
Definability of Cai-Fürer-Immerman Problems in
Choiceless Polynomial Time
Wied Pakusa1, Svenja Schalthöfer2, and Erkal Selman3

1 Mathematical Foundations of Computer Science, RWTH Aachen University,
Germany
pakusa@logic.rwth-aachen.de

2 Mathematical Foundations of Computer Science, RWTH Aachen University,
Germany
schalthoefer@logic.rwth-aachen.de

3 Logic and Theory of Discrete Systems, RWTH Aachen University, Germany
selman@informatik.rwth-aachen.de

Abstract
Choiceless Polynomial Time (CPT) is one of the most promising candidates in the search for
a logic capturing Ptime. The question whether there is a logic that expresses exactly the
polynomial-time computable properties of finite structures, which has been open for more than
30 years, is one of the most important and challenging problems in finite model theory.

The strength of Choiceless Polynomial Time is its ability to perform isomorphism-invariant
computations over structures, using hereditarily finite sets as data structures. But, as it preserves
symmetries, it is choiceless in the sense that it cannot select an arbitrary element of a set—an
operation which is crucial for many classical algorithms. CPT can define many interesting Ptime
queries, including (the original version of) the Cai-Fürer-Immerman (CFI) query. The CFI query
is particularly interesting because it separates fixed-point logic with counting from Ptime, and
has since remained the main benchmark for the expressibility of logics within Ptime.

The CFI construction associates with each connected graph a set of CFI-graphs that can be
partitioned into exactly two isomorphism classes called odd and even CFI-graphs. The problem
is to decide, given a CFI-graph, whether it is odd or even. In the original version, the underlying
graphs are linearly ordered, and for this case, Dawar, Richerby and Rossman proved that the
CFI query is CPT-definable. However, the CFI query over general graphs remains one of the few
known examples for which CPT-definability is open.

Our first contribution generalises the result by Dawar, Richerby and Rossman to the variant
of the CFI query where the underlying graphs have colour classes of logarithmic size, instead of
colour class size one. Secondly, we consider the CFI query over graph classes where the maximal
degree is linear in the size of the graphs. For these classes, we establish CPT-definability using
only sets of small, constant rank, which is known to be impossible for the general case.

In our CFI-recognising procedures we strongly make use of the ability of CPT to create sets,
rather than tuples only, and we further prove that, if CPT worked over tuples instead, no such
procedure would be definable. We introduce a notion of "sequence-like objects" based on the
structure of the graphs’ symmetry groups, and we show that no CPT-program which only uses
sequence-like objects can decide the CFI query over complete graphs, which have linear maximal
degree. From a broader perspective, this generalises a result by Blass, Gurevich, and van den
Bussche about the power of isomorphism-invariant machine models (for polynomial time) to a
setting with counting.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases finite model theory, descriptive complexity, logic for Ptime, Choiceless
Polynomial Time, Cai-Fürer-Immerman

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.19

© Wied Pakusa, Svenja Schalthöfer, and Erkal Selman;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 19; pp. 19:1–19:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

1 Introduction

One of the most important questions in descriptive complexity theory is whether there is a
logic capturing Ptime [7, 14, 15].

Currently, there are two main branches of research approaching that problem. The first
sets off from a seminal result of Immerman and Vardi which shows that (least) fixed-point
logic captures Ptime on ordered structures [16, 19]. This precise logical characterisation
of polynomial time heavily relies on the presence of a linear order on the input structure:
Unfortunately, there are many queries, including trivial counting properties, which cannot
be defined in fixed-point logic without a linear order. Still, the Immerman-Vardi Theorem
indicates that fixed-point logic is a reasonable starting point to search for a logic capturing
polynomial time. Indeed, much research has focused on ways to extend fixed-point logic by
new operators in order to capture larger and larger fragments of Ptime “from below”.

The best-studied of such formalisms is the extension of fixed-point logic by a counting
mechanism, called fixed-point logic with counting or FP+C. Immerman proposed FP+C as
a candidate to capture polynomial time on all finite structures. Indeed, it turned out that
FP+C is very powerful and can express a robust and natural fragment of polynomial time.
For a recent survey on FP+C, see [8].

However, Cai, Fürer and Immerman [6] found a very clever construction which demon-
strates that FP+C fails to capture Ptime on all structures. This Cai-Fürer-Immerman query
has since served as an extremely valuable tool for analysing the expressive power of logics
over finite structures, as well as the complexity of the graph isomorphism problem.

Besides FP+C, further extensions of fixed-point logic by much stronger operators have
been studied in recent years. The most important such extension is Rank Logic, proposed by
Dawar, Grohe, Holm and Laubner in [9]. It is still open whether certain variants of Rank
Logic [13] capture polynomial time.

Whereas studying extensions of fixed-point logic can be seen as searching for a logic for
Ptime “from below”, the second approach attacks the problem “from above”. That branch
of research aims for a formalism of Ptime computation that operates on structures and is
isomorphism-invariant. Indeed, isomorphism-invariance is the main difference between logics
and machine models, according to the standard definition, due to Gurevich [15], of what would
constitute a logic for Ptime. Choiceless Polynomial Time, introduced by Blass, Gurevich
and Shelah [3], approaches Ptime in that sense, with the intuition that it resembles classical
Ptime computation “as closely as possible” without violating isomorphism-invariance.

Choiceless Polynomial Time

As it is isomorphism-invariant, Choiceless Polynomial Time, in contrast to actual computation
models, lacks arbitrary choice: instructions like “choose an arbitrary vertex” are not possible.
Instead, CPT performs parallel computations on possibly nested, logically definable sets
over domain elements, using ordinals for counting operations. More precisely, CPT is able
to construct hereditarily finite sets over the input structure, allowing for higher-order data
structures. Because of its rather algorithmic nature, we often refer to CPT-programs or
-algorithms instead of CPT-formulas. Most characteristics of a logic capturing Ptime are
rather easy to verify for CPT. The challenge is to determine whether it can express all Ptime
queries. To date, CPT has not been separated from Ptime, and many queries proposed for
that purpose have been shown to be expressible, such as:

W. Pakusa, S. Schalthöfer, and E. Selman 19:3

Any query definable in FP+C is also definable in CPT.
On structures with sufficiently large padding, CPT captures Ptime [4, 17]. This already
implies that CPT is a strict extension of FP+C.
The Cai-Fürer-Immerman query is definable in CPT, even without counting, if the
underlying graphs are linearly ordered [10].
CPT captures Ptime on structures with bounded colour class size if the colour classes
have Abelian automorphism groups. A subprocedure shows that solvability of cyclic
linear equation systems is CPT-definable [1].

For a more detailed survey of some recent insights, see also [11].
These results illustrate the surprising expressive power of Choiceless Polynomial Time.

However, there are some properties for which we do not know whether they can be expressed
in CPT, and which might witness a separation from polynomial time.

Most importantly, it is open whether the Cai-Fürer-Immerman problem over general
graphs can be expressed in Choiceless Polynomial Time. Since the CFI query has proven to
be an extremely valuable benchmark for the expressive power of logics over finite structures,
solving this question would significantly increase our understanding of the expressive power
of CPT. The CFI query additionally gives rise to particularly simple instances of various
more general, and arguably more important, queries for which we do not know whether they
can be expressed in Choiceless Polynomial Time. In particular, it is open whether CPT
can define the isomorphism problem for graphs of bounded degree or solve linear equation
systems over finite fields. For both of these problems certain variants of the CFI query
constitute a rather simple class of instances, which means that it should be easier to find a
CPT-procedure for the CFI query first before trying to solve these much more sophisticated
problems in CPT in general.

