
Limitations of Choiceless Computation

Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der
RWTH Aachen University zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Benedikt Pago, M.Sc.

aus München

Berichter: Universitätsprofessor Dr. Erich Grädel
Professor Dr. Anuj Dawar

Tag der mündlichen Prüfung: 12. Juli 2023

Diese Dissertation ist auf den Internetseiten der Universitätsbibliothek online verfügbar.

Abstract

One of the central open questions in finite model theory asks whether there exists a
logic that captures polynomial time. This question is significant for several reasons, one
of them being that a negative answer would separate P from NP, by Fagin’s theorem.
Yuri Gurevich, who was the first to make this question precise, conjectured that no
logic captures polynomial time. This motivates the research on lower bounds against
symmetric computation models contained in Ptime. One of the few such formalisms
that have not yet been separated from Ptime is the logic Choiceless Polynomial Time
(CPT). Establishing strong lower bounds for CPT has been a challenging problem ever
since its invention by Blass, Gurevich and Shelah in 1999. This thesis focuses exactly
on this goal. Our approach is mainly based on the famous Cai-Fürer-Immerman (CFI)
query, which can be seen as an instance of the graph isomorphism problem but also as
a linear equation system over the field Z2. Variants of this problem have been used to
separate fixed-point logic with counting and rank logic from Ptime. Results by Dawar,
Richerby and Rossman, and subsequently by Pakusa, Schalthöfer and Selman show that
the CFI-query is definable in CPT in the following cases: over linearly ordered base
graphs, preordered base graphs with colour classes of logarithmic size, and unordered base
graphs of linear degree. However, the general unordered case remains open. In Chapter 7,
we show that there is a family of unordered base graphs (namely, hypercubes) of sublinear
degree which does not admit CPT-definable preorders with logarithmic colour classes.
Consequently, none of the currently known CPT-algorithms for the CFI-query can be used
to solve the unordered case. In Chapter 8, we go a step further: We define a general class
of choiceless algorithms for the CFI-query that are based on the Dawar-Richerby-Rossman
(DRR) technique; this encompasses all the known algorithms mentioned above. Then we
show that the CFI-query on a class K of base graphs is not definable by a DRR-algorithm
unless there exists a family of polynomial-size symmetric Boolean XOR-circuits with
the same symmetries as the graphs in K and certain restrictions on the connectivity
between the gates. In Chapter 9, we also present an almost sufficient lower bound against
these circuits: If the connectivity and symmetry restrictions are slightly strengthened,
and K is the class of n-dimensional hypercubes, then the required circuit family indeed
does not exist. It remains as a problem for future work to lift this non-existence result
also to the less restricted circuits – this would show that no DRR-algorithm decides
the CFI-query on unordered hypercubes. Finally, in Chapter 10, we propose a different
approach towards CPT lower bounds: We show that if CPT can distinguish all pairs of
non-isomorphic graphs in a family K, then this is also possible in a propositional proof
system called the degree-3 extended polynomial calculus. Thus, potential future lower
bounds for solving graph isomorphism in this proof system translate into CPT lower
bounds and could also lead to a separation of CPT from Ptime.

3

Zusammenfassung

Eines der zentralen Probleme der endlichen Modelltheorie ist die Frage nach der Existenz
einer Logik für Polynomialzeit. Eine negative Antwort würde wegen des Satzes von
Fagin sofort die Komplexitätsklassen P und NP trennen. Tatsächlich vermutete Yuri
Gurevich, der die Frage als erster in der Form formulierte, dass es keine Logik für P
gibt. Dies motiviert die Forschung an unteren Schranken für Logiken, die in P enthalten
sind. Eine der wenigen solchen Logiken, die bisher nicht von P getrennt werden konnte,
ist Choiceless Polynomial Time (CPT), ein symmetrieinvariantes Berechnungsmodell,
das 1999 von Blass, Gurevich und Shelah eingeführt wurde. Diese Arbeit ist vor allem
dem Ziel gewidmet, die Grenzen der Ausdrucksstärke von CPT besser zu verstehen.
Zu diesem Zweck betrachten wir hauptsächlich das Isomorphieproblem auf Cai-Fürer-
Immerman (CFI) Graphen. Varianten dieses Problems sind bereits verwendet worden,
um Fixpunktlogik mit Zählen und Ranglogik von P zu trennen. Resultate von Dawar,
Richerby und Rossman, und darauf aufbauend von Pakusa, Schalthöfer und Selman zeigen,
dass folgende Varianten des CFI-Problems in CPT definierbar sind: CFI über linear
geordneten Basisgraphen, über prägeordneten Basisgraphen mit logarithmisch großen
Farbklassen und Basisgraphen mit linearem Grad. Der allgemeine, ungeordnete Fall ist
allerdings noch offen. In Kapitel 7 beweisen wir, dass eine Familie von ungeordneten
Basisgraphen (nämlich Hyperwürfel) existiert, die sublinearen Grad haben und keine
CPT-definierbaren Präordnungen mit logarithmischen Farbklassen erlauben. Daraus
folgt, dass das CFI-Problem auf ungeordneten Hyperwürfeln mit keinem der bisher
bekannten CPT-Algorithmen lösbar ist. In Kapitel 8 gehen wir noch einen Schritt
weiter, indem wir eine allgemeine Klasse von CPT-Algorithmen für das CFI-Problem
definieren, welche auf der Idee von Dawar, Richerby und Rossman (DRR) aufbauen;
dies trifft insbesondere auf alle bisher überhaupt bekannten solchen Algorithmen zu.
Wir zeigen, dass das CFI-Problem über einer Graphklasse K nur dann von einem DRR-
Algorithmus gelöst werden kann, wenn eine Familie von symmetrischen XOR-Schaltkreisen
existiert, die die gleichen Symmetrien wie die Graphen in K aufweisen und einige weitere
Einschränkungen erfüllen. In Kapitel 9 zeigen wir dann, dass solche Schaltkreisfamilien
mit nur geringfügig stärkeren Einschränkungen nicht existieren können, wenn wir für K
wieder die Klasse der n-dimensionalen Hyperwürfel wählen. Dieses Resultat beweist also
fast, dass kein DRR-Algorithmus das CFI-Problem über ungeordneten Hyperwürfeln lösen
kann. In Kapitel 10 betrachten wir schließlich einen völlig anderen Ansatz und beweisen
folgende Aussage: Jedes Paar nicht-isomorpher Graphen, das in CPT unterscheidbar
ist, ist auch in einer Variante des extended polynomial calculus unterscheidbar. Als
Konsequenz lassen sich potentielle zukünftige untere Schranken für die Komplexität des
Graphisomorphieproblems in diesem algebraischen Beweiskalkül auf CPT übertragen,
was ebenfalls zur Trennung von CPT und P führen könnte.

5

Contents

1 Introduction 11
1.1 A hierarchy of logics in polynomial time 15

1.2 Contributions . 21

1.3 Acknowledgements . 28

2 Preliminaries 31
2.1 Sets and linear orders . 31

2.2 Descriptive complexity theory . 32

2.3 Interpretations . 33

2.4 Fixed-point logic with counting, pebble games, and the Weisfeiler-Leman
algorithm . 33

2.5 Treewidth . 36

2.6 Permutation groups . 37

2.7 Linear algebra . 37

3 Choiceless Polynomial Time 39
3.1 Comparing CPT with other logics . 45

3.2 The power and limitations of CPT . 46

3.2.1 Expressivity results . 47

3.2.2 Non-definability results . 49

3.3 Alternative presentations and variants of CPT 52

3.3.1 Polynomial-time Interpretation Logic 52

3.3.2 Choiceless Logarithmic Space . 56

3.3.3 Deep Weisfeiler Leman . 57

3.3.4 Choiceless Polynomial Time with Witnessed Symmetric Choice . . 58

3.3.5 Choiceless Polynomial Time as a fragment of an infinite-set based
computation model . 60

3.4 Questions that are not addressed in this thesis 61

3.4.1 Separating CPT from NP . 61

3.4.2 A circuit characterisation of CPT 61

4 Symmetries and Permutation Groups 65
4.1 Basic notions from group theory . 65

4.2 Supports and supporting partitions . 68

4.3 Every large permutation group contains a product of large alternating
groups . 72

7

Contents

4.4 Orbits, supports and Choiceless Polynomial Time 82

4.4.1 Groups with the (k,r)-support property 84

4.5 Outlook: Symmetries beyond automorphisms 87

5 The Cai-Fürer-Immerman graphs and their symmetries 89
5.1 The CFI-construction . 90

5.2 Automorphisms of unordered CFI-graphs 92

5.3 CFI-structures over hypercubes . 96

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman
problems 99
6.1 Positive results: The super-symmetric object technique 99

6.1.1 Defining the CFI query on linearly ordered base graphs 99

6.1.2 Defining the CFI query on preordered base graphs 103

6.1.3 Defining the CFI query on base graphs of large degree 105

6.2 Negative results: Lower bounds on the support size 105

7 The non-definability of preorders with small colour classes in hypercubes 113
7.1 Using supporting partitions to estimate the stabiliser sizes 115

7.2 Proof of the Superpolynomial-Orbit Theorem 116

7.2.1 The case of sublinearly bounded supports 116

7.2.2 The case of linearly-sized supports 126

7.3 Conclusion and future research . 136

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits 139
8.1 Symmetries and supports of hereditarily finite sets over CFI graphs 141

8.2 CFI-symmetric hereditarily finite sets . 145

8.3 Symmetric XOR-circuits . 149

8.3.1 Symmetries of circuits . 150

8.3.2 The parameter fan-in dimension 151

8.4 Constructing XOR-circuits from hereditarily finite objects 152

8.5 Applying the XOR-circuit construction to CFI-symmetric algorithms . . . 157

8.6 Extending the circuit construction to non-CFI-symmetric sets 159

8.6.1 Definition of the matrices . 161

8.6.2 Construction of the circuit . 173

8.6.3 Bounding the size of the circuit . 177

8.6.4 Which vector spaces have symmetric bases? 182

8.7 Conclusion and future research . 187

9 Lower bounds for families of symmetric XOR-circuits over hypercubes 189
9.1 Properties of hypercubes . 189

9.2 Symmetric XOR-circuits over hypercubes 197

9.3 Conclusion and future research . 210

8

Contents

10 Choiceless Polynomial Time and Propositional Proof Complexity 213
10.1 The (extended) polynomial calculus . 219
10.2 Expressing graph isomorphism as a polynomial equation system 220
10.3 Separating the extended polynomial calculus from its non-extended version222
10.4 Deep Weisfeiler Leman . 222

10.4.1 Coherent configurations and algebraic sketches 223
10.4.2 The Deep Weisfeiler Leman computation model 224
10.4.3 Simplifications of DWL . 226
10.4.4 Distinguishing graphs in Deep Weisfeiler Leman 228
10.4.5 Properties of coherent configurations 235

10.5 Refuting graph isomorphism in the extended polynomial calculus 237
10.6 Conclusion and future research . 244

9

1 Introduction

The question whether there exists a logic that captures Ptime is one of the most promi-
nent open problems in finite model theory. It was first brought up by Chandra and
Harel in 1982; in [30], they posed the question whether there exists a database query
language that can express precisely the polynomial time computable queries. A few years
later, Yuri Gurevich rephrased this question and asked for a logic for polynomial time
[66]. What this means is that evaluating each fixed sentence of such a logic should be a
polynomial time problem (in the size of the given input structure) and conversely, any
Ptime-decidable property of finite structures should be definable by a sentence in the
logic. Gurevich also made precise how the term “logic” should be understood in this
context. This is important for the question to make any sense at all because otherwise,
one can easily find answers which are formally correct but obviously silly and beside the
point of the question: For example, one could take the “logic” whose sentences are all
polynomial time Turing machines. This would indeed be a logic for polynomial time
in a very liberal sense of the word. However, according to Gurevich’s definition, one of
the key properties that sets logics apart from other classical computation models such
as computers and Turing machines is symmetry-invariance. This means that logical
sentences do not distinguish between isomorphic structures. With this definition, the
question for a logic capturing Ptime can be seen as the question whether one can compute
all Ptime-decidable properties of finite structures in a formalism that has no access to
an ordered representation of the input structure. Turing machine computation is not
symmetry-invariant: The perhaps subtle but important difference is that Turing machines
simply do not perform computations on finite relational structures, but on binary strings
encoding them. While it is not difficult to write down any given finite structure as a
binary string (e.g. a graph can be encoded as its adjacency matrix), this string encoding
necessarily removes all symmetries from the structure. For example, a graph G = (V,E),
viewed as a structure with one binary relation symbol E, has a priori no first and no last
vertex; the universe is just an unordered set. But any string clearly is an ordered sequence
of symbols, and so there is a first and a last vertex in the adjacency matrix. Thus, the
seemingly harmless step of transforming a structure into a string defines a linear order
on the universe. When we feed a graph G = (V,E) to a Turing machine, the machine
actually receives a linearly ordered structure G< = (V,E,<). Therefore, it can compute
queries which are not invariant under the symmetries of the original unordered structure
G. For example, it can output the degree of the “first vertex” of G<, which is not even a
meaningful query on G. So there is a mismatch between Turing machine computation
and computation on structures, as we would naturally view it in finite model theory:
Turing machines are inherently only applicable to ordered structures. Now one might
say that computing the degree of the first vertex in G< is just a bad example because

11

1 Introduction

we could restrict ourselves to Turing machines that do compute isomorphism-invariant
queries on G, even though they receive the input G<. For example, we could focus on
queries like “is G connected?”, which only depend on G and not on the order. Indeed,
the result of such queries is isomorphism-invariant, and a Turing machine computing
them could use the linear order <, that is implicit in the string encoding of G, in the
computation, but the final output “yes” or “no” would be independent of <. So then,
why is the class of all polynomial time algorithms that decide isomorphism-invariant
properties of graphs not a logic for Ptime? Besides being symmetry-invariant, a logic
should also have a decidable syntax. Turing machines which compute order-invariant
graph properties are not logical sentences because it is not decidable if their output is
indeed order-invariant. Thus, a logic capturing Ptime must not be some undecidable
symmetry-invariant fragment of an asymmetric computation model, but rather, it must
be symmetry-invariant by design. To enforce this, one more additional requirement is
needed: Namely, the syntax should be effective, meaning that there is an algorithm which
computes, for any sentence ψ, a polynomial time Turing machine Mψ that evaluates ψ in
a given input structure. So there must be a meaningful relationship between the syntax
and the algorithmic evaluation of the sentences – else, there exist again pathological
solutions.

In total, the question for a Ptime-logic is really about what kind of computation is
possible if no symmetry-breaking operations are allowed, or more precisely: What is the
computational cost of symmetry-invariance? It depends on the answer of this question
whether or not there exists a logic for Ptime. Note that if we disregard complexity
issues, then one can simulate any asymmetric computation by a symmetric one: Given
an input structure of size n, we can compute the set of all n! many possible total orders
on the universe, then perform a standard Turing machine computation on each of the
ordered structures, and then check if the results are all the same. This way, the output
is guaranteed to be isomorphism-invariant. In fact, such algorithms can be implemented
in BGS-logic, so this is indeed possible in a symmetry-invariant computation model.
However, this computation can obviously not be carried out in polynomial time because
it requires space and time in the order of n!. In fact, Gurevich himself conjectured that
the cost of symmetry-invariance is in general super-polynomial, i.e. that there exists no
logic for Ptime. This conjecture is still open.

The aim of this thesis is to deepen the understanding of one of the most important
candidate logics in Ptime, which have not yet been separated from it. This is Choiceless
Polynomial Time (CPT), which was introduced by Blass, Gurevich, and Shelah in 1999
[21]. It can be seen as an extension of the better-understood fixed-point logic with counting
by certain powerful data structures, namely hereditarily finite sets. For all we know, it
may be the case that CPT captures Ptime but it may also be that we simply have not
found sufficiently strong techniques yet for proving limitations of its expressive power.
This is what we mainly focus on in this thesis. Before we give a more detailed account of
Choiceless Polynomial Time and the other most important logics that have been studied
in the quest for a Ptime-logic, let us take a look at a few other central questions from

12

theoretical computer science; the (im)possibility of efficient symmetric computation plays
an interesting role in all of them.

Classical complexity theory If Gurevich’s conjecture about the non-existence of a
logic for P were proven to be true, then it would mean that computation on ordered
structures and strings is fundamentally easier than on unordered structures, which is
maybe surprising from the point of view of classical complexity theory. But it would have
an even more important consequence: It would entail that P 6= NP. This is so because
the complexity class NP can actually be captured by existentially second-order logic,
which was proved by Ronald Fagin in 1974 [49]. The reason why symmetry-invariance
comes at no extra cost in this case is that in existential second-order logic, it is possible
to guess a linear order with the existential quantifier. Once an order is available, one can
simulate a non-deterministic polynomial time Turing machine in ∃SO. If P = NP, then
it is not difficult to show that ∃SO also captures P in the sense of Gurevich’s definition.
Therefore, the quest for a logic for P can also be seen as a programme towards separating
P from NP by defining stronger and stronger logics within Ptime and then trying to
disprove them as candidates for capturing P. Eventually, one might perhaps find out that
indeed, no logic captures P, and hence, P 6= NP, or one does find such a logic and can
then compare it with ∃SO. The success chances of this programme are of course unclear,
but certainly, the study of symmetric computation models is generally easier than that
of Turing machines: There are many tools and techniques from finite model theory,
such as Ehrenfeucht-Fräıssé style games or zero-one laws, that can be used to obtain
inexpressibility results for logics. Also, there exist well-known “benchmark constructions”
– usually based on the famous Cai-Fürer-Immerman graphs [29] – of structures on which
many typical logics are particularly inexpressive. We introduce this CFI-construction in
Chapter 5 but for the moment, it suffices to know that it can be applied to any family
of connected graphs in order to obtain pairs of non-isomorphic structures, which are
indistinguishable for many logics.
To study the limitations of symmetric computation, we can build on all this machinery
from finite model theory, and hence, making progress with respect to lower bounds seems
easier than in classical complexity theory.

Graph isomorphism Another interesting aspect of symmetric computation is its connec-
tion to the graph isomorphism problem and to graph canonisation. The former is the
problem to decide, given two graphs G and H, if they are isomorphic or not, and the
latter is the problem of computing a canonical form for a given graph G. A canonical
form (also called canon) is a copy of the graph with a linearly ordered vertex set such
that any two graphs are isomorphic if and only if they are mapped to the same canon.
The canonisation problem is at least as hard as the isomorphism problem because a
canonisation algorithm can be used to decide isomorphism: Simply compute the canons
of the two given graphs G and H and check whether they are identical or not.
The graph isomorphism problem receives a lot of attention in theoretical computer
science because its complexity status is still unresolved. It is contained in NP because

13

1 Introduction

it admits an obvious certificate, namely the sought isomorphism, but it is probably not
NP-complete: If it were, then the polynomial hierarchy would collapse [99]. Moreover,
it would mean that all NP-complete problems can be solved in quasi-polynomial time
by Babai’s algorithm [15]. Neither of this seems very plausible. There are many graph
classes for which isomorphism testing has been shown to be in P (see e.g. [104]), but a
general polynomial time graph isomorphism test is not known. Graph isomorphism and
canonisation play a central role when it comes to capturing complexity classes by logics.
Namely, if a “computational logic”, such as fixed-point logic, can canonise the graphs
in a graph class K, then the logic also captures Ptime on the class K by the famous
Immerman-Vardi theorem [74] [103]. We elaborate further on this below, but essentially,
this theorem formalises the intuition we have given so far, that on ordered structures,
symmetric computation is the same as classical Turing machine computation. Thus, a
standard approach for proving that a logic captures Ptime on a given restricted class of
graphs is to show that canonisation (and hence also graph isomorphism) is definable in
the logic. Interestingly, certain instances of the graph isomorphism problem (for example,
the aforementioned Cai-Fürer-Immerman graphs) are provably hard for many important
logics in P, such as fixed-point logic with counting. So, roughly speaking, the expressive
power of a given logic seems to depend on which instances of the graph isomorphism
problem can be solved in that logic. Very recently, Moritz Lichter and Pascal Schweitzer
confirmed this intuition in some sense by presenting a logic which captures Ptime on a
class of graphs if and only if it defines the isomorphism problem on that class [85]. This
logic is an extension of Choiceless Polynomial Time, that we study in this thesis, with a
witnessed symmetric choice operator. In Section 3.3.4, we review it in more detail.
Moreover, the graph distinguishing power of certain important logics in Ptime corre-
sponds precisely to the power of certain well-known graph isomorphism heuristics. For
example, fixed-point logic with counting distinguishes exactly those graphs which are
also distinguishable by the k-dimensional Weisfeiler Leman algorithm, and Choiceless
Polynomial Time corresponds to an extension thereof called Deep Weisfeiler Leman,
introduced by Grohe, Schweitzer and Wiebking [63]. Deep Weisfeiler Leman can infor-
mally be seen as a framework that captures all combinatorial (i.e. choiceless) graph
isomorphism algorithms, and we introduce it in detail in Chapter 10. Therefore, lower
bounds for fixed-point logic with counting and Choiceless Polynomial Time also have
implications for the limitations of certain classes of graph isomorphism tests.

Propositional proof complexity Besides classical complexity theory and the graph
isomorphism problem, there is (at least) a third research topic that is connected to finite
model theory, and this is propositional proof complexity. In this area, one is interested
in the power of different propositional proof systems such as for example resolution
or the polynomial calculus [32]. The overarching programme of proof complexity is
to show lower bounds on the proof size that is required to prove/refute propositional
tautologies/unsatisfiable formulas in different proof systems of increasing efficiency.
Somewhat similarly to the quest for a logic capturing Ptime, one of the big goals of
proof complexity is to find a proof system in which every tautology has a polynomial-size

14

1.1 A hierarchy of logics in polynomial time

proof, or to show that no such proof system exists. The existence of such an efficient
proof system is equivalent to NP = coNP. So just like the quest for a Ptime-logic
is motivated by the complexity-theoretic question “P = NP?”, the search for a proof
system with polynomial complexity is motivated by the question “NP = coNP?”
The connection between these two quests is that the methods for proving lower bounds
can to some extent be transferred from one field to the other. For example, Atserias
[9] and Atserias and Dalmau [11] observed a tight connection between the number of
pebbles needed to win an existential pebble game from finite model theory on pairs of
Boolean formulas and the width and space complexity of resolution.
In [90], it was shown that different variants of fixed-point logics have the same expressive
power as bounded-width resolution and the bounded-degree polynomial calculus proof
system. This shows that generally, lower bounds from finite model theory (for example
obtained via pebble games) directly apply to these proof systems as well, and vice versa.
Other results of a similar kind are [17] and [13]. In the former article, Berkholz and
Grohe study the graph distinguishing power of the degree-k polynomial calculus and
show that it distinguishes exactly the same graphs that are also distinguishable with the
k-dimensional Weisfeiler Leman algorithm. In [13], Atserias and Ochremiak prove that
the bounded-degree sums of squares proof system can be simulated in bounded-variable
counting logic and thus, lower bounds for this logic imply lower bounds for the degree of
sums of squares proofs. Hence, the search for a logic capturing Ptime is interesting not
only for its own sake but the results and techniques that are encountered along the way
can be inspiring in other contexts, too.

