪ 〈〈 t0 〉〉 ∪ ⋃

a∈Jt0K

〈〈
EqCard

(
a, sEqCard

(
t0, t
))〉〉
∪

⋃
a∈Jt0K:JEqCard(a,sEqCard(t0,t))K=True

〈〈a〉〉

=
{∣∣qs (t)y∣∣} ∪ {{∣∣qs (t)y∣∣}} ∪ 〈〈 t0 〉〉 ∪ ⋃

a∈Jt0K

〈〈a〉〉 ∪
〈〈
sEqCard

(
t0, t
)〉〉

⊆
〈〈
t
(
t
)〉〉
∪ 〈〈 t0 〉〉 ∪ [q(|A|) + 1] ∪

{{∣∣qt′ (t)y∣∣} | t′ is a subterm of t
}

(3.7)

Note that, by induction hypothesis,〈〈
sEqCard

(
t0, t
)〉〉
⊆
〈〈
s
(
t
)〉〉
∪ 〈〈 t0 〉〉 ∪ [q(|A|) + 1]

∪
{{∣∣s′ (t)∣∣} | s′ is a subterm of s

}
.

So, since
〈〈
s(t)
〉〉
⊆
〈〈
t(t)
〉〉

and every subterm of s is also a subterm of t, the
subset relation in Equation (3.7) holds, which completes the induction.

Now it remains to specify, for a given CPT program Π, a CPT + EqCard
program that uses these terms to simulate Π in the way explained above.

Lemma 25. Let Π = (Π, q) be a CPT + C program for a BGS + C program
Π = (Πstep,Πhalt,Πout) and a polynomial q. There is CPT + EqCard program

Π
′
= (Π′, q′) such that, for each finite structure A, the output of the runs of

Π and Π′ on A is the same.

Proof. We denote by Π′ = (Π′step,Π
′
halt,Π

′
out) the BGS + EqCard program

constructed in this proof. Π′ will work as follows:

1. On ∅, construct the ordered pair 〈∅, ∅〉.

2. Construct successor ordinals in the first component of the pair until
[q(|A|)] is in that set (this is determined using tq).

3. Simulate the computation of Πstep in the second component using ΠEqCard
step .
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To indicate whether the program is currently in Step 2, we use the follow-
ing formula ϕinit which is true if and only if [q(|A|)] has not been constructed
yet:

ϕinit(y) = {z : z ∈ proj1(y) : EqCard(z, tq(Atoms))} = ∅ ,
where tq is the term obtained from Lemma 23 and proj1 returns the

first component of an ordered pair as shown in Lemma 17. The formula
ensures that the first component of a given ordered pair contains an element
of cardinality q(|Atoms|), which suffices because the program will ensure that
the input is always an ordered pair whose first component is an ordinal.

Π′step uses that formula to perform the three steps defined above sequen-
tially:

Π′step(x) ={OrderedPair(y, y) : y ∈ {∅} : x = ∅} (3.8)

∪{OrderedPair(Suc(proj1(y)), proj2(y)) :

y ∈ {x} : x 6= ∅ ∧ ϕinit(y)} (3.9)

∪{OrderedPair(proj1(y),ΠEqCard
step (proj1(y), proj2(y))) :

y ∈ {x} : x 6= ∅ ∧ ¬ϕinit(y)} , (3.10)

where ΠEqCard
step is the term simulating Πstep which is obtained from Lemma 24.

Each of the three subterms returns a singleton containing exactly one
ordered pair if the condition is fulfilled, and the empty set otherwise. So,
since the conditions are mutually exclusive, Π′step returns an ordered pair
updated as required. Subterm (3.8) initialises the pair 〈∅, ∅〉 at the beginning
of the computation. Subterm (3.9) constructs the next ordinal in the first
component if the ordinal [q(|A|)] does not exist yet, and subterm (3.10)
computes the next state of the original program in the second component
using ΠEqCard

step . So Π′step indeed simulates Πstep in the desired way.
Π′halt and Π′out are also modified versions of Πhalt and Πout that work on

ordered pairs:

Π′halt(x) = ¬ϕinit ∧ ΠEqCard
halt (proj1(x), proj2(x)) ,

Π′out(x) = ΠEqCard
out (proj1(x), proj2(x)) ,

where ΠEqCard
halt and ΠEqCard

out are the BGS + EqCard terms equivalent to Πhalt

and Πout obtained from Lemma 24.
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By definition of Π′step,
q
Π′step(〈[q(|A|)], x〉)

y
= 〈[q(|A|)], JΠstep(x)K〉 for all

x, so, by Lemma 24, Π′halt(x) is true if and only if the initialisation of the
first component of x is completed and Πhalt(proj2(x)) is true. Applying
the same argument for Π′out yields that (Π′step,Π

′
halt,Π

′
out) is equivalent to

(Πstep,Πhalt,Πout).

It remains to show that there is a CPT + EqCard program Π
′

= (Π′, q′)

equivalent to Π′, i.e. that Active(Π
′
,A) ≤ q′(|A|) for every finite structure

A = (A, τ).
First we compute the number of active objects of the formula ϕinit, which

is a subformula of several of the previously defined terms. Note that this
formula only occurs in cases where the free variable is replaced by a pair
〈[q(|A|) + 1], a′〉, so let a be such a pair.

|〈〈ϕinit(a)〉〉| = |〈〈{z : z ∈ proj1(a) : EqCard(z, tq(Atoms))} = ∅〉〉|

≤

∣∣∣∣∣{J{z : z ∈ proj1(a) : EqCard(z, tq(Atoms))}K} ∪ 〈〈proj1(a)〉〉 ∪

⋃
b∈Jproj1(a)K

(〈〈b〉〉 ∪ 〈〈EqCard(b, tq(Atoms))〉〉) ∪ 〈〈∅〉〉

∣∣∣∣∣
=

∣∣∣∣∣{J{z : z ∈ proj1(a) : EqCard(z, tq(Atoms))}K} ∪ 〈〈proj1(a)〉〉 ∪

〈〈 tq(Atoms)〉〉 ∪
⋃

b∈Jproj1(a)K

〈〈b〉〉 ∪ 〈〈∅〉〉

∣∣∣∣∣
≤ 1 + |〈〈a〉〉|+ (q(|A|) + 1) + 5 + activeq(|〈〈Atoms〉〉|)+

(q(|A|+ 1) + 1 (3.11)

= 2q(|A|) + activeq(1) + 10 ,

where activeq is the polynomial bounding the number of active objects of the
term tq according to Lemma 23. In addition to this bound, the inequality in
Equation (3.11) follows from the bound for proj1 (Lemma 17) and the fact
that |Jproj1(a)K| = q(|A|) + 1.

The term Π′step consists of several applications of the term t∪. Since t∪
only changes the number of active objects by a constant, we analyse the three
main subterms separately.
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|〈〈{OrderedPair(y, y) : y ∈ {∅} : x = ∅}〉〉|
=
∣∣{J{OrderedPair(y, y) : y ∈ {∅} : x = ∅}K}∪
〈〈{∅}〉〉 ∪ 〈〈x = ∅〉〉 ∪ 〈〈OrderedPair(∅, ∅)〉〉

∣∣ ,

so the number of active objects of the first subterm is constant. For the
second subterm, we again assume that the free variable is replaced by a pair
a = 〈[n], a′〉 for a natural number n (the only other case is that the free
variable is replaced by ∅, which activates less objects).

|〈〈{OrderedPair(Suc(proj1(y)), proj2(y)) : y ∈ {a} : a 6= ∅ ∧ ϕinit(y)}〉〉|
≤1 + |〈〈{a}〉〉 ∪ 〈〈a 6= ∅〉〉 ∪ 〈〈ϕinit(a)〉〉 ∪ 〈〈OrderedPair(Suc(proj1(a)), proj2(a))〉〉|
≤5 + (2q(|A|) + activeq(1) + 10) + |〈〈Suc(proj1(a))〉〉|+ |〈〈proj2(a)〉〉|+ 2

(3.12)

≤2q(|A|) + activeq(1) + (|〈〈a〉〉|+ (q(|A|) + 1) + 5) + 3 +

(|〈〈a〉〉|+ (q(|A|) + 1) + 8) + 17 (3.13)

=4q(|A|) + activeq(1) + 35

The inequality in Equation (3.12) is implied by the bound for ϕinit com-
puted above, and Equation (3.13) uses the bounds for proj1 and proj2 from
Lemma 17.

For the last subterm of Π′step, we again assume that the value a assigned
to the free variable is of the form 〈[n], a′〉 for n ≤ q(|A|) + 1. Additionally,
we assume that a′ is a state of the run of Π on the given structure A. By
construction, this assumption is true in any run of Π′.
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∣∣∣∣∣ 〈〈{OrderedPair
(

proj1(y),ΠEqCard
step (proj1(y), proj2(y))

)
: y ∈ {a} :

a 6= ∅ ∧ ¬ϕinit(y)
}〉〉 ∣∣∣∣∣

(3.14)

=

∣∣∣∣∣ {r{
OrderedPair

(
proj1(y),ΠEqCard

step (proj1(y), proj2(y))
)

: y ∈ {a} :

a 6= ∅ ∧ ¬ϕinit(y)
}z}

∪

〈〈{a}〉〉 ∪ 〈〈a 6= ∅〉〉 ∪ 〈〈¬ϕinit(a)〉〉 ∪⋃
b∈{a}:

Ja6=∅∧¬ϕinit(b)K=True

〈〈
OrderedPair

(
proj1(b),ΠEqCard

step (proj1(b), proj2(b))
)〉〉 ∣∣∣∣∣

≤1 + 2 + 2 + (2q(|A|) + activeq(1) + 10) + (3.15)∣∣∣〈〈OrderedPair
(

proj1(a),ΠEqCard
step (proj1(a), proj2(a))

)〉〉∣∣∣
≤2q(|A|) + activeq(1) + |〈〈a〉〉|+ (q(|A|) + 1) + (2q(|A|) + c) + 20

for some constant c (3.16)

=5q(|A|) + activeq(1) + c′ for some constant c′ .