The Cai-Fürer-Immerman Query

The CFI query is a subproblem of the graph isomorphism problem. With each connected
graph G = (V,E), the CFI construction associates a set of CFI-graphs GT over G, for
every T ⊆ V , by replacing each vertex v of G by a certain graph gadget. More precisely,
each vertex v ∈ V can either be replaced by an even gadget (v 6∈ T) or by an odd gadget
(v ∈ T). Hence, the CFI construction associates with every graph G an exponential-sized
set of CFI-graphs {GT : T ⊆ V }. However, it turns out that, up to isomorphism, there are
in fact only two different CFI-graphs for fixed G. Indeed, a pair of CFI-graphs GT and GS

over G is isomorphic if, and only if, the parity of the number of odd gadgets is the same, i.e.
if |T | ≡ |S| (mod 2). The CFI query is to determine, given a CFI-graph GT , the parity of
|T |. We give a precise definition of the CFI construction in Section 3.

It is known that the CFI query is decidable in Ptime, but not definable in FP+C [6].
Furthermore, it is definable in Rank Logic [9] and in Choiceless Polynomial Time without
counting in case the underlying graph is linearly ordered, but not definable in CPT using
only sets of bounded rank [10].

In the original work, Cai, Fürer and Immerman applied their construction to ordered,
three-regular graphs. The effect is that the resulting CFI-graphs are also three-regular, and
have colour class size four. Hence, Cai, Fürer and Immerman not only demonstrated that
FP+C fails to capture polynomial time, but also that it cannot decide the isomorphism
problem for graphs with bounded degree and bounded colour class size, though there are
efficient isomorphism tests for both classes.

The immediate question is whether Choiceless Polynomial Time, as an extension of
FP+C, can define these isomorphism problems and, in particular, whether it can distinguish

CSL 2016

19:4 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

between the odd and even version of CFI-graphs. The first positive result in this context
was achieved by Blass, Gurevich and Shelah [4], who proved that the Cai-Fürer-Immerman
query can be expressed in CPT if the graphs come with a suitable padding, which makes
it possible to define all linear orders on the input structure in spite of the space bound.
This observation also lead to the separation of CPT and FP+C. However, it remained a
challenging open question whether CPT can also define the CFI query without padding.

By using a very elegant construction, Dawar, Richerby and Rossman [10] were able to
confirm this later for the special case where the underlying graphs are linearly ordered (as it is
the case in the original construction of Cai, Fürer and Immerman). Essentially, the approach
of Dawar, Richerby and Rossman is to succinctly represent the complete isomorphism class of
a given CFI-graph—a class of exponential size—as a sufficiently small hereditarily finite set
over the input structure. To this end they invent a data structure which uses highly nested
sets. They further prove that this nesting cannot be avoided: with sets of constant rank it is
not possible to define the CFI query over ordered graphs in CPT. Having a representation of
the isomorphism class as a single object, they then show how to obtain, in CPT, a canonical
numerical invariant for the given isomorphism class from which one can read off the parity
of the CFI-graph. A more detailed description of this algorithm is given in Section 4.

In this paper, we set out to identify new classes of graphs over which the CFI query is
CPT-definable. Moreover, we analyse the resources which are required by CPT-programs to
decide the CFI query. Our first contribution is to generalise the result of Dawar, Richerby
and Rossman from linearly ordered graphs to graphs with colour classes of logarithmic size,
that is graphs with a built-in linear preorder on the universe which may contain classes
of incomparable elements, but where the size of such classes is bounded logarithmically in
the size of the input structure. This allows us to use all subsets of every colour class in a
CPT-program. Note that the case of ordered graphs appears as the special case of colour
classes of size one. Our procedure is based on the insight that it is possible to represent all
linear orders which are consistent with the given preorder using polynomial resources if we
iteratively join orderings defined over the same set of elements. The proof can be found in
Section 5.

Secondly, we strengthen a claim from [10] for complete graphs and show that the CFI
query over classes of unordered graphs where the maximal degree is linear is CPT-definable
using only sets of constant rank. Recall that this is not possible in the general case.

If the underlying graph over n vertices has at least one vertex of degree n
k , the associated

CFI-graph is of size ≥ 2 n
k . Hence, a CPT-program can access all subsets of the vertex set

of the underlying graph within the polynomial resource bounds. We use these subsets to
inductively represent partial computations for the parity of the CFI-graph. Our construction
is presented in Section 6.

Note that we cannot access all n! different linear orderings of the underlying graphs with
any resource bound polynomial in 2n. Intuitively, this means that the power to use sets as
abstractions of the linear orderings defined on their domain is vital for our CPT-procedure
to respect polynomial bounds.

In Section 7 we use this observation to answer the following question: are isomorphism-
invariant computation models with polynomial time bounds strictly more powerful if they
use sets instead of only tuples? In the absence of counting, this question was answered by
Blass, Gurevich and van den Bussche in [5]: set-like data structures are more powerful than
sequence-like data-structures (see also [2].) We generalise this result to the case of counting
and show that CPT-programs which decide the CFI query over complete graphs have to
use set-like objects. In particular, this yields an interesting lower bound for a fragment of

W. Pakusa, S. Schalthöfer, and E. Selman 19:5

Interpretation Logic, a characterisation of Choiceless Polynomial Time which was presented
in [12]: Interpretation Logic without congruences cannot decide the Cai-Fürer-Immerman
query over complete graphs, and is thus strictly less expressive than the fragment of CPT
using only sets of bounded rank.

2 Choiceless Polynomial Time

Choiceless Polynomial Time is a polynomial time restriction of BGS logic (named after Blass,
Gurevich and Shelah). The definition used here is based on the concise definition given by
Rossman [18]. Let τ be a relational signature and let A = (A, τ) be a finite τ -structure. BGS
logic is evaluated over the hereditarily finite expansion HF(A) of A. The signature of HF(A)
is τHF = τ] {∅,Atoms,∈,Pair,Union,Unique,Card}, where ∅ and Atoms are constants, ∈
is a binary relation symbol, Union,Unique and Card are unary function symbols and Pair is
a binary function symbol. The domain of HF(A) is the set of hereditarily finite sets over
the atoms A. The hereditarily finite sets HF(A) are defined recursively as the finite sets of
atoms and all finite sets of hereditarily finite objects, where an object is an atom or a set. In
HF(A), the relations and functions are interpreted as follows: ∅HF(A) = ∅, AtomsHF(A) = A,
∈HF(A)= {(a, b) | a ∈ b}, PairHF(A)(a, b) = {a, b}, UnionHF(A)(a) = {b ∈ c : c ∈ a},
UniqueHF(A)(a) = b if a = {b} for some b and ∅ otherwise, and CardHF(A)(a) = |a| encoded
as a von Neumann ordinal if a is a set and ∅ if a ∈ A.

BGS logic is defined by means of terms, formulas and programs. Terms are interpreted
by values in HF(A). Syntactically, terms are variables, constants from τHF, objects f t̄ for a
function symbol f ∈ τHF and terms t̄, and comprehension terms. A comprehension term is
of the form t = {s(x̄, y) : y ∈ r(x̄) : ϕ(x̄, y)}, where s and r are terms and ϕ is a formula,
with the semantics {sA(ā, b) : y ∈ rA(ā) : A |= ϕ(ā, b)} for an assignment ā of x̄. A formula
is either t1 = t2 or Rt̄ for terms t̄ = t1 . . . tr and r-ary R ∈ τ , or constructed from formulas
with the connectives ∧,∨,¬. A BGS program is a triple Π = (Πstep,Πhalt,Πout) of a term
Πstep and formulas Πhalt,Πout. The run of Π on A is the sequence (ai)i≥0 such that a0 = ∅
and ai+1 = Πstep(ai) for i > 0. Choose κ ≤ ω maximal such that A 6|= Πhalt(ai) for i < κ. If
κ is finite, then A |= Π if and only if aκ |= Πout.