1.1 A hierarchy of logics in polynomial time

Now let us take a look at the logics and paradigms that have been discovered so far during
this quest. For further reading, we recommend Martin Grohe’s survey [59] from 2008
(even though it does not include the latest developments, naturally). The most basic logic
in descriptive complexity theory is probably first-order logic (FO). Its model-checking
problem is clearly in polynomial time (if the sentence is fixed) but it it also clear that
FO is far from capturing Ptime: Due to its locality (as made precise by Hanf and
Gaifman [47]), it cannot define, for example, if a graph is connected or not. A natural
way to overcome this is adding an operator for defining transitive closures to FO, which
results in transitive closure logic (TC). Different variants of this logic capture Logspace
and NLogspace, respectively, on linearly ordered structures. However, on general un-
ordered structures, transitive closure logic (even extended with a counting operator)
fails to capture Logspace because it cannot define the isomorphism problem on trees [48].

A more general recursion/iteration mechanism is given by fixed-point operators. The
extension of first-order logic with such an operator is called fixed-point logic. There
are different variants of fixed-point operators (least fixed-point, greatest fixed-point,
inflationary fixed-point) but they are all equally expressive on finite structures [47] –
hence the general term fixed-point logic usually refers to all these variants. To see

15

1 Introduction

how fixed-point formulas work, consider for example the inflationary fixed-point op-
erator [ifpXx.ϕ(X,x)], where ϕ is a first-order formula (potentially containing also
fixed-point operators). It defines in a given structure A the fixed-point of the sequence
X0 = ∅, ..., Xi+1 = Xi∪{a ∈ Ak | A |= ϕ(Xi, a)}, where k is the arity of the second-order
variable X. With this operator, first-order logic is enriched by a quite natural iteration
mechanism. Since the arity k of the fixed-point relation is fixed for any fixed formula,
such sentences can be evaluated in polynomial time (at most |A|k tuples can be added to
the relation in total). Note that this computation model is indeed symmetry-invariant
because in each step of the fixed-point induction, a definable set of tuples is added to X,
and such a set is always closed under the automorphisms of the structure.
The Immerman-Vardi theorem mentioned above states that fixed-point logic captures
polynomial time on all linearly ordered finite structures. This is the case because in an
ordered structure A, it is possible to logically define a binary string encoding of A. Then
on this binary string encoding, one can simulate any polynomial time Turing machine
with the help of the fixed-point operator. However, fixed-point logic is not strong enough
to define all polynomial time properties on general unordered structures because it cannot
count. Surprisingly, it cannot even define the seemingly simple query whether the size of
the input structure is even or odd (known as the EVEN-query). This is the case because
fixed-point logic can be embedded into infinitary first-order logic, which has a zero-one law.
Therefore, every fixed-point sentence is true with probability either zero or one in random
structures whose size tends towards infinity. Of course, the structure size being even has
no fixed probability in the limit, and so, this property is not definable (see e.g. [81] or [65]).

The natural fix for this is adding counting terms, yielding fixed-point logic with counting
(FPC). This logic is evaluated in two-sorted structures, where the first sort is the actual
structure and the second sort is a linear order of the same size as the structure. The
elements of the second sort are the numbers that the counting terms evaluate to. These
terms can count the number of satisfying assignments for formulas. Fixed-point logic
with counting is perhaps the most important logic of reference contained in Ptime,
and it constitutes a robust complexity class. For example, we have already mentioned
that its graph distinguishing power is the same as that of the famous k-dimensional
Weisfeiler Leman algorithm. Another perhaps surprising characterisation of FPC is in
terms of certain symmetric circuit families with Boolean and counting gates [6]. Many
important classical algorithms can actually be implemented in FPC, for example the
ellipsoid method for solving linear programs [7]. Moreover, FPC is powerful enough to
capture Ptime on a large and natural graph class, namely on all graphs with an excluded
minor. This result is due to Martin Grohe [60, 61] and builds on the graph structure
theory developed by Robertson and Seymour. Essentially, graphs with an excluded minor
possess enough structure that can be exploited by FPC in order to canonise them. All
these results establish FPC as a robust and quite powerful symmetric computation model
in Ptime. For more information on fixed-point logic with counting, we refer to the survey
[34] or [86]. However, even though FPC distinguishes almost all graphs and captures
Ptime on them [72], there is a prominent example of non-isomorphic graphs that cannot
be distinguished in FPC. These are the aforementioned CFI graphs. In a sense, such

16

1.1 A hierarchy of logics in polynomial time

graphs encode linear equation systems over the finite field F2 (or also other finite fields)
[10]. Thus, FPC cannot define whether a given linear equation system over a finite field
has a solution; this separates it from Ptime. It should be noted, though, that linear
equation systems over the field Q can in fact be solved in FPC [73].

Symmetric choices There are basically three different ways to continue from here in the
attempt to find a logic capturing P. Let us start with the probably least studied route,
namely extending fixed-point logic with witnessed symmetric choices. Here, the idea is to
allow an arbitrary non-deterministic choice from a definable choice set in every step of the
fixed-point induction. In general, such choices may break symmetries, which would not be
allowed in a logic. Therefore, all elements in the choice set are required to be related via
an automorphism of the structure (i.e. the choice sets must be orbits). However, testing
whether a given set is an orbit of the structure is as hard as the graph isomorphism
problem and thus not known to be in Ptime. To ensure that the sentences of the logic can
still be evaluated in polynomial time, the formulas must also define automorphisms which
certify that the choice set is indeed an orbit. A fixed-point computation involving such
non-deterministic symmetric choices is a branching computation tree, whose branches are
all related via automorphisms of the structure. Therefore, the final result is in a sense
independent of the non-deterministically chosen branch.
Variants of such fixed-point logics with symmetric choice were studied by Dawar and
Richerby [93] [39], and also by Gire and Hoang [51]. It had been open whether Gire and
Hoang’s fixed-point logic with counting and witnessed symmetric choice captures Ptime,
but there is a recent unpublished article by Lichter, in which this is disproved using a
variant of the CFI-construction [83]. However, it remains open whether an extension of
that logic by an interpretation operator is strong enough to capture P. Perhaps one of the
downsides of the symmetric choice approach towards capturing Ptime is that witnessed
symmetric choices are only useful on structures where orbits are definable and non-trivial:
If witnesses for the choice sets being orbits cannot be defined in the logic, then the choice
operator cannot be used, and if the orbits are trivial, i.e. singleton points, then each
choice is from a singleton set, which renders the choice operator superfluous. These
obstacles to the applicability of the witnessed choice operator might be a reason why this
concept has been studied relatively little. The extension of Choiceless Polynomial Time
with witnessed symmetric choice [85] mentioned earlier merges the symmetric choice
approach with the paradigm of choiceless computation, which we introduce further below.

Linear-algebraic operators The second approach for extending FPC is based on linear
algebra. As mentioned above, the famous counterexample separating FPC from Ptime
can be seen as a linear equation system over a finite field. This called for adding suitable
linear algebraic operators to FPC. Dawar, Grohe, Holm and Laubner introduced rank
logic [36], which is the extension of FPC by an operator that evaluates to the rank
of definable matrices over fields of different characteristics. Naturally, this logic can
define the solvability of a given linear equation system over a finite field, and thereby,
it can also distinguish CFI-graphs (over a fixed finite field). The original definition of

17

1 Introduction

rank logic was too weak, though, because it did not allow to dynamically choose in a
formula the field over which a matrix is to be interpreted. Grädel and Pakusa [55] used
Holm’s CFI-structures over fields of different prime characteristics [73] to show that the
original version of rank logic still fails to distinguish these if the characteristic is not
fixed but varies with the input. At the same time, they proposed a straightforward
solution for this problem by allowing a single rank logic formula to work over different
prime characteristics – this is possible by letting the characteristic be a parameter of
the rank operator. This generalised version of rank logic only survived a few years
until Moritz Lichter was able to separate it from Ptime (actually even from Choiceless
Polynomial Time) [82] as well. He considered an even more general CFI-construction
that encodes linear equation systems over the finite rings Z2i , where i varies with the
input. Thus, rank logic is suited for solving linear equation systems over fields, but not
over rings. Lichter’s proof is via the construction of a winning strategy for Duplicator in
the invertible map game [38], which captures the power of logics with linear algebraic
operators: In [35], Dawar, Grädel and Pakusa defined an infinitary logic enriched with
all possible isomorphism-invariant linear algebraic operators. This logic is not really
natural but its expressive power is an upper bound for all conceivable linear-algebraic
fixed-point logics, in particular also rank logic. Any two graphs for which Duplicator has
a winning strategy in the invertible map game are indistinguishable in this “universal”
linear-algebraic logic. Therefore, Lichter’s construction not only rules out rank logic as a
candidate for polynomial time, but in fact even the said linear-algebraic logic, in which
all possible isomorphism-invariant linear-algebraic operators are available [37] . The
linear-algebraic approach towards a logic for Ptime could hence be called a dead end.
However, it might be that more general operators for dealing with equation systems over
finite rings or perhaps even groups could be added to fixed-point logic in order to make
further progress. Following this route to the end leads to the question if it is possible to
define a relatively natural logic in which every constraint satisfaction problem in Ptime
can be solved. One approach towards this would be to try and implement Bulatov’s [27]
or Zhuk’s [105] polynomial time algorithm for CSPs in a symmetry-invariant way. At
the moment, though, we know of no successful attempts in that direction.

Choiceless computation The third route towards capturing polynomial time is the
main subject of this thesis. The logic Choiceless Polynomial Time with counting (CPT)
can be thought of in two different ways: It is in a sense an extension of fixed-point logic
by more complex data structures than just fixed-arity relations. Alternatively, one can
also view CPT as a symmetry-invariant restriction of polynomial time Turing machines.
This is the spirit in which it was first defined by Andreas Blass, Yuri Gurevich, and
Saharon Shelah in 1999 [21]. They introduced CPT as an abstract state machine model.
These machines are similar to polynomial time Turing machines but they receive as input
a finite structure (not its representation as a string) and instead of symbols on a tape,
they manipulate hereditarily finite sets with atoms from the universe of the structure. A
hereditarily finite set (h.f. set, in short) is an arbitrarily nested finite set, like for example
{a, b, {c, d, {a}}}, where a, b, c, d are elements of the input structure. The important dif-

18

1.1 A hierarchy of logics in polynomial time

ference to Turing machines is that the instructions of CPT enforce symmetry-invariance
of the computation steps. So for instance, suppose the input structure A has an auto-
morphism that swaps a and c, and b and d. Then any CPT program (since CPT can
be viewed both as a logic and a machine model, its sentences are often called programs
or algorithms) that computes the set mentioned above also computes its automorphic
image {c, d, {a, b, {c}}} and stores it in the memory. Besides this symmetry-invariance,
CPT programs are also restricted in the sense that the length of their runs and the total
space used for the computed h.f. sets is always polynomially bounded in the size of the
input structure (just like with classical Ptime-Turing machines). Blass, Gurevich, and
Shelah considered two versions of CPT, one without and one with counting. The version
with counting has an operator for defining the cardinality of a given set. In [21], the
authors immediately separated CPT without counting from Ptime by showing that it
cannot define the EVEN-query on structures without any relations, i.e. naked sets. So
the cardinality operator is indeed necessary to have access to the size of sets in CPT.
The inexpressibility result is based on a symmetry argument. Sets without relations
are among the most symmetric structures possible because all n! permutations of the
universe are automorphisms. On such symmetric structures, every “too complex” h.f. set
has a superpolynomial number of automorphic images and can therefore not be used in a
CPT computation (all these automorphic images would also be computed and stored,
and this is not possible in polynomial time). The second step is to show that defining the
size of the input structure requires the computation of such a complex set. Of course, one
has to make precise what a “too complex” h.f. set is. In this context, these are sets whose
minimum support has super-constant size. We explain this in detail in Section 4.2; a
support of a h.f. set x over a universe A is a subset S ⊆ A such that every automorphism
that fixes S pointwise also fixes x. The sets from the example above have the support
{a, b, c, d}, and if the automorphism group of A is the full symmetric group (and |A| > 4),
then this is also the smallest possible support. So in short, on very symmetric structures,
CPT can essentially only compute sets that contain a constant number of atoms. One
can show using a pebble game argument that counting the size of the input structure
requires sets with greater support. Alternatively, the inability of CPT to count can be
seen from the fact that CPT without counting has a zero-one law, which was first proved
by Shelah [101] and developed further by Blass and Gurevich [18].

So the most interesting variant of CPT is that with the counting operator. For this
logic, it has been open for more than 20 years now whether it captures Ptime or not.
Only few negative results concerning the power of CPT are known. Basically, there is
the aforementioned support-argument separating CPT without counting from P, and a
later variation of this technique by Benjamin Rossman [95], showing that CPT (with
counting) cannot define the set of all hyperplanes in a given finite vector space. This is,
however, a functional problem and not a decision problem in polynomial time. Proving
limitations of CPT with regards to decision problems seems to be rather difficult. One
thing we do know is that the nesting of sets indeed is a source of expressive power: There
is a super-constant lower bound on the depth (or rank) of the h.f. sets that have to be
computed by a CPT-program in order to distinguish certain CFI graphs (by Dawar,

19

1 Introduction

Richerby, and Rossman [40]). This rank lower bound follows from a lower bound on the
minimum support size of a h.f. set that has to be computed (we will also build on this
support lower bound for some of our negative results). Apart from that, the question
for CPT lower bounds of any kind is wide open. It is therefore the main objective of
this thesis to prove further insightful non-definability results and identify new potential
approaches towards strong lower bounds or even the separation of P and CPT.

Research on positive results regarding the expressiveness has been somewhat more
successful, although arguably, none of them provide strong evidence that CPT captures
Ptime on all structures. The main theme controlling the expressive power of CPT seems
to be the “amount of order” in the input structure: All important positive results concern
classes of almost totally ordered structures. More precisely, these structures come with a
preorder on their universe. A preorder is a partial order which is a total order on the set
of colour classes ; the term “colour class” refers to a set of pairwise incomparable elements
in the preorder. The power of CPT on preordered structures depends on the properties
of the colour classes, for all we know at the moment. The first expressiveness result
that exploited such a preorder was the definability of the CFI-query (i.e. the problem to
distinguish two given non-isomorphic CFI-graphs) with a preorder that orders the graphs
up to their so-called CFI-gadgets [40]. This variant of the CFI-query is not definable in
FPC (nor in rank logic if one excludes rank operators of characteristic two [55]). The
CPT-algorithm developed by Dawar, Richerby, and Rossman in [40] crucially relies on the
preorder in the CFI-graphs and could not directly be implemented in CPT without it. It
is centred around the construction of a certain deeply nested h.f. object whose structure
encodes the information needed to distinguish non-isomorphic CFI-graphs. In Chapter 6,
we review their construction in detail because it is one of the main starting points for our
own research. Later, Pakusa, Schalthöfer, and Selman took this algorithmic technique
further and managed to define the CFI-query in CPT on preordered CFI-graphs with
larger colour classes (containing a logarithmic number of gadgets each) [91]. Note that the
larger the colour classes are, the more difficult it is to perform polynomial time choiceless
computations because larger colour classes mean more symmetries – and generally, the
amount of computational resources needed grows with the “amount of symmetry” in the
input structure.
Preorders can be exploited by CPT not only to distinguish CFI-graphs, but also to
capture polynomial time: Abu Zaid, Grädel, Grohe, and Pakusa showed in [4] that CPT
captures Ptime on all preordered structures with constant colour class size where the
automorphims group of each individual colour class is Abelian. This last condition may
sound oddly specific but it comes from the fact that many typical benchmark structures,
i.e. CFI-graphs and also the so-called multipedes [67], possess such Abelian colour classes.
Both preordered CFI-graphs and multipedes are indistinguishable in FPC, but have an
isomorphism problem in Ptime – therefore, the fact that CPT captures Ptime on these
structures demonstrates once more that CPT is strictly more expressive than FPC.
Later on, this capturing result was slightly generalised by Lichter and Schweitzer to
colour classes with dihedral automorphism groups [84]. This required considerable extra
technical effort and according to personal communication with one of the authors, this

20

1.2 Contributions

is more or less the end of the story. That is, there seems to be little hope to capture
Ptime on preordered structures with less restricted colour classes – or this will become
technically so tedious that it is not really worth the effort. So instead of continuing
this route, we take the opposite approach and study the power of CPT on extremely
symmetric structures (that have in particular no preorder at all) with the intention of
proving non-definability results.

For completeness, we should also mention another aspect of structures – besides the
existence of certain preorders – that makes CPT powerful on them, and this is padding.
It is not very difficult to show that if one extends a given structure A with a sufficient
number of irrelevant elements, say |A|!, and marks these elements as padding with a
special relation symbol, then CPT can perform any polynomial time computation on the
relevant part of the structure: It is possible to recognise the true structure A within the
padded structure and then to compute the set of all linear orders of A. This does not
violate any polynomial bounds because the padded structure is big enough. Then using
these linear orders and the Immerman-Vardi theorem, we can carry out any polynomial
time computation that we like, as already described earlier in this introduction (see
also [22, 80]). This padding argument already suffices to show that CPT is strictly
stronger than FPC because the power of FPC does not directly depend on the input
size. Moreover, Duplicator’s winning strategies in the pebble game that characterises the
power of FPC are unaffected by padding in the structure. While this padding argument
is a relatively simple way of separating CPT from the weaker fixed-point logic FPC, one
can argue that it is rather superficial: The fact that CPT does benefit from padding is
true just because the resources that any given CPT program may use depend directly
on the structure size. However, this argument gives little insight into what is actually
responsible for the power and limitations of symmetric computation with h.f. sets. A
more extensive survey on CPT, including variants and alternative definitions, can be
found in Chapter 3.

1.2 Contributions

Non-definability of preorders in hypercubes We focus almost exclusively on the limita-
tions of Choiceless Polynomial Time or choiceless computation with h.f. sets in general.
As outlined above, there is a series of positive results regarding the expressiveness of CPT
on preordered structures. The first question we address is how much one can actually
learn from these results for the unordered case. In other words, are suitably preordered
structures just a very special class on which CPT happens to be particularly powerful, or
can the unordered setting somehow be reduced to the preordered case? In Chapter 7,
we answer this question by showing that preorders with sufficiently small colour classes
are not CPT-definable in unordered structures in general. Therefore, being able to
solve hard problems on preordered structures is not directly an indication that CPT is
equally powerful on unordered structures. Concretely, what we study is the CFI-query
on unordered n-dimensional hypercubes. The construction by Cai, Fürer and Immerman

21

1 Introduction

can be applied to any connected base graph in order to produce pairs of non-isomorphic
graphs that are hard to distinguish by logics. So in particular, one can also define
CFI-graphs on hypercubes. The motivation for studying these is that hypercubes are
extremely symmetric; the automorphism group of the n-dimensional hypercube contains
the symmetric group Symn, albeit acting on the subsets of [n] instead of the points.
From a group-theoretic perspective, Symn is essentially the largest possible symmetry
group because all other permutation groups are subgroups of Symn, for some n. Apart
from in the n-dimensional hypercube, Symn also appears as the automorphism group
of the complete graph on n vertices (then acting on the points, not on subsets of [n]).
Thus, CFI-graphs on complete graphs would be the more natural highly symmetric ex-
ample. But it is known that CFI-graphs over graphs with vertices of linear degree can be
distinguished in CPT [91]. This is basically due to a peculiarity of the CFI-construction,
which increases the structure size exponentially in the degree, so the CFI-graphs over
complete graphs are implicitly padded. Hence, CPT computations have more resources
available on them, and therefore, CFI-graphs over complete graphs are not hard instances
for CPT. The degree of hypercubes is only logarithmic in the structure size, which is why
no implicit padding occurs when the CFI-construction is applied to them. So hypercube
CFI-structures have the benefit that the full symmetric group Symn appears in the
automorphism group, and at the same time, there is no padding that might “help” CPT.
Indeed, our combinatorial result in Chapter 7 says that the n-dimensional hypercubeHn is
so symmetric that any ordered partition of its vertex set into colour classes of logarithmic
size has more than polynomially many (measured w.r.t. |Hn| = 2n) automorphic images.
From this it follows with the automorphism-invariance of CPT that no CPT-program
can compute any preorder with log-sized colour classes in Hn. The strongest known
CPT-algorithm (i.e. requiring the least preconditions) for distinguishing CFI-graphs is
the one from [91] for preordered graphs with log-sized colour classes mentioned earlier.
Our result shows that this algorithm cannot be applied to CFI-graphs over unordered
n-dimensional hypercubes because the preorder that is necessary for the algorithm to
work is itself not CPT-definable. Actually, one can check that the algorithm constructs a
h.f. object which encodes such a preorder, so even if it were possible to implement this
algorithm in such a way that it works on unordered structures, it could not succeed on
hypercubes because it would implicitly define a preorder which we have proven to be
undefinable.
So we can conclude that for this algorithm, it is essential that the preorder is supplied
as part of the input. The result of Chapter 7 therefore establishes the CFI-query over
unordered n-dimensional hypercubes as a potential candidate problem that might not
be CPT-definable. This would separate CPT from Ptime, because, as already said, all
kinds of CFI-graphs can be distinguished in polynomial time. Moreover, this also suggests
that we should not be overly optimistic that CPT captures Ptime on all structures, just
because it does so on certain classes of preordered structures with small colour classes.
The content of Chapter 7 also appeared at CSL 2021 [87].