The inequality in Equation (3.15) again uses the bound for ϕinit. Fur-
thermore, the range of the union contains at most one element. If it is
nonempty, Jproj1(a)K and Jproj2(a)K satisfy the conditions for the bound on∣∣∣〈〈ΠEqCard

step

〉〉∣∣∣ in Lemma 24, which justifies Equation (3.16).

Since the number of active objects of these main subterms of Π′step is
polynomially bounded, the number of active objects of their union Π′step is
polynomially bounded (by Lemma 15). It remains to show that the union
over all states of the sets of active objects of Π′step is still bounded by a
polynomial. Therefore consider the length of a run of Π′ on a finite structure
A with domain A. During the initialisation, each state is a pair 〈[n], ∅〉 for
n ≤ q(|A|) + 1, so there are q(|A|) + 1 such states. In the simulation step,
each state is a pair 〈[q(|A|) + 1], xi〉, where xi is a state of the run of Π on A.

So, since by Lemma 13 the number of states of the corresponding run of
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Π is bounded by q, the number of states of the run of Π′ is also bounded by
a polynomial.

Similar arguments show that |〈〈Π′halt(a)〉〉| for such pairs a is bounded by a
polynomial. The same holds for |〈〈Π′out(a)〉〉| in case JΠ′halt(a)K = True.

It follows that there is a polynomial q′ such that the number of active
objects of each run of Π′ is bounded by q′(|A|), since there are polynomially
many states in which Π′step activates polynomially many objects each.

Together with the observation that CPT + EqCard ≤ CPT + C, Lemma 25
implies Theorem 21. In the following chapter, we will use that result to define
an alternative characterisation of CPT + C that uses only an equicardinality
quantifier instead of a counting operation.



Chapter 4

Interpretation Logic

In the following, we introduce intepretation logic, give some examples of how
interpretations are used in computations, and classify polynomial-time inter-
pretation logic with respect to CPT. The main result of this chapter is that
the polynomial-time restriction of interpretation logic is equivalent to CPT,
and the extension by the Härtig quantifier (again restricted to polynomial
time) is equivalent to CPT + EqCard and thus CPT + C.

As mentioned in the introduction, interpretation logic is based on the
idea of iterating logical interpretations. Like BGS, interpretation logic can
be viewed as a machine model, therefore the “formulae” of interpretation
logic are called programs and we refer to the evaluation as the computation
of a program.

A program in interpretation logic consists of an initial interpretation
called Iinit, a main interpretation called Istep, and formulae ϕhalt and ϕout.
On a given input structure, a program first initialises the necessary relations
using Iinit. This usually means that the signature is extended by new relation
symbols that store additional data throughout the computation.

Then the program modifies the domain and relations of the current struc-
ture according to Istep until the formula ϕhalt is true. At the end, the program
accepts the input structure if the structure obtained by the computation sat-
isfies ϕout.

In analogy to the bounds on CPTorig programs, we restrict both the length
of a run and the number of objects used in the computation. More precisely,
a program in polynomial-time interpretation logic is bounded by polynomials
p and q, where p restricts the length of each run of the program, and q bounds
the size of the structures occuring in the computation.

33
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The formal definition of this model is given in the following.

Let τ , σ be relational signatures and let L ∈ {FO,FO + H}. An IL[τ, σ]
program over L is a tuple Π =

(
Iinit, Istep, ϕhalt, ϕout

)
where Iinit is an L[τ, σ]

interpretation, Istep is an L[σ, σ] interpretation, and ϕhalt and ϕout are L[σ]
sentences. We also say that Π is an IL[τ ] program.

Let A be a τ -structure, and let A0 = Iinit(A) and Ai+1 = Istep(Ai) for
0 ≤ i < ω. If there is a structure An such that An |= ϕhalt and Ai 6|= ϕhalt for
all i < n, then the run of Π on A (of length n − 1) is the sequence (Ai)i≤n,
and the output Π(A) is True if An |= ϕout and False otherwise.

If there is no An with An |= ϕhalt, then the run of Π on A is (Ai)i<ω and
Π(A) = ⊥.

The structures Ai (for i ≤ n if n is minimal such that An |= ϕhalt and
i < ω if no such n exists), are the states of the run, A0 is the initial state,
and An, if it exists, is the final state.

If Π(A) = True, then Π accepts A, if Π(A) = False, then Π rejects A.

Clearly, IL over a logic L ∈ {FO,FO + H} is a three-valued logic in the
sense defined in Section 2.1: The set of sentences over a signature τ is the
set of all IL[τ ] programs, which is decidable because L is a logic, and for a
τ -structure A and an IL[τ ] program Π, we say that A |= Π if Π(A) = True,
and A 6|= Π if Π(A) = False.

To obtain a logic that only defines queries in PTIME, we add the following
polynomial bounds to IL programs.

Let Π be an IL[τ, σ] program over L, and let p and q be polynomials.
Then Π = (Π, p, q) is a PIL[τ, σ] program over L.

Let A = (A, τ) be a τ -structure and let Ai for i < ω be defined as above.
The run of Π on A is the sequence (An)i≤n, where n is minimal such that

• Ai 6|= ϕhalt for all i < n,

• n < p(|A|), and

• the size of all Ai for i ≤ n is at least q(|A|).

If the run of Π on A coincides with the run of Π on A, i.e. if the run of Π
on A already satisfies the polynomial bounds, then Π(A) = Π(A). Otherwise,
Π(A) = ⊥.

Π = (Π, p, q) is a polynomial-time version of Π if Π(A) = Π(A) for all
τ -structures A.
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Like IL, PIL is a three-valued logic. Note that, as we will show later,
PIL over FO + H is equivalent to CPT + C, so PIL over FO + H could also
be defined as a two-valued logic with the additional requirement that each
program maintains a counter and halts as soon as it exceeds the polynomial
bounds. But, since this technical detail will not be important for any of
the programs considered in this thesis, we define PIL as a three-valued logic
uniformly for both FO and FO + H.

In the following, we denote by IL (resp. PIL) interpretation logic over
FO, and by IL + H (resp. PIL + H) interpretation logic over FO + H.

4.1 Example IL programs

In this section, we present some example IL programs to give an intuition of
what is possible in IL and PIL and to illustrate some techniques that seem
generally useful for defining queries in IL. Some of the techniques introduced
here are also used extensively in the main proof of this chapter.

First, we give examples of operations that can be implemented using
only a single interpretation, i.e. that do not need the iteration mechanism
of IL. In order to use these interpretations in PIL programs, we then show
that for each interpretation, there is a PIL program that only applies that
interpretation.

An important feature of logical interpretations is their ability to extend
the domain by additional elements. Therefore we introduce a method of
adding a definable object to the domain, and then generalise that method
to be able to create several new elements corresponding to an FO-definable
set of existing elements. This approach is often used for constructing more
complex IL programs.

Lemma 26. There is an FO[τ, τ ∪ {Ra}] interpretation I such that for each
structure A = (A, τ), the domain of I(A) is isomorphic to a copy of A en-

riched by a new element a, where R
I(A)
a = {a} and the relations in τ remain

unchanged on the copy of A.

Proof. In I(A), each element a ∈ A is represented by the pair (a, a), and the
new element is represented by the equivalence class containing all pairs (a, b)
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such that a 6= b. So the interpretation
(
ϕdom, ϕ≈, (ϕR)R∈τ∪{Ra}

)
with

ϕdom(x, y) = True ,

ϕ≈(x, y, x′, y′) = x 6= y ∧ x′ 6= y′ ,

ϕRa(x, y) = x 6= y ,

ϕR(x1, y1, . . . , xr, yr) =
∧

1≤i≤r

xi = yi ∧Rx1 . . . xr for each r-ary R ∈ τ

has the desired property.

The same idea is now used to define an interpretation that creates a new
element for each element satisfying a given FO-formula, and that defines
a relation symbol that identifies the correspondence between old and new
elements.

Lemma 27. Let ϕ be an FO[τ ]-formula with k free variables. There is an
FO[τ, τ ∪̇{R}]-interpretation I for a k+1-ary predicate R such that, for each
A = (A, τ), I(A) is isomorphic to a copy of A enriched by exactly one element
ab for each b ∈ Ak with A |= ϕ(b), where RI(A) =

{(
b, ab

)
| A |= ϕ

(
b
)}

and
the relations in τ remain unchanged on the copy of A.

Proof. Take a k + 1-dimensional interpretation I. Each object a ∈ A is
represented by the equivalence class containing all tuples (b1, . . . , bk, a, a),
and the new object for the tuple (b1, . . . , bk) is represented by the equivalence
class containing all tuples (b1, . . . , bk, a1, a2) for a1 6= a2. This is realised by

the FO-interpretation
(
ϕdom, ϕ≈, (ϕR)R∈τ∪{R}

)
with

ϕdom(x1, . . . , xk, y, z) = y = z ∨ (y 6= z ∧ ϕ(x1, . . . , xk)) ,

ϕ≈(x, y, z, x′, y′, z′) = (y = z ∧ y = y′ ∧ z = z′)

∨

(
y 6= z ∧ y′ 6= z′ ∧

∧
1≤i≤k

xi = x′i

)
,

ϕRV (x1, y1, z1, . . . , xk+1, yk+1, zk+1) =
∧

1≤i≤k

yi = zi ∧ ϕ(y1, . . . , yk)∧

yk+1 6= zk+1 ∧
∧

1≤i≤k

yi = xk+1
i .
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As a first example of a PIL program, we show how interpretations can be
transformed to equivalent PIL programs.