To obtain Choiceless Polynomial Time, a fragment of BGS contained in Ptime, the
complexity of the run and the occurring sets, measured in terms of their transitive closure, is
bounded polynomially. A set y is transitive if x ⊆ y for each x ∈ y. The transitive closure
tc(x) of a set x is the least transitive set y with x ⊆ y. A CPT program is a pair Π̄ = (Π, p),
where Π is a BGS program and p : N→ N a polynomial. The run of Π̄ on A is the maximal
initial segment ρ of the run of Π on A such that the length of ρ is at most p(|A|) and, for
each ai in ρ, tc(ai) ≤ p(|A|). By CPT, we denote the variant with the function Card defined
previously, unless stated otherwise.

We extend the syntax of CPT by assuming that there are distinct constants 0, 1, and
that there are syntactic means to define tuples explicitly. Note that tuples can be encoded as
an extension of the Kuratowski encoding of pairs, so this is indeed only a change of syntax.
We denote tuples as objects 〈a1, . . . , ak〉.

3 Graphs and the Cai-Fürer-Immerman Construction

Let G = (V,E) be an undirected graph with vertex set V and edge set E. For a vertex
v ∈ V , E(v) denotes the set of edges incident to v. If V ′, V ′′ ⊆ V , E[V ′] is the set of edges
in the subgraph induced by V ′, and (V ′, V ′′) denotes the (V ′, V ′′)-cut, i.e. all edges {v, w}
with v ∈ V ′ and w ∈ V ′′.

CSL 2016

19:6 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

f0

f1

v∅

v{e}

v{f}

v{e,f}

e0

e1

w∅

w{e}

w{g}

w{e,g}

g0

g1

f0

f1

v{e}

v∅

v{e,f}

v{f}

e1

e0

w{e}

w∅

w{e,g}

w{g}

g0

g1

Figure 1 A subgraph of the graph G. The subgraph highlighted on the left corresponds to the
CFI-graph G{v}. The automorphism ρe maps G{v} to G{w}, which is highlighted on the right.

A preordered graph G≺ = (V,E,≺) is a graph G = (V,E) equipped with a preorder ≺ on
the vertices. For ease of notation, we identify the graph G with any given ordered version. A
set of ≺-incomparable elements is called a colour class. We write Ci for the ith colour class
in the linear order ≺ induces on the colour classes. A graph has colour classes of logarithmic
size if |Ci| ≤ log |V | for all colour classes Ci.

In the following, we present a definition and some properties of the Cai-Fürer-Immerman
graphs. The CFI construction determines for each connected graph and each subset T of the
vertex set a CFI-graph GT . All GT fall into two isomorphism classes (even and odd). The
CFI query then asks, given a CFI-graph, whether it is even or odd.

Given G = (V,E), the CFI-graphs are certain subgraphs of the graph G defined in the
following. The graph G contains, for each vertex v ∈ V , the vertex gadget v∗ = {vX : X ⊆
E(v)} and, for each edge e ∈ E, the edge gadget e∗ = {e0, e1}. The vertices vX occurring in
the vertex gadgets are called inner vertices. Let V̂ = ∪v∈V v∗, Ê = ∪e∈Ee∗, and for a subset
F ⊆ E, F̂ = ∪e∈F e∗. The edge set of G is {{vX , e1} : vX ∈ V̂ , e ∈ X} ∪ {{vX , e0} : vX ∈
V̂ , e ∈ E(v) \X}.

Now let T ⊆ V . Then v∗T =
{
vX : |X| is odd

}
if v ∈ T (then v∗T is an odd gadget),

v∗T =
{
vX : |X| is even

}
if v /∈ T (then v∗T is even), and V̂T = ∪v∈V v∗T . The graph GT is the

subgraph of G induced by Ê ∪
⋃
v∈V v

∗
T . We call GT even if |T | is even, and odd otherwise.

The construction is illustrated in Figure 1.

Consider an automorphism of G that fixes v∗ set-wise for each v ∈ V . Such an auto-
morphism is always completely determined by a set F ⊆ E such that for each e ∈ F , e0 and
e1 are swapped. Formally, ρF is the mapping ei 7→ ei−1 for e ∈ F and i ∈ {0, 1}, ei 7→ ei

for e /∈ F , and vX 7→ vX4(F∩E(v)). The group of automorphisms of G that fix each v∗ is
generated by

{
ρe := ρ{e} : e ∈ E

}
.

As illustrated in Figure 1, each ρe maps GT to some GS such that T and S have the same
parity. As shown by Cai, Fürer and Immerman [6], it follows that, for every connected graph
G, GS ∼= GT if and only if |S| ≡ |T | (mod 2). In other words, the even and odd CFI-graphs
are uniquely determined up to isomorphism, and the automorphisms of G stabilising all v∗
are exactly the isomorphisms between graphs GT ,GS of the same parity.

The class of CFI-graphs over a graph class C is the class of all GT for G ∈ C. If G is
preordered by ≺, then ≺ induces an order on G (and thus on all GT) in the obvious way.

W. Pakusa, S. Schalthöfer, and E. Selman 19:7

4 Computing the Parity of Cai-Fürer-Immerman Graphs over
Ordered Graphs

A simple polynomial-time procedure for deciding the parity of a Cai-Fürer-Immerman graph
just assigns to each vertex ei ∈ Ê the label e0 or e1 and labels the vertices in V̂ accordingly.
By the nature of the automorphisms of G, this yields a graph GT that has the same parity
as the input graph. Then T and thus the parity of GT can be determined easily.

A naive way to use that approach in CPT would require computing all the assignments
of labels e0 and e1 in parallel and hence involve exponentially many sets, violating the
polynomial resource bounds. However, the CPT procedure proposed by Dawar, Richerby and
Rossman in [10] constructs an object which makes it possible to compute such an assignment
in CPT using a linear order on the underlying graph.

Their construction represents, for each vertex v of the underlying graph, whether v is in
T in the following way: τv contains the neighbourhoods of all inner vertices occurring in the
given graph GT , and τ̃v contains the neighbourhoods of the remaining inner vertices of G.
So each neighbourhood in τv contains an odd number of CFI vertices of the form e1 if, and
only if v ∈ T , if, and only if the number of e1 in the neighbourhoods in τ̃v is even.

Now consider an automorphism ρ of G that maps GT to some GS . Then, for each
v ∈ S4T , ρ swaps τv and τ̃v.

The aim is to compute the parity of |T |, which means to determine the number of τv
whose elements contain an odd number of e1 each, i.e. summing over all τv. Whenever an
even number of τv is replaced by the respective τ̃v, the sum does not change, so, in particular,
the sum is not affected by the automorphisms of G.

In order to compute the sum, the τv and τ̃v are combined into sets µi, µ̃i for i ≤ |V |
representing the parity of |T | restricted to the first i vertices v1, . . . , vi (with respect to
the linear order on V): µ1 = τv1 , µ̃1 = τ̃v1 , µi+1 = {〈µi, τvi+1〉, 〈µ̃i, τ̃vi+1〉}, and µ̃i+1 =
{〈µi, τ̃vi+1〉, 〈µ̃i, τvi+1〉}. The algorithm computes the object µ|V |, which encodes the parity
of |T |.