22

1.2 Contributions

Symmetric XOR-circuits As a next step, we ask the question if there is a general class of
combinatorial objects whose CPT-definability is a necessary condition for the definability
of the CFI-query. For the specific preorder-based algorithm, this object was a preorder
with log-sized colour classes. But the non-definability of these preorders in hypercubes
does not mean that there is no CPT-algorithm at all for the CFI-query on these graphs.
So it seems natural to search for a broader class of objects that characterise the power of
more general CPT-algorithms for the CFI-query (i.e. hypothetical algorithms which are
not yet known). Ideally, these should be objects which any conceivable CPT-algorithm
for the CFI-query must implicitly define. If we find such a class of objects, this gives
us a point of attack that we can use to show the non-definability of the CFI-query:
Namely, then it suffices to show that these objects are not CPT-definable, just as the
non-definability of preorders with log-sized colour classes was enough to rule out one
particular algorithm.
It turns out that there is indeed such a class of “universal objects” that characterise a
large class of choiceless algorithms for the CFI-query in the following sense. An algorithm
from that class can only solve the CFI-query on a family (Gn)n∈N of CFI-graphs over
base graphs (Gn)n∈N if there exists a corresponding family of symmetric XOR-circuits
(Cn)n∈N. The input gates of each Cn are labelled with the edges of Gn, the internal
gates are all XOR-gates, the size of Cn is polynomial in the size of Gn, the circuits
satisfy a certain logarithmic bound on the fan-in of the gates, and they compute the
XOR over a large number of their input bits (this is not trivially satisfied because the
input gates may cancel themselves out in the circuit). Moreover, the circuits Cn are
symmetric with respect to the automorphisms of Gn acting on the input gates. What we
show in Chapter 8 is that only on families of CFI-structures, for which such symmetric
circuits exist, it is possible to decide the CFI-query with a choiceless algorithm that is
CFI-symmetric (see Theorem 8.0.1). The class of CFI-symmetric algorithms is one that
we define; basically, it contains all CPT-algorithms which construct a h.f. set based on
the technique developed by Dawar, Richerby, and Rossman in [40] (we will make this
precise but the definition is too technical for now). All known CPT-algorithms for the
CFI-query so far use this technique and hence belong to the class of algorithms whose
power depends on the existence of the said symmetric circuit families. Currently, this
technique is the only known design pattern for choiceless CFI-algorithms. Thus, lower
bounds against this class of algorithms would mean that either CPT 6= Ptime, or that
we have to find a totally new construction principle for h.f. sets in order to solve the
CFI-query on unordered graphs. The reason why these CFI-symmetric algorithms can
only work on graphs for which there exist symmetric XOR-circuits is because the power
of these algorithms is due to the properties of a specific h.f. set that they compute –
and this h.f. set can quite naturally be viewed as an XOR-circuit with all the properties
mentioned above.
We also study in Chapter 8 in how far the connection to symmetric XOR-circuits can be
generalised to all possible CPT-algorithms for the CFI-query, rather than only the ones
we call CFI-symmetric. This works out to an extent but is technically quite involved.
What we find is that, generally, any h.f. set x over a CFI-graph can be translated into an
XOR-circuit, as long as certain Boolean vector spaces appearing as stabiliser groups of

23

1 Introduction

the sub-objects of x admit a symmetric basis. It seems, however, not easy to understand
which h.f. sets have this symmetric-basis property and which do not. Therefore, without
putting in any further technical effort, we only have the connection to XOR-circuits
for CFI-symmetric algorithms. We believe that this circuit-approach can be a fruitful
method to prove lower bounds against CPT: The limitations of symmetric circuits have
been and continue to be studied in different contexts in the literature. For example,
there are works by Anderson and Dawar, and Dawar and Wilsenach on the connections
between symmetric circuits and fixed-point logic with counting [6] and rank logic [42],
and also on lower bounds for symmetric arithmetic circuits for the permanent [41] and
determinant [43]. Furthermore, lower bounds for symmetric Boolean circuits computing
the parity function or the product of permutation matrices have been shown by Rossman
(and He) [96, 70].

We hope that future research will also lead to sufficiently strong lower bounds against
the symmetric XOR-circuits we consider here. If we could disprove their existence for
a given family of CFI-structures, then this would show that the CFI-query on these
structures is undefinable in CPT, at least by CFI-symmetric algorithms.

Lower bounds against symmetric XOR-circuits over hypercubes Currently, we are not
able to show for any family of CFI-graphs that the necessary symmetric XOR-circuits
do not exist. However, in Chapter 9, we achieve this at least for a class of circuits with
stronger restrictions. Again, we study the CFI-query over unordered hypercubes because
this seems to be particularly hard for CPT, according to our results from Chapter 7. We
know that if this version of the CFI-query can be solved in CPT by a CFI-symmetric
algorithm, then there must exist a family (Cn)n∈N of XOR-circuits such that the input
gates of Cn are labelled with edges of the n-dimensional hypercube Hn, and such that Cn
is sufficiently symmetric with respect to the hypercube-automorphisms (i.e. Symn) acting
on the input gates. Additionally, they must satisfy the other properties mentioned in
Theorem 9.1.5. In Chapter 9, we impose further restrictions on the circuits, for example
that the number of parents and children of each gate (per orbit) be at most O(n), where n
is the dimension of the hypercube, so this is logarithmic in the structure size. With these
additional restrictions, we can indeed prove that such circuit families do not exist, or more
precisely: Whenever a family of symmetric circuits satisfies these stronger properties,
then most of their input bits cancel themselves out in the circuit, and thus, the output is
not sensitive to as many input bits as required by Theorem 9.1.5. Intuitively, the idea
is that very symmetric XOR-circuits are highly DAG-like (not tree-like), and have so
many interconnections that many bits arrive at the output XOR-gate an even number
of times, which leads to cancellation. In tree-like circuits, this problem could not arise
because in trees, there is always a unique path from each input gate to the output gate
at the root. However, trees seem to be too asymmetric. Thus, informally speaking, there
appears to be a trade-off between symmetry of the circuit and avoiding self-cancellation
of input bits – achieving both at the same time may be hard or even impossible. In the
proof of our result, we use combinatorial and group-theoretic techniques, some of which

24

1.2 Contributions

come from Anderson and Dawar’s analysis of symmetric circuits for FPC [6]. The main
difficulty which prevented us from using all their techniques straight-away is that they
study circuits which are symmetric with respect to Symn and have polynomial size in n
– our circuits are also Symn-symmetric but have size polynomial in 2n, which is the size
of the n-dimensional hypercube. This makes it more difficult to prove limitations on the
circuits because it is of course easier for a circuit to be symmetric and exponentially large
in n than being symmetric and of size polynomial in n. The main results of Chapters 8
and 9 are going to appear at MFCS 2023 [?].

Unfortunately, there is still some gap between the more restricted circuits whose
existence we can disprove and the circuits whose existence is necessary for the choice-
less definability of the CFI-query. Therefore, we cannot definitely say at the moment
that the CFI-query over hypercubes is not definable by a CFI-symmetric algorithm.
However, we conjecture that this is the case because it seems like our “symmetry vs.
self-cancellation”-argument for these XOR-circuits still has some more potential that we
have not completely used yet. Perhaps it is possible to make this argument even without
imposing the extra restrictions on the circuits but this would probably require a much
more technically involved analysis and maybe also some more techniques that we have
not found yet.

In total, our line of research on symmetric XOR-circuits and the connection to the
choiceless definability of the CFI-query leads to a conclusion that we might formulate
as follows: If Choiceless Polynomial Time does capture Ptime, then at least one of the
following two must be the case. Either, there exists a class of powerful CPT-algorithms
for the CFI-query which are not CFI-symmetric, i.e. which construct some deeply nested
set with large support according to a design principle that is currently not known (and
probably less natural than the CFI-symmetric h.f. sets). Or there do exist highly sym-
metric XOR-circuits which avoid self-cancellation of too many input bits. Confirming
either of these two seems to be hard and is probably not easier than trying to prove the
impossibility of these two options.

Finally, we should remark that all the results we have mentioned so far are not very
CPT-specific; they would in fact apply to (almost) any symmetry-invariant computation
model working with h.f. sets. In particular, they would apply to Choiceless Polynomial
Space, if one were to define this as the generalisation of CPT where the polynomial
bound only restricts the size of the computed sets and not the running time. Also, they
would apply to hypothetical non-deterministic versions of CPT where the h.f. sets are
not constructed deterministically but could be guessed, as long as they are of polynomial
size and symmetric. This is because our methods are just concerned with the existence
or non-existence of certain symmetric objects, and we never actually think about their
computability. Hence, if CPT can one day be separated from Ptime using our approach,
then this would essentially separate all kinds of h.f.-set-based logics from P, thus showing
that this entire route towards capturing Ptime cannot succeed. On the other hand, if it
turns out that our methods are not strong enough to separate CPT from Ptime, then

25

1 Introduction

this could simply mean that they were too coarse. It might then still be that even though
the required symmetric objects do exist, they are simply not computable in deterministic
polynomial time – this would call for more sophisticated lower bound techniques.

Lower bounds for CPT via propositional proof complexity The last part of this thesis,
Chapter 10 explores a different route towards CPT lower bounds. This chapter is based on
a paper that appeared at CSL 2023 [88]. Instead of going via symmetric circuit complex-
ity, we now compare CPT with a propositional proof system called the bounded-degree
extended polynomial calculus. The polynomial calculus is a proof system for proving
the unsatisfiability of polynomial equation systems with respect to {0, 1}-assignments
to the variables. From an initial set P of polynomial equations one can derive others
which are implied by them. The proof rules of the polynomial calculus allow to form
linear combinations of equations and to multiply them with variables. The system P is
unsatisfiable if and only if the equation 1 = 0 is derivable from it using these rules. In
the extended polynomial calculus, one can additionally introduce extension variables as
abbreviations for more complex polynomials in a derivation. This may in general allow
for shorter proofs and is quite a powerful extension. In the bounded-degree extended
polynomial calculus, there is a constant bound on the degree of the polynomials that
may occur in a proof (in our case, this bound is three). In the non-extended polynomial
calculus, bounding the degree of the polynomials appearing in a proof by a constant is a
restriction commonly used to make proof search tractable. If the degree is at most k, and
the number of variables is n, then at most ≈ nk+1 monomials can appear in the polynomi-
als. The set of derivable polynomials then forms an nk+1-dimensional vector space, and
one can check in polynomial time whether the 1-polynomial is in this space. Therefore,
the bounded-degree polynomial calculus is a natural proof system from the practical
point of view. However, in contrast to the full polynomial calculus, it is incomplete –
not every unsatisfiable polynomial equation system P admits a derivation of 1 = 0 that
only uses constant-degree polynomials. For the extended polynomial calculus, it is not
known whether restricting the degree leads to incompleteness or has any computational
advantages.

The polynomial calculus and its extensions can also be seen as a method for deciding
graph isomorphism: For two given graphs G and H, it is not difficult to encode the
existence of an isomorphism between them as a polynomial equation system whose
{0, 1}-solutions correspond exactly to the isomorphisms. Denote such an equation system
as Piso(G,H). Then one can ask what the graph distinguishing power of, say, the degree-k
polynomial calculus is, i.e. for which pairs of graphs it can prove the unsatisfiability
of Piso(G,H). Berkholz and Grohe showed that the graphs distinguishable in degree-k
PC are precisely the ones that are distinguishable with the well-known k-dimensional
Weisfeiler Leman algorithm [17]. Building on this (and on the Deep Wesifeiler Le-
man framework [63]), we prove that whenever two graphs G and H are distinguishable
in Choiceless Polynomial Time within a given polynomial resource bound p(n), then
Piso(G,H) has a degree-3 extended polynomial calculus (EPC3) refutation of size ≈ p(n).

26

1.2 Contributions

Moreover, this refutation uses extension variables only for polynomials that are either
monomials of degree two or averaged sums of variables. Basically, the EPC3-refutation
of Piso(G,H) simulates the computation steps of the CPT-program that distinguishes G
and H.
As a consequence, super-polynomial lower bounds for graph isomorphism on a graph class
K in the degree-3 extended polynomial calculus (with this limited use of of extension
variables) would imply that the graphs in K are not CPT-distinguishable. Here we mean
CPT-distinguishability in quite a general sense: Namely, we say that CPT distinguishes
all graphs in K if for every pair of non-isomorphic graphs, there exists some CPT-sentence
with a fixed bound p(n) that distinguishes them – this does not have to be the same
sentence for all graphs in K. Thus, lower bounds for the extended polynomial calculus
would imply that one cannot distinguish all graphs in K even if one were allowed to
guess the CPT-program that is to be executed, depending on the concrete instance (G,H).

Since the promising candidate problems for separating CPT from P are variants of
the graph isomorphism problem which are in P (i.e. CFI-graphs or multipedes), a super-
polynomial lower bound for EPC3 for distinguishing such graphs would separate CPT
from Ptime. Of course, the question is if such a lower bound in proof complexity is any
easier to obtain than for CPT directly. It may be that in the area of proof complexity,
successful methods will be developed that are not obvious from the perspective of finite
model theory, so in this sense, the detour via proof complexity could be beneficial. There
is indeed a recent lower bound for the extended polynomial calculus by Yaroslav Alekseev
[5]. This is for the so-called binary-value principle, which unfortunately does not seem
to be very related to graph isomorphism. The lower bound is also on the bit-complexity
of the coefficients that must occur in any proof of the binary-value principle. This
bit-complexity does not really play a role in our simulation of CPT by EPC3, so it is
probable that Alekseev’s method cannot be used to obtain the desired lower bounds for
graph isomorphism, which would help us to prove limitations of CPT. Hopefully, though,
stronger techniques will be found in the future.

Our simulation of CPT in EPC3 is naturally symmetric in some sense. Namely, in the
resulting refutation of Piso(G,H), the set of extension variables that are used is closed
under the automorphisms of G and H. So actually, a lower bound for such symmetric
refutations would suffice to infer lower bounds for CPT. We intend to study the role of
symmetry in proof complexity more systematically in the future, and our results from
Chapter 10 might be a good starting point. It can be expected that a suitably defined
symmetric proof system will admit similar lower bound techniques as logics such as CPT.
We leave this as a topic for future work.

Organisation of the thesis Most of our contributions can be found in the Chapters 7
to 10. The necessary preliminaries from finite model theory are presented in Chapter
2. Chapter 3 is an introduction to our object of study, the logic Choiceless Polynomial
Time. There, we also review most of the research on CPT that has been carried out prior

27

1 Introduction

to or simultaneously with the work on this thesis. Chapter 4 is devoted to the relevant
background from the theory of permutation groups, which is central for our symmetry-
based lower bound techniques. In this chapter, we also prove a stronger version of a result
from the literature [45] stating that every sufficiently large permutation group contains a
large alternating group. This is used later in Chapter 9. After the group-theoretic part,
we review the well-known Cai-Fürer-Immerman construction in Chapter 5. Specifically,
we focus on unordered CFI-graphs and their symmetry groups, which have not received
as much attention in the literature as ordered or preordered CFI-graphs so far. We also
introduce CFI-graphs over unordered n-dimensional hypercubes, which we suggest as
a candidate for separating CPT from Ptime. Finally, before we start with our own
contributions, we review in Chapter 6 the most important results and techniques from
[40] by Dawar, Richerby and Rossman, and some extensions of this in [91] by Pakusa,
Schalthöfer, and Selman. Concretely, we present the key ideas behind two choiceless
algorithms for different variants of the preordered CFI-query, and a lower bound on the
support size of a h.f. set that has to be activated by any CPT-program deciding the
CFI-query.
Our first contribution is the non-definability of preorders with small colour classes in
hypercubes, which we present in Chapter 7. This shows that the CFI-algorithms from
[40] and [91] for ordered and preordered CFI-instances cannot be applied in the unordered
case. In Chapter 8, we extract from these algorithms a structural design pattern for h.f.
sets that characterises a more general class of choiceless algorithms for the CFI-query,
and then show that the success of such algorithms depends on the existence of the
aforementioned symmetric XOR-circuit families. The support lower bound from [40]
is used in Chapters 8 and 9, where we naturally translate it into a property of the
said circuits (sensitivity to a large number of input bits) and prove that under strict
assumptions on the circuits (high symmetry and certain fan-in and fan-out bounds), this
support/sensitivity lower bound cannot be met.
Finally, Chapter 10 deals with the relationship between CPT and the extended polyno-
mial calculus proof system, showing that super-polynomial lower bounds for distinguishing
CFI-graphs or multipedes in this proof system would separate CPT from P.
The Chapters 7 and 10 are based on [87] and [88]. The main contents of Chapters 8
and 9 are summarised in [?] and are going to appear in August 2023.

1.3 Acknowledgements

First of all, I thank my supervisor Erich Grädel for his advice and support throughout
this project. I especially enjoyed the atmosphere at the chair, which was characterised by
a lot of freedom and independence for all PhD students, with respect to both teaching
and research. The results of this thesis would not have been obtained, had I been
forced to follow a predefined path. Moreover, I thank Erich for his sharing of inspiring
maths-related literature such as Enzensberger’s Hommage an Gödel or Dyson’s talk on
Birds and Frogs.
I would like to thank Anuj Dawar for agreeing to be a reviewer for this thesis and for

28

1.3 Acknowledgements

valuable impulses and discussions over the course of the years. I am also grateful to
Wied Pakusa, who was an excellent supervisor for my Bachelor’s thesis and introduced
me to descriptive complexity theory in the first place. Without him, the topic of this
thesis would probably have been a totally different one. Wied is also responsible for
the idea to study CFI-graphs over hypercubes as a hard example for CPT, which was
passed on to me by Patrick Landwehr. In this context, I would also like to thank
Svenja Schalthöfer for briefing me on the whole subject of choiceless computation and
in particular, for explaining potential approaches towards lower bounds to me. I owe
special thanks to Daniel Wiebking for the countless discussions on Deep Weisfeiler Leman
and computational group theory. Quite a few results in this thesis would not have been
possible without Daniel’s help. Also, I thank him for hosting our weekly Doppelkopf
session – at least, until the pandemic broke out. I would also like to thank Leon Kullmann
for spotting a mistake in the definition of the extended polynomial calculus in the non-
final version of the thesis.
I am grateful to my colleagues and friends from the institute Richard, Katrin, Matthias
and Matthias, and Lovro, for the great teamwork and the fun we had every summer
running the course Mathematische Logik, and at the office in general. I also extend my
thanks to my colleagues from the i7 chair, who contributed to the pleasant atmosphere
at work, in particular to Patrick for his regular afternoon visits to everybody’s offices.
He should also be considered an honorary member of the Grädel group because it was
mainly he who brought the group together outside of work.
Finally, I thank my friends and family for their support, and most importantly Monique
for everything.

29

2 Preliminaries

Aber von der Logik läßt sich nicht einmal so viel rühmen. Sie ist nämlich bloß das Wissen in
abstracto dessen, was Jeder in concreto weiß. Daher, so wenig als man sie braucht, einem
falschen Räsonnement nicht beizustimmen, so wenig ruft man ihre Regeln zu Hülfe, um ein
richtiges zu machen. [...] Und wer die Logik zu praktischen Zwecken erlernt, gleicht dem, der
einen Bieber zu seinem Bau abrichten will. - Obgleich also ohne praktischen Nutzen, muß nichts
destoweniger die Logik beibehalten werden, weil sie philosophisches Interesse hat.

Arthur Schopenhauer, Die Welt als Wille und Vorstellung

2.1 Sets and linear orders

Throughout the thesis, [n] denotes the set {1, 2, ..., n}. The set of all subsets of a set A is
denoted P(A). The central class of combinatorial objects that we study are hereditarily
finite sets (also called h.f. objects) over a given finite set A of atoms. Usually, the atoms
will be the universe of a structure. The set of hereditarily finite objects over A, HF(A), is
defined as

⋃
i∈N HFi(A), where HF0(A) := A ∪ {∅},HFi+1(A) := HFi(A) ∪ 2HFi(A). The

size of a h.f. set x ∈ HF(a) is measured in terms of its transitive closure tc(x): The set
tc(x) is the least transitive set such that x ∈ tc(x). Transitivity means that for every
a ∈ tc(x), a ⊆ tc(x). Intuitively, one can view tc(x) as the set of all sets that appear as
elements at some nesting depth within x. One can also naturally view any x ∈ HF(A) as
a DAG with vertex set V = tc(x) and the element relation ∈ as the edge relation.
The standard way to encode ordered tuples as h.f. sets is as Kuratowski-tuples, i.e.
(a1, a2, ..., ak) is encoded as 〈a1, ..., ak〉 := {a1, {a2, {a3, {..., {ak}}}}. Thus, the operator
〈·〉 maps tuples to their h.f.-set-representations.

A linear order (or total order) < on a set A is as usual a binary relation that is
irreflexive and transitive, and for any two distinct a, b ∈ A, it holds either a < b or b < a.
Often we will also be working with preordered sets. A binary relation � is a total preorder
on A if it is reflexive and transitive, and any two elements are �-comparable. A colour
class of a preorder is a maximal subset C ⊆ A on which � is symmetric. Intuitively, a
colour class is a maximal set of incomparable elements. A total preorder induces a linear
order on the set of colour classes, so it can be seen as an approximation to a linear order
on A. Whenever we speak of preorders or preordered structures, we think of the preorder
as the ordered partition (C1, C2, ..., Cm) of A into its colour classes. Note that generally,
preorders need not be total but in this thesis, the word “preorder” is to be read as “total
preorder”.

31

2 Preliminaries

2.2 Descriptive complexity theory

For a detailed introduction to the subject, there is a number of useful textbooks:
[47, 65, 61, 75, 81, 86]. Here, we only review a few essentials and fix the notation.

A vocabulary or signature is a finite set τ = {R1, ..., R`, f1, ..., fm} of function and
relation symbols, each with a fixed arity ri or kj , respectively, for i ∈ [`], j ∈ [m]. A
τ -structure A = (A,RA

1 , ..., R
A
` , f

A
1 , ..., f

A
m) is a set A, the universe, together with interpre-

tations RA
i ⊆ Ari and fAi : Aki −→ A for the relation and function symbols. Structures

will often be denoted as fraktur letters, or in the case of graphs, simply as G. Graphs are
structures with vocabulary {E}, where E is a binary relation symbol. We sometimes
write V (G) and V (E) to denote the universe and the edge relation of a graph. If not
stated otherwise, structures are assumed to be finite. Most of the time, they will also
be relational, i.e. the vocabularies do not contain function symbols. An isomorphism
between two relational τ -structures A and B is a bijection π between the universes such
that (a1, ..., ak) ∈ RA iff (π(a1), ..., π(ak)) ∈ RB for every relation symbol R ∈ τ . If such
an isomorphism exists, we write A ∼= B.

We assume familiarity with first-order logic (FO) and we briefly introduce some of
its important extensions from algorithmic model theory below. When we compare the
expressive power of two logics L1 and L2, we write L1 ≤ L2 if every class of structures
that is definable in L1 is also definable in L2, and we write L1 � L2 to stress that there
is at least one structure class definable in L2, but not in L1. If L1 and L2 can define
exactly the same classes, then we write L1 ≡ L2. A structure class K over a vocabulary
τ is definable in a logic L if there is an L-sentence that is satisfied precisely by those
τ -structures which are also in K.

Capturing complexity classes with logics A classical complexity class C such as
Logspace,Ptime or NP is captured by a logic L on a given class of structures K
if the classes K′ ⊆ K that are decidable in C on inputs from K (suitably encoded as
binary strings) are exactly those subclasses of K that are also definable in L. This is
not the whole truth, though: To give the open question “Is there a logic that captures
Ptime?” a sensible meaning, one first of all has to make precise what a logic is, and
secondly, impose a further condition that is required to capture a complexity class.

The two properties that constitute a logic L are first of all that L, viewed as a set
of sentences, is decidable, and secondly that for any two isomorphic structures A and
B, and every L-sentence ψ, it holds A |= ψ if and only if B |= ψ. The second property
is commonly referred to as symmetry-invariance and is the main feature that distin-
guishes logics from classical algorithms. The first property rules out “logics” such as
order-invariant FO or order-invariant fixed-point logic, which can make use of a linear
order on the input structure but have to output an isomorphism-invariant result. These
do not count as logics because it is undecidable if a given sentence is order-invariant or not.