Remark 28. Let I =
(
ϕdom, ϕ≈, (ϕR)R∈σ

)
be a k-dimensional FO[τ, σ] (resp.

FO + H[τ, σ])-interpretation. There is a PIL[τ, σ] (resp. PIL + H[τ, σ]) pro-
gram ΠI = (ΠI , p, q) such that the final state of the run of ΠI on each τ -
structure A is I(A).

Proof. Take ΠI = (I, Iid,True,True), where Iid is the identity. ΠI = (ΠI , 1, n
k)

is a polynomial-time version of ΠI .

Logics in a classical sense incorporate Boolean connectives, so they are
naturally closed under Boolean operations. Since PIL does not have this
syntactic property, we show explicitly that Boolean connectives are definable
in PIL.

Lemma 29. The class of PIL-definable queries is closed under intersection.

Proof. Let Π1 = (Π1, p1, q1) and Π2 = (Π2, p2, q2) be PIL[τ, σ] programs
with Π1 =

(
I1

init, I
1
step, ϕ

1
halt, ϕ

1
out

)
and Π2 =

(
I2

init, I
2
step, ϕ

2
halt, ϕ

2
out

)
. Assume

that I1
init, I

2
init, I

1
step and I2

step are k-dimensional interpretations (for ` < k,
modify `-dimensional intepretations in a way that tuples that coincide on the
first ` components represent the same element of the interpreted structure).
We construct an IL program Π1 ∩ Π2 =

(
Iinit, Istep, ϕhalt, ϕout

)
that accepts

exactly those structures accepted by both Π1 and Π2. During initialisation,
Π1 ∩ Π2 creates two copies of the input structure. Then Π1 ∩ Π2 runs Π1

and Π2 simultaneously on one of these copies each, using nullary predicates
Halt1,Halt2,Out1,Out2 to store the result of the program that halts first.

To create these copies, let I be an interpretation that, for each existing
object, adds another object to the domain (use Lemma 27 with the formula
ϕ = True), and let R be the relation symbol introduced by I. Then Iinit

is I extended by the formulae ϕHalt1 = ϕHalt2 = ϕOut1 = ϕOut2 = False,
ϕInit = True and a formula ϕP for a unary predicate P that labels the new
copy of the domain:

ϕP (x, y) = ∃x′∃y′ϕR (x′, y′, x, y) .

The interpretation Istep applies the original interpretations: I1
init and I2

init

to P and its complement, respectively, in the first step (which is marked by
Init), and afterwards applies I1

step and I2
step until the simulated programs halt.
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Let I1
init =

(
ϕinit,1

dom , ϕinit,1
≈ ,

(
ϕinit,1
R

)
R∈σ

)
, I2

init =
(
ϕinit,2

dom , ϕinit,2
≈ ,

(
ϕinit,2
R

)
R∈σ

)
,

I1
step =

(
ϕ1

dom, ϕ
1
≈, (ϕ

1
R)R∈σ

)
and I2

step =
(
ϕ2

dom, ϕ
2
≈, (ϕ

2
R)R∈σ

)
, and define the

interpretation Istep =
(
ϕdom, ϕ≈, (ϕR)R∈σ∪̇{P,Init,Halt1,Halt2,Out1,Out2}

)
as follows

(let x = (x1, . . . , xk), y = (y1, . . . , yk), and xi = (xi1, . . . , x
i
k)):

ϕdom(x) =
∧

1≤i≤k

Pxi ∧ Init∧ϕinit,1
dom (x) ∨

∧
1≤i≤k

¬Pxi ∧ Init∧ϕinit,2
dom (x)∨ ,∧

1≤i≤k

Pxi ∧ ¬ Init∧¬Halt1 ∧ϕ1
dom(x)∨∧

1≤i≤k

¬Pxi ∧ ¬ Init∧¬Halt2 ∧ϕ2
dom(x)

ϕ≈(x, y) =
∧

1≤i≤k

(Pxi ∧ Pyi) ∧ Init∧ϕinit,1
≈ (x, y)∨∧

1≤i≤k

(¬Pxi ∧ ¬Pyi) ∧ Init∧ϕinit,1
≈ (x, y)∨∧

1≤i≤k

(Pxi ∧ Pyi) ∧ ¬ Init∧¬Halt1 ∧ϕ1
≈(x, y)∨∧

1≤i≤k

(¬Pxi ∧ ¬Pyi) ∧ ¬ Init∧¬Halt2 ∧ϕ2
≈(x, y)

ϕR(x1, . . . , xr) =
∧

1≤i≤k

Pxji ∧ Init∧ϕinit,1
R (x1, . . . , xr)∨∧

1≤i≤k

¬Pxji ∧ Init∧ϕinit,2
R (x1, . . . , xr)∨∧

1≤i≤k

Pxji ∧ ¬ Init∧¬Halt1 ∧ϕ1
R(x1, . . . , xr)∨∧

1≤i≤k

¬Pxji ∧ ¬ Init∧¬Halt2 ∧ϕ2
R(x1, . . . , xr) for all R ∈ σ

ϕP (x) =
∧

1≤i≤k

Pxi

ϕInit = False

ϕHalt1 = Halt1 ∨ϕ1
halt
′

ϕOut1 = Out1 ∨(ϕ1
halt
′ ∧ ¬Halt1) ,
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analogously for ϕHalt2 and ϕOut2 , where ϕihalt
′

is obtained from ϕihalt by rel-
ativising all quantifiers to P (resp. the complement of P ). Then Istep sim-
ulates Π1 on P and Π2 on the complement of P , and stores the result in
Halt1,Halt2,Out1,Out2. So let ϕhalt = Halt1 ∧Halt2 and ϕout = Out1 ∧Out2.
Then Π1 ∩ Π2 computes the desired output.

Thus there is an IL program that accepts exactly the intersection of the
Boolean queries accepted by Π1 and Π2. It remains to show that there is a
PIL program with the same property. We show that there is a polynomial-
time version of Π1 ∩Π2. Let A = (A, τ) be a structure, and let ρ be the run
of Π1 ∩ Π2 on A. The length of the run of Π1 on A is bounded by p1, and
the length of the run of Π2 on A is bounded by p2. So, since ρ halts when
both simulated programs halt, and each state of ρ except for the initial state
corresponds to a state of the simulated programs, the length of ρ is bounded
by max(p1, p2) + 1.

Furthermore, each state in ρ except for the initial state is isomorphic to
the disjoint union of states of the runs of Π1 and Π2 on A, so the size of each
state of ρ is bounded by q1 + q2.

So (Π1∩Π2,max(p1, p2)+1, q1+q2) is a polynomial-time version of Π1∩Π2

for any PIL programs Π1,Π2, so PIL is closed under intersection.

Showing that PIL is closed under complementation is a lot less involved,
since it can directly use negation of FO-formulae.

Remark 30. The class of PIL-definable queries is closed under complemen-
tation.

Proof. Let Π =
(
Iinit, Istep, ϕhalt, ϕout

)
be an IL program. Then, clearly, Π′ =

(Iinit, Istep, ϕhalt,¬ϕout) accepts a structure A if Π rejects A and Π′ rejects A
if Π accepts A.

If (Π, p, q) is a polynomial-time version of Π, then (Π′, p, q) is a polynomial-
time version of Π′. So PIL is closed under complementation.

Like CPT, PIL can be viewed as a machine model. Since sequential exe-
cution of different programs is a natural operation in many machine models,
we define the concatenation of PIL programs. As we will see later, concate-
nation is a valuable tool for constructing PIL programs.

Definition 31. Let Π1 =
(
I1

init, I
1
step, ϕ

1
halt, ϕ

1
out

)
be an IL[τ, τ ′] program and

let Π2 =
(
I2

init, I
2
step, ϕ

2
halt, ϕ

2
out

)
be an IL[τ ′, σ] program over FO or FO + H.



40 CHAPTER 4. INTERPRETATION LOGIC

Furthermore, let

• I1
init =

(
ϕinit,1

dom , ϕinit,1
≈ ,

(
ϕinit,1
R

)
R∈τ ′

)
,

• I2
init =

(
ϕinit,2

dom , ϕinit,2
≈ ,

(
ϕinit,2
R

)
R∈σ

)
,

• I1
step =

(
ϕstep,1

dom , ϕstep,1
≈ ,

(
ϕstep,1
R

)
R∈τ ′

)
and

• I2
step =

(
ϕstep,2

dom , ϕstep,2
≈ ,

(
ϕstep,2
R

)
R∈σ

)
.

Then the concatenation Π1 ◦Π2 =
(
Iinit, Istep, ϕhalt, ϕout

)
of Π1 and Π2 is

the IL[τ, σ′] program defined as follows:

• σ′ = σ ∪ {P}, where P is a new nullary predicate,

• Iinit =
(
ϕinit

dom, ϕ
init
≈ , (ϕinit

R )R∈σ′
)

and Istep =
(
ϕstep

dom, ϕ
step
≈ ,

(
ϕstep
R

)
R∈σ′

)
,

• P is true as soon as Π1 ◦ Π2 has simulated Π1, i.e. ϕinit
P = False and

ϕstep
P = P ∨ ϕ1

halt

• while P is false and Π1 does not halt, apply I1
step, after Π1 halts apply

I2
init once, otherwise apply I2

step:

ϕstep
dom =

(
¬ϕ1

halt ∧ ¬P ∧ ϕ
step,1
dom

)
∨
(
ϕ1

halt ∧ ¬P ∧ ϕ
init,2
dom

)
∨
(
P ∧ ϕstep,2

dom

)
,

analogously for ϕ≈ and ϕR, R ∈ σ,

• Π1 ◦Π2 halts when Π2 halts and has the same output as Π2, i.e. ϕhalt =
ϕ2

halt and ϕout = ϕ2
out.