The µi, µ̃i can be viewed as representing sequences of τv, τ̃v such that the number of
occurring τ̃v is even in µi and odd in µ̃i. An automorphism of G mapping GT to GS then
changes an even number of τv to τ̃v (since S4T is even) and thus can be shown to preserve
µ|V | and µ̃|V |. This property is called super-symmetry.

Super-symmetry means that whenever e0, e1 ∈ e∗ are swapped throughout the transitive
closure of µ|V |, µ|V | is fixed. Thus, assigning labels from {0, 1} to a fixed edge gadget e∗
in both possible ways in µ|V | yields a unique result. These assignments can be computed
sequentially using the linear order, resulting in a modified set where all neighbourhoods in
τv contain an odd number of 1s if, and only if v ∈ T . From this object, the parity of |T | can
be computed.

5 Graphs with Colour Classes of Logarithmic Size

The algorithm from [10] processes the CFI-graph according to the linear order on the
underlying graph. We generalise that construction by defining objects that correspond to
multiple linear orders consistent with a given preorder, and obtain

I Theorem 1. Let K be the class of connected, preordered graphs G = (V,E,≺) such that
the size of each colour class is bounded by log |V |. The CFI query over K is definable in
Choiceless Polynomial Time.

CSL 2016

19:8 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

Without the linear order, there is no unique notion of the sets µi, µ̃i described above
that represent the parity of |T ∩ {v1, . . . , vi}|. Instead, we define sets µM , µ̃M encoding the
parity of |T ∩M | for more general subsets M ⊆ V . The number of considered subsets M is
kept small using the preorder. First, we construct objects for all subsets of the first colour
class C1, and obtain sets µC1 and µ̃C1 for the full colour class. These are combined with all
subsets of the second colour class, which yields µC1∪C2 , and so on for the remaining colour
classes.

But the encoding of the µM , µ̃M should again represent adding the value of a specific τv to
a previous value. Therefore, for each subsetM ⊆ V for which µM and µ̃M are constructed, all
ways to decompose M as M = N] {v} for some v in the current colour class are considered.

To replace the ei with their labels from {0, 1}, the algorithm in [10] also uses the linear
order on the vertices. Because this is not possible with only a preorder, we already assign
labels to the edge gadgets during the construction of the µM , µ̃M . More precisely, when
viewing M as N] {v}, all edges in the cut (N, {v}) are processed. So our CPT algorithm
does not actually compute the µM and µ̃M , but modified objects νM , ν̃M where all ei for
e ∈ E[M] in the subgraph induced by M are already processed. Finally, the parity of T is
extracted from the object νV using a parity function p.

Next, we describe these steps in detail. The sets τv, τ̃v for v ∈ V are defined as in [10],
with one difference: To allow for assigning labels 0 or 1 to several vertices at once later
without losing information, we equip each neighbourhood with a parity check bit, which will
encode the parity of the number of edges that are labelled 1.

I Definition 2. Let v ∈ V . Then τTv = {〈N(vX), 0〉 : vX ∈ v∗T } and τ̃Tv = {〈N(vX), 0〉 :
vX ∈ v∗ \ v∗T }, where N(vX) is the neighbourhood of vX in the full graph G.

We omit the superscript T whenever it is clear from the context.
The τv, τ̃v are combined to obtain objects µM , µ̃M for certain subsets M ⊆ V consistent

with the preorder.

I Definition 3. LetMi be the set of all M ⊆ V such that
⋃
j<i Cj ⊆M and M ⊆

⋃
j≤i Cj .

Then letM be the set of all M ⊆ V that are inMi for some i.

For subsets M ∈M, the objects µM , µ̃M are constructed inductively as follows.

I Definition 4. Let T ⊆ V , v ∈ V , M ∈ M and v /∈ M . Then µT{v} = τTv , µ̃T{v} = τ̃Tv ,
µTM,v = {〈µTM , τTv 〉, 〈µ̃TM , τ̃Tv 〉}, µ̃TM,v = {〈µTM , τ̃Tv 〉, 〈µ̃TM , τTv 〉}, and, for |M | > 1, µTM = {µTN,w :
N ∈M and N] {w} = M} and µ̃TM = {µ̃TN,w : N ∈M and N] {w} = M}.

Like the µTi , µ̃Ti in the procedure by Dawar, Richerby and Rossman, the µTM , µ̃TM
characterise the parity of |T ∩M |, which can be shown by an easy induction on |M |.

I Lemma 5. µTM = µSM ⇔ µ̃TM = µ̃SM ⇔ |S ∩M | ≡ |T ∩M | (mod 2) and
µTM = µ̃SM ⇔ µ̃TM = µSM ⇔ |S ∩M | 6≡ |T ∩M | (mod 2).

Next we define the objects νM , ν̃M obtained by labelling the edge gadgets corresponding
to the edges in the cut (N, {v}) when combining an object for a smaller set N with τv or
τ̃v. For fixed v, a sufficiently small set of such mappings is determined by the vertices in
v∗: Each vX defines through its neighbourhood a unique vertex from each adjacent edge
gadget. This allows to define, for each pair vX,M , a mapping labelling edge vertices with
binary values and aggregating these values in the parity check bit.

I Definition 6. Let vX ∈ V̂ and M ⊆ V . Then, for each set z and i ∈ {0, 1}, let
BvX,M (〈z, i〉) = 〈z \ ̂(M, {v}), j〉, where j = i + | ̂(M, {v}) ∩ N(vX)| mod 2, and, for any
other set y, BvX,M (y) = {BvX,M (z) : z ∈ y}.

W. Pakusa, S. Schalthöfer, and E. Selman 19:9

Recall that ̂(M, {v}) denotes the set of vertices in edge gadgets corresponding to edges in
the cut (M, {v}).

Like the mappings from [10] that label the ei by i or 1− i for a single edge e ∈ E, the
BvX,M are computed simultaneously for all vX ∈ v∗. By similar symmetry arguments, this
yields a unique object.

I Lemma 7. If z ∈ HF(Ê) is fixed by the automorphisms ρe for all e ∈ (M, {v}), then
BvX,M (z) = BvY,M (z) for any X,Y ⊆ E(v) and BvX,M (z) is fixed by the same automorphisms.

Proof. Let X ′ = X ∩ (M, {v}) and Y ′ = Y ∩ (M, {v}). Since X ′4Y ′ ⊆ (M, {v}), z =
ρX′4Y ′(z). By definition of BvX,M and BvY,M , BvX,M (ρX′4Y ′(z)) = BvY,M (z). Thus
BvX,M (z) = BvX,M (ρX′4Y ′(z)) = BvY,M (z). Obviously ρe fixes BvX,M (z) for e ∈ (M, {v}),
because the corresponding CFI vertices do not occur in BvX,M (z). J

The previous lemma justifies writing Bv,M (z) for the mapping removing edges along the
cut (M,v) if z is fixed by suitable automorphisms. Using these mappings, the objects νM ,
ν̃M can be defined. The sets ν, ν̃ for sets {v} or pairs M,v are defined like the corresponding
sets µ, µ̃, where µ is now replaced by ν. The only change occurs when aggregating νM and
ν̃M : Then the corresponding mapping is applied to the νN,v and ν̃N,v

I Definition 8. LetM ∈M with |M | > 1. νM = {Bv,N (νN,v) : N] {v} = M and N ∈M}
and ν̃M = {Bv,N (ν̃N,v) : N] {v} = M and N ∈M}.