32

2.3 Interpretations

A logic L captures the complexity class Ptime if two directions hold: Firstly, for every
class K of τ -structures that is decidable in polynomial time, there must exist a sentence
ψ ∈ L with vocabulary τ that is satisfied precisely by the structures in K. Secondly,
the data complexity of L must be in Ptime. This means that for every sentence ψ ∈ L,
there exists a polynomial time Turing machine M which decides, given as input a (binary
string encoding of a) structure A, whether A |= ψ. Moreover, the machine M should
be computable from ψ: That is, there must exist an algorithm which computes, given
ψ, a pair (M,p) such that M decides whether A |= ψ in time bounded by p(|A|). This
condition is called effectiveness and is needed to forbid certain artificial logics, whose
sentences have no syntactic connection at all to their evaluation programs. For more
background on the notion of capturing complexity classes by logics, see Gurevich’s original
definition [66] or the survey [59].

2.3 Interpretations

Interpretations are the logical analogue of reductions as we know them from complexity
theory. Let σ, τ be vocabularies with τ = {R1, ..., Rm} where each Ri is a relation symbol
of arity ri, and let L be a logic. An L[σ, τ]-interpretation I is an L-definable mapping
from σ-structures to τ -structures. The elements of the τ -structure are sets of k-tuples
in the original σ-structure. The constant k is called the dimension of I. Generally,
interpretations can also take a tuple of parameters z:

A k-dimensional L-interpretation (with parameters) is a tuple

I(z) = (ϕδ(x, z), ϕ≈(x, y, z), ϕR1(x1, ..., xr1), ..., ϕRm(x1, ..., xrm)),

where x, y, xi are k-tuples of variables, and all formulas have the vocabulary σ. The
interpretation I(z) defines a partial mapping from the set of σ-structures to the set
of τ -structures. For a given σ-structure A and an assignment z 7→ a, we define B
be as a τ -structure with universe B := {b ∈ Ak | A |= ϕδ(b, a)} and relations RB

i :=
{(b1, ..., bri) ∈ Akri | A |= ϕRi(b1, ..., bri , a)}, for all i ∈ [m]. From this structure, the
“output” I(A, z 7→ a) is obtained by factoring out the equivalence classes defined by ϕ≈.
Formally, let E := {(b1, b2) ∈ A2k | A |= ϕ≈(b1, b2, a)}. If E is not a congruence relation
on B, then I(A, z 7→ a) is undefined. Else, I(A, z 7→ a) is defined to be the factor
structure B/E .

2.4 Fixed-point logic with counting, pebble games, and the
Weisfeiler-Leman algorithm

This is a brief introduction to some of the most important extensions of FO that we need
in this thesis (besides Choiceless Polynomial Time, which is presented in detail in the
next chapter). Fixed-point logics can be defined with different kinds of operators, such as

33

2 Preliminaries

least or inflationary fixed-points, but they all have the same expressive power. Anyway,
more relevant for us than plain fixed-point logic is fixed-point logic with counting (FPC).
The following presentation follows the one in Dawar’s survey [34]. We also recommend
Otto’s monograph [86] for further background information.
Sentences of FPC are evaluated in two-sorted structures. The first sort is the domain
of the structure itself and the second sort contains all natural numbers (in alternative
definitions, the second sort is assumed to be an initial segment of N that is as long as
the size of the first sort). Accordingly, FPC has two sorts of variables, domain variables
x1, x2, ... and number variables ν1, ν2, Since the number variables range over all of
N, they may only be quantified when they are bounded by a term because otherwise, it
would not be possible to evaluate FPC-sentences in finite time. In short, FPC extends
FO with counting terms and fixed-point operators. The set of terms and formulas of
FPC is defined as follows:

• Numeric variables ν are counting terms.

• If ϕ is a formula and x is a variable, then #ϕ is a counting term. It evaluates to
the number of domain elements that satisfy ϕ(x).

• All FO-formulas are also FPC-formulas.

• If t1 and t2 are counting terms, then t1 = t2 and t1 < t2 are FPC-formulas.

• If ϕ is a formula, ν is a numeric variable and t is a counting term, then ∃ν ≤ tϕ is
a formula.

• If ϕ is a formula, X is a second-order variable, z is a tuple of variables whose sorts
match the sorts of X, and t is a tuple of terms with the same sorts as z, then
[fpX,z ϕ](t) is a formula. It evaluates to true if and only if the tuple of elements
denoted by t is in the inflationary fixed-point of the operator defined by ϕ.

The inflationary fixed-point of ϕ in A is the fixed-point of the sequence X0 = ∅, ..., Xi+1 =
Xi ∪ {a ∈ Ak | A |= ϕ(Xi, a)}, where k is the arity of X. Such a fixed-point is always
reached after polynomially many steps.

Counting logic and the bijection game The expressive power of FPC can be bounded
in terms of the power of Ck. For k ∈ N, Ck denotes the k-variable fragment of first-order
logic with counting quantifiers. The counting quantifiers in this logic are of the form
∃ixϕ(x), for every i ∈ N, expressing that at least i elements of the structure satisfy
ϕ(x). Note that such counting quantifiers can be simulated in ordinary FO but this
requires more than one variable. Proving inexpressibility results for the logic Ck is usually
done by exhibiting a pair (A,B) of structures such that A has a certain property whose
inexpressibility we want to show and B does not have the property. Then the aim is
to prove that A and B satisfy exactly the same Ck-sentences. If this is the case, A and
B are called Ck-equivalent, denoted A ≡Ck B. This is a relaxation of the isomorphism-
relation. As shown by Immerman and Lander, Ck-equivalent (finite) structures are also

34

2.4 Fixed-point logic with counting, pebble games, and the Weisfeiler-Leman algorithm

indistinguishable in FPC because if the structures are fixed, then any fixed-point sentence
can be unravelled into a Ck-formula.

Theorem 2.4.1 ([76]). For every sentence ϕ ∈ FPC, there is a k such that if A ≡Ck B,
then A |= ϕ iff B |= ϕ.

Therefore, inexpressibility results for FPC can be shown by establishing Ck-equivalence
of suitable structures. The most important tool for this is a game-theoretic characteri-
sation of Ck-equivalence: The bijective k-pebble game is played on a pair of structures
(A,B) by two players, Spoiler and Duplicator. Duplicator has a winning strategy if and
only if A ≡Ck B [71]. The game proceeds as follows: A position in the game is a set of
pebble-pairs π ⊆ A×B of size at most k. In each round, Spoiler may pick up any number
of pebble-pairs and remove them from the board such that in the resulting position
π′, less than k pebble-pairs remain. Then Duplicator specifies a bijection f : A −→ B
such that for every (a, b) ∈ π′, f(a) = b. Spoiler now puts down a new pebble on some
element a ∈ A of his choice, and the corresponding pebble in B is placed on f(a). If
the resulting set of pebble-pairs does not induce a local isomorphism, then Spoiler wins.
Duplicator has a winning strategy if she can enforce to play forever without losing. A
position π = {(a1, b1), ..., (ak, bk)} is said to induce a local isomorphism if the mapping
g that maps each ai to bi, for i ∈ [k], is an isomorphism from the induced substructure
of A with universe {a1, ..., ak} into the induced substructure of B with universe {b1, ..., bk}.

The positions π from which Duplicator has a winning strategy are given by those
tuples that have the same Ck-type in A and B. The Ck-type of a tuple a ∈ A≤k is the
collection of all Ck-formulas that are satisfied by a in A. It is known that in each finite
structure, every Ck-type is definable by a single Ck-formula, so even though a type is an
infinite collection of formulas, it is semantically equivalent to one finite Ck-formula, if the
structure is fixed [54].

The Weisfeiler-Leman algorithm The expressive power of the logic Ck on finite struc-
tures corresponds exactly to the power of the well-known (k − 1)-dimensional Weisfeiler-
Leman algorithm. This polynomial time algorithm is a typical heuristic for the graph
isomorphism problem. On a given graph G, the k-dimensional Weisfeiler-Leman algo-
rithm (k-WL) computes a partition of V (G)k into colour classes by starting with a single
colour class, which is iteratively refined. For details of this refinement procedure, see
for example Kiefer’s survey [78]. To find out whether two given graphs G and H are
isomorphic or not, one can run the k-WL algorithm on each of them and compare the
computed colourings. If there is some colour c such that the number of tuples with colour
c in G is different from the number of tuples with colour c in H, then G 6∼= H. If the
colour class sizes all agree, then the graphs might be isomorphic or not, so k-WL is an
incomplete graph isomorphism test. Generally, increasing the dimension k will lead to
WL distinguishing more graphs but will also increase the running time.

What matters most for us is that the colours computed by k-WL are exactly the Ck+1-
types. Therefore, for two graphs G and H, and tuples a ∈ V (G)k, b ∈ V (H)k, it holds:

35

2 Preliminaries

The tuples a and b receive the same colour in the k-dimensional WL-colouring computed
on G and H, respectively, if and only if a and b satisfy the same Ck+1-formulas in G and
H, respectively (see Theorem 2.2 in [78]). As described above, a and b have the same
Ck+1-type if and only if Duplicator has a winning strategy in the bijective (k + 1)-pebble
game starting from the position given by (a, b). Thus, k-WL distinguishes the graphs G
and H if and only if Spoiler has a winning strategy in the bijective (k + 1)-pebble game
on G and H starting with no pebbles on the board.

Partial fixed-point logic Another fixed-point logic that has connections with Choiceless
Polynomial Time is partial fixed-point logic, denoted PFP. In this logic, the fixed-point
inductions need not be monotone or inflationary, so tuples can be removed again from
the fixed-point. This also means that the fixed-point of a PFP-formula in a structure
does not always exist. Partial fixed-points are computable in polynomial space. There
exists also the restriction PFP|

Ptime
, in which the fixed-point inductions may only have

polynomial length. Partial fixed-point logic is equivalent to a language of while-programs
[1].

2.5 Treewidth

Inexpressibility results for the logic Ck are often related to the well-known graph parameter
treewidth. The “standard” way to define structures (A,B), which are non-isomorphic but
Ck-equivalent is the so-called Cai-Fürer-Immerman construction [29]; we review this in
Chapter 5. The CFI-construction takes some connected undirected base graph G and
transforms it into such a pair (A,B) of non-isomorphic Ck-equivalent structures. The
parameter k in the Ck-equivalence is equal to the treewidth of the base graph G. The
treewidth of a graph G is defined as the smallest natural number t such that G has a
tree decomposition of width t. The following is taken from a survey by Bodlaender [24],
where more details can be found:
A tree decomposition of G = (V,E) is a tree T = (I, F) each of whose nodes i ∈ I is
associated with a bag Xi ⊆ V . The tree T and its bags satisfy:

•
⋃
i∈I Xi = V ,

• for each edge {v, w} ∈ E, there exists an i ∈ I with {v, w} ⊆ Xi,

• for all v ∈ V , the set {i ∈ I | v ∈ vi} induces a subtree of T .

The width of the tree decomposition is maxi∈I |Xi| − 1. Thus, trees have treewidth 1,
and the less treelike a graph is, the higher is the treewidth.

Treewidth also has a game characterisation. A graph G has treewidth at most k if the
Cops have a winning strategy with k + 1 cops in the Cops and Robber game. This game
is played on G by two players, the Robber versus the Cops. The robber is always on a
vertex and each cop can either be on a vertex or in a helicopter. The goal of the Cops
is to land a cop on the field where the robber stands. The robber can, however, move

36

2.6 Permutation groups

at infinite speed along any path that is not blocked by a cop. In particular, he can see
where a cop is about to land and can make his move before the landing is completed.
The cops move in their helicopters (also at infinite speed).
Essentially, the connection between treewidth and the number of variables needed to
distinguish CFI-graphs in counting logic is due to a connection between the games: The
Robber’s winning strategy in the Cops and Robber game on the base graphs translates
to a winning strategy for Spoiler in the bijective pebble game on the CFI-graphs [10].

2.6 Permutation groups

The entire Chapter 4 is devoted to the group-theoretic background and tools that we
make extensive use of in our lower bound considerations. Therefore, we will be very
brief here. A group is an algebraic structure (G, ·) with a binary operation that is
associative, has a unique neutral element, and unique inverses. The set of all permuta-
tions of some set A is denoted Sym(A) and has a group structure with respect to the
operation ◦, the composition of two permutations. The automorphism group Aut(A)
of a structure is the subgroup of Sym(A) consisting of all permutations which preserve
the relations of A. The orbit of an element a ∈ A with respect to the group Aut(A)
is the set {π(a) | π ∈ Aut(A)} of possible images of a. Similarly, one can define the
orbits of tuples, sets, and generally, elements of HF(A). In the language of groups, the
symmetry-invariance of logics means that any set or relation or h.f. set that is defined by
a logical formula in a structure A is closed under orbits.

We will frequently estimate the asymptotic sizes of certain permutation groups. Let
n = |A|. Then |Sym(A)| = n!. Asymptotically, factorials can be approximated with

the Stirling approximation n! ≈
√

2πn ·
(
n
e

)n
. At this point, we also recall the standard

notation for the asymptotic behaviour of functions. Let f(n), g(n) : N −→ N be

monotonously increasing functions. Then f(n) ∈ o(g(n)) if limn→∞
f(n)
g(n) = 0. Conversely,

f(n) ∈ ω(g(n)) if limn→∞
f(n)
g(n) = ∞. We have f(n) ∈ Θ(g(n)) if limn→∞

f(n)
g(n) is some

non-zero constant. Finally, f(n) ∈ O(g(n)) if f(n) ∈ o(n) or f(n) ∈ Θ(g(n)), and we
write f(n) ∈ Ω(g(n)) if f(n) ∈ ω(n) or f(n) ∈ Θ(g(n)).

2.7 Linear algebra

We denote by F2 the finite field with two elements {0, 1}, and by Fn2 the set of n-tuples
over F2, viewed as an n-dimensional vector space. We will also be dealing with spaces
indexed by some finite (unordered) set J , in which case we write FJ2 for the |J |-dimensional
vector space whose coordinates are the elements of J . Similarly, the rows and columns of
a matrix can be indexed with such finite unordered sets, so a matrix M ∈ FI×J2 describes
a linear transformation M : FJ2 −→ FI2. The image of M is Im(M) = {M · v | v ∈ FJ2 },
and the kernel is Ker(M) = {v ∈ FJ2 | M · v = 0}. The Rank Theorem states that
|J | = rk(M) + dim(Ker(M)). The rank rk(M) denotes the dimension of Im(M). It is

37

2 Preliminaries

equal both to the dimension of the space spanned by the column vectors of M and the
dimension of the space spanned by the row vectors.
The notion of a kernel also appears in connection with group homomorphisms h : G −→ H.
The kernel of h is the subgroup of G that is mapped to the neutral element of H.

38

3 Choiceless Polynomial Time

Choiceless Polynomial Time was introduced in 1999 by Blass, Gurevich, and Shelah [21].
The authors devised it as an abstract state machine model, rather than a typical logic,
so the original syntax of CPT looks like a programming language. These abstract state
machines operate on finite structures, which are expanded by so-called dynamic functions.
The dynamic functions assign to each k-tuple in the structure a hereditarily finite set; as
the name suggests, these functions can be modified by the abstract state machine and so
they serve as the “work tape” of the machine. The update operations of the dynamic
functions are by design isomorphism-invariant, and time and space of the computation
are restricted polynomially in the size of the input structure. However, the abstract
state machine presentation of CPT has a lot of overhead that makes it unnecessarily
complicated to use and obfuscates a bit what this model really is: A fixed-point logic with
h.f. sets. Therefore, in 2010, Rossman proposed a leaner and more logic-like definition
of CPT, called BGS-logic (after the inventors of CPT) [95]. We present here a later
variant of BGS-logic due to Grädel and Grohe [53]. Our presentation follows the one in
Schalthöfer’s PhD thesis [97].

Definition 3.0.1 (Syntax of BGS-logic). Let σ be a relational vocabulary. The set
BGS[σ] of BGS-terms and -formulas is defined inductively as follows:

• Every variable x is a term.

• ∅ and Atoms are terms.

• If r, s are terms, then Unique(s),Pair(r, s),Union(s) and Card(s) are terms.

• If s1, ..., sk are terms and R ∈ σ is a k-ary relation symbol, then Rs1...sk is a
formula.

• If ϕ,ψ are formulas, then so are ϕ ∧ ψ and ϕ ∨ ψ.

• If s, t are terms, then s = t and s ∈ t are formulas.

• If r, s are terms, x is a variable that is not free in r, and ϕ is a formula, then
{s : x ∈ r : ϕ} is a term (called comprehension term).

• If s is a term with only one free variable, then s∗ is a term (called iteration term).

The free variables of terms and formulas are defined in the usual way. The comprehen-
sion term {s : x ∈ r : ϕ} binds x in s and ϕ, and the iteration term s∗ binds the unique
free variable of s. Sentences are formulas without free variables and are often also called

39

3 Choiceless Polynomial Time

programs or algorithms in the context of BGS and CPT.

In a given structure A, the BGS terms evaluate to hereditarily finite sets over the
universe of A. Since the operation Card(s) evaluates to the cardinality of the given set, it
is also necessary to encode natural numbers as elements of HF(A). This can be done with
von Neumann ordinals, i.e. 0 is ∅, 1 is {∅}, 2 is {∅, {∅}}, etc. In the following definition,
we write [n] to denote the von Neumann ordinal that encodes the number n.

Definition 3.0.2 (Semantics of BGS). Let A be a finite σ-structure and β be an
assignment that maps the free variables of the following terms and formulas to values in
HF(A). The evaluation of terms and formulas in (A, β) is defined as follows:

• JxK(A,β) = β(x).

• J∅KA = ∅ and JAtomsKA = A.

• A, β |= Rs1...sk if and only if (Js1KA,β, ..., JskKA,β) ∈ RA.

• Boolean combinations of formulas are interpreted as usual.

• JUnique(s)KA,β =

{
a, if JsKA,β = {a},
∅, otherwise.

• JPair(r, s)KA,β = {JrKA,β, JsKA,β}.

• JUnion(s)KA,β =
⋃
b∈JsKA,β b.

• JCard(s)KA,β = [|JsKA,β|].

• A, β |= s = t if and only if JsKA,β = JtKA,β.

• A, β |= s ∈ t if and only if JsKA,β ∈ JtKA,β.

• J{s : x ∈ r : ϕ}KA,β = {JsKA,β[x 7→b] | b ∈ JrKA,β with A, β[x 7→ b] |= ϕ}.

• For the evaluation of an iteration term t∗ in A, define the sequence (ti)i∈N as t0 = ∅
and ti+1 = t[x/ti], where x is the free variable of t. Then

JtKA =

{
Jt`KA, for the least ` with Jt`KA = Jt`+1KA, if such an ` exists,

∅, otherwise.

The logic CPT is obtained from BGS by putting an explicit polynomial bound on
every BGS-term and -formula. So CPT is the set of all pairs (t, p) and (ϕ, p), where t
(respectively ϕ) is a BGS-term/-formula, and p : N −→ N is a polynomial. We also write
CPT(p(n)) for the set of all CPT sentences whose polynomial bound is at most p(n).
As shown in [97], it also possible to drop this explicit polynomial bound and to let the
CPT-programs themselves track their resource consumption.
The maximum number of free variables in any subterm of a CPT sentence is called its

40

variable rank. Sometimes, we are also interested in CPT without counting, which we
denote CPT−. This logic is like CPT but without the cardinality operator. Choiceless
Polynomial Time without counting was already separated from Ptime in the article that
introduced CPT [21] (see Theorem 3.2.2); therefore, we will not deal with CPT− too
much, but the proof of this separation result is very instructive. We review it in more
detail in Sections 3.2.2 and 4.4.

The semantics of CPT-terms and -formulas is the same as in BGS, with the exception
of iteration terms. Their evaluation in a structure A is restricted to remain within the
polynomial bound p(|A|), both with respect to the length of the iteration and the space
required to store the computed h.f. sets. This space is taken to be the size of the transitive
closure of a h.f. set (see Section 2.1).

Definition 3.0.3 (Semantics of CPT). Let (t, p) ∈ CPT be a term. If t is not an
iteration term, then the semantics is as in BGS-logic. For an iteration term (t∗, p) and
a given structure A of matching vocabulary, we have

J(t∗, p)KA =

Jt`KA, for the least ` ≤ p(|A|) with t` = t`+1 and∣∣tc(JtiKA)

∣∣ ≤ p(|A|) for all i ≤ `, if such an ` exists,

∅, otherwise.

The length of the iteration len(t∗, p,A) is the least ` with Jt∗KA = Jt`KA. In particular,
it is zero in the second case.

In this thesis, we are not concerned with writing concrete CPT-programs, but we are
rather interested in lower bounds and inexpressibility results. For this, we will look at
the h.f. sets that are created during CPT computations. These are usually called the
active objects in the run of a CPT program on a given structure. Depending on the
concrete formulation of CPT, there are different ways to define the set of active objects
but the precise definition does not matter for the lower bound results. Intuitively, the
active objects encompass all sets that appear in the transitive closures of the stages of an
iteration term. As in [97], it suffices here to focus on iteration terms because the other
terms can only produce sets of “constant complexity” anyway.

Definition 3.0.4 (Active objects). Let (t, p) be a CPT-term and A a structure of
matching vocabulary. Let S be the set of all terms s such that the iteration term s∗ is a
subterm of t. The active objects of (t, p) over A are

act(t, p,A) = A ∪
⋃
s∈S

len(s∗,p,A)⋃
i=0

tc
(
JsiKA

)
.

The definition is the same if t is not a term but a formula. By definition of CPT, the
set of active objects is closed under the automorphisms of A. This is folklore and we
do not prove it explicitly. Essentially, this is based on the fact that the comprehension

41

3 Choiceless Polynomial Time

terms can only select definable – and hence isomorphism-invariant – subsets of already
computed sets. This property is also what makes CPT a logic in the sense of Gurevich’s
definition (see Section 2.2).

Lemma 3.0.5. Let (t, p) be a CPT-term and A a structure of matching vocabulary. Then
act(t, p,A) is closed under the automorphisms of A, that is, for every a ∈ act(t, p,A),
and π ∈ Aut(A), π(a) is also in act(t, p,A).

Here, Aut(A) denotes the automorphism group of the structure A. For details on auto-
morphism groups and their action on h.f. sets, we refer to Chapter 4. A straightforward
consequence of the lemma is that objects with super-polynomially large orbits cannot be
among the active objects of any CPT-sentence, because the size of definable objects is
polynomially bounded. The orbit of an object with respect to a permutation group is
the set of all its images under the action of the group (again, see Chapter 4 for more
details).

Corollary 3.0.6. Let (An)n∈N be a sequence of structures and (an)n∈N with an ∈ HF(An)
be a sequence of h.f. sets over them. If the orbit-size of these objects

|Orbit(an)| = |{π(an) | π ∈ Aut(An)}|

is not bounded by any polynomial in |An|, then there exists no CPT-sentence or -term
that activates an on input An, for all but finitely many n ∈ N.