Consider the run ρ1 of Π1 on a structure A and the run ρ2 of Π2 on the
final state of ρ1. By definition, Π1 ◦Π2 acts like Π1 until ϕ1

halt is true, so the
state at that step is the final state of ρ1, and then, the program acts like Π2,
so the final state of the run of Π1 ◦ Π2 on A is the final state of ρ2, and the
program has the respective output. So running Π1 ◦Π2 on A yields the same
final state and output as running Π1 and Π2 sequentially.

Remark 32. Let Π1 be an IL[τ, τ ′] program, let Π2 be an IL[τ ′, σ] program,
and let (Π1, p1, q1), (Π2, p2, q2) be polynomial-time versions of Π1 and Π2.
Then there is a polynomial-time version of Π1 ◦ Π2.
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Proof. (Π1 ◦ Π2, p, q) with p(n) = p1(n) + p2(q1(n)) and q(n) = q2(q1(n)) for
all n ∈ N is a polynomial-time version of Π1 ◦ Π2.

In particular, the definition of concatenation demonstrates that it is pos-
sible for an IL program to simulate another IL program. A similar technique
can be used to iterate an IL program in a loop-like construct until a given
FO- or FO + H-formula holds.

Definition 33. Let Π =
(
Iinit, Istep, ϕhalt, ϕout

)
be an IL[τ, σ] program over

FO or FO + H with τ ⊆ σ, where Iinit =
(
ϕinit

dom, ϕ
init
≈ , (ϕinit

R )R∈σ
)

and Istep =(
ϕstep

dom, ϕ
step
≈ ,

(
ϕstep
R

)
R∈σ

)
, and let ψ ∈ FO + H[σ]. Then the iteration of Π

with respect to the formula ψ is the IL[τ, σ] program Πψ =
(
Iψinit, I

ψ
step, ϕ

ψ
halt, ϕ

ψ
out

)
where ϕψhalt = ϕhalt∧ψ, ϕψout = ϕout, I

ψ
init = Iinit and Iψstep =

(
ϕψdom, ϕ

ψ
≈,
(
ϕψR

)
R∈σ

)
with

• ϕψdom = (ϕhalt ∧ ϕinit
dom) ∨

(
¬ϕhalt ∧ ϕstep

dom

)
• ϕψ≈ = (ϕhalt ∧ ϕinit

≈ ) ∨
(
¬ϕhalt ∧ ϕstep

≈
)

• ϕψR = (ϕhalt ∧ ϕinit
R ) ∨

(
¬ϕhalt ∧ ϕstep

R

)
for R ∈ σ.

The program Πψ halts if and only if both ϕhalt and ψ are true, i.e. if and
only if Π halts and ψ is true. Whenever ϕhalt is true and Πψ does not halt,
it applies Iinit again, and otherwise, it applies Istep. So Πψ indeed simulates
Π until ψ holds.

Note that if there is a polynomial-time version of Π, it is not guaranteed
that there is also a polynomial-time version of Πψ, since ψ does not have to
be true after a bounded number of runs of Π.

As mentioned in Chapter 1, CPT + C programs benefit from padding of
the input structure, because, as illustrated in [BGS99], a linear order can
be constructed on a sufficiently small definable subset of the input struc-
ture. Then, since FP + C already captures PTIME on ordered structures,
any PTIME query can be defined in CPT + C on the resulting ordered sub-
structure.

In the following, we implement the naive approach given in [BGS99],
which, in contrast to the canonisation algorithm proposed in [Lau11], simply
constructs all linear orders on a subset, in interpretation logic.
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Assume we have given an input structure A = (A, τ) with a predicate
P ∈ τ such that

∣∣PA
∣∣! ≤ |A|. Our IL program outputs a structure where

each element of the domain represents either an element of the input structure
or a linear order on P . Moreover, it defines a relation R< that encodes the
linear orders as follows: In the final state Afin of a run of the program, a
tuple (`, a, b) is in RAfin

< if and only if a <` b, where <` is the linear order
represented by `.

To construct these orders, the program first creates a new linear order
<` for each pair (a, b) of elements of PA (assuming that PA has at least two
elements, because otherwise the task is trivial) and defines a <` b. In the
following steps, a new linear order is created for each pair (`, a) of a linear
order ` and an element a of the input structure such that a is not in the
order <` represented by `. The new order is then isomorphic to <` extended
by a as the new maximal element.

This is achieved by the IL program Π =
(
Iinit, Istep, ϕhalt, ϕout

)
defined

as follows. Iinit creates the initial linear orders with a modified version of
the interpretation obtained from Lemma 27. More precisely, consider the
interpretation that adds an object for each pair of distinct elements in P
according to Lemma 27. Add the following formula defining R< to obtain
Iinit from that interpretation:

ϕR<(x, y, z) = ϕRnew(y, z, x) ,

where ϕRnew is the formula defining the relation Rnew thats maps each pair
(a, b) of elements in P to the new element `(a,b) associated with (a, b). Af-
ter Iinit has been applied, the following formula defines the elements that
represent a linear order:

ϕorder(x) = ∃y∃zR<xyz .

Istep is again derived from an interpretation that adds new objects according
to Lemma 27, this time for any pair of elements that satisfies the following
formula:

ϕ(x, y) = ϕorder(x) ∧ Py ∧ ∀z (¬R<xyz ∧ ¬R<xzy) .

The interpretation is again extended by a formula defining R<. Note that
R<`ab should be true if either a <`′ b, or a is already ordered by <`′ and b is
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the new maximal element, where ` encodes the order that extends <`′ .

ϕR<(x, y, z) =∃x′∃y′ (ϕRnew(x′, y′, x) ∧R<x
′yz)∨

∃x′ (ϕRnewx
′zx ∧ ∃y′ (R<x

′y′y ∨R<x
′yy′)) ,

where ϕRnew is defined as above.
Π should halt when all linear orders have been constructed, i.e. when all

orders are total orders on P :

ϕhalt = ∀x∀y (ϕorder(x) ∧ Py → ∃z(R<xyz ∨R<xzy)) .

The program Π constructs all linear orders on P , and, if
∣∣PA

∣∣! ≤ |A|, the
length of the run on A is linear in |A|, because in each state, at least one of
the |A|! orders is created. The size of the largest state differs from that of
the input structure by the number of linear orders, so it is also linear in |A|.

Note that Π is not a PIL program. A polynomial-time program with the
same functionality would have to check whether P is small enough, which
is obviously possible in PIL + H, but presumably not in PIL without the
equicardinality quantifier.

4.2 Equivalence of PIL+H and CPT+EqCard

In the following, the expressive power of polynomial-time interpretation logic
is compared to that of Choiceless Polynomial Time. More precisely, it is
shown that PIL and CPT are equivalent. Moreover, also the extensions by
the respective equicardinality operators (the EqCard relation and the Härtig
quantifier) remain equivalent:

Theorem 34.

1. CPT ≡ PIL.

2. CPT + EqCard ≡ PIL + H.

We start with the relatively straight-forward simulation of PIL programs
in CPT, i.e. we show the following lemma:
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Lemma 35.

1. PIL ≤ CPT.

2. PIL + H ≤ CPT + EqCard.

The proof uses the definition of CPT introduced by Blass, Gurevich and
Shelah, which we refer to as CPTorig. A program in interpretation logic con-
sists of FO or FO + H interpretations, which are sequences of FO or FO + H
formulae. Therefore we first establish a notion of equivalence between BGSorig

and FO (resp. BGSorig + EqCard and FO + H), and then show that for each
FO formula, there is a BGSorig term (and for each FO + H formula, there is
a BGSorig + EqCard term) that is equivalent in that sense.

Definition 36. Let ϕ(x) be an L[σ]-formula, where L is an extension of FO,
and let σHF

ext ⊇ σHF. A Boolean BGSorig[σ
HF
ext ] term tϕ(x, y) is equivalent to

ϕ over BGSorig[σ
HF
ext ] terms if, for every BGSorig[σ

HF
ext ] term s and every state

A of a BGSorig[σ
HF
ext ] program, (JsKA, σHF

ext ) |= ϕ(a) if and only if Jtϕ(a, s)KA is
true.

Lemma 37. For every FO formula ϕ, there is a Boolean BGSorig term tϕ
that is equivalent to ϕ over BGSorig terms.

Proof. Proof by induction on ϕ.

Induction Base: Clear.

Induction Step: For Boolean connectives, there is a direct translation to
BGSorig terms. So let ϕ(x) = ∃zψ(x, z). Then let

tϕ(x, y) = In(∅, {∅ : z ∈ y : tψ(x, y, z)})) .

Lemma 38. For every FO + H formula ϕ, there is a BGSorig + EqCard term
tϕ that is equivalent to ϕ over BGSorig + EqCard terms.

Proof. Analogous to the proof of Lemma 37. If ϕ(x) = H z1z2ψ1(x, z1)ψ2(x, z2),
then let

tϕ(x, y) = EqCard ({z1 : z1 ∈ y : tψ1(x, y, z1)} , {z2 : z2 ∈ y : tψ2(x, y, z2)}) .
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Now we can show that each PIL program can be simulated in CPTorig

and each PIL + H program can be simulated in CPTorig + EqCard. To cover
both PIL and PIL + H in the proof, we show equivalence generically for all
extensions of PIL and CPTorig that satisfy the condition shown in Lemmas 37
and 38.