To show that the νM , ν̃M are well-defined, we have to show that the construction only
uses the mapping Bv,M for sets that are fixed by all necessary automorphisms.

The proof uses that, like µTM , µ̃TM , the sets νTM , ν̃TM characterise the parity of |T ∩M |. To
show this, and make the νTM , ν̃TM more accessible to further analysis, we show that νM (resp.
ν̃M) arises from µM (resp. µ̃M) by labelling and removing all edges in E[M]. That notion
is formalised via mappings labelling arbitrary (sets of) edge gadgets in a way that is not
CPT-definable in general, but makes it possible to reason about a specific replacement. We
then show that, on the objects νM , ν̃M , both kinds of mappings have the same effect.

I Definition 9. Let e ∈ E. Then Be(〈z, i〉) = 〈z \ {e}, i + j〉, where j = 1 if and only if
e1 ∈ z and + is addition modulo 2. For any other set y, Be(y) = {Be(z) : z ∈ y}. Let F ⊆ E
and let e1, . . . , ek be an enumeration of F . Then BF = Be1 ◦ · · · ◦Bek

. Note that, for any
e 6= e′, Be ◦Be′ = Be′ ◦Be, so BF is well-defined.

Now the sets νM , ν̃M can be characterised as follows.

I Lemma 10. Let S, T ⊆ V , v ∈ V and M,N ∈M such that N] {v} = M .
1. (a) νTN,v = νSN,v ⇔ ν̃TN,v = ν̃SN,v ⇔ |T ∩M | ≡ |S ∩M | (mod 2),

(b) ν̃TN,v = νSN,v ⇔ νTN,v = ν̃SN,v ⇔ |T ∩M | 6≡ |S ∩M | (mod 2).
2. νN,v, ν̃N,v are fixed by the automorphism ρe for every e ∈ (N, {v}).
3. νM = BE[M](µ̃M) and ν̃M = BE[M](µM).
4. (a) νTM = νSM ⇔ ν̃TM = ν̃SM ⇔ |T ∩M | ≡ |S ∩M | (mod 2),

(b) νTM = ν̃SM ⇔ ν̃TM = νSM ⇔ |T ∩M | 6≡ |S ∩M | (mod 2).

Proof. Simultaneously by induction on |M |. J

I Corollary 11. νM is well-defined for all M ∈M.

So the final set νV is a hereditarily finite set over {0, 1} representing the parity of |T |.
To extract that parity, we use the following aggregation function on tc(νV):

CSL 2016

19:10 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

I Definition 12.

p(x) =


i, x =

〈
N
(
vX
)
, i
〉
,

p(x1) + p(x2) mod 2, x = 〈x1, x2〉 and x2 /∈ {0, 1},∏
y∈x p(y), x is a set.

I Lemma 13. p(νTV) = 0 if and only if |T | is even.

Proof. As, by Lemma 10, νTV = BE(µTV) and BE labels the edges throughout the transitive
closure, we can reason inductively about objects for smaller sets where all edges have been
removed. Note that it suffices to consider the cases T = ∅ and T = {x} for some x ∈ V . Thus
the lemma is shown if the following statements are verified for all M ⊆ V and v ∈ V \M ,
where P (x) denotes p(BE(x)):

P (µ∅M) = P (µ∅M,v) = 0, P (µ̃∅M) = P (µ̃∅M,v) = 1,
P (µ{x}M,v) = 1⇔ P (µ̃{x}M,v) = 0 ⇔ x ∈M ∪ {v},
P (µ{x}M) = 1⇔ P (µ̃{x}M) = 0⇔ x ∈M .

The statements can be shown by induction on |M |, and follow from the definition of the
objects τTv , τ̃Tv , µTM , µ̃TM and the mappings BE and p. J

It remains to show that the construction is CPT-definable. All sets used in the computation
can be defined by the set-theoretic operations available in CPT. Thus we only need to prove
that the construction does not use too many or too complex objects.

I Lemma 14. | tc(µTM)| is polynomial in |GT | for M,T ⊆ V .

Proof. First note that the sets µM , µ̃M for |M | = k+ 1 are constructed from objects created
for sets of size k, so it suffices to count the newly created sets for |M | = k + 1. The sets
µM,v, µ̃M,v are constructed for at most 2Ci many sets and |Ci| many vertices for some colour
class Ci of logarithmic size. Furthermore, there are also at most 2|Ci| many new sets µM
and µ̃M , which are built from µM,v and µ̃M,v. J

By Lemma 10, | tc(νM)| ≤ | tc(µM)| for all M ⊆ V . So our construction is CPT-definable,
which completes the proof of Theorem 1.

6 Classes of Unordered Graphs with Linear Maximal Degree

The techniques used for graphs with colour classes of logarithmic size can be further refined
for classes of graphs that do not possess any order, but where the maximal degree is linear in
the size of the graph. Note that this implies that the CFI-query over, for example, complete
graphs is CPT-definable, verifying a claim from [10].

I Theorem 15. For every k ∈ N, the CFI query over the graphs G = (V,E) with maximal
degree ≥ |V |k is definable in CPT using only sets of constant rank not depending on k.

We now explain the modifications made to adapt the procedure presented in the previous
section to these graph classes.

As previously, we start with an object τv for each v ∈ V , that encodes whether v ∈ T . In
the case of logarithmic colour classes, the number of subsets for which the “sum” of the τv is
computed is kept small by using the preorder. The set of these subsets can be defined in
CPT. For unordered graphs, CPT cannot distinguish between any two equally sized subsets
of the vertex set. However, the CFI-graphs graphs are large enough to permit considering all

W. Pakusa, S. Schalthöfer, and E. Selman 19:11

subsets of V , because for the vertex v with maximal degree, each vX corresponds to a subset
of v’s ≥ |V |k many neighbours.

Recall that, in the algorithm in [10], sequences of τv and τ̃v with an even number of τ̃v
are encoded. With access to all subsets of V , these sequences can be replaced by all sets of
τv and τ̃v containing an even number of τ̃v. The sets µM , µ̃M for M ⊆ V defined in that
way again characterise the parity of |T ∩M |.

We again use the mappings Bv,M arising from Lemma 7 to remove edges along cuts
(M, v). However, these mappings require a vertex v to be fixed during the construction. So
we formalise the construction of the µM , µ̃M as successively enlarging the sets M by a single
vertex. For instance, whenever M = N] {v}, each set in µM containing an even number of
τ̃w can be constructed by adding τv to a set in µN , or τ̃v to a set in µ̃M . Since the choice of
N and v does not affect the resulting sets, µM can be computed by simultaneously using all
these decompositions of M .

So the sets νM with labelled edges are constructed by splitting M into all possible
decompositions N] {v}, adding τv (resp. τ̃V) to the sets in µN (µ̃N) and processing the
edges along the cut (N, {v}).

Analogously to Lemma 10, we can show that the sets νM , ν̃M are well-defined, again
using the mappings BF from Definition 9, that remove edges in a specific set F ⊆ E. It also
follows that νM is well-defined for all M ⊆ V .

The parity of |T | is computed with a new aggregation function. It also first extracts
and multiplies the parity bits from the neighbourhoods in each τv. Since the parity of the
neighbourhoods in τv, τ̃v determines whether v∗ is an odd gadget, the product is 1 for τv if
and only if v∗ is odd. Next, the sum of the parities (modulo 2) of each set in νV consisting
of an even number of τ̃v is computed. By definition, that sum is even for every such set if
and only if the number of odd vertex gadgets is even. So it is possible to extract the parity
of |T | from νV .