Proof. Suppose for a contradiction that (ϕ, p) is a CPT-sentence which activates an on
input An, for infinitely many n ∈ N. For all these n, we have: act(ϕ, p,An) ⊇ Orbit(an)
according to Lemma 3.0.5. At the same time, |act(t, p,An)| ≤ p2(|An|) by Definitions
3.0.3 and 3.0.4: The transitive closure of every stage of an iteration term is bounded by
p(|An|), and the number of stages is also bounded by p(|An|). Actually, we could say more
precisely that Orbit(an) must even be contained within a single stage of an iteration
term, and can therefore not be larger than p(|An|). In any case, this contradicts the
assumption that there exists no polynomial bound for |Orbit(an)| in terms of |An|.

This corollary is actually the basis for most non-definability arguments in this thesis.
Since all our new contributions are about lower bounds, it more or less suffices to view CPT
as a h.f.-set-based computation model with the above symmetry limitation – the exact
syntax and semantics of CPT are irrelevant most of the time. In fact, our lower bound
from Chapter 7 applies to any computation model in which the stages of computation are
automorphism-closed and polynomially bounded in size. Thus, the symmetry limitation
could not even be overcome if the h.f. sets were guessed non-deterministically or if
we dropped the polynomial bound on the length of the computation and considered a
formalism like “Choiceless Polynomial Space”.

Example: Defining linear orders in CPT
Let us now look at an example to get a feeling for how CPT works. For a start, we
can quickly convince ourselves that CPT simulates FO and also fixed-point logic with

42

counting: Essentially, comprehension terms can be used to express quantifiers by defining
the set of satisfying assignments for a formula and comparing it to ∅. To simulate FPC,
the stages of a classical fixed-point induction can be encoded as sets, where we use e.g.
Kuratowski pairs {x, {x, y}} to represent ordered tuples in a fixed-point relation. Then
it is not hard to simulate fixed-point operators with iteration terms. Counting can be
done with the Card-operator.
It is also straightforward to verify that the usual set-theoretic operations such as union,
intersection, and difference can be implemented in CPT (without iteration). For example,
a∪ b = Union(Pair(a, b)), and a \ b = {x : x ∈ a : x /∈ b}. Also, formation of singleton sets
is possible via {a} = Pair(a, a). Therefore, in the following example, we will simply use
these set-theoretic operations as if they were part of the syntax.

Our example will be the construction of a linear order on a given unordered input
structure A. On structures where this is possible, CPT captures Ptime by the Immerman-
Vardi Theorem. Without the polynomial bound, i.e. in BGS-logic, defining a linear order,
or rather, the set of all possible linear orders of A, is not a problem. We encode orders
such as a < b < c as {c, {b, {a}}}. Moreover, we will always pair a linear order with its
domain, i.e. the set of its elements. So we represent a < b < c as {{c, {b, {a}}}, a, b, c}.
This is necessary for technical reasons, so we can avoid adding the same element twice.
The following term extends a given linear order x by the element y:

text(x, y) := Pair
(

(x \ Atoms) ∪ {y}), (x ∩ Atoms) ∪ {y}
)
.

Let, for example, x = {{c, {b, {a}}}, a, b, c}. Then x\Atoms = {{c, {b, {a}}}}, and taking
the union with {y} yields the new extended linear order {y, {c, {b, {a}}}}. Next, using
the Pair-operation, we put the resulting order in a set together with the set of atoms in
its domain.

Our aim is to use this inside an iteration term whose stages are the sets of all partial
orders of length one, then length two, then three, etc. The fixed-point of this term will
be the set of all linear orders of the input structure. The update step of this iteration
term looks like this:

tupdate(x) := Union
(
{{text(y, z) : z ∈ Atoms : ¬ϕcontains(y, z)} : y ∈ x : true}

)
.

Here, we used “true” as an abbreviation for ∅ = ∅. The formula ϕcontains(y, z) still has to
be defined. It checks if the order y already contains the element z. In total, tupdate(x)
takes as input a set x of partial linear orders and extends every order by each element of
the universe that is not yet contained. The result is again a set of partial linear orders
(we need to apply Union, because else, it would be a set of sets of orders). The missing
containment-check can be implemented easily because our representation of a linear order
contains its domain as a subset:

ϕcontains(y, z) := z ∈ y.

43

3 Choiceless Polynomial Time

Finally, we put all this together into an iteration term. Since the first stage is always the
empty set, we have to implement a case distinction for the initialisation step:

t<(x)∗ :=
(
{Pair({y}, y) : y ∈ Atoms : x = ∅} ∪ tupdate(x)

)∗
.

In the first application of t<(x), we have x = ∅, so the comprehension term will yield the
set {{{a}, a} | a ∈ A}, which contains the representations of all 1-element orders (and
tupdate(x) = ∅). If x 6= ∅, then the term tupdate(x) evaluates to the set of all linear orders
that are one element longer than the orders in the current stage x. An example run on a
structure A with universe {a, b, c} is:

Jt0<KA = ∅
Jt1<KA = {{{a}, a}, {{b}, b}, {{c}, c}}
Jt2<KA = {{{b, {a}}, a, b}, {{a, {b}}, a, b}, {{c, {a}}, a, c}, {{a, {c}}, a, c},

{{b, {c}}, b, c}, {{c, {b}}, b, c}}.
Jt3<KA = ...

The stage Jt3<KA is the result of the computation and contains all 3! = 6 possible linear
orders of {a, b, c}. Now given this set, it is possible to decide any Ptime-property of A
by applying the Immerman-Vardi Theorem and running the corresponding fixed-point
computation for each of these linear orders. Since the result of each of these computa-
tions is independent of the chosen order of A, we obtain a single yes/no-answer in this way.

At this point, we can do a quick sanity check of Lemma 3.0.5 and pick any set that
is active in the computation above. For example, x := {a, {b}} appears in tc(t2<). Even
if Aut(A) = Sym(A), so if A is as symmetric as possible, we see that indeed, for
every π ∈ Aut(A), π(x) also appears as an active object: We have {a, {c}}, {b, {a}},
etc. in tc(Jt2<KA). As one can see in this example, each stage of the iteration is itself
automorphism-closed. Lemma 3.0.5 implies that the above computation is the best
we can hope for if Aut(A) = Sym(A), i.e. we cannot compute fewer than all possible
linear orders in that case. Of course, for structures with more restricted symmetries (for
instance, rigid structures), it may be possible to compute in BGS a much smaller set of
linear orders. This would require a different BGS-term than the one we used, because our
t< does not access the relations of the structure, and so, any structure looks like a fully
symmetric naked set to our term. In Section 3.2.1 below, we review what is known on
the power of CPT to compute linear orders on certain restricted classes of structures. On
fully symmetric structures, however, computing orders is only possible in BGS but not in
CPT (at least not in the naive way as in the example), since |A|! is not polynomially
bounded. Observe that the problem is not the length of the iteration but the size of the
stages.

44

3.1 Comparing CPT with other logics

3.1 Comparing CPT with other logics

The previous example brings us to a nice and relatively simple argument which shows
that CPT is strictly more powerful than FPC. The idea is that |A|! can artificially be
made polynomial – if A is not the whole universe of the input structure. So we simply
augment the structure A that we are interested in with padding, i.e. useless elements in
the universe. This way, we obtain a structure B that is the disjoint union of A with a
large number of new points that are marked as padding with a special unary relation
symbol. If the padding is large enough, then |A|! is polynomially bounded in |B|, and
so, it is easy to compute in CPT the set of all linear orders of A in the input structure
B. With this, any Ptime-property of A is CPT-definable – in B. However, it can
be seen that FPC does not benefit from padding. If the structure is fixed, then any
FPC-sentence ϕ can be written as a Ck-sentence, where k depends only on ϕ. If two
structures A1,A2 are Ck-equivalent, then they will still be Ck-equivalent after padding
has been added because Spoiler cannot use the padding to suddenly have a winning
strategy in the bijective k-pebble game. With these considerations one can separate
CPT from FPC using the Cai-Fürer-Immerman (CFI) query, which we introduce in
detail in Chapter 5. Basically, the CFI-construction [29] can be applied to any family
of connected “base graphs” and yields pairs of non-isomorphic CFI-graphs over these
base graphs. Such non-isomorphic CFI-graphs can be distinguished in Ptime but not
in the logic Ck for any fixed k; hence, they are a typical benchmark for Ptime-logics
and are in particular indistinguishable in FPC. However, using the above argument
and the fact that CFI-graphs can be distinguished with a polynomial time algorithm,
one can show that CFI-graphs with sufficient padding are distinguishable in CPT. The
situation is similar with multipedes. These are also structures whose isomorphism prob-
lem is in polynomial time but not definable in Ck [67]. In [22], Blass, Gurevich and
Shelah used the padding argument on CFI-graphs/multipedes to show that FPC � CPT.

Later on, it was proven by Dawar, Richerby and Rossman [40] that padding is not
actually necessary: CPT can distinguish non-isomorphic CFI graphs over linearly ordered
base graphs even if there is no padding in the input. Again, FPC fails at this task (the
Immerman-Vardi Theorem does not apply because only the base graphs are linearly
ordered; the CFI-graphs only inherit a preorder from this linear order). The CPT-
algorithm given in [40] constructs deeply nested h.f. sets, which take the power of CPT
beyond that of FPC. The authors also prove that sets of greater than constant nesting
depth are necessary to solve the CFI-query (unless the instances are padded). So we know
two independent mechanisms of CPT that are responsible for its high expressiveness,
compared to FPC: Firstly, the polynomial resource bound that takes into account the size
of the input structure and hence lets CPT benefit from padding; secondly, the possibility
to use deeply nested sets as “data structures”. In Section 6, we review the content of [40]
in more detail, since it is the main starting point for the investigations in this thesis. To
summarise, we have:

Theorem 3.1.1 ([22], [40]). FPC � CPT (even on unpadded structures).

45

3 Choiceless Polynomial Time

More recently, Moritz Lichter was able to separate CPT also from rank logic [82],
which is an extension of FPC by an operator to compute the rank of definable matrices
[55]. The separating example is a variant of the CFI-query on linearly ordered base
graphs over rings Z2i , for varying i ∈ N. Lichter showed that these CFI-structures
are indistinguishable in rank logic and even in the infinitary linear-algebraic logic by
Dawar, Grädel, and Pakusa [35], an extension of infinitary FO with all isomorphism-
invariant linear-algebraic operators. The proof is a construction of a winning strategy for
Duplicator in the invertible-map game, which characterises the distinguishing power of
this linear-algebraic logic. In CPT, these CFI-graphs over rings can be canonised using a
known canonisation procedure for structures with Abelian colour classes (see Theorem
3.2.1 below).

Theorem 3.1.2 ([82], [37]). There is a query that is definable in CPT but not in rank
logic, nor in infinitary linear-algebraic logic.

It is open whether this means that rank logic is a fragment of CPT or if these two logics
are simply incomparable. We suspect the latter because rank logic can easily solve linear
equation systems over finite fields on unordered structures. As we outline later on, for
CPT, this is only known to be possible on certain families of preordered structures. Our
results from Chapter 7 indicate that positive results for CPT on preordered structures
do not imply that CPT should be equally powerful in the unordered case. In fact, we
conjecture that CPT cannot define the CFI-query on general unordered graphs, which
would mean that it cannot solve linear equation systems over finite fields, either.

3.2 The power and limitations of CPT

We now turn our attention to the most important positive and negative results that are
known concerning the power of CPT. On the negative side, we know of no decision problem
in polynomial time that is provably inexpressible in CPT. However, the foundations for
proving lower bounds against CPT have been laid: Classical tools from finite model
theory such as the bijective k-pebble game and zero-one laws have been studied in
the context of CPT (or CPT without counting, in the case of zero-one laws) and are
applicable to an extent. In Chapter 6, we deal with some of these tools in detail. But
before we come to these lower bound techniques, let us focus on the expressivity of CPT:
There has been a line of research that, one might say, is devoted to understanding in
what relaxed situations the Immerman-Vardi Theorem remains valid for CPT. Namely, it
has been shown that – in contrast to FPC – CPT can define certain preorderd variants
of the difficult CFI-query, and, more generally, it captures Ptime on certain classes of
preordered structures. So while the Immerman-Vardi Theorem requires the structures to
be totally ordered in order for FPC to capture Ptime on them, the total order can be
relaxed to a preorder in the case of CPT. The colour classes of such a preorder, however,
need to have certain properties, for example, be small enough, or have automorphism
groups of a particular kind.

46

3.2 The power and limitations of CPT

3.2.1 Expressivity results

The earliest positive results on the power of CPT are due to Blass, Gurevich, and Shelah
themselves, but they do not go much beyond the power of FPC. As already said, in
[22], they show that CPT can define the CFI-query on padded structures. Moreover, it
is shown in [22] that it can be decided in CPT whether a given bipartite graph has a
perfect matching – however, the authors also give an algorithm that can be implemented
in FPC, so this is not an example for the power of CPT, in particular. A few years later,
in a follow-up paper [20], Blass and Gurevich sketched a CPT-algorithm for computing
the determinant of a given matrix over a finite field, which is a choiceless implementation
of an older parallel algorithm by Csanky [33].
The first CPT-algorithm that separates CPT from FPC on unpadded structures is the
one by Dawar, Richerby and Rossman [40] mentioned above, which distinguishes CFI-
structures over linearly ordered base graphs using a deeply nested h.f. set construction.
These specific h.f. sets encode the relevant information about the input structure in
a succinct and algorithmically useful way. The idea behind it has subsequently been
generalised and led to stronger definability results for CPT: In [91], Pakusa, Schalthöfer,
and Selman extended the algorithm from [40] to CFI-graphs over preordered base graphs
with colour classes of logarithmic size, and to unordered base graphs that contain at least
one vertex of linear degree. The latter result exploits implicit padding that occurs in the
construction of CFI-graphs over base graphs of large degree. In particular, it means that
CPT can define the CFI-query over complete base graphs. In Chapter 6, we present all
these algorithms for different variants of the CFI-query in more detail.

The technique of using a particular deeply nested h.f. set construction to encode
information has also been used to solve a more general problem in CPT: Namely, Abu
Zaid, Grädel, Grohe, and Pakusa showed in [4] that CPT can canonise all structures
that come with a preorder whose colour classes have Abelian automorphisms. This means
that on such structures, CPT can define a linearly ordered copy of the original structure,
and hence perform any Ptime-computation on it using the Immerman-Vardi Theorem:

Theorem 3.2.1 (Corollary 19 in [4]). CPT captures Ptime on classes of q-bounded
structures with Abelian colours, and specifically, on 2-bounded structures.

The term q-bounded means that the structures have a preorder whose colour classes
are each of size at most q, where q is some constant. The colour classes being Abelian
means that the induced substructure on each colour class has an Abelian automorphism
group (Abelian means commutative – see Chapter 4 for the background from group
theory). In the case of preordered CFI-graphs, for instance, the automorphism group of
each colour class is isomorphic to (Z2,+), which is Abelian (or to another finite field,
for generalised CFI-structures). Extreme examples of non-Abelian groups are Symn or
Altn, the symmetric or the alternating group, which are essentially the largest possible
permutation groups. The definability of the CFI-query on linearly ordered base graphs is
also a consequence of Theorem 3.2.1. This theorem additionally solves another problem
that was previously not known to be CPT-definable, namely the isomorphism problem of

47

3 Choiceless Polynomial Time

multipedes (without padding). Multipedes are preordered structures with colour classes
of size 2 (the pairs of feet, which are indistinguishable in Ck), so CPT captures Ptime
on them by the theorem, and isomorphism of multipedes is computable in polynomial time.

The proof of Theorem 3.2.1 is an interesting example of the connections between linear
algebra and the graph isomorphism/canonisation problem: On structures with Abelian
colours, the canonisation problem essentially reduces to solving linear equation systems
over a finite ring Zd. The linear equation systems that arise from q-bounded Abelian
structures have very specific properties and are called cyclic in [4]. Basically, this means
that they have a preorder on the set of variables such that the variables in each colour
class are related via “additive shifts”, i.e. they satisfy constraints of the form x = y+1, for
example. The main technical contribution of [4] is to show that such cyclic linear equation
systems are solvable in CPT. This works by encoding the equation systems as h.f. sets in
such a way that each colour class of the variables corresponds to a single h.f. object and
can hence be “factored out”. The resulting equation system is then not only preordered,
but totally ordered because each colour class is treated as one object. Totally ordered
equation systems over finite fields can be solved using for example Gaussian elimination
(and the Immerman-Vardi Theorem). So the mechanism that is responsible for the power
of CPT on structures with Abelian colours is intuitively speaking the ability to encode
the colour classes of a preorder as h.f. objects in such a way that each colour class appears
as a single object but its relevant information is still implicit in the structure of the h.f.
set. Once each colour class is compressed into a single object in this way, the preorder
on the elements reduces to a total order on the set of “compressed colour classes”. Then
on this totally ordered set of compressed colour classes, the Immerman-Vardi Theorem
allows us to carry out any polynomial time computation. This is why one might say that
the power of CPT lies in the fact that it allows to lift the Immerman-Vardi Theorem from
totally ordered to preordered structures with suitable colour classes. What this means
for the power of CPT on unordered structures seems unclear, though. For example, it is
open whether CPT can solve unordered linear equation systems over finite fields – the
cyclic ones that it can solve are very specific preordered equation systems. If CPT could
solve unordered ones, too, then it could also generally define the CFI-query on unordered
structures, which seems to be a very challenging task.

More recently, Lichter and Schweitzer generalised Theorem 3.2.1 to q-bounded struc-
tures with dihedral automorphism groups (Theorem 1 in [84]). A dihedral group is
the automorphism group of a regular n-gon and consists of rotations and reflections.
For n > 2, dihedral groups are non-Abelian because of the reflections – the rotations
correspond to Abelian groups Zd. One could say that dihedral groups are just “slightly
non-Abelian”. While from Abelian to dihedral is a small step for a group, it is a big
step on the technical side, and the proof of the canonisation result is considerably more
involved. Thus, continuing on this route would probably be difficult, and as already
mentioned, it is not at all clear that such capturing results for preordered structures will
eventually also extend to unordered structures.

48

3.2 The power and limitations of CPT

3.2.2 Non-definability results

The automorphism-based symmetry approach Proving non-definability results for
CPT (with counting) is not easy and there is basically only one established approach
for this, which we also follow most of the time in this thesis. The general idea is to
use the fact that every h.f. set that is activated during a CPT-computation on a given
structure A is activated together with its entire Aut(A)-orbit (Lemma 3.0.5). If one can
prove that a certain h.f. set has an orbit of super-polynomial size with respect to the
structure in question, then this object is not CPT-definable because this would violate
the polynomial resource bound (Corollary 3.0.6). This argument by itself can be used to
show the non-definability of functional problems, i.e. that certain objects are not definable
on certain input structures. Ultimately, the aim is to show the non-definability of decision
problems, preferably ones in Ptime. A potential way to lift functional non-definability
results to decision problems is to prove that solving a given decision problem requires
the activation of some h.f. set x with certain specific properties – and then to show that
these properties necessarily entail a super-polynomial orbit size of x. We are only aware
of three examples where such super-polynomial orbit arguments have been employed
in the literature. The first is the proof that CPT without counting cannot define the
EVEN-query (nor the bipartite perfect matching problem) by Blass, Gurevich, and
Shelah.

Theorem 3.2.2 (Theorems 42 and 43 in [21]). The following two problems are not
definable in CPT−:

• The parity of the structure size in a given finite structure with empty vocabulary.

• The existence of a perfect matching in a given undirected bipartite graph.

As we have already mentioned in the introduction, the proof is based on a property of
h.f. sets that is called their minimum support size. For a h.f. set x over a structure A, the
minimum support size is the least number of elements in the universe A such that fixing
these elements also fixes x. More precisely, a support of x is a subset S ⊆ A such that
every permutation in Aut(A) which fixes each point in S also fixes the object x. It can
be shown that deciding either of the two problems mentioned in the theorem requires the
activation of a set with a super-constant support (unless we have the cardinality operator
available). The second step is then to show that all objects whose minimum support
size is super-constant have a super-polynomial orbit. This relies on the fact that the
structures we are considering in the theorem are basically as symmetric as possible: For
instance, structures with empty vocabulary are just sets, and their automorphism group
is the full symmetric group acting on the universe. When so many automorphisms are
present, it is relatively easy to prove that super-constant support implies super-polynomial
orbit size. In Chapter 4, we provide more details about the theory of supports and also
sketch why the connection between support-size and orbit-size exists on highly symmetric
structures. A central technical challenge in this thesis is to prove such super-polynomial
orbit theorems also on structures whose automorphism groups are smaller compared
to the structure size (i.e. on n-dimensional hypercubes – see the results in Chapter 7).

49

3 Choiceless Polynomial Time

This seems to be necessary because such excessively symmetric structures as edgeless or
complete graphs are probably not suitable candidate instances to separate CPT (with
counting) from Ptime.

The second result in the literature which makes a connection between the support size
of the h.f. sets activated in a CPT computation and the expressive power is due to Dawar,
Richerby and Rossman [40]. They studied more complex structures than just naked sets,
namely CFI-graphs. As long as these satisfy a certain homogeneity condition (meaning
that Ck-types coincide with orbits), it can be shown that distinguishing non-isomorphic
CFI-graphs in CPT requires the activation of a h.f. set whose minimum support is linear
in the treewidth of the base graph (see Theorem 6.2.7). This is actually a much stronger
support lower bound than the super-constant one that appears in the proof of Theorem
3.2.2. However, turning this into a non-definability result for the CFI-query would also
require to show that objects with linear support over suitable CFI-graphs necessarily have
a super-polynomial orbit. This is much harder to prove for CFI-graphs than for naked
sets (or complete graphs) because the automorphism group of interesting CFI-graphs is
not the full symmetric group acting on the universe (as already mentioned, the CFI-query
over complete base graphs is indeed definable in CPT, so these are not useful for lower
bounds). In Chapter 9, we study this problem on n-dimensional hypercubes as base
graphs and prove structural restrictions on h.f. sets with large support and polynomial
orbit size over hypercube CFI-structures. We are unfortunately not able to show that
large support size entails super-polynomial orbit size on these structures (which would
separate CPT from Ptime) but we show that large support and small orbit can only go
together if the h.f. set satisfies particular conditions.

Dawar, Richerby and Rossman also prove a structural limitation of h.f. sets that have
linear support and a polynomial orbit, namely they show that such sets must have a
super-constant rank (i.e. nesting depth). In total, this shows that the nesting depth of
h.f. sets is indeed necessary to get the full power of CPT because defining the CFI-query
in CPT requires the activation of a nested object (see Theorem 6.2.8). We present the
support and the rank lower bound from [40] in detail in Chapter 6.