Lemma 39. Let L be a logic and let τHF
ext ⊇ τHF such that for each L[τ ]-

formula ϕ, there is a Boolean term over τHF
ext that is equivalent to ϕ over

BGSorig[τ
HF
ext ] terms. Then for each PIL program over L, there is an equivalent

BGSorig[τ
HF
ext ] program.

Proof. Let L be a logic that fulfills the condition for the lemma with respect
to BGSorig[τHF

ext ] for some signature τHF
ext ⊇ τHF, and let Π = (Π, p, q) with

Π =
(
Iinit, Istep, ϕhalt, ϕout

)
be a PIL[τ, σ] program over the logic L, where

Iinit =
(
ϕinit

dom, ϕ
init
≈ ,
(
ϕinit
R

)
R∈σ

)
and Istep =

(
ϕstep

dom, ϕ
step
≈ ,

(
ϕstep
R

)
R∈σ

)
.

We construct a BGSorig program ΠCPT equivalent to Π. To simulate the
run ρ of Π on any given structure, the domain and predicates of the current
state of ρ are representend as dynamic predicates and updated accordingly
until ϕhalt is true.

So ΠCPT uses the following predicates:

• An r-ary input predicate P for each r-ary P ∈ τ to represent the
predicates of the input structure,

• a dynamic constant Dom that represents the set of objects that corre-
spond to elements in the domain of the current state, and

• a dynamic constant R for each R ∈ σ to represent the predicates of the
states in ρ as sets of tuples,

• a nullary dynamic predicate Init that marks whether Iinit or Istep is
currently applied.

By assumption, there are Boolean BGSorig[τHF
ext ] terms tinit

dom, tstep
dom, {tinit

R },
{tstep
R } that are equivalent to ϕinit

dom, ϕstep
dom, {ϕinit

R }, {ϕ
step
R }, respectively, over

BGSorig[τHF
ext ] terms. For ease of notation, we assume that these terms are

modified in a way that instead of values a1, . . . , ak of a sequence of k free
variables encoding an element of the interpreted structure, the terms take as
input sets encoding k-tuples 〈a1, . . . , ak〉.
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ΠCPT first applies Iinit to the input structure (where the domain is defined
by the predicate Atoms) and then applies Istep to the resulting structure until
ϕhalt is true. The predicate Init is modified accordingly after that step. In
each step, the dynamic constants Dom and {R}R∈σ have to be updated in
a way that they indicate the domain and extension of the predicates of the
current state of Π.

The domain of each state of Π consists of the equivalence classes of the
relation ≈ defined by ϕstep

≈ and ϕinit
≈ , respectively. Since ΠCPT works with

hereditarily finite sets, these objects can be encoded naturally as the actual
≈-equivalence classes. So, to apply Iinit, the domain is modified by the
following rule:

Dom :=
{{
y : y ∈ Atomsk : tinit

dom(y,Atomsk) ∧ tinit
≈ (x, y,Atomsk)

}
: x ∈ Atomsk : tinit

dom(x,Atomsk)
}
,

where k is the dimension of Iinit, and the last free variable of tinit
dom, tinit

≈ and
tinit
dom represents the term defining the domain over which the respective terms

are evaluated, as specified in Definition 36. Note that the set Atomsk is
definable with the term t× obtained from Lemma 20.

Each r-ary relation symbol R is now updated using the rule

R :=
{
x : x ∈ Domr : tinit

R (x,Domr)
}
.

Clearly, formulae for applying Istep can be defined analogously.
After these initial steps, the dynamic predicate Init is set to false. When-

ever Init is false, the program checks whether ϕhalt (again, there is a Boolean
term that is equivalent to this formula over states) holds in JDomK. If the
formula is true, the dynamic predicates Halt and Out are updated to corre-
spond to the values of ϕhalt and ϕout, otherwise, Dom and the constants R
for relations R ∈ σ are updated according to Istep.

By definition, after each step, Dom is interpreted by a set containing
exactly the elements in the universe of the corresponding state of the run of
Π, and the value of R is exactly the extension of R in that state. So, as Halt
and Out are defined accordingly, ΠCPT accepts A if and only if Π accepts A,
and rejects A if and only if Π rejects A.

It remains to show that there is a polynomial-time version of ΠCPT. Since
Π = (Π, p, q) is a polynomial-time version of Π, the length of a run of Π on a
structure A = (A, τ) is bounded by p(|A|), and the size of each state of the
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run is bounded by q(|A|). So clearly the length of the run of ΠCPT on A is
bounded by p(|A|).

Now consider the number of active objects. The non-trivial critical ob-
jects are the sets that are in Dom and in R for a predicate R ∈ σ in some
state. As an object can only be in R if it is a tuple of fixed length of objects
in Dom, the number of objects activated by each dynamic predicate R is
polynomial in the number of objects activated by Dom, so it suffices to show
that this number is bounded polynomially.

Claim 40. The number of objects activated by Dom in the nth state of a run
is bounded by (n−1) ·c ·q(|A|)`+n ·q(|A|)+ |A|k ·d, where k is the dimension
of Iinit, ` is the dimension of Istep, and c and d are constants.

Proof of the claim. After the initialisation step, the value of Dom is a set of
|A1| many sets of k-tuples of atoms, where A1 = (A1, σ) is the successor of
the initial state in the run of Π on A. So the transitive closure of that set
consists of the elements of the set Atoms, all k-tuples of atoms, and the |A1|
≈-equivalence classes.

Let d be the number of sets necessary to encode a k-tuple. Then the
number of objects activated by Dom is |A1|+ |A|k · d ≤ q(|A|) + |A|k · d.

Assume that in the nth state, there are at most (n− 1) · c · q(|A|)` + n ·
q(|A|) + |A|k · d objects activated by Dom. Afer n + 1 steps, Dom consists
of |An+1| many sets of `-tuples of elements that were in Dom in the previous
step. The objects in the transitive closure of Dom are these |An+1| sets, and
the sets encoding the |An|` many tuples. Note that the transitive closure of
any element of these tuples consists of previously activated objects. So the
number of objects activated in step n+ 1 is |An+1|+ |An|` · c, where c is the
number of sets necessary to encode an `-tuple. Note that |An+1|+ |An|` · c ≤
q(|A|) + q(|A|)` · c

So the total number of objects activated by Dom after n + 1 steps is
bounded by(

q(|A|) + q(|A|)` · c
)

+
(

(n− 1) · q(|A|)` · c + n · q(|A|) + |A|k · d
)

= n · q(|A|)` · c + (n+ 1) · q(|A|) + |A|k · d .

Since the number n of states is clearly bounded by p(|A|), this shows that
there is indeed a polynomial-time version of ΠCPT, which completes the proof
of the lemma.
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So there is an equivalent CPT program for each PIL program, and an
equivalent CPT + EqCard program for each PIL + H program.

The other direction of Theorem 34 is also shown simultaneously for CPT
and CPT + EqCard:

Lemma 41.

1. CPT ≤ PIL

2. CPT + EqCard ≤ PIL + H

Since the proofs for both parts of the lemma differ only in the simulation
of the equicardinality function, the following lemmas cover the respective
logic with or without an equicardinality operation whenever possible.

To show that every CPT program can be simulated by a PIL program,
we will first construct subprograms for the terms that occur in the compu-
tation of the CPT program. As shown in Section 4.1, PIL programs can
be combined using concatenation and iteration, therefore it is possible to
construct the program from smaller subprograms. In the following, some of
the subprograms of the programs simulating BGS terms are introduced. To
motivate the following constructions, we briefly explain the idea behind the
simulation.

The proof uses Rossman’s definition of BGS logic and CPT. Recall that,
according to that definition, a BGS program is a tuple (Πstep,Πhalt,Πout) of
BGS terms. So an equivalent PIL program has to represent these terms in
some way. We will show that each BGS (resp. BGS + EqCard) term can be
simulated by a PIL (resp. PIL + H) program.

A PIL program simulating a term enriches the domain of the input struc-
ture A by all objects in HF(A) necessary to compute the term, i.e. its active
objects. A predicate In will then be used to represent the set structure of
these objects. So a program simulating a BGS term initialises this and other
necessary predicates and then successively creates objects representing the
sets defined by subterms (this will be achieved by constructing the program
inductively). Therefore, the PIL programs adding definable objects to the
domain that are introduced in Section 4.1 are an important part of this proof.

To make the simulation of terms possible, the first subprogram initialises
the domain of a structure representing a substructure of HF(A) for the input
structure A = (A, τ). That substructure needs to exhibit objects representing
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the elements in A, as well as objects representing the set of all atoms and the
empty set, and a predicate In that defines the set structure of the current
subset of HF(A). This initialisation step is defined as follows:

Lemma 42. For any relational signature τ , there is a PIL[τ, σ] program for
σ = τ ∪̇{Atoms,Empty, In} such that, in the final state Afin of the run on any
structure A = (A, τ), there are objects a, ∅ and {∅} such that AtomsAfin =
{a}, EmptyAfin = {∅}, and InAfin = {(x, a) | x ∈ A} ∪ {(∅, {∅})}.

Proof. Let Π1 be an IL[τ, τ ∪̇{Atoms, In}] program that creates a new object
a defined by a relation Atoms as demonstrated in Lemma 26, extended by the
formula ϕIn(x, y) = Atoms y∧¬Atomsx, and let Π2 be an IL[τ ′, τ ′∪̇{Empty}]
program (where τ ′ = τ ∪ {Atoms, In}) that creates an element ∅ defined by
a relation Empty, again according to Lemma 26. Let Π3 be an IL program
that creates another element {∅} which is defined by the relation R, and that
updates In with the formula

ϕIn(x, y) = Inxy ∨ (Empty x ∧Ry) .