It remains to show that the νM can be constructed in Choiceless Polynomial Time. One
of the main obstacles is to compute sums modulo 2 when applying the mappings Bv,M and
p, because counting would in general require ordinals, which do not have constant rank.
Furthermore, we need to show that the size of the transitive closure of each νM is polynomial
in |G|.

I Lemma 16. For any definable set x ∈ HF(A) of rank k with |x| logarithmic in |A|, the
parity of |x| can be computed in CPT over A with sets of rank k.

First note that the size of each neighbourhood occurring in the transitive closure of each
νM is bounded by |V | and thus logarithmic in the size of the CFI-graph, so the lemma can
be applied to the computation of the mappings Bv,M .

Proof. For all n ≤ |x|, compute the set of all subsets of x of size n and store their parity.
Start with the set of all singletons and parity 1. Given sets of size n, construct the sets of
size n+ 1 analogously to the construction of the µM and flip the parity. As soon as the set
{x} itself has been constructed, the parity of |x| can be extracted. J

I Lemma 17. If G has a vertex of degree ≥ |V |
k , νTV can be constructed in Choiceless

Polynomial Time from the input GT .

Proof. Each set νM or ν̃M constructed by the algorithm contains ≤ 2|M | many sets consisting
of (polynomially sized) sets τv and τ̃v, and there are 2|V | subsets M . The number and size
of the νM and ν̃M is polynomial in |GT | because some v ∈ V has ≥ |V |k neighbours, so the

CSL 2016

19:12 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

vertex gadget v∗T is of size 2
|V |

k −1. So the transitive closure of all constructed objects is of
polynomial size. J

7 Computations Are More Powerful Over Sets Than Over Tuples

In this section we want to show that every CPT-program which decides the Cai-Fürer-
Immerman query over complete graphs (where the maximal degree is obviously linear) has
to use set-like objects.

Of course, the immediate question is: what are set-like objects?
In order to motivate our following definition, let us consider a simple example. Let

G = (V,E) be a complete graph over a set V with |V | = n vertices. The automorphism group
of G is the full symmetric group Γ = Sym(V). Moreover, let x = {a0, . . . , ak−1} ⊆ V be a
set consisting of k distinct vertices, and let y = (a0, . . . , ak−1) ∈ V k be some arrangement of
these k vertices as a k-tuple over V . Since every CPT-computation on G is invariant under
the action of Γ, every CPT-program which constructs x also has to completely construct
Orbit(x) = {π(x) : π ∈ Γ} of x (the same holds for every program which constructs y).

The question is, what do we know about the sizes of the orbits of x and y? It is easy
to see that |Orbit(x)| =

(
n
k

)
while |Orbit(y)| =

(
n
k

)
· k!. Hence, for large k the orbit of

the set x is much smaller than the size of the orbit of the tuple y (although they are
defined over the same set of atoms). To put it differently, for large k the size of the
stabiliser Stab(x) of x is much larger than the size of the stabiliser Stab(y) of y. Indeed,
|Stab(x)| = k! · (n − k)! and |Stab(y)| = (n − k)!. Obviously, the reason is that in order
to fix the tuple y we have to fix every entry ai point-wise whereas we can permute the
elements {a0, . . . , ak−1} while keeping x fixed. In algebraic terms, the point-wise stabiliser
Stab•{a1, . . . , ak} = {π : π(ai) = ai for all i < k} of a0, . . . , ak−1 coincides with Stab(y)
while it is a subgroup of Stab(x) of index k!.

I Definition 18. Let A be a structure with automorphism group Γ = Aut(A). Let x ∈ HF(A).
A set σ ⊆ A of atoms is a support for x if Stab•(σ) ≤ Stab(x), and σ is called a strong
support of x if Stab•(σ) = Stab(x).

Accordingly, we say that an element x ∈ HF(A) is strongly supported if it has a strong
support. For example, every atom a ∈ A is strongly supported and every x ∈ HF(A)
with Stab(x) = Γ has the strong support ∅. Note that for the above example, the set
{a0, . . . , ak−1} is a support for the set x = {a0, . . . , ak−1} and it is a strong support for the
tuple y = (a0, . . . , ak−1). The notion of strongly supported sets is taken as a working definition
for objects which are “not set-like”, or more intuitively, which are “sequence-like”. Those
objects enforce an inherent order on the supporting atoms. We aim to prove Theorem 23: no
CPT-program which can only access strongly supported objects can express the CFI query
over complete graphs.

As a starting point for the analysis of strong supports, we examine the structure of the
automorphism group of GT .

I Lemma 19 (Action of Sym(V)). Let G = (V,E) be a complete graph and let SV =
Aut(G) = Sym(V). Then every π ∈ SV can be lifted to an automorphism ρ ∈ Γ = Aut(GT)
such that ρ(v∗) = ρ(w∗) if and only if π(v) = π(w) for all v, w ∈ V .

Proof. Constructing ρ for a transposition (v, w) ∈ SV , one has to make sure that all edge
gadgets {u, v} and {u,w}, and their neighbours in the vertex gadgets, are exchanged, and
the parity of v∗ and w∗ is exchanged if necessary. J

W. Pakusa, S. Schalthöfer, and E. Selman 19:13

The automorphism group Γ = Aut(GT) of a CFI-graph over a complete graph G = (V,E)
can be decomposed as follows. Let us denote by ∆ the subgroup of Γ which stabilises all sets of
inner vertices v∗ for v ∈ V , i.e. ∆ =

⋂
v∈V Stab(v∗). Then ∆ is a normal subgroup of Γ which

can be identified with a subgroup of Z|E|2 and which coincides with the CFI-automorphism
group that one obtains if the underlying complete graph is ordered. It then follows, by the
preceding lemma, that Γ/∆ ∼= SV . We will often identify SV with this group and also the
corresponding actions of Γ/∆ on {v∗ : v ∈ V } and of SV on V .

Next, we explain the idea of our proof, which is based on the techniques developed by
Dawar, Richerby and Rossman in [10]. It is well-known that every CPT-program Π can be
translated into a formula ϕΠ of infinitary logic with counting and k variables, for a certain k
which depends on Π (we denote this logic by Ck∞ω), with the following property: for every
input structure A, the formula ϕΠ is equivalent to Π in the sense that

A |= Π ⇔ Active(Π,A) |= ϕΠ,

where Active(Π,A) is the extension of A by all hereditarily finite sets which are activated
(intuitively: have to be constructed) during the run of Π on A. For details see [10, 3, 4].
Hence, if we can show for two structures A and B that Active(Π,A) and Active(Π,B) cannot
be distinguished by any Ck∞ω-formula (Active(Π,A) ≡Ck Active(Π,B)), then we can conclude
that Π cannot distinguish between A and B as well. However, there are two serious difficulties
in this approach:

Showing that Active(Π,B) ≡Ck Active(Π,B) is combinatorially extremely challenging,
because we have to relate highly-nested sets over the two input structures.
The structures Active(Π,A) and Active(Π,B) depend on the program Π. This is prob-
lematic as it would require to show Ck∞ω-equivalence of structures which are defined
rather indirectly by the run of the CPT-program Π.