The third non-definability result that has been obtained with such orbit-support
arguments is not about a decision problem but a functional problem in Ptime. The
problem is: Given a finite vector space V over some finite field F, compute the set H(V)
of all hyperplanes in V . This is the set of all subspaces with codimension 1 in V . The
vector space is presented as a structure whose elements are the vectors. It has a binary +
operation and a unary scalar multiplication for every field element in F. The problem
asks to define H(V) as a h.f. set over V . More precisely, this is a set of subsets of V
and its transitive closure has polynomial size in |V |, so it is indeed Ptime-computable.
Benjamin Rossman showed that the orbit size of H(V) is super-polynomial in |V | and
therefore, this set of all hyperplanes is not CPT-definable.

Theorem 3.2.3 (Theorem 6.1 in [95]). No CPT-program computes the operation V −→

50

3.2 The power and limitations of CPT

H(V) over finite vector spaces over a fixed finite field F.

The proof technique is similar to the one of Theorem 3.2.2: Hyperplanes have a large
support, and Rossman shows that this entails a super-polynomial orbit. The reason why
this support-orbit connection works out nicely again in this case is because vector spaces
are sufficiently symmetric (the automorphism group is the general linear group GL(V)).
So in summary, the support-orbit argument that was first developed in [21] works best
on structures whose automorphism group is extremely large compared to the structure
size, e.g. Symn or the general linear group. In fact, Rossman also identified a property of
automorphism groups (called the (k, r)-support property) that makes such an argument
applicable. In the group theory chapter (Chapter 4), we will get back to this.

Zero-one laws The second approach towards CPT lower bounds is via zero-one laws;
however, this is perhaps a bit less significant than the automorphism-based symmetry
approach because it only applies to CPT−, which does not capture Ptime, anyway.
Zero-one laws exist also for weaker logics, for example fixed-point logic (without counting)
and infinitary FO (see for example in [81]). The meaning of a zero-one law is that on
families of random structures whose size tends towards infinity, every sentence in the
logic holds with asymptotic probability 0 or 1 in these structures. The first proof of the
zero-one law for CPT− is due to Shelah [101]. Subsequently, this was generalised and
presented differently by Blass and Gurevich [18] [19].

Theorem 3.2.4 (Theorem 2.2 in [18]). Let a BGS-program Π with Boolean output and
a polynomial bound for the number of active elements be given. There exists a number
m, an output value v, and a class C of undirected graphs such that C has asymptotic
probability one and such that, for each G ∈ C, either

• Π on input G halts after exactly m steps with output value v and without exceeding
the bound on the active elements, or

• Π on input G either never halts or exceeds the bound on active elements.

The BGS-computation model that Blass and Gurevich are referring to is CPT− without
an explicit bound on the length of the computations, so it is possible that a computation
never terminates. Thus, the theorem states that all successful computations of Π on
graphs in C output the same result. The class C is a family of all random graphs of
size greater than some fixed number satisfying certain strong extension axioms (and
the structures do satisfy these axioms with probability one in the limit). The proof of
the classical zero-one law for FO also makes use of so-called extension axioms. Roughly
speaking, they state that any k-tuple of a given type that is realised in the random
structure can be extended to a (k + 1)-tuple of any other type in the structure. These
standard extension axioms are too weak to prove the zero-one law for CPT, which is why
the authors use strong versions of them. Strong extension axioms additionally require
that there exist sufficiently many realisations of the respective types in the random
structure. The zero-one law for CPT then follows by the construction of a winning
strategy for Duplicator, which exploits symmetries of the random graphs. This is quite

51

3 Choiceless Polynomial Time

remarkable because random graphs are rigid with high probability, and so they have
no non-trivial automorphisms. However, the strong extension axioms guarantee enough
“local symmetry”: The authors consider motions, which are partial automorphisms of the
structure, and they also define a suitable notion of supports for h.f. sets with respect to the
action of these motions. This actually looks like a quite promising tool in general because
it can be applied even on structures with very few or no non-trivial automorphisms,
whereas the techniques described in the previous paragraph always require structures with
extremely many automorphisms. However, the disadvantage of the motions is that they
are more awkward to work with and have a less developed theory than permutation groups.

An immediate consequence of Theorem 3.2.4 is the non-definability of the EVEN-query
in CPT−: For any program Π which supposedly defines it, the theorem gives us a class
C of suitable random graphs on which Π always outputs the same value, even though C
contains graphs of both parities.

There is a second interesting application of this zero-one law (or rather, of its proof) in
the literature. Namely, Rossman had proposed (see [20]) the Abelian Semigroup Subset
Sum problem as a surprisingly simple candidate for which it was unclear whether it is
CPT- or even FPC-definable. The problem asks, given a finite Abelian semigroup (G,+),
and a subset X ⊆ G, to compute the sum

∑
X (since G is Abelian, the value of the

sum is well-defined). Clearly, one can compute this in Ptime, but it is not obvious how
to do it in a choiceless fashion. More than 10 years later, the descriptive complexity
status of this problem was resolved by Abu Zaid, Dawar, Grädel, and Pakusa [3]. They
presented an FPC-definable dynamic programming algorithm for it, which also means
that it is in CPT. At the same time, they showed that counting is necessary: A variation
of the proof of Theorem 3.2.4 leads to the result that CPT− fails to solve the Abelian
Semigroup Subset Sum problem.

3.3 Alternative presentations and variants of CPT

In addition to the original formulation of CPT as an abstract state machine model, and the
later developed BGS-logic, there is also a neat way to define Choiceless Polynomial Time
via iterated first-order interpretations. For our lower bound considerations, the approach
via BGS-logic is often more useful because it exposes the connection to symmetric
hereditarily finite sets. However, polynomial-time interpretation logic (PIL) has the
advantage that it naturally gives rise to certain interesting fragments and extensions of
CPT. This logic was first studied by Svenja Schalthöfer in her Master’s thesis [98] and in
[52] together with Erich Grädel, Lukasz Kaiser, and Wied Pakusa.

3.3.1 Polynomial-time Interpretation Logic

Choiceless Polynomial Time can alternatively be defined as the polynomial-time fragment
of interpretation logic (IL). Sentences in interpretation logic are essentially (FO + H)-
interpretations that are iteratively applied to the input structure. The resulting sequence

52

3.3 Alternative presentations and variants of CPT

of structures is the computation; it plays the same role as the sequence of hereditarily
finite sets that we get when we evaluate BGS iteration terms.
The logic FO + H is first-order logic extended with the Härtig quantifier H. If ϕ and
ψ are formulas, then so is Hx.ϕ(x).ψ(x). The Härtig quantifier evaluates to true in a
structure A iff the number of assignments to x that satisfy ϕ is the same as for ψ. This
is needed to emulate the cardinality operator of CPT.

Definition 3.3.1 (Interpretation logic, [97]). Let σ, τ be relational vocabularies.
An IL[σ, τ]-sentence is a tuple Π = (Iinit, Istep, ψhalt, ψout), where Iinit is an (FO + H)[σ, τ]-
interpretation, Istep is an (FO + H)[τ, τ]-interpretation, both Iinit and Istep are parameter-
free, and ψhalt and ψout are (FO + H)[τ]-sentences.

Given a σ-structure A, we evaluate an IL-sentence Π by considering the run of Π
on A. This is the sequence given by A0 = Iinit(A),Ai+1 = Istep(Ai). The run ei-
ther does not terminate, or it halts at the first Ai that satisfies ψhalt. This Ai is also
denoted Π(A), and we have A |= Π if and only if the run of Π on A halts and Π(A) |= ψout.

Now polynomial-time interpretation logic (PIL) is defined by pairing IL-sentences with
polynomials, so PIL-sentences are of the form (Π, p). A structure A satisfies (Π, p) if
the run of Π on A is accepting, where the run now terminates not only if the current
stage Ai satisfies ψhalt, but also automatically after p(|A|) many steps or if in some step
i, |Ai| > p(|A|).

The reason why PIL and CPT mutually simulate each other is that the interpretations
in PIL can define a congruence relation ≈ on the structure and contract the congruence
classes. This corresponds to the construction of unordered sets in CPT. In addition to
that, PIL can construct ordered tuples over the given structure because the interpretations
may be multidimensional. So the iterated application of an interpretation to the input
structure produces a new structure whose elements are implicitly sets of tuples of sets of
tuples, and so on. However, this nesting structure is less transparent in PIL than in BGS
logic. With the above reasoning, it can be shown that PIL and CPT have exactly the
same expressive power:

Theorem 3.3.2 (Theorem 1 in [52]). PIL ≡ CPT.

Besides being sometimes more convenient for “programming” in, PIL is also interesting
because it exposes certain natural fragments of CPT: One can simply restrict the
interpretations that are allowed in the PIL-programs. This leads to the following variants.
All the results are from [52].

• PIL−: In PIL−, all interpretations are FO-interpretations instead of FO + H-
interpretations. It holds PIL− ≡ CPT−.

• One-dimensional PIL∗: Here, all interpretations are one-dimensional, and for
technical reasons, the logic is always evaluated in two-sorted structures where the
second sort is a linear order of the same size as the first sort. It holds PIL∗ ≡ FPC.

53

3 Choiceless Polynomial Time

• One-dimensional PIL−. The one-dimensional fragment without counting has the
same expressive power as PFP|Ptime, the polynomial time restriction of partial fixed-
point logic. It follows with a result due to Abiteboul and Vianu [2]: One-dimensional
PIL− ≡ LFP if and only if Ptime = Pspace.

• Two-dimensional PIL ≡ PIL, so the ability to create pairs is enough to get the
full power of PIL.

• Congruence-free PIL (without counting): In this variant, the interpretations must
not define non-trivial congruence relations, so the congruence formula is always
ϕ≈(x, y) = (x = y). For the version without counting, it holds (≈-free PIL−) ≡
whilenew|Ptime. The language whilenew is an extension of a while-programming
language equivalent to PFP. In whilenew, one can additionally construct new
elements corresponding to tuples. It was shown in [23] that whilenew|Ptime is
strictly weaker than CPT−. Thus, it holds: (≈-free PIL−) � PIL−.

• For ≈-free PIL with counting, it holds FPC � (≈ -free PIL) � PIL. The separa-
tion between FPC and ≈ -free PIL can be shown with a padding argument, and
the separation between (≈ -free PIL) and PIL follows because as shown in [52],
there are classes of structures (CFI-graphs), on which ≈ -free PIL can be simulated
in CPT using only sets of bounded rank. But according to Theorem 6.2.8, which
was proved in [40], there are queries on these structures that are definable in CPT,
but not with sets of bounded rank. Furthermore, in [97], a separation between
≈-free PIL and bounded-rank CPT is shown: The CFI-query on complete graphs
is definable in CPT with sets of constant rank, but not in ≈ -free PIL.

These results highlight that in order to obtain the full power of CPT, we need both the
ability to construct new objects from tuples, and also the ability to form unordered sets
of these tuples. It suffices if the tuples have arity two because by iterated pairing, we can
also construct longer tuples. The necessity to construct sets, i.e. to factor out congruence
classes, has to do with the polynomial bound: It simply saves space, which is sometimes
necessary in order to stay within polynomial bounds.

Non-deterministic extensions of PIL
Polynomial-time interpretation logic can be quite naturally extended with non-deterministic
mechanisms. In Schalthöfer’s PhD thesis [97], the logic ∃PIL is defined: The sentences
of this logic are PIL-sentences (Π, p) where the Istep-interpretation in Π may have pa-
rameters. Such a PIL-sentence does not define a unique run on a given structure A. Any
sequence of structures A0 = A,A1,A2, ... is a run of (Π, p) on A if, for each i, there exists
a parameter tuple ai in Ai such that Ai+1 = Istep(Ai, ai). Then a structure A satisfies
an ∃PIL-sentence (Π, p) if there exists at least one accepting run. Theorem 4.29 in [97]
states that

∃PIL ≡ ∃SO

∀PIL ≡ ∀SO.

54

3.3 Alternative presentations and variants of CPT

In ∃PIL, it is possible to guess any k-ary relation X by constructing it tuple by tuple,
adding the guessed parameter tuple of Istep to X each time. To simulate ∃PIL in ∃SO,
one can observe that it can be decided in NP if a given input structure satisfies a fixed
∃PIL-sentence. Then Fagin’s Theorem can be used to simulate this in ∃SO. The equiva-
lence ∀PIL ≡ ∀SO then follows because these can define precisely the complementary
queries. A generalisation of ∃PIL and ∀PIL to alternating PIL is also presented in
[97]. We omit the technical details of this logic but essentially this is the PIL-version of
alternating Turing machines: The set of possible runs defines a computation tree with
existential and universal nodes (nullary relations in the respective structure Ai determine
which node has which type). Alternating PIL has the same power as full second-order
logic (Theorem 4.29 in [97]).

It is not clear if ∃PIL is the “right” non-deterministic version of Choiceless Polynomial
Time. As Schalthöfer points out in [97], there is also the option to consider non-
deterministic choices with regards to the Istep-interpretation instead of its parameters.
Such a logic has not been defined or studied anywhere to our knowledge but one could for
example define it as a version of PIL where each program has two Istep-interpretations,
I0

step and I1
step. Then in every step, one of them is non-deterministically selected and

applied to the current structure. The input structure is accepted if there exists an
accepting run. Let us call this logic, that we have only sketched, NPIL. It can be simulated
by ∃PIL, which is why in [97], only ∃PIL is studied. However, our investigations in
Chapter 10 indicate that this probably weaker NPIL perhaps deserves more attention.
The main reason why NPIL may be seen as a more natural non-deterministic variant
of CPT is that it is still choiceless: It cannot break symmetries of the input structure,
while ∃PIL can. The latter can guess an arbitrary tuple in each step (and hence easily
define a linear order, for example), while NPIL can only guess which interpretation to
execute in each step. No matter which of the two interpretations is guessed, the update
of the structure will be symmetry-invariant because the interpretations do not take
parameters. In Chapter 10, we study the power of CPT to distinguish non-isomorphic
graphs, specifically in comparison with the computation model Deep Weisfeiler Leman
and a propositional proof system called the extended polynomial calculus. In this proof
system, two graphs G and H are distinguishable if there exists a proof for them being
non-isomorphic. As we show there, such a proof for G 6∼= H essentially plays the role
of a CPT-program that, on input G]H, constructs two disjoint higher-order objects,
one on G and one on H, which are “obviously non-isomorphic”; this means, their non-
isomorphism can be witnessed by a C3-formula. So in this view, the question whether CPT
can distinguish two graphs is about the existence of a sequence of symmetry-invariant
operations that construct a suitable higher-order object, from which the potentially
hard-to-spot non-isomorphism of G and H can be read off easily. Now intuitively, it
should be the case that if such a sequence of operations exists, then it can be guessed
by some universal NPIL-program for graph non-isomorphism. Of course, ∃PIL can also
guess such constructions of higher-order objects but this is beside the point: Arguably,
the interesting question is whether symmetric higher-order objects can distinguish the
graphs, and ∃PIL is simply not limited to symmetry-invariant computation.

55

3 Choiceless Polynomial Time

In short, we suspect that the power of NPIL can be understood like this: For every
polynomial bound p(n), there is a universal NPIL-program with that bound, which
essentially guesses a deterministic CPT-program with bound p(n), and applies it to the
given input structure. This universal NPIL-program in a sense characterises the highest
expressive power one can possibly achieve within the bound p(n) in CPT, if one ignores
the question of computability of the h.f. sets. Our lower bound results in Chapter 7
and Chapter 9 are based on the non-existence of certain symmetric h.f. sets, not on
their non-computability in CPT, so our lower bound techniques would even apply to the
non-deterministic logic NPIL.

3.3.2 Choiceless Logarithmic Space

A less natural fragment of CPT is Choiceless Logspace. This logic was developed by
Grädel and Schalthöfer ([97], [56]) as a h.f.-set-based computation model for the complex-
ity class Logspace. It is a fragment of CPT and the most powerful known logic that is
contained in Logspace. However, it can provably not define the Cai-Fürer-Immerman
query (see Chapter 5), which is possible in Logspace, and so, it does not capture the
complexity class.

The definition of CLogspace is quite involved, so we only explain its most important
aspects. The syntax is very similar to that of BGS logic, extended with a variant of the
lrec-operator. This limited recursion operator comes from the logic LREC, invented by
Grohe, Grußien, Hernich, and Laubner ([62], [64]). LREC is an extension of transitive
closure logic that captures logspace on directed trees and interval graphs. Its recur-
sion operator allows for more powerful recursion than the transitive closure operator in
TC-logic, while ensuring logspace data complexity. It is explicitly added to CLogspace
because it is not known whether the iteration terms of CLogspace can simulate it.
To make sure that CLogspace programs can be evaluated in logarithmic space, there is
a logarithmic bound on the size of the activated h.f. sets. Now the size of these sets is
measured a bit differently than in CPT. In CPT, it is just the sum over the elements in
the transitive closure. Now we have to be more careful: For example, storing a singleton
set {a} naively requires not just one bit, but logarithmically many, because we need to
save the name of the atom a. However, one can be more clever: If the atom a is, say
FO-definable in A, then it suffices to know the defining formula, which is part of the
CLogspace program and hence has constant size. Generally, indexing the elements of
any FO-definable subset B ⊆ A of the universe requires only log |B| many bits, if the
defining formula is known (then our “address space” is just B instead of A). This trick
is incorporated into the syntax and semantics of CLogspace, which is a bit technical.
Essentially, instead of the term Atoms in BGS, we now have Atoms.ϕ, which evaluates
to the set B of atoms satisfying ϕ. Each element of this set is then stored using log |B|
many bits. The logic CLogspace can be simulated in CPT and is therefore choiceless.
Moreover, it is contained in Logspace, and the inclusion is strict.

56

3.3 Alternative presentations and variants of CPT

Theorem 3.3.3 ([56]).
CLogspace ≤ CPT.
LREC � CLogspace � Logspace.

The separation between LREC and CLogspace is shown with a padding argument
because LREC ≤ FPC, and hence, it does not benefit from padding, but the power of
CLogspace depends on the input size, like in CPT. The reason why CLogspace cannot
define the CFI-query and hence does not capture logspace is Theorem 6.2.7, which was
shown in [40]. It says that deciding the CFI-query in CPT requires the activation of a set
with linear support. We introduce this notion in the next chapter but for now, it suffices
to say that any set activated in CLogspace can have at most logarithmic support. This
is because the number of occurring atoms in a set is an upper bound for its support, and
every atom requires at least one bit of memory to store (even with the trick we explained
above). Thus, the question whether there exists a logic that captures Logspace remains
open. As far as we know, there is currently not even a candidate logic that has not
been separated from logspace. Defining a suitable logspace-logic might be even harder
than the task for polynomial time. As the support argument shows, h.f. sets as data
structures for choiceless logspace computation are probably not powerful enough, even
though CLogspace already involves a lot of technical fine-tuning to be more space-efficient.
Perhaps, progress could be made by using even more of this fine-tuning, but this can
quickly get very contrived and unnatural.

3.3.3 Deep Weisfeiler Leman

As already said, the detailed introduction of the computation model Deep Weisfeiler
Leman (DWL) is deferred to Chapter 10, where it is actually relevant. Here, we just
sketch the idea and explain the motivation that led Grohe, Schweitzer, and Wiebking
to this alternative presentation of CPT [63]. The main question they were interested
in has to do with the graph isomorphism problem, namely: Does the existence of an
efficient algorithm for graph isomorphism testing (on a given graph class K) also imply
the existence of an efficient canonisation algorithm? A canonisation algorithm gets as
input an (unordered) graph G and outputs an isomorphic graph on a linearly ordered
vertex set. This computed graph, called the canon of G, should be exactly the same
for all input graphs that are isomorphic. If canonisation is possible efficiently, then so
is graph isomorphism testing because one can simply check if the canons of two given
graphs are identical or not. The other direction is not clear, at least not for all graph
classes. Grohe, Schweitzer, and Wiebking were motivated by the observation that so-
called combinatorial graph isomorphism algorithms can often be turned into canonisation
algorithms (whereas, for the other class of graph isomorphism algorithms, the group-
theoretic ones, this seems to be harder). It is not clearly defined what a combinatorial
graph isomorphism test is, but essentially this refers to symmetry-invariant algorithms
such as the k-dimensional Weisfeiler Leman algorithm, or more generally, CPT-definable
isomorphism tests. The main result from [63] is that if there is a CPT-program that
decides graph isomorphism on some class K, then there also exists a polynomial time
(but not choiceless) canonisation algorithm for the graphs in K. For the proof of this, the

57

3 Choiceless Polynomial Time

computation model Deep Weisfeiler Leman was developed. It is equivalent to CPT but
highlights its graph distinguishing power better. A DWL-algorithm is a Turing machine
with choiceless access to the input structure: Basically, the machine only has access
to the colouring information that can be computed with the 2-dimensional Weisfeiler
Leman algorithm. It can perform the same computations as any standard Turing machine
and it can also add new vertices to the input graph and perform contractions, which
corresponds to the creation of ordered tuples and unordered sets in CPT/PIL. The
operations of DWL are invariant under the Weisfeiler Leman colouring. This also shows
that the computation steps of CPT-programs are invariant not only under automorphisms
of the input structure (see Lemma 3.0.5), but also under the Ck-types of vertex-pairs
(k being related to the variable rank of the program), which is a stronger restriction.
Moreover, the work on DWL demonstrates the relevance of CPT also for the graph
isomorphism community: It is not just a purely theoretical concept that emerged in the
quest for a Ptime-logic, but it also characterises the important class of combinatorial
graph isomorphism algorithms. Therefore, exploring the limitations of CPT for defining
the isomorphism problem of Cai-Fürer-Immerman graphs can also be understood as
the attempt to show that combinatorial algorithms cannot solve the graph isomorphism
problem in general. Indeed, CFI-graphs are easy to distinguish with group-theoretic
algorithms (which depend on making choices of generating sets), so they might be a
suitable example that separates combinatorial from group-theoretic graph isomorphism
tests.

3.3.4 Choiceless Polynomial Time with Witnessed Symmetric Choice

The most recent variation of Choiceless Polynomial Time is its extension with an operator
for witnessed symmetric choice by Moritz Lichter and Pascal Schweitzer [85]. This
continues a line of research on fixed-point logics with different choice constructs. The
basic idea is always to allow for non-deterministic choices of tuples from some definable
relation (the choice set) in each step of the fixed-point induction. Generally, such
choices could break symmetries, which is why Gire and Hoang [51] and also Dawar and
Richerby [39] considered fixed-point logics with symmetric choice. This means that
non-deterministic choices are only allowed from sets that are orbits of the structure.
Such fixed-point operators define branching computation trees in a given structure but
since one always branches over a set of isomorphic choices, the computed fixed-point
relations are all isomorphic. Therefore, fixed-point logics with symmetric choice are
indeed isomorphism-invariant computation models. The problem is, however, that such
computations require to decide whether a given choice set is indeed an orbit or not
because in the latter case, a choice from this set must be prevented. This has the same
complexity as the graph isomorphism problem and so it is not clear, if such logics with
symmetric choice are still contained in Ptime. A solution is witnessed symmetric choice,
which was suggested in [51] in the context of fixed-point logic. A witnessed symmetric
choice operator will only perform a non-deterministic choice from a given choice set, if it
additionally receives a list of automorphisms that prove the choice set to be an orbit. So,
roughly speaking, a witnessed symmetric choice operator can only give a logic additional

58

3.3 Alternative presentations and variants of CPT

power on structures where the logic itself can already define automorphisms. What
Lichter and Schweitzer have done in [85] is to define a suitable variant of the witnessed
symmetric choice operator for CPT. The resulting logic CPT+WSC has the desirable
property that if it can decide the isomorphism problem on a given class of structures, then
we get canonisation “for free”; and since canons are always linearly ordered, capturing
polynomial time is then easy with the Immerman-Vardi theorem.