Then Π1◦Π2◦Π3 is the desired program. By Remark 28, there are polynomial-
time versions of Π1, Π2 and Π3, so, by Remark 32, there is a polynomial-time
version of Π1 ◦ Π2 ◦ Π3.

Since Atoms and Empty are defined by relations in our IL program, let
HFrel(A) be the structure that is defined like HF(A) except for the following
modification: In the signature of HFrel(A), Empty and Atoms are unary
relation symbols, and EmptyHFrel(A) = {∅} and AtomsHFrel(A) = {A}. This
definition will simplify the notation in the following definitions.

When a BGS term is computed within the run of a program, it is guaran-
teed that in all terms evaluated during that run, the number of active objects
is polynomially bounded. Recall that the set of active objects depends on
the values of the free variables of a term. So the bound holds for any values
that may be assigned to the free variables during any run of the program.
However, this does not imply any bound on the number of active objects for
variable assignments that never occur during a run of the program. There-
fore, the set of elements that can be replaced for the free variables during
the computation will be defined by a new relation.

So an input structure for a program simulating a term has to exhibit
such a relation restricting the values of the free variables in a way that the
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number of active objects is bounded. Furthermore, an input structure has
to resemble the state of a run of a CPT or CPT + EqCard program. These
properties are formalised in the following definition.

Definition 43. Let t be a term over τHF
EqCard with k free variables, let A =

(A, τ) be a structure and let q : N 7→ N. Then the structure B = (B, τ ′) is a
(t,A, q)-state if

1. τ ∪ {Atoms,Empty, In, V } ⊆ τ ′, where Atoms and Empty are unary
predicates, In is a 2-ary predicate and V is a k-ary predicate,

2. B � {Atoms,Empty, In} is isomorphic to a substructure H of the reduct
HFrel(A) � {Atoms,Empty, In} containing the element {∅},

3. the domain H of H is a transitive set,

4.
∣∣H ∪⋃{〈〈 t(b1, . . . , bk)〉〉 | (b1, . . . , bk) ∈ V B}

∣∣ ≤ q(|A|).

We also say that B is a (t,A, q)-state with respect to V .

The notion of a (t,A, q)-state describes the structures that occur as final
states of the computation of a BGS(+ EqCard) term (the non-final states
may, for instance, not define the predicate In for all sets). However, the
main property of such a final state is that the domain contains an object
representing the set defined by the given term, and that there is a relation
defining the output of a term for any possible assignment of the free variables.
These properties are now formalised in the definition of simulation.

Definition 44. Let t be a BGS term over τHF
ext ⊆ τHF ∪ {EqCard} with k

free variables for a relational signature τ , and let q : N 7→ N be a polynomial.
Furthermore, let τ ′ ⊇ τ ∪ {Atoms,Empty, In, V }. An IL[τ ′, σ] program Π
simulates t if σ ⊇ τ ′ ∪ {Rt} for a (k + 1)-ary relation symbol Rt /∈ τ ′, and
in the final state Afin = (Afin, σ) of the run of Π on any (t,A, q)-state B for
any finite τ -structure A the following holds:

• Afin is a (t,A, q)-state, where π is the isomorphism from the reduct
Afin � {Atoms,Empty, In} to a substructure of the {Atoms,Empty, In}-
reduct of HFrel(A) (such an isomorphism exists by definition of (t,A, q)-
states).
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• Let B be the domain of B, and let πB be the isomorphism from B to
a substructure of HFrel(A) � {Atoms,Empty, In}. Then for each b ∈ B
there is an object ab ∈ Afin that encodes b, i.e. π(ab) = πB(b), and
(b1, . . . , bk) ∈ V B if and only if (ab1 , . . . , abk) ∈ V Afin.

• For each v = (v1, . . . , vk) ∈ V B, there is an object at,v ∈ Afin encoding
Jt(v)K, i.e. π(at,v) = πB(Jt(v)K).

• All new objects are active objects of t: If a ∈ π(Afin), then a ∈ πB(B)
or a ∈ 〈〈 t(v)〉〉 for some v encoded by a tuple in V B.

• Rt associates each tuple v with the object representing Jt(v)K: R
Afin

t ={
(π−1(v), at,v) | v ∈ V B

}
.

A PIL[τ ′, σ] program Π simulates the term t if Π is a polynomial-time version
of an IL[τ ′, σ] program simulating t.

Now that the notion of simulation is introduced, we can show that PIL
programs can simulate BGS and BGS + EqCard terms.

Lemma 45. For any BGS term t, there is a PIL program Πt = (Πt, qt) that
simulates t.

Proof. The lemma is shown by induction on BGS terms.

Induction Base

1. t = x, where x is a variable: Let I be an interpretation that preserves
the domain and the relations in τ ′, and that defines Rt with

ϕRt(x, y) = x = y ∧ V x .

Let Πt be a polynomial-time version of the IL program ΠI applying I
obtained from Remark 28. Clearly, I(B) is still a (t,A, q)-state with all
required elements in the domain, and Rt fulfills the required property
by definition.

2. t = c for a constant symbol c: Since τ is a relational signature, c ∈
{∅,Atoms}. Since B is a (t,A, q)-state, there are objects ∅, a ∈ B
and relation symbols Empty,Atoms ∈ τ ′ such that EmptyB = {∅} and
AtomsB = {a}. Choose Πt as in Case 1, but set ϕRt(x) = Empty x or
ϕRt(x) = Atomsx, respectively.
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Induction Step

1. t(x) = f(t1(x), . . . , tr(x)) for terms t1, . . . , tr. Since 〈〈 ti(a)〉〉 ⊆ 〈〈 t(a)〉〉 for
1 ≤ i ≤ r and any assignment of variables x to values a in HF(A) for
an input structure A = (A, τ), |〈〈 t(a)〉〉| ≤ q(|A|) implies that |〈〈 ti(a)〉〉| ≤
q(|A|) for any polynomial q. So any (t,A, q)-state is also a (ti,A, q)-state
for 1 ≤ i ≤ r. So, by the induction hypothesis, there are PIL programs
Πt1 , . . . ,Πtr that simulate t1, . . . , tr.

τ is relational, so f ∈ {Pair,Union,TheUnique}.
(a) t(x) = Pair(t1(x), t2(x)): By the above observation, there is an

IL[τ ′, τ ′′] program Πt1 simulating t1 and an IL[τ ′′, σ] program Πt2

simulating t2. In particular, the final state of the run of Πt1 or Πt2 on
any (t,A, q)-state is again a (t,A, q)-state, since V is not changed
and the other properties of a (t,A, q)-state are independent of t.
Thus the final state of the run of Πt1 ◦Πt2 is again a (t,A, q)-state,
and all objects added to the domain by Πt1 ◦ Πt2 represent active
objects of t1 or t2.

Now let I =
(
ϕdom, ϕ≈, (ϕR)R∈σ∪̇{Rt}

)
be an interpretation that

adds an element at,v for each tuple v in V (use Lemma 27 with the
formula V x1 . . . xk), where Rt is the relation symbol introduced by
I. Let I ′ be an interpretation that preserves the domain and the
relations except for In, which is defined by the formula

ϕIn(x, y) = In xy ∨ ∃x1 . . . ∃xk ((Rt1x1 . . . xkx ∨Rt2x1 . . . xkx)

∧ Rtx1 . . . xky) .

Let ΠI and ΠI′ be the IL programs that apply I and I ′, respectively.
Then the final state of a run of Πt1 ◦ Πt2 ◦ ΠI ◦ ΠI′ contains all
elements required by the definition of simulation, all objects added
to the domain represent objects in 〈〈 t(v)〉〉 for values v in V of the
free variables, and Rt and In are defined accordingly. However, the
domain may still contain several objects of the form at,v that encode
the same set.
Let Istate =

(
ϕdom, ϕ≈, (ϕR)R∈σ∪̇{Rt}

)
, where ϕdom(x) is a tautol-

ogy, ϕR(x1, . . . , xr) = Rx1 . . . xr for any r-ary relation symbol R ∈
σ∪̇{Rt} and

ϕ≈(x, y) = ∀z (In(z, x)↔ In(z, y)) .
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Let A′fin be the final state of the run of Πt1 ◦ Πt2 on some input
structure, and let A′′fin be the final state of the run of ΠI ◦ ΠI′

on A′fin. Note that any set encoded by several objects in A′′fin has
only elements that are already encoded by elements of the do-
main of A′fin, which is isomorphic to a substructure of HFrel(A) �
{Atoms,Empty, In}. Therefore Istate indeed suffices to ensure that
all these sets are encoded by only a single element each. So A′′fin �
{Atoms,Empty, In} is yet again isomorphic to a substructure of
HFrel(A) � {Atoms,Empty, In} which contains only elements that
already occur in A′fin or that encode Jt(v)K for some v ∈ V A′fin . Thus,
by Property 4 of (t,A, q)-states, the number of elements in the do-
main of A′′fin is bounded by q(|A|), and A′′fin is a (t,A, q)-state.
So let Πt = Πt1 ◦ Πt2 ◦ ΠI ◦ ΠI′ ◦ ΠIstate .
By definition, Πt simulates t. As the lemma requires a PIL program,
it remains to show that there is a polynomial-time version of Πt.
By induction hypothesis, there are polynomial-time versions of Πt1

and Πt2 . By Remark 28, there are also polynomial-time versions of
ΠI , ΠI′ and Πstate. So by Remark 32, there is a polynomial-time
version of Πt.