There is a very nice approach, which was first used by Blass, Gurevich and Shelah in [3]
and later refined and generalised by Dawar, Richerby and Rossman in [10, 18] which solves
both problems at once. Very roughly, the idea is that for certain structures A we can
over-approximate Active(Π,A) by the structure HF(A)` consisting of all hereditarily finite
sets which are transitively `-supported, that is those sets which have a support of size at
most ` and whose transitive closure only consists of sets which again have a support of size
at most `. Specifically, if we can prove that all sets which can be activated in a run of Π
on A are `-supported, then we know that Active(Π,A) ⊆ HF(A)`. More importantly, if the
orbits of tuples (of sufficient length) in the structure A are definable in Cm∞ω for a certain
m (A is then called Cm-homogeneous), then we can obtain a description of the possibly
highly-nested transitively `-supported sets in terms of their supports (which are lists of
atoms) and syntactic objects which do not depend on A. This reduces the complexity to deal
with highly nested sets in HF(A) to flat objects over A. Our aim is to adapt the approach of
Dawar, Richerby and Rossman (Theorem 22) for our application. To this end CFI-graphs
over complete graphs should satisfy the following requirements:

they are Cm-homogeneous for a certain m (and large enough tuples), this is Lemma 20,
and
all objects which can be activated by a CPT-program that only uses strongly supported
sets have small supports (Lemma 21).

I Lemma 20 (Cm-homogeneity). Let n,m ∈ N such that 3 ≤ m ≤ n − 3. Let GT be a
CFI-graph over a complete graph G = (V,E) with |V | = n. Let ~a, ~b be tuples of vertices of GT
both of length i for some i ≤ m− 3. Then, (GT ,~a) ≡Cm (GT ,~b) implies Orbit(~a) = Orbit(~b).

CSL 2016

19:14 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

In other words, CFI-graphs over complete graphs with n vertices are Cm-homogeneous (with
respect to tuples of length i ≤ m− 3).

I Lemma 21 (Sizes of supports). For all q ≥ 1, 0 < ε < 1, we can find m ≥ 1 such that
for all strongly supported sets x ∈ HF(V̂T ∪ Ê) over CFI-graphs GT of complete graphs
G = (V,E) with |V | = n ≥ m vertices we have
|Orbit(x)| > 2n·q or
|σ| ≤ ε · n for some (not necessarily strong) support σ for x.

In other words, all strongly supported sets x ∈ HF(V̂T ∪ Ê) with small orbit |Orbit(x)| ≤ 2n·q
are (ε · n)-supported.

Proof. We assume that |Orbit(x)| ≤ 2n·q and choose a strong support σ ⊆ V̂T ∪ Ê for x
which is minimal with respect to ⊆. From the orbit stabiliser theorem, the fact that SV ≤ Γ
(Lemma 19), and since σ is a strong support for x it follows that

|SV |
|Stab•SV

(σ)| ≤
|Γ|

|Stab•Γ(σ)| = |Γ|
|StabΓ(x)| = |Orbit(x)| ≤ 2n·q. (1)

Our next aim is to show that the support σ induces a partition of V as V = V0]V1]· · ·]V`,
such that every automorphism π ∈ Stab•SV

(σ) respects this partition. More precisely, the
following holds:

Stab•SV
(σ) ≤ StabSV

(
⋃
v∈V0

v∗T) ∩ · · · ∩ StabSV
(
⋃
v∈V`

v∗T), and
` = |σ ∩ V̂T |, and
using the elements in σ as parameters one can define each of the sets Vi (inside the
structure GT) using a C`+2

∞ω -formula.

To simplify our notation, we set V ∗i =
⋃
v∈Vi

v∗T . To start, we first defineW ⊆ V as the set
of vertices v ∈ V such that σ contains an inner node from the CFI-gadget associated with the
vertex v, that is σ∩ v∗T 6= ∅. Then, clearly, Stab

•
SV

(σ) ≤
⋂
w∈W StabSV

({w∗T })∩StabSV
((V \

W)∗) and we obtain a first partition of V into |W |+1 many blocks as V =
⊎
w∈W {w}]V \W .

For all w ∈ W , we choose a witnessing element aw ∈ σ ∩ w∗T . We next want to show
that whenever we fix an additional element b ∈ σ ∩ w∗T for some w ∈ W and b 6= aw, then
we obtain a refined partition of V which still satisfies the above properties. We show this
by induction on the number i = 0, . . . , |σ ∩ V̂ T | − |W | of processed inner nodes which are
different from the aw. Thus, let us assume that we have already considered the elements
in σi = {aw, b1, . . . , bi : w ∈ W} ⊆ σ ∩ V̂ T and obtained a refined partition of V as
V =

⊎
w∈W {w}] V1] · · ·] Vi] V \ (

⋃i
j=1 Vj ∪W). Choose b ∈ (σ ∩ w∗T) \ σi for some

w ∈ W . Then aw = wX and b = wY for some sets X,Y ⊆ E(w). Then the set of edges in
X 4 Y ⊆ E(w) is C`+2

∞ω -definable and hence also the set of neighbours Z ⊆ V of w which are
incident with these edges. Assume that Z is a union of blocks from the old partition. Then b
would already be definable from the other parameters, a contradiction to the minimality of
σ. Hence, the partition can indeed be refined and the new blocks are again C`+2

∞ω -definable.
Next we obtain a bound on ` = |σ ∩ V̂ T |. We know from Equation 1 that∣∣SV /Stab•SV

(σ)
∣∣ ≤ 2n·q,

and also that Stab•SV
(σ) ≤ StabSV

(V ∗0) ∩ · · · ∩ StabSV
(V ∗`). Moreover, it is easy to see that

n!
(n−`)! ≤ |SV /(StabSV

(V ∗0) ∩ · · · ∩ StabSV
(V ∗`))|. It follows that n!/(n− `)! ≤ 2n·q.

By the Stirling formula we can find a constant c > 0 such that

` ≤ q

(logn+ log e) · n−
log c

(logn+ log e) .

W. Pakusa, S. Schalthöfer, and E. Selman 19:15

Hence, for large enough n it follows that ` ≤ ε · n. More generally, the argument shows that
the number ` of parts in a partition of V as above is, for large n, smaller than ε · n. However,
to prove our original claim we have to find a support σ of x such that |σ| ≤ ε · n (by now we
only proved that ` = |σ ∩ V̂ T | ≤ ε · n).

Hence, in a second step we consider the elements in σ which are part of Ê. Every such
element ei ∈ σ ∩ Ê corresponds to an edge e = {v, w} in the original complete graph. As
above, we can use the ei to refine the partition of V , because we can define (using ei)
the new block {v, w}. However, in contrast to the case above, it might happen that the
partition cannot be refined although we still have unprocessed ei ∈ σ ∩ Ê left. There are
two possible reasons: either we already identified a block {v, w} (for instance, by using
inner nodes) or we have refined V into one block {v} and another block {w}. We overcome
this issue by modifying the strong support σ. In fact, we can replace each ei ∈ σ where
e = {v, w} by two inner nodes a ∈ v∗T and b ∈ w∗T to obtain a new support σ′ for x, i.e.
Stab•Γ(σ′) ≤ Stab•Γ(σ) = Stab(x). Note, however, that σ′ might no longer be a strong support
for x. The question remains how many inner nodes we have to add to cover all edges in the
support for which we do not obtain a refinement of our partition. The answer is: not more
than we have blocks in our partition after a maximal refinement. This is because the only
cases where edges do not lead to refinements of the partition can be resolved by fixing an
inner node for one vertex in a block of size one or two. Hence, we can find a new support σ′
for x of size |σ′| ≤ 2 · ` where ` denotes the maximal length of a partition of V that we can
get by using first all inner nodes and then some (maximal set of) edge nodes. Since we can
choose n large enough such that ` ≤ ε

2 · n, this suffices to prove our claim. J

I Theorem 22 (Dawar, Richerby, Rossman). Let ` ≥ 1, k ≥ 1 and let A and B be two
C`·k-homogeneous structures. If A ≡C`·k B, then HF(A)` ≡Ck HF(B)`.