Theorem 3.3.4 (Theorem 1 in [85]). If CPT+WSC defines isomorphism on a class of
structures K (closed under individualisation), then CPT+WSC defines a canonisation
of K-structures and captures Ptime on K.

The structure class being closed under individualisation means that one can give an
arbitrary element of the universe an individual colour, and the resulting coloured structure
is still in the class. The proof idea builds on the aforementioned results from [63]: If CPT
defines isomorphism on K, then there is also a non-choiceless canonisation algorithm
for K. With the help of the witnessed choice operator, this canonisation algorithm can
be implemented in CPT+WSC. Very roughly, the idea is to process the orbits one
after another, and to individualise the vertices of each orbit one by one, using the choice
operator. However, carrying this out with all details requires substantial technical effort.
In total, with the logic CPT+WSC, capturing polynomial time reduces to defining the
isomorphism problem. In some sense, this shows that the “bottleneck” in the search for
a logic for Ptime (at least for the CPT-approach) is the graph isomorphism problem.
The main difficulty is not defining a linear order on the input structure because this can
be done with the witnessed choice construct, once we can define the automorphisms of
the input structure in the logic (which is equivalent to solving the isomorphism problem).
This highlights the importance of studying the power and especially the limitations of
CPT to decide isomorphism of the typical benchmark instances such as CFI-graphs or
multipedes. It is not clear if CPT+WSC is strictly more powerful than CPT. Moreover,
one may ask the question whether the lower bound techniques we develop in this work
also have any implications for CPT+WSC. For example, if it could be shown that
CPT cannot define isomorphism of certain CFI-graphs due to symmetry reasons, does
this also rule out CPT+WSC as a logic for Ptime? We suspect that this is not the
case and hence, our ideas for approaching the limitations of CPT do not generalise to
CPT+WSC. This is because Corollary 58 in [85] says that CPT+WSC can define the
CFI-query on all base graphs where CPT can distinguish orbits (and compute a linear
order on the set of orbits). We mainly focus on base graphs that only have one orbit
and so, distinguishing orbits is trivial on such instances. Perhaps, hard problems for
CPT+WSC can be defined on rigid structures, that have no non-trivial automorphisms,
because computing an order on the orbits is not easier than ordering the structure itself
then. This is beyond the scope of this thesis, though.

59

3 Choiceless Polynomial Time

3.3.5 Choiceless Polynomial Time as a fragment of an infinite-set based
computation model

There is an article by Bojańczyk and Toruńczyk from 2018 [26] in which they study a
computation model with infinite nested sets as data structures. They call these sets hered-
itarily definable, and the atoms come from an infinite structure such as (N,=) or (Q, <).
Hereditarily definable means that the sets may be infinite but have to be definable in a
certain “set builder” language. For example, the set {{x, y} | x, y ∈ N such that x 6= y}
is infinite but definable in (N,=) and hence has a finite representation (namely the
one printed here). What Bojańczyk and Toruńczyk are interested in is a programming
language that allows to compute functions on such hereditarily definable sets. Despite
the sets being infinite, this programming language guarantees that the programmed
functions (called definable while programs) are actually computable. In particular, the
authors also define a notion of polynomial time computation on these infinite data
structures. We do not want to go into the details of this computation model; essentially,
what makes computations with infinite sets possible is once again symmetry, or more
precisely, orbit finiteness. A set with atoms is orbit-finite if it has finitely many elements,
up to renaming of atoms [25]. In other words, the set can be partitioned into finitely
many orbits with respect to the automorphism group of the background structure, say
(N,=). The set above clearly satisfies this: It consists of just one orbit because all
pairs {x, y}, for x 6= y, are related via permutations of N. If the set also contained, for
example, all singletons {x}, for all x ∈ N, then it would consist of two orbits, which is
still a finite number. Now the set builder expressions that form the basis of definable
while programs ensure that the resulting sets are orbit-finite, similarly as the terms of
BGS-logic enforce automorphism-invariance of the CPT-definable sets. It can be shown
that orbit-finite sets, i.e. hereditarily definable sets, can be treated as “quasi-finite” in
the sense that computations on them are possible in finite time. The motivation for
studying computations on orbit-finite sets comes from automata over infinite alphabets,
where orbit finiteness also plays an important role to keep the automata “finite”. Thus,
computation with infinite hereditarily definable sets is per se not a topic that is very
related to finite model theory.

However, as the authors show in [26], the logic CPT reappears as the finite fragment of
the definable while programming language. Namely, CPT corresponds to definable while
programs over sets of dimension zero. The dimension of a hereditarily definable set refers
to the number of variables that are used in its set builder expression, and the sets of
dimension zero are precisely the hereditarily finite sets. Thus, CPT may be alternatively
defined as the finite restriction of this computation model based on infinite sets with
atoms from (N,=). However, this is arguably a much less natural presentation of CPT
than, for example, BGS-logic or PIL. Also, we are not aware of any further lower bound
tools which would become available when studying CPT from this different perspective,
so we do not explore the world of orbit-finite infinite sets in this thesis.

60

3.4 Questions that are not addressed in this thesis

3.4 Questions that are not addressed in this thesis

We end our survey on CPT with a few questions which are natural to ask but which we
neglect in this thesis. We would like to give at least superficial explanations why these
directions did not seem promising to us.

3.4.1 Separating CPT from NP

We mainly focus on lower bounds against the choiceless definability of the graph isomor-
phism problem on unordered Cai-Fürer-Immerman graphs, which is a Ptime-problem. It
might be that an easier question to study is trying to separate CPT from NP rather than
from P. The reason why we neglected this direction is because we simply did not come up
with suitable instances of some NP-complete problem. The CFI-instances that we mostly
study are based on unordered n-dimensional hypercubes, which are extremely symmetric.
Attempting to separate CPT from NP using our automorphism-based methods would
be easier than separating it from P only if we could use instances that are even more
symmetric than hypercubes. Complete graphs or edgeless graphs come to mind, but they
essentially just encode numbers and have no meaningful combinatorial structure. We
are not aware of an NP-complete problem with such instances. Perhaps one could use
complete graphs as the basis for some kind of combinatorial construction that yields
instances of, say, SAT, which are indistinguishable in Ck. But this will probably be
something similar to the CFI-construction, and so we might as well stick with CFI-graphs.
An example for a construction of 3SAT-instances that are hard (to approximate) for
bounded-variable counting logic and hence FPC is given in [12] by Atserias and Dawar.
These instances are based on certain bipartite expanders, whose existence is shown with a
randomised construction. Therefore, it is hard to say if they are more symmetric than our
n-dimensional hypercubes; we suspect that they are not. Anyway, the 3SAT-instances
constructed in [12] are actually obtained from 3XOR-SAT instances, i.e. linear equation
systems over F2. Thus, if one were to try and use the same construction for lower bounds
against CPT, one might as well consider the linear equation systems instead of the
3SAT-instances because they are in Ptime. So at least in [12], it seems like it is not
easier to prove inexpressibility results for NP-complete problems than it is for problems
in P. This is because lower bounds in finite model theory are based on the combinatorial
structure (and the symmetries) of the problem instances, and from that perspective,
it does not make so much of a difference whether one studies the NP-complete 3SAT
problem or the 3XOR-SAT problem in P.

3.4.2 A circuit characterisation of CPT

It was asked in [53] whether there is a characterisation of CPT in terms of symmetric
circuit families. This is a perfectly reasonable question because, for example, each poly-
nomial time Turing machine corresponds to a sequence (Cn)n∈N of P-uniform Boolean
circuits, one for each input length, such that the circuits perform the same computation
as the Turing machine [8]. Since CPT can be viewed as the symmetrised version of

61

3 Choiceless Polynomial Time

polynomial time Turing machines, one would expect that there also exists such a sequence
of circuits for each CPT-program, and that the symmetry-invariance of CPT should
somehow become visible as symmetry of the circuits. In fact, this line of thought led
Anderson and Dawar to the discovery of symmetric threshold circuits that characterise
fixed-point logic with counting [6]. These circuits, however, are much more symmetric
than CPT-computations and are therefore too weak to capture them.
In Chapter 8, we prove that certain h.f. sets over CFI-graphs can be translated into
symmetric XOR-circuits. However, this is far from a general circuit characterisation for
CPT-programs because our XOR-circuits do not actually simulate the computations of a
program but rather capture the structural properties of the h.f. sets activated during a
computation. Moreover, our circuit view only makes sense on CFI-graphs and not on
general structures.

We suspect that a general symmetric circuit characterisation of CPT will be difficult
to find and is perhaps simply not the right approach, at least if we assume a similar
setting as in [6] for the FPC-circuits. We have a somewhat informal argument sketch,
which illustrates the difficulties when trying to adapt the circuit framework from [6] to
CPT. It suggests that already very simple CPT-operations will break symmetries in the
corresponding circuits. First of all, we have to briefly introduce the circuit model that
Anderson and Dawar use for FPC: They show that, for every fixed FPC-sentence ψ,
there is a sequence (Cn)n∈N of symmetric polynomial-size uniform circuits with Boolean
and threshold gates such that for any structure A, the circuit C|A| applied to A outputs
whether A |= ψ. Now it is important what it means to apply a circuit to a structure: For
every relation symbol R of arity k in the vocabulary of ψ, the circuit Cn has nk many
input gates, one for each tuple in Ak. Each of these input gates is labelled with a tuple
of k natural numbers, i.e. a tuple in [n]k (this is because the circuit is independent of
the structure A, and so it can depend only on the size |A|). Thus, feeding the structure
A to the circuit requires to first number its universe with the numbers in [n]. Then, if
e.g. the tuple of elements numbered (1, 2, 3, ..., k) is in RA, the corresponding input gate
for the relation R, that is labelled with (1, 2, 3,, k), is set to one. If the tuple with
this numbering is not in RA, then the input gate receives the bit zero. The symmetry
of the circuits ensures that it is irrelevant in which order we number the elements of A:
For any bijection γ between A and [n], the circuit will output the same result when we
feed A to the circuit using the numbering γ. For FPC, this is the “right” way to connect
structures with circuits. Now we would like to try a similar approach for PIL (which
is equivalent to CPT). A computation step in PIL corresponds to the application of an
FO- or (FO + H)-interpretation to the current structure. When we translate this into
a circuit, it seems natural to expect that the application of the step-interpretation I
should be modelled by a circuit which inputs the current structure A and outputs I(A),
in the same format as described above. We now want to argue that already extremely
simple computation steps I cannot be simulated in this way with symmetric circuits.

Consider a family (Bn)n∈N of padded structures, say graphs. So Bn is a structure
with vocabulary {E,U}, where E is the edge relation and U a unary relation that marks

62

3.4 Questions that are not addressed in this thesis

the elements of the “true structure”, i.e. UBn is the universe of the unpadded graph An
in Bn. We assume that there is as much padding as we need, so |Bn| is at least |UBn |! or
even more. For simplicity, we also assume that n is equal to |Bn|. In PIL, it is extremely
easy to obtain the structure An, given Bn. This is just one computation step, which is
carried out by an interpretation I that simply throws away all elements that are not in U .
Now let CUn be a circuit that realises this step. That means, CUn has n input gates for the
relation U , and n2 input gates for E. The output gates are m2 many, where m denotes
the size of the “true graph” An in Bn (actually, this is already a problem: m does not
depend on n but on the structure Bn, which we do not know at circuit construction
time; but in the following we assume that m = UBn is somehow fixed beforehand). The
values of these output gates will signify where the edges are in An = I(Bn). We can
assume that the relation U is no longer present in I(Bn). For now, we assume that we
have such circuits CUn , but they are not necessarily symmetric (they must exist, because
computing I can be done by a polynomial time Turing machine). Next, consider any
polynomial time Turing machine M . This can be simulated by a uniform family of
(asymmetric) polynomial size circuits, say (CMn)n∈N. Here, we gloss over the details and
assume that the CMn can be applied to structures that are presented in the format we
are using the whole time. In particular, we want to feed the graphs An to these circuits,
which amounts to the simulation of M on these graphs as input. It should be possible
to symmetrise the CMn “by brute force”, i.e. by closing them under all permutations of
the universe An, acting on the input gates of CMn . Call the resulting symmetric circuit
ĈMn . This circuit can be much larger than CMn but we may assume that its size is still
polynomial in |Bn|, because of the padding. In total, when we glue together, for each n,
the circuits CUn and ĈMn (i.e. feeding the output of the former as input to the latter), we
obtain a polynomial size circuit, whose second component ĈMn is symmetric. Now if it
were possible to symmetrise the circuits CUn with only a polynomial blow-up, then we
would in total get a polynomial size symmetric circuit that takes as input Bn, throws
away the padding, and simulates M on An. But then, by the correspondence between
symmetric circuits and FPC shown in [6], this would be possible in FPC, too. This
cannot be the case: We know that FPC cannot simulate arbitrary Ptime-computations
on padded structures (e.g. consider CFI-graphs). To be more precise, the result in [6]
only shows that uniform symmetric circuits can be evaluated in FPC, and our circuits
here are not necessarily uniform. However, for non-uniform symmetric circuits, one
still obtains definability in infinitary counting logic – and this logic cannot express all
Ptime-computations on padded structures, either. In summary, this proof sketch shows
that the interpretation I, which simply removes the padding, cannot be simulated by
polynomial-size symmetric circuits.

Of course, we are not completely sure if this argument would also go through on a
formal level. But if so, then it would mean that already very basic PIL computation
steps are not realisable by symmetric circuits, at least not in a framework similar to the
one from [6]. Actually, this holds even if we consider a weaker kind of symmetry: The
circuits from Anderson and Dawar are always symmetric with respect to Symn, whereas
CPT-computations are only symmetric with respect to the automorphism group of the

63

3 Choiceless Polynomial Time

given input structure, which is in general smaller. But in our example, these two groups
are essentially equal because the automorphism group of a structure that consists almost
solely of padding is nearly the full symmetric group on the universe.

The reason why applying an interpretation to a structure, especially one that reduces
the size of the universe, might be impossible to implement with small symmetric circuits,
is because it seems to require looking at all subsets of the universe of Bn of size |UBn |
(which we have assumed to be known beforehand): In order to find out where the
edges are in An, we have to look at all the input gates for the relation U and check
which ones of them are set to 1. These correspond to the elements of An. Then we
also have to look up the input bits for the relation E for these particular elements. In
a symmetric circuit, we would have one such subcircuit for each subset of Bn which
can potentially be equal to UBn . These are simply too many subsets. Or, put differ-
ently, the FPC-circuits from Anderson and Dawar are symmetric with respect to all
permutations of the entire input universe, throughout the whole circuit. By contrast,
our circuit that removes the padding and then simulates M has two parts: One which
is symmetric with respect to the large padded universe, and one which only has to
respect the symmetries of the much smaller substructure An. The transition between
these two probably has a super-polynomial cost if it is realised by a symmetric sub-circuit.

Thus, it seems like PIL computations and symmetric circuits simply do not match
very well. It might be that the presentation of CPT as BGS-logic would be better suited
but then the question is still how to deal with dynamically changing universe sizes and
symmetries during a computation. Perhaps one would need circuits which have different
symmetries in different “stages” but we have no reasonable idea how to proceed in such
a direction. Anyway, there is also the problem (which we ignored all the time) that the
size of the output of an interpretation depends not only on the size of the input, so it is
not clear how interpretations should be simulated by circuits that only depend on the
input size and not on the input structure itself. This indicates that probably already the
“structure input format” for the circuits from [6] is incompatible with CPT computations.

64

4 Symmetries and Permutation Groups

The main limitations of Choiceless Polynomial Time stem from the fact that the hered-
itarily finite sets that it can create are always invariant under the automorphisms of
the given input structure, and the more symmetry a structure has, the larger are the
constructed objects. This fact can be exploited in order to prove non-definability results.
Therefore, we need to introduce the necessary language and the tools for reasoning
about symmetries of structures. Most of the time, the relevant concept of symmetry
will be captured by automorphism groups. Only in Chapter 10, we study a computation
model called Deep Weisfeiler Leman [63], which is equivalent to CPT in expressive power
and highlights the fact that actually, CPT computations are invariant not only under
automorphisms but also under Ck-types. This type-based symmetry is a more fine-grained
notion than what is captured by the automorphism group of a structure, but is also
more difficult to work with. At the end of this chapter we take a brief look on how the
group-theoretic techniques that we are going to present now could be generalised to the
“type-symmetry setting” but our main focus is on automorphism-based symmetry.

4.1 Basic notions from group theory

The content of this section can be found in standard textbooks, for example [45]. A group
is an algebraic structure (G, ·) where G is the set of group elements and · : (G×G) −→ G
is a binary associative operation on G. There exists a unique neutral element e ∈ G that
satisfies e · x = x · e = x for every x ∈ G. For every x ∈ G, there exists a unique inverse
element x−1 such that x · x−1 = x−1 · x = e. If the operation · is commutative, then the
group is called Abelian.
The order of a group (G, ·) is its cardinality |G|. We write H ≤ G if H is a subgroup of G,
i.e. H contains the neutral element and is closed under · and under inverses. The index of a
subgroup H in G is [G : H] = |G|

|H| . The index of H in G is equal to the number of cosets of

H in G. The (left) cosets of H in G are the sets gH = {g ·h | h ∈ H}, for all g ∈ G. Right
cosets are defined analogously as Hg. When we have a chain of subgroups H1 ≤ H2 ≤ G,
the indices multiply along the chain, i.e. it holds [G : H1] = [G : H2] · [H2 : H1].
It is well-known that indices of subgroups can only decrease under group homomorphisms.
This fact will be needed later in this thesis.

Lemma 4.1.1. Let H ≤ G be groups and let h : G −→ G′ be a homomorphism into
some other group. Then [h(G) : h(H)] ≤ [G : H].

Proof. The First Isomorphism Theorem for groups says that h(G) ∼= G/KerG(h) and
h(H) ∼= H/KerH(h). Here, KerG(h) and KerH(h) denote the kernels of h applied to

65

4 Symmetries and Permutation Groups

G and H, respectively. The order of the factor groups G/KerG(h) and H/KerH(h) is

[G : KerG(h)] and [H : KerH(h)]. So we have [h(G) : h(H)] = [G:KerG(h)]
[H:KerH(h)] = |G|·|KerH(h)|

|H|·|KerG(h)| .

Since |KerH(h)| ≤ |KerG(h)|, this is at most |G||H| = [G : H].

We are primarily interested in permutation groups: The symmetric group on the set
[n] = {1, 2, ..., n} is denoted Symn. This is the group that is formed by all permutations
of [n] (i.e. all bijections from [n] to itself) together with the function composition opera-
tion ◦. When we explicitly write permutations, we use their cycle representation. Every
permutation π ∈ Symn can be uniquely decomposed into cycles. For example, when we
write π = (123)(45), this is the permutation that swaps 4 and 5 and maps 1 to 2, 2 to 3,
and 3 to 1.
Generally, for a set Ω, we write Sym(Ω) for the group of all permutations on Ω. Some-
times, the alternating group Alt(Ω) also plays an important role. It is the largest proper
subgroup of Sym(Ω) (its index in Sym(Ω) is just 2) and consists of all permutations
with even parity. The parity of a permutation π ∈ Sym(Ω) is the number of inver-
sions of π. An inversion is a pair x, y ∈ Ω such that x < y but π(y) < π(x), for any
fixed linear ordering of Ω. The full symmetric group Sym(Ω) is generated by the set
of all transpositions (i.e permutations that swap a pair of elements while leaving all
other elements fixed) (xy), for all x, y ∈ Ω. The alternating group Alt(Ω) is generated
by the set of all transpositions of two pairs (uv)(xy), for all pairwise distinct u, v, x, y ∈ Ω.

We say that Sym(Ω) and Alt(Ω) act on the set Ω (and Symn and Altn act on [n]).
Informally, this means, that every group element is associated with a permutation of the
set Ω. In the cases mentioned above, the group elements are obviously permutations of
the set Ω. More generally, the action of a group G on a set Ω is a function from Ω×G
into Ω that specifies for each group element π ∈ G, and each set element a ∈ Ω, what the
image π(a) ∈ Ω is. The group action must satisfy that, if id ∈ G is the neutral element,
then id(a) = a for all a ∈ Ω, and π(π′(a)) = (π ◦ π′)(a) for all π, π′ ∈ G, a ∈ Ω. So
a group action can be identified with a group homomorphism h : G −→ Sym(Ω). An
action is called faithful if the kernel of h is trivial, i.e. if the neutral element of G is the
only one that is mapped to the identity permutation. This is usually the case in this
thesis. Often, the homomorphism h is clear from the context and not explicitly given.
For example, every subgroup of Sym(Ω) acts on Ω via the identity homomorphism. For
a permutation group G acting on some set Ω, the degree of G refers to |Ω|, i.e. the size of
the permutation domain.

Sometimes we consider groups which are obtained by composing other groups in certain
ways, namely by taking direct or semi-direct products:

Definition 4.1.2 (Products of groups). Let (G, ·), (H, ·) be groups. Their direct product
G×H is their cartesian product with element-wise group operation, i.e. (g, h) · (g′, h′) =
(g · h, g′ · h′) for every (g, h), (g′, h′) ∈ G × H. The direct product of multiple groups
G1, ..., Gm is written Πm

i=1Gi.

66

4.1 Basic notions from group theory

The semi-direct product of G by H is G o H. For this to be defined, there must
be an action of H on G, i.e. for every π ∈ H, the mapping u 7→ πu is an automorphism
of G. Then GoH is the cartesian product of G and H with the group operation defined
by:

(u, π) · (v, π′) := (u · π−1(v), π · π′).

Consequently, we have for the inverses: (u, π)−1 = ((π(u))−1, π−1).

An example for a semi-direct product is the automorphism group of the n-dimensional
hypercube (see Section 5.3) and also the automorphism groups of unordered CFI-graphs
(see Section 5.2).

The automorphism group of a finite structure is the set of isomorphisms from the
structure into itself: Let A be a relational τ -structure with universe A. A permutation
π ∈ Sym(A) is an automorphism of A if for every R ∈ τ , we have (a1, ..., ak) ∈ RA if
and only if (πa1, ..., πak) ∈ RA. The automorphisms of any structure A form a subgroup
of Sym(A), denoted Aut(A). The groups Sym(A) and Aut(A) act naturally not only
on A but also on HF(A), the hereditarily finite objects with atoms in A: If x ∈ HF(A) is
a set, then πx = {πy | y ∈ x}.