(b) t(x) = Union(t1(x)): Let Πt = Πt1 ◦ΠI ◦ΠI′ ◦ΠIstate , where Πt1 is an
IL[τ ′, σ] program for t1 obtained from the induction hypothesis, I

and Istate are defined as in Case 1a, and I ′ =
(
ϕ
′

dom, ϕ
′
≈,
(
ϕ
′
R

)
R∈σ′

)
is the interpretation with σ′ = σ∪̇{Rt} that preserves the domain
and the relations in σ′ \ {In}, and defines In with the formula

ϕIn(x, y) = Inxy ∨ ∃x1 . . . ∃xk (Rtx1 . . . xky∧
∃xt1∃z (Rt1x1 . . . xkxt1 ∧ Inxz ∧ In zxt1)) .

With the same reasoning as in Case 1a, Πt simulates t and there is
a polynomial-time version of Πt.

(c) t(x) = TheUnique(t1(x)): Let Πt = Πt1◦ΠI where Πt1 is an IL[τ ′, σ]
program defined as in the previous cases and ΠI is the IL program

applying the interpretation I =
(
ϕdom, ϕ≈, (ϕR)R∈σ∪̇{Rt}

)
that pre-

serves the domain and any r-ary relation R ∈ σ, and Rt is defined
with respect to the fact that Jt(v)K is the empty set if Jt1(v)K is not
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a singleton and Jt(v)K = a if Jt1(v)K = {a}:

ϕRt(x1, . . . , xk, y) =∃xt1 (Rt1x1 . . . xkxt1 ∧ (Empty y∧
¬∃y′(In y′x ∧ ∀z(In zxt1 → z = y′)))∨

(In yxt1 ∧ ∀z(In zxt1 → z = y))) .

Since the final state Afin of the run of Πt1 on a (t,A, q)-state is
again a (t,A, q)-state, the domain Afin of Afin encodes a transitive
subset of HF(A), so there is an object encoding Jt(v)K in Afin for
each v in V . So I suffices to define Rt as required. Again, there are
polynomial-time versions of Πt1 and ΠI , so there is a polynomial-
time version of Πt.

2. t(x) = R(t1(x), . . . , tr(x)): As in Case 1, there are programs Πt1 , . . . ,Πtr

simulating t1, . . . , tr, and the final state of the run of Πt1 ◦ . . . ◦ Πtr on
a (t,A, q)-state is again a (t,A, q)-state. Let Πt = Πt1 ◦ . . . ◦ Πtr ◦ ΠI ,

where I =
(
ϕdom, ϕ≈, (ϕR)R∈σ∪̇Rϕ

)
(σ is chosen such that Πt1 ◦ . . .Πtr is

a IL[τ ′, σ] program) is an interpretation that preserves the domain and
all relations in σ. For defining ϕRt , let ϕt be the formula

ϕt(x1, . . . , xk) = ∃xt1 . . . ∃xtr

( ∧
1≤i≤r

Rtix1 . . . xkxti ∧Rxt1 . . . xtr

)
,

which is true if and only if the value of t is true (which is encoded by
the value {∅}). Then let

ϕRt(x1, . . . , xk, y) =(¬ϕt ∧ Empty y) ∨ (ϕt ∧ ∃z(Empty z∧
In(z, y) ∧ ∀z′(In(z′, y)→ z′ = z))) .

So ϕRt sets the value of t to {∅} if it evaluates to true, and to ∅ otherwise.

3. t(x) = t1(x) = t2(x): Let Πϕ = Πt1 ◦ Πt2 ◦ ΠI , where Πt1 and Πt2

are defined as in the previous cases, choose σ such that Πt1 ◦ Πt2 is an
IL[τ ′, σ] program, and let I =

(
ϕdom, ϕ≈, (ϕR)R∈σ

)
be the interpretation

defined as in the previous case, with the modification that

ϕt(x1, . . . , xk) = ∀y (Rt1x1 . . . xky ↔ Rt2x1 . . . xky) .

4. t = ¬t1 or t = t1 ∧ t2 or t1 ∨ t2: Analogously.
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5. t(x) = {s(v, x) : v ∈ t1(x) : ϕ(v, x)}: Since 〈〈 t1(a)〉〉 ⊆ 〈〈 t(a)〉〉 for any
values a, any (t,A, q)-state is also a (t1,A, q)-state. So, by induction
hypothesis, there is an IL[τ ′, τt1 ] program Πt1 that simulates t1, espe-
cially for input structures that are (t,A, q)-states.

The relation Rt1 then defines the set of possible values for the free vari-
ables of ϕ during the computation of t, so the final state of the run of Πt1

can be transformed into a (ϕ,A, q)-state: Consider the interpretation

IV ′ =
(
ϕV
′

dom, ϕ
V ′
≈ ,
(
ϕV
′

R

)
R∈τt1 ∪̇{V ′}

)
where the domain and the relations

in τt1 are preserved, and

ϕV
′

V ′(v, x1, . . . , xk) = ∃xt1Rt1x1 . . . xkxt1 ∧ In vxt1 ,

and ΠV ′ is the IL program that applies IV ′ .

Let At1
fin be the final state of a run of Πt1 on a (t,A, q)-state. Then, since⋃

b∈Jt1(a)K 〈〈ϕ(b, a)〉〉 ⊆ 〈〈 t(a)〉〉 for each a ∈ V B where B is a (t,A, q)-state,

At1
fin is a (ϕ,A, q)-state with respect to V ′. Furthermore, it holds that⋃
b∈Jt1(a)K 〈〈s(b, a)〉〉 ⊆ 〈〈 t(a)〉〉 for any tuple a, so the final state of a run of

Πt1 ◦ ΠV ′ ◦ Πϕ is also an (s,A, q)-state.

So by induction hypothesis, there are programs Πϕ and Πs that simulate
ϕ and s, respectively, also on any (t,A, q)-state, and, since V is not
changed, the final state of any run of Πϕ or Πs on a (t,A, q)-state is
again a (t,A, q)-state.

Now let I =
(
ϕdom, ϕ≈, (ϕR)R∈τs∪̇{Rt}

)
, where τs is the signature such

that Πϕ ◦Πs is an IL[τt1 , τs] program, be an interpretation that creates
an object for each tuple v in V according to Lemma 27, and Rt is the

predicate defining that object. Then let I ′ =
(
ϕ
′

dom, ϕ
′
≈,
(
ϕ
′
R

)
R∈τs∪̇{Rt}

)
be the interpretation that preserves the domain and all relations except
for In, and updates In as follows:

ϕIn(x, y) = In xy ∨ ∃x1 . . . ∃xk(Rtx1 . . . xky ∧ ∃v(Rsvx1 . . . xkx∧
∃xt1Rt1x1 . . . xkxt1 ∧ In vxt1
∧Rϕvx1 . . . xk))) .

So I ′ adds to In all pairs (x, y) where y represents Jt(a)K for some a and
x represents Js(b, a)K for some b ∈ Jt1(a)K such that Jϕ(b, a)K is true, i.e.
x ∈ Jt(a)K.
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Define Πt = Πt1 ◦ΠV ′ ◦Πϕ ◦Πs ◦ΠI ◦ΠI′ ◦ΠIstate , where Istate is defined
as in Case 1a. As observed above, Πt1 computes a predicate for t1, ΠV ′

defines the predicate V ′ such that the resulting structure is a (ϕ,A, q)-
state and an (s,A, q)-state with respect to V ′, Πϕ and Πs simulate ϕ
and s, ΠI creates a definable object at,v for each v in V , ΠI′ defines the
predicate In for the new objects and ΠIstate ensures the property that
a reduct of the resulting final state is isomorphic to a substructure of
HFrel(A) � {Atoms,Empty, In}. Since only active objects of t(v) for v
in V are added to the domain and V is not changed, the final state of
any run of Πt on a (t,A, q)-state is a (t,A, q)-state.

Again, there are polynomial-time versions of all IL programs used above,
so there is also a polynomial-time version of Πt.

By induction, for any BGS term t there is a PIL program simulating t.

For the second part of Lemma 41, terms over the signature extended by
EqCard are simulated by PIL + H programs.

Lemma 46. For any BGS term t over σHF
EqCard, there is a PIL + H program

Πt simulating t.

Proof. Analogous to the proof of Lemma 45. In the induction step, we add
the following case:

t(x) = EqCard(t1(x), t2(x)): As in the proof of Lemma 45, let Πt1 be
an IL[τ ′, τ ′′] program simulating t1, and let Πt2 be an IL[τ ′′, σ] program
simulating t2. Let ΠI be the program that applies the interpretation I =(
ϕdom, ϕ≈, (ϕR)R∈σ′

)
that is defined as in Case 2 of the proof of Lemma 45,

with the modification that

ϕt(x1, . . . , xk) =∃xt1∃xt2
(
Rt1x1 . . . xkxt1 ∧Rt2x1 . . . xkxt2∧

H y1y2 In y1xt1 In y2xt2
)
.

Then Πt = Πt1 ◦ Πt2 ◦ ΠI simulates t.

Given programs in interpretation logic for BGS and BGS + EqCard terms,
it is now possible to define an equivalent PIL (resp. PIL + H) program for
each CPT (resp. CPT + EqCard) program.
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Proof of Lemma 41. We only show the lemma explicitly for CPT, because
the proof for CPT + EqCard is completely analogous (note that, since every
PIL program is also a PIL + H program, the proof for CPT + EqCard uses
the same subprograms).

Let ΠCPT = (ΠCPT, q), where ΠCPT = (Πstep,Πhalt,Πout) and q is a poly-
nomial, be a CPT program. We construct an equivalent PIL program that
works as follows:

By Lemma 42, there is an IL program that initialises objects representing
the sets Atoms, ∅ and {∅}. First run that program, and then run another
IL program that initialises a unary predicate Cur with ϕCur(x) = Empty x.
Let Πinit be the concatenation of these IL programs. By Lemma 42 and
Remark 28, there are polynomial-time versions of both programs, so there is
a polynomial-time version of Πinit.