I Theorem 23. Let Π ∈ CPT be a program which activates only strongly supported sets
and which has resource bounds p(n) = nq for some q ≥ 1. Then Π cannot decide the
Cai-Fürer-Immerman query over complete graphs.

Proof. To obtain a contradiction, assume that there is a CPT-program Π with the above
properties. First we translate Π into an equivalent Ck∞ω-formula ϕΠ which simulates Π on
Active(Π,GT), i.e. GT |= Π if, and only if, Active(Π,GT) |= ϕΠ.

Secondly, we choose m ≥ 1 sufficiently large (according to Lemma 21 for q and ε = 1
2k)

such that all sets x ∈ HF(GT) which can be activated by Π in CFI-graphs GT over complete
graphs G = (V,E) with |V | = n ≥ m vertices have a support of size at most 1

2k · n = ε · n.
Hence Active(Π,GT) ⊆ HF(GT)ε·n. Let GT be an even and GS be an odd CFI-graph over
such a complete graph G. It is well-known [6] that GT ≡Cn/2 GS . Since n/2 = ε ·n · k, we can
apply Theorem 22 to conclude that HF(GT)ε·n ≡Ck HF(GS)ε·n. Hence, Π cannot distinguish
between the two CFI-graphs. J

This result provides a deeper understanding of the expressive power of fragments of Choice-
less Polynomial Time. Interpretation Logic, which was introduced in [12], characterises CPT
and some of its fragments in terms of first-order interpretations (with the Härtig quantifier
for equicardinality testing). This framework allows to iterate a first-order interpretation until
a first-order halting condition is satisfied, and evaluates a first-order sentence on the resulting
structure (for details, see [12]), with polynomial bounds on the number of iterations and the
size of the intermediate structures. The fragment of interpretation logic that arises when
only interpretations without congruences are allowed, i.e. different tuples cannot be identified
to obtain a single element of the interpreted structure, has already been shown to be strictly

CSL 2016

19:16 Definability of Cai-Fürer-Immerman Problems in Choiceless Polynomial Time

weaker than CPT. Without counting (respectively equicardinality quantifiers), this fragment
corresponds to the database query language whilenew, which permits construction of new
elements for definable tuples. For the fragment with counting, it could be shown [12] that,
on structures with bounded colour class size, only CPT computations with sets of bounded
rank can be simulated. Theorem 23 now implies that the fragment not only fails to define
sets of unbounded rank, but also any kind of set-like objects.

I Corollary 24. Polynomial-Time Interpretation Logic without congruences cannot define
the CFI query over complete graphs.

Proof. A CPT-program simulating an Interpretation Logic computation constructs exactly
those sets that represent the interpreted structures, i.e. a polynomially sized, first-order
definable set of tuples for each structure, and relations in the structures. These objects are
strongly supported. J

8 Conclusion and Future Work

We generalise previous expressibility results for the CFI query in Choiceless Polynomial Time
to graphs with colour classes of logarithmic size and graph classes where the maximal degree
is linear. In the latter case, CPT over sets of bounded rank suffices, which illustrates that on
large enough input structures, the full power of CPT is not exhausted even for structures
that, like the CFI-graphs, have many symmetries. The first result suggests that results for
structures with bounded colour class size may be lifted to larger colour classes.

Clearly, a CPT procedure for the CFI query over arbitrary graphs remains desirable.
Especially since graph classes with vertices of large (linear) degree are already covered, graphs
with bounded degree, especially the possibly simpler case of 3-regular graphs, seem to be an
important benchmark for the general case.

Another promising direction for future work seems to be the connection between CFI-
graphs and linear algebra. The CFI problems studied here may give rise to classes of linear
equation systems that are solvable in CPT, which would advance the study of expressibility
of linear algebra in CPT and thus the connection between CPT and Rank Logic.

On the other hand, our inexpressibility result for CPT without set-like objects separates
two of the few known natural fragments of CPT. Our characterisation of set-like objects
could provide new insights for other sequence-based formalisms.

References
1 F. Abu Zaid, E. Grädel, M. Grohe, and W. Pakusa. Choiceless Polynomial Time on

structures with small Abelian colour classes. In MFCS 2014, volume 8634 of LNCS, pages
50–62. Springer, 2014.

2 A. Blass. Why sets? In Pillars of Computer Science, volume 4800 of LNCS, pages 179–198.
Springer, 2008. doi:10.1007/978-3-540-78127-1_11.

3 A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and
Applied Logic, 100(1):141–187, 1999.

4 A. Blass, Y. Gurevich, and S. Shelah. On polynomial time computation over unordered
structures. J. Symb. Logic, 67(3):1093–1125, 2002.

5 Andreas Blass, Yuri Gurevich, and Jan Van den Bussche. Abstract state machines and
computationally complete query languages. In International Workshop on Abstract State
Machines, pages 22–33. Springer, 2000.

6 J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

http://dx.doi.org/10.1007/978-3-540-78127-1_11

W. Pakusa, S. Schalthöfer, and E. Selman 19:17

7 A. Chandra and D. Harel. Structure and complexity for relational queries. Journal of
Computer and System Sciences, 25:99–128, 1982.

8 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
pages 8–21, 2015.

9 A. Dawar, M. Grohe, B. Holm, and B. Laubner. Logics with rank operators. In LICS 2009,
pages 113–122, 2009.

10 A. Dawar, D. Richerby, and B. Rossman. Choiceless polynomial time, counting and the
Cai–Fürer–Immerman graphs. Ann. Pure Appl. Logic, 152(1), 2008.

11 E. Grädel and M. Grohe. Is Polynomial Time Choiceless? In Fields of Logic and Compu-
tation II., volume 9300 of LNCS, pages 193–209. Springer, 2015.

12 E. Grädel, Ł. Kaiser, W. Pakusa, and S. Schalthöfer. Characterising Choiceless Polynomial
Time with First-Order Interpretations. In LICS, 2015.

13 E. Grädel and W. Pakusa. Rank logic is dead, long live rank logic! CoRR (a conference
version appeared in the proceedings of CSL’15), abs/1503.05423, 2015.

14 M. Grohe. The quest for a logic capturing PTIME. In Logic in Computer Science, 2008,
(LICS’08), pages 267–271. IEEE, 2008.

15 Y. Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical
Computer Science. Computer Science Press, 1988.

16 N. Immerman. Relational queries computable in polynomial time. Inf. and Control, 68:86–
104, 1986.

17 B. Laubner. The Structure of Graphs and New Logics for the Characterization of Polyno-
mial Time. PhD thesis, HU Berlin, 2011.

18 B. Rossman. Choiceless computation and symmetry. In Fields of Logic and Computation,
LNCS, pages 565–580. Springer, 2010.

19 M. Y. Vardi. The complexity of relational query languages. In STOC’82, pages 137–146.
ACM Press, 1982.

CSL 2016

	Introduction
	Choiceless Polynomial Time
	Graphs and the Cai-Fürer-Immerman Construction
	Computing the Parity of Cai-Fürer-Immerman Graphs over Ordered Graphs
	Graphs with Colour Classes of Logarithmic Size
	Classes of Unordered Graphs with Linear Maximal Degree
	Computations Are More Powerful Over Sets Than Over Tuples
	Conclusion and Future Work