A concept that is of very high importance when it comes to lower bounds for Choiceless
Polynomial Time is that of orbits and stabiliser subgroups. Whenever a group G acts on
some set A, then the binary relation that contains all pairs (x, y) ∈ A2 such that there
exists π ∈ G with y = πx is an equivalence relation on A. Its equivalence classes are
called orbits. For a ∈ A, we usually write

OrbG(a) := {πa | π ∈ G}

to denote the G-orbit of the element a. Thus, the orbits of G’s action on A form a
partition of A. If this partition has A as its only part, then the action is called transitive,
and otherwise intransitive. Usually, we will consider situations where A is the universe of
some structure A, extended with hereditarily finite sets, and G = Aut(A). The stabiliser
of an element a ∈ A is the subgroup of G that fixes a:

StabG(a) := {π ∈ G | πa = a}.

We also consider stabilisers of subsets of A. In this case, two notions have to be
distinguished: The pointwise and the setwise stabiliser of a set S ⊆ A. The setwise
stabiliser is the subgroup that induces permutations of the set S:

StabG(S) := {π ∈ G | π(S) = S},

and the pointwise stabiliser is the group that fixes every element in S:

Stab•G(S) := {π ∈ G | πa = a for every a ∈ S}.

In this thesis, we are frequently concerned with bounding the orbit size of certain
objects. It is often more convenient to estimate the size of the stabiliser of an object

67

4 Symmetries and Permutation Groups

instead of its orbit. The fundamental Orbit-Stabiliser Theorem (see e.g. [45]) states that
stabiliser and orbit size are indeed related:

Theorem 4.1.3 (Orbit-Stabiliser). Let G be a group acting on a set A. Let a ∈ A.

|OrbG(a)| = [G : StabG(a)] =
|G|

|StabG(a)|
.

In order to apply this theorem later on, we need to introduce some notions and tools
that will help us to approximate the size of the relevant stabiliser groups.

4.2 Supports and supporting partitions

A support of a permutation group G acting on some set A is a subset S ⊆ A such that
any permutation that fixes every element in S is in G.

Definition 4.2.1 (Support). Let A be a set and let G be a group acting on A. A support
of a subgroup H ≤ G is a subset S ⊆ A such that Stab•G(S) ≤ H.

In our applications, G will usually be the automorphism group of a structure A, and
H will be the stabiliser of a hereditarily finite object a over A. In that case, when we say
that S is a support of a, we mean that S is a support of Stab(a) in Aut(A). The size of
the smallest support of H is a “group-parameter” that will often be of interest for us.
Some groups have the property that every subgroup has a unique minimal support. This
is the case if the supports of a subgroup are closed under intersections. For example,
Symn has this property, as shown in [21]. Whenever a h.f. set a over a structure A has a
unique minimal support, we denote it by sup(a).

Example 4.2.2.

Let A = (V = {a, b, c}, E = {{a, b}}) be the graph given in the
picture. For any h.f. set over A, the set of atoms occurring in it
is a support. For instance, a support of x := {{a}, c} is the set
{a, c} because fixing these atoms also fixes x. This support is not
of minimum size. A smaller support of x would be {a}, because c is
anyway fixed by every automorphism of A. This minimum support
is not unique. An alternative is {b}.

a

b

c

Sometimes, when we are dealing with subgroups of the symmetric group, we use an
even finer notion, called supporting partition. The idea is the same as with supports,
only that a more complex object, namely a partition instead of a set, is considered. The
pointwise and setwise stabiliser of a partition are as defined above, where we view the
partition as the set of its parts. To make it clearer: Let A be a set and P be a partition
of A.

• The pointwise stabiliser of P is Stab•Sym(A)(P) := {π ∈ Sym(A) | π(P) =
P for all P ∈ P}.

68

4.2 Supports and supporting partitions

• The setwise stabiliser of P is StabSym(A)(P) := {π ∈ Sym(A) | π(P) ∈ P for all P ∈
P} (these are all π ∈ Sym(A) that induce a permutation on the parts of P).

The following definitions and lemmas are from [6].

Definition 4.2.3 (Supporting partition). Let A be a set and G ≤ Sym(A) be a permu-
tation group acting on A. A supporting partition of G is a partition P of A such that
Stab•Sym(A)(P) ≤ G.

In words: Every permutation that maps each part P of P to itself (while possibly
permuting the elements of P) is in G. Note that if S = {s1, ..., sk} ⊆ A is a support of G,
then {{s1}, {s2}, ..., {sk}, A \ S} is a supporting partition of G. In general, supporting
partitions can be more informative than supports, especially if we consider the coarsest
possible one. A partition P ′ is as coarse as P (denoted P ′ w P) if every part of P is
contained in a part of P ′.
Lemma 4.2.4 (Lemma 1 in [6]). Each permutation group G ≤ Sym(A) has a unique
coarsest supporting partition, denoted SP(G).

Again, when we write SP(a) for some object a ∈ HF(A), we mean SP(Stab(a)). The
pointwise and setwise stabilisers of the coarsest supporting partition of a permutation
group G can be used to approximate G “from below” and “from above”:

Lemma 4.2.5 (Lemma 4 in [6]). Let G ≤ Sym(A) Then:

Stab•(SP(G)) ≤ G ≤ Stab(SP(G)).

Some groups G are sandwiched rather tightly between these two stabilisers. These are
the ones whose size is easy to analyse because they can essentially be viewed as stabilisers
of partitions. On the other hand, the gap between Stab•(SP(G)) and Stab(SP(G))
can also get arbitrarily large: For example, let G = Altn be the alternating group on
[n]. Then we have SP(G) = {{1}, {2}, ..., {n}}, because no transposition is in Altn.
Whenever the coarsest supporting partition consists only of singletons, we can learn
nothing from it because its pointwise stabiliser contains only the identity permutation,
and its setwise stabiliser is the whole group Symn, so G could be any group in this case
(we can only infer that it contains no transpositions).

Example 4.2.6.

Let G be the graph in the picture. Suppose its vertex set is [n], where
n is a number divisible by three, and it consists of three cliques of
equal size. The coarsest supporting partition of Aut(G), viewed as
a subgroup of Symn, is {{1, ..., n3 }, {

n
3 + 1, ..., 2n

3 }, {
2n
3 + 1, ..., n}}.

In this case, we have Aut(G) = Stab(SP(Aut(G))), so Aut(G)
is maximal with this supporting partition according to Lemma 4.2.5.
If, for example, each clique in the graph had a distinct vertex colour,
then Aut(G) would be equal to Stab•(SP(Aut(G))). This would
be the other extreme case of the lemma. If only one clique were
coloured and the other two were not, then Aut(G) would be strictly
in the middle between the pointwise and the setwise stabiliser of its
supporting partition.

69

4 Symmetries and Permutation Groups

In Chapter 9, the supporting partitions from [6] will no longer suffice for our purposes,
and we will use a variant of them, that we call alternating supporting partitions.

Definition 4.2.7 (Alternating supporting partition). Let A be a set and G ≤ Sym(A) be
a permutation group acting on A. An alternating supporting partition of G is a partition
P of A such that ∏

P∈P
|P |<5

Sym(P)×
∏
P∈P
|P |≥5

Alt(P) ≤ G.

The difference to the “standard” supporting partitions is that the odd permutations
within the parts of an alternating supporting partition need not be contained in the
supported group G. On parts of size < 5, we require the full symmetric group to be in G,
because otherwise, the proof of the next lemma is problematic, and in our applications
later on, constant-size parts will not play a big role anyway. One of the benefits of
alternating supporting partitions is that the undesirable case mentioned above cannot
occur: If G = Altn, then G has an alternating supporting partition with just one part,
which will be much more helpful than a supporting partition consisting only of singletons.
In particular, as we show soon, the groups that we will study later on all have alternating
supporting partitions with at most a sublinear number of singleton parts. Knowing this
will be very convenient in some of our proofs.

First of all, we have to verify that alternating supporting partitions work just like the
original ones from [6].

Lemma 4.2.8. Each permutation group G ≤ Sym(A) has a unique coarsest alternating
supporting partition, denoted SPA(G).

Proof. The proof is similar to the one of Lemma 1 in [6]. We need to prove that for
any two alternating supporting partitions P,P ′, the finest partition of which both of
them are refinements is still an alternating supporting partition. Then the lemma follows
directly. This “finest common coarsification” of P and P ′, denoted E(P,P ′) is defined
like this: Let ∼⊆ A2 be the transitive closure of the relation “a and b occur together in
some part P of P or P ′”. The equivalence classes of ∼ are the parts of E(P,P ′) =: E .
We want to show that any even permutation within any part Q of E (that pointwise fixes
everything outside of Q) is also in G. We do this by proving: If P ∈ P, P ′ ∈ P ′ have
non-empty intersection, then Alt(P ∪ P ′) ≤ G. Since Alt(P ∪ P ′) is generated by pairs
of transpositions (xy)(x′y′), it suffices to show that all such pairs are in G. So consider
(xy)(x′y′), for x, y, x′, y′ ∈ P ∪P ′ pairwise distinct. We distinguish the following cases: If
x, x′, y, y′ are all in P (or analogously, in P ′), then (xy)(x′y′) ∈ Alt(P) ≤ G (using that
P is an alternating supporting partition of G).
The next case is that x ∈ P \P ′, y ∈ P ′ \P , and x′, y′ are in the same part, say, both are
in P ′. In this case, let z ∈ P ∩ P ′, and a, b ∈ P \ {x, z} be two distinct elements (if such
a, b do not exist, then |P | ≤ 3, and so Sym(P) ≤ G, which means that the following
argument works even without these a, b). It holds (xy)(x′y′) = (xz)(ab)(zy)(x′y′)(xz)(ab).
The number of transpositions within P and within P ′ is even (we always swap a and b

70

4.2 Supports and supporting partitions

when we swap x and z, and we swap x′ and y′ together with (zy)), so this product is in
Alt(P)×Alt(P ′) and therefore in G, because both P and P ′ are supporting partitions
of G.
Another case is that x, x′ ∈ P \P ′ and y, y′ ∈ P ′ \P . Let again z ∈ P ∩P ′, and fix some
a, b ∈ P \ {x, x′, z} and a′, b′ ∈ P ′ \ {y, y′, z}. Again, if this is not possible, then P and
P ′ are smaller than 5 and so all permutations on them are in G, which makes the next
step only easier. Consider (xz)(ab)(zy)(a′b′)(xz)(ab)(x′z)(ab)(zy′)(a′b′)(x′z)(ab). This is
equal to (xy)(x′y′) and again in Alt(P)×Alt(P ′) and hence in G.
It remains the case where x, y ∈ P and x′, y′ ∈ P ′. We can assume that x, y ∈ P \P ′ and
x′, y′ ∈ P ′ because Alt(P)×Alt(P ′) ≤ G, and so we can move the elements that are to
be swapped anywhere within P , P ′, respectively. Then we can simulate the permutation
(xy)(x′y′) by applying the previous case twice: First, we execute (xx′)(yy′), and then
(xy′)(yx′). Both are in Alt(P)×Alt(P ′), as shown above, and hence, in total, we have
(xy)(x′y′) ∈ Alt(P)×Alt(P ′) ≤ G.

So we have shown that we can take the union of two intersecting parts from P and P ′,
and the alternating group on this union will also be in G. Iterating this, we can show
that Alt(Q) ≤ G, for every Q ∈ E , because all parts of E can be obtained by iteratively
taking the union of intersecting parts of P and P ′. It remains to show that for all Q ∈ E
with |Q| < 5, Sym(Q) ≤ G. But this is clear since such parts Q ∈ E can only be the
union of small parts P ∈ P and P ′ ∈ P ′. Then we have Sym(P) ≤ G and Sym(P ′) ≤ G.
We can easily see that every transposition in Sym(P ∪ P ′) is also in G by arguing as
above, just that we do not need dummy-transpositions anymore in order to keep the sign
even.

Lemma 4.2.9 (variation of Lemma 3 in [6] for alternating supporting partitions). For
any G ≤ Sym(A), and any σ ∈ Sym(A), σSPA(G) = SPA(σGσ−1).

Proof. As mentioned in [6], it holds σE(P,P ′) = E(σP, σP ′) for any σ ∈ Sym(A).
Therefore, it remains to show that for any alternating supporting partition P of G, and
any σ ∈ Sym(A), σP is an alternating supporting partition of σGσ−1. So let

π ∈
∏
P∈σP
|P |<5

Sym(P)×
∏
P∈σP
|P |≥5

Alt(P).

Then
(σ−1πσ) ∈

∏
P∈P
|P |<5

Sym(P)×
∏
P∈P
|P |≥5

Alt(P).

Therefore, (σ−1πσ) ∈ G because P is an alternating supporting partition of G. Conse-
quently, π ∈ σGσ−1, and so, σP is an alternating supporting partition of σGσ−1.

Lemma 4.2.10 (Lemma 4 in [6] for alternating supporting partitions). Let G ≤ Sym(A)
Then: ∏

P∈SPA
|P |<5

Sym(P)×
∏

P∈SPA
|P |≥5

Alt(P) ≤ G ≤ Stab(SPA(G)).

71

4 Symmetries and Permutation Groups

Proof. The first part is by definition of alternating supporting partitions. For the second
part, let σ ∈ G. Then σGσ−1 = G. So σSPA(G) = SPA(G) by the preceding lemma.

Thus, every group has a unique coarsest alternating supporting partition and is
sandwiched between its pointwise and setwise stabiliser.

4.3 Every large permutation group contains a product of large
alternating groups

Now we prove a result that inspired the introduction of alternating supporting partitions.
Essentially, this is based on a version of Theorem 5.2A from the Dixon and Mortimer
textbook on permutation groups [45]. Informally, that theorem says that any group
G ≤ Symn with index [Symn : G] ≤

(
n
r

)
acts as the alternating group on a large part of

its permutation domain. This has also been used to study the limitations of symmetric
circuits (e.g. in [42], [41]). However, in our application in Chapter 9, we are dealing with
groups G ≤ Symn whose index is bounded by some polynomial in 2n. This is greater
than

(
n
r

)
for any r. Therefore, Theorem 5.2A from [45] is not applicable and we have

to “manually” prove a similar result for groups of larger index. This variant of Theorem
5.2A (Lemma 4.3.8) can be used to show the main result of this section:

Theorem 4.3.1. Let k ∈ N be a constant and (Gn)n∈N be a family of groups such
that Gn ≤ Symn and for all large enough n, [Symn : Gn] ≤ 2nk. Then the number
of singleton parts in SPA(Gn) grows at most sublinearly. In other words: There is no
constant 0 < c ≤ n such that for all large enough n, there exists a ∆n ⊆ [n] of size
|∆n| ≥ cn on which SPA(Gn) contains only singleton parts.

We make use of this result only in Chapter 9. It could also be applied in Chapter 7,
which is based on [87], to skip a case in the proof there. However, we found this more
general result only much later than the publication of [87], so we keep that chapter in
line with the corresponding CSL’21 paper.

For the proof of Theorem 4.3.1, we need some group-theoretic prerequisites. The
following can also be found in the Dixon and Mortimer textbook [45], whose notation
we adopt. For a group G ≤ Sym(Ω), and a subset ∆ ⊆ Ω, G(∆) denotes the pointwise
stabiliser of ∆ in G, i.e. G(∆) = Stab•G(∆). If ∆ is a union of orbits of G, then we
write G∆ to denote the restriction of G to its action on ∆. This is a subgroup of Sym(∆).

As mentioned before, a group G ≤ Sym(Ω) acts transitively on Ω if every element can
be mapped to every other element by G, so if Ω is itself an orbit. If G acts transitively
on Ω, then a non-empty set ∆ ⊆ Ω is called a block if for each π ∈ G, π(∆) = ∆ or
π(∆) ∩∆ = ∅. A block system, or system of imprimitivity, is a partition of Ω into blocks
(of equal size). The group G acts as a permutation group on the set of blocks because
it always maps blocks to blocks. Every transitive group has the trivial block systems

72

4.3 Every large permutation group contains a product of large alternating groups

in which each point forms a singleton block, or the whole point set is one block, respec-
tively. If a transitive group G has other block systems than these two, then G is called
imprimitive, and otherwise, primitive. In particular, primitive groups are always transitive.

A subgroup N ≤ G is called normal (denoted N C G) if its right and left cosets
coincide, i.e. if γN = Nγ for every γ ∈ G. An equivalent formulation is that for all
g ∈ G, h ∈ N , we have ghg−1 ∈ N . We are interested in normal subgroups because they
can be factored out: If N CG, then G/N is the group whose elements are the cosets of
N , that is: For any two γN, γ′N , the group operation in the factor group G/N is defined
as (γN) ◦ (γ′N) = (γ ◦ γ′)N . Thus, the order |G/N | of the factor group is equal to the
index [G : N], and so, |G| = |N | · |G/N |.

If G ≤ Sym(Ω) is intransitive and ∆ ⊆ Ω is an orbit of G, then G(∆), the pointwise
stabiliser of the orbit, is a normal subgroup of G, as one can easily verify. The factor group
G/G(∆) is isomorphic to G∆, the action of G on ∆. Also, if G has a non-trivial block
system, then the subgroup of G that fixes every block setwise is normal in G. Factoring
out this stabiliser yields a group that is isomorphic to the action of G on the blocks. Thus,
if G is intransitive or imprimitive, it has these mentioned “canonical” normal subgroups.
These can then be factored out, which is useful in inductive proofs. The only case where
it is not clear how to factor out a normal subgroup is if G is primitive. Note that the
primitive cases G = Sym(Ω) or G = Alt(Ω) are not difficult: The symmetric group has
the alternating group as a normal subgroup, which leaves Z2 when it is factored out.
The alternating group is simple, which means that it only has itself and the trivial group
{1} as normal subgroups. The other primitive cases are less clear but luckily, the finite
primitive groups have been classified completely. For our proof, the following theorem by
Babai, which essentially summarises the relevant primitive cases, is sufficient:

Theorem 4.3.2 (Theorem 3.2.1 in [15]). Let G ≤ Symn be a primitive group of order
|G| ≥ n1+logn where n is greater than some absolute constant. Then G has a normal
subgroup N of index ≤ n such that N has a system of imprimitivity on which N acts as

a Johnson group Alt
(t)
k with k ≥ log n.

Note that the theorem in [15] has a typo in the order of G, which we have corrected here.

The Johnson group Alt
(t)
k is isomorphic to Altk, the alternating group on k elements,

but Alt
(t)
k acts on the set of all t-tuples over [k] (in the natural way). So the above

theorem guarantees the existence of a normal subgroup N in any large enough primitive
group, and moreover, it tells us that N more or less looks like an alternating group. This
will essentially be one of the base cases in the proof of Theorem 4.3.1.
Before we can start with that proof, we need one more concept, namely the composition
series of a group G. This is a series 1 = H0 C H1 C ... C Hn = G such that each Hi

is a maximal proper normal subgroup of Hi+1. The factors Hi+1/Hi are called the
composition factors of G. Every finite group has such a composition series, which is not
necessarily unique. But by the Jordan-Hölder theorem, every composition series yields
the same composition factors (see for example [94]). Therefore, no matter in which order

73

4 Symmetries and Permutation Groups

we factor out normal subgroups of a given group G, we will eventually encounter the
same composition factors (just like in the prime factorisation of a natural number). This
holds even if we do not factor out a maximal normal subgroup in each step. Therefore, it
holds:

Lemma 4.3.3. Let G be a group and H be a composition factor of G. Let N CG be a
normal subgroup. Then H ∼= G/N , or H is a composition factor of N or of G/N .

Proof. If N is a maximal normal subgroup in G, then there exists a composition series
of G of the form 1 C ...CN CG. Then either H = G/N , or H appears as a composition
factor later in the series, which means that it is a composition factor of N . If N is not a
maximal normal subgroup in G, then we have N CN1 C ...CNk = G for k ≥ 1 normal
subgroups of G containing N . Then either H is a composition factor of N , or if it is not,
then it must be equal to Ni+1/Ni, for some i ∈ [k]. By the Third Isomorphism Theorem,
1CN1/NC...CNk/NCG/N is a composition series of G/N , and (Ni+1/N)/(Ni/N) ∼= H,
so H is a composition factor of G/N in this case.

What we will also need is that a group which is alternating on one of its orbits A is
either still alternating on A when the rest is fixed pointwise, or the action on A is always
completely determined by the action outside of A. For the proof idea of this lemma, I
thank Daniel Wiebking.

Lemma 4.3.4. Let H ≤ G ≤ Symn and let A be an orbit of H such that Alt(A) ≤ HA.
Then either, Alt(A) ≤ (H([n]\A))A, or for every h ∈ H, the action of h on [n] \ A also
determines the action of h on A. The latter means that there are no two distinct g, h ∈ H
which induce the same permutation on [n] \A but distinct permutations on A.

Proof. It holds that N := (H([n]\A))A is a subgroup of HA. Moreover, this subgroup
is normal. To see this, let h ∈ N, g ∈ HA. We want to show that ghg−1 ∈ N . There
exist h′ ∈ H([n]\A), g′ ∈ H such that h′, g′ are extensions of h and g, i.e. their restriction
to A corresponds to h, g, respectively. It is clear that g′h′g′−1 ∈ H([n]\A) because this
permutation fixes every point outside of A. Therefore, ghg−1 ∈ N , because this is just
the action of g′h′g′−1 on A. So N CHA. Since Alt(A) ≤ HA, HA is either Alt(A) or
Sym(A). If it is Alt(A), then N is either also Alt(A) or the trivial group {1}, because
Alt(A) has no other normal subgroups. If HA = Sym(A), then N is trivial, N = Alt(A),
or N = Sym(A). So if N is not trivial, then Alt(A) ≤ N = (H([n]\A))A. Otherwise, if N
is trivial, then every permutation in H([n]\A) also fixes A pointwise. It follows that there
do not exist any two distinct g, h ∈ H such that g, h are equal on [n] \A but different on
A. If they existed, then gh−1 ∈ H([n]\A), but gh−1 is not the identity on A.

Now we will prove the main technical result of this section. It essentially says that if a
group G has a large alternating group as a composition factor, then it also has this large
alternating group as a subgroup in some sense, or otherwise, the index of G in Symn

must be large. The proof is by induction on the compositional structure of G, i.e. in
the inductive step, we choose a normal subgroup and factor it out and then continue
inductively with the normal subgroup or with the factor group, in the spirit of Lemma

74

4.3 Every large permutation group contains a product of large alternating groups

4.3.3. With the next lemma, we can prove Theorem 4.3.1 using a fact from the literature:
Every large group must also have a large alternating group as a composition factor. So
the key step is the one from composition factor to subgroup. Again, I thank Daniel
Wiebking for his help with the proof, especially for solving the primitive case.

Lemma 4.3.5. Let 0 < c ≤ 1 be a constant. Let (Gn)n∈N be a family of groups such that
for all n, Gn ≤ Symd, where c · n ≤ d ≤ n (to be precise: this can be a different d for
every n), and such that for all large enough n, Gn has a composition factor isomorphic
to Altm, for some m ≥ c · n. Then, for every large enough n, one of following two cases
can arise:

(i) There exists a subgroup