Let Ainit
fin be the final state of the run of Πinit on a structure A = (A, τ). By

definition of Πinit, A
init
fin � {Atoms,Empty, In} is isomorphic to a substructure

of HFrel(A) � {Atoms,Empty, In}.
Since the number of active objects in the run of (Πstep,Πhalt,Πout) on A is

bounded by q(|A|), the size of 〈〈Πstep(∅)〉〉 and 〈〈Πhalt(∅)〉〉 is bounded by q(|A|).
So Ainit

fin is a (Πstep,A, q)-state and a (Πhalt,A, q)-state with respect to the
predicate Cur.

Then, by Lemma 45, there are IL programs ΠIL
step and ΠIL

halt that simulate
Πstep and Πhalt, respectively, on the final state of any run of Πinit. Let Rstep

(resp. RHalt) be the predicate for Πstep (resp. Πhalt) computed by ΠIL
step (resp.

ΠIL
halt).

Let Πcur be an IL program that applies an interpretation that preserves
the domain and the relations except for Cur, and that updates Cur by the
formula

ϕCur(x) = ∃y (Cur y ∧Rstepyx) .

Consider the program Π = ΠIL
step ◦ ΠIL

halt ◦ Πcur. Then the iteration Πψ for
ψ = ∃x(RHaltx ∧ ¬Empty x) computes predicates for the terms Πstep and
Πhalt and updates Cur accordingly until Πhalt is true.

By the definition of simulation, whenever ΠIL
step is run on a (Πstep,A, q)-

state, the final state is again a (Πstep,A, q)-state. Since Πcur sets Cur to the
set containing only the object representing JΠstep(ai)K, where ai is the object
previously defined by Cur, the final state of the run of Π during the execution
of Πinit ◦ Πψ is again a (Πstep,A, q)-state and a (Πhalt,A, q)-state, given that
JΠhalt(ai)K is false (note that the number of active objects of Πstep(Πstep(ai))
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and Πhalt(Πstep(ai)) is bounded by q(|A|)).
Π simulates Πstep, and ψ states that Πhalt evaluates to true in the current

state, so Πψ executes Π as many times as ΠCPT computes Πstep. So, since
by Lemma 13, the length of the run of ΠCPT is bounded by q, Π is run at
most q(|A|) times. Let (Π, p′, q′) be a polynomial-time version of Π. Then
the length of the run of Πψ on a structure B with domain B that is a
(Πstep,A, q)-state and a (Πhalt,A, q)-state is bounded by q(|A|) · p′(|B|).

Since the final state of the run of Π on such a structure B is again a
(Πhalt,A, q)-state, the number of elements in the domain of the final state of
each run of Π during the computation of Πψ is bounded by q(|A|). So the
number of elements of any state of the run of Πψ on the final state of a run
of Πinit is bounded by q′(q(|A|)).

Thus there is a polynomial-time version of Πinit ◦ Πψ.
Consider the final state Afin of a run of Πinit ◦ Πψ. The predicate Cur

defines an object representing some a such that 〈〈Πout(a)〉〉 is a subset of
Active(ΠCPT,A), and by Lemma 45 and the definition of simulation, each
object in the domain of Afin represents an object in Active(ΠCPT,A). So Afin

is a (Πout,A, q)-state.
Let ΠIL

out =
(
Iout

init, I
out
step, ϕ

out
halt, ϕ

out
out

)
be the IL program simulating Πout ob-

tained from Lemma 45. ΠIL
out computes the output of ΠCPT, so we replace

ΠIL
out with ΠIL

out
′
= (Iout

init, I
out
step, ϕ

out
halt, ϕ

out
out
′
), where

ϕout
out
′
= ∀x (Curx→ ∃y(Routy ∧ ¬Empty y)) .

By Lemma 45, there is a polynomial-time version of ΠIL
out.

So, by definition, Πinit ◦Πψ ◦ΠIL
out
′

simulates the computation of the pro-
gram (Πstep,Πhalt,Πout), and since there are polynomial-time versions of Πinit,
Πψ and ΠIL

out
′
, there is a polynomial-time version of the concatenation.

Hence, for each CPT program, there is an equivalent PIL program, which
shows Lemma 41.

Lemmas 35 and 41 directly imply the equivalence of the logics PIL + H
and CPT + EqCard (resp. PIL and CPT), so we have shown Theorem 34
which constitutes the main result of this thesis.

Corollary 47. PIL 6≡ PIL + H.

Proof. As shown in [BGS99], there is a query that is definable in CPT + C
(and thus in CPT + EqCard) but not in CPT. By Theorem 34, this query is
definable in PIL + H but not in PIL.
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So this chapter results in the classification of PIL and PIL + H with re-
spect to the logics CPT and CPT + EqCard, where CPT + EqCard is equiv-
alent to CPT + C and therefore an interesting candidate for a logic capturing
PTIME.



60 CHAPTER 4. INTERPRETATION LOGIC



Chapter 5

Conclusion and Future Work

This thesis extends the work on Choiceless Polynomial Time, which was
introduced by Blass, Gurevich and Shelah ([BGS99]). Previous results sug-
gest that CPT with counting is a reasonable candidate for a logic capturing
large fragments of PTIME, or even PTIME itself. Queries that have previ-
ously been conjectured to separate CPT + C from PTIME fail to do so, for
instance the Cai-Fürer-Immermann query ([BGS02],[DRR08]), and perfect
matching on bipartite ([BGS02]) and on general graphs ([ADH13]), and, like
Turing machines, CPT benefits from padding of the input ([BGS99],[Lau11]).
Therefore, the analysis of Choiceless Polynomial Time may lead to valuable
insights concerning the logical characterisation of PTIME.

In this thesis, we introduced polynomial-time interpretation logic (PIL)
as an alternative formulation of CPT based on iterated first-order interpre-
tations. In Chapter 4, we showed that PIL is indeed equivalent to CPT.

To obtain an alternative definition of CPT + C based on PIL, we first
showed in Chapter 3 that, instead of counting operators, it suffices to extend
CPT by an equicardinality quantifier. Analogously, also PIL can be equipped
with an equicardinality operation in the form of the Härtig quantifier to
accomplish equivalence to CPT + C (as shown in Chapter 4).

These results are summarised in Figure 5.1.
Thus our work gives rise to a more concise definition of CPT + C that is

based on first-order logic and therefore has the potential to make CPT + C
more accessible for further investigation via classical methods of finite model
theory.

Moreover, our work suggests various questions for future research. In
order to develop a better understanding of the power of first-order interpre-
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Figure 5.1: An overview of the classification of interpretation logic compared
to CPT (each of the logics is identified with the class of queries definable in
that logic).
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tations, it is desirable to analyse how certain CPT-definable queries can be
defined directly in PIL. The usage of the equicardinality operation, for in-
stance for defining the parity of a set, without the explicit translation of a
CPT + C program, seems particularly interesting.

Furthermore, the characterisation of CPT via first-order interpretations
suggests a stratification of this logic with respect to many natural param-
eters. Fragments of CPT induced by PIL may again coincide with other
logics analysed in the context of CPT. Since PIL is based on FO, one could
consider fragments of PIL defined by fragments of FO, for instance PIL with
bounded quantifier rank (note that the quantifier rank of the formulae used
for simulating BGS programs largely depends on the number of free variables
of the subterms of the program).

Another way to define fragments of PIL is to restrict the structure of
the interpretations by only allowing interpretations of fixed dimensions or
by omitting the equality formula. Two very interesting fragments of PIL
are one-dimensional PIL, i.e. the restriction of PIL to one-dimensional in-
terpretations, and PIL without the equality formula, which we denote by
PIL−≈.

These fragments appear to bear similarities to the polynomial-time re-
striction of partial fixed-point logic and one of its extensions. Partial fixed-
point logic is equivalent to while, an extension of first-order logic by while
loops. Therefore while, which has also been used in [AHV95] to show that
lfp = pfp if and only if PTIME = PSPACE, could serve as a tool to establish
a connection between CPT and fixed-point logic.

For details about while and the extension whilenew (originally introduced
in [AV91] as whileinvent), which is based on invention of new elements from
existing tuples, the reader is referred to [AHV95].

while is based on first-order logic with assignment and iteration, but
does not allow for invention of new elements. This characterisation coincides
with one-dimensional PIL, since one-dimensional interpretations can only
restrict the domain of the input structure and update relations. So it is an
interesting question for further research whether there is a correspondence
between one-dimensional PIL and while.

The relation between CPT and extensions of while has first been studied
by Blass, Gurevich and van den Bussche in [BGVdB02]. They show that
whilenew does not suffice to achieve the same expressive power as CPT.
Instead, whilenew has to be enhanced by an operation that makes it possible
to create new elements corresponding to sets, instead of tuples only, resulting
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Figure 5.2: A classification of fragments of while and PIL and possible
equivalences (where each logic is identified with the class of queries definable
in that logic).

in whilesets
new. It is shown that the restriction of whilesets

new to polynomial time
is equivalent to CPT.

Like whilenew, interpretations without an equality formula are restricted
to tuple-based invention, which suggests that PIL−≈ could fill the gap that, in
the hierarchy of extensions of while, is covered by the PTIME restriction of
whilenew. Therefore the fragment PIL−≈ and the question of how it compares
to whilenew shall also be covered in future work.

The hierarchy of the previously described extensions of while and the
resulting questions for further research on PIL are illustrated in Figure 5.2.

If a correspondence in this sense between fragments of PIL and other
logics could be establish, this would be another indication that PIL is a
natural formulation, and therefore an interesting alternative to the original
definition of CPT.
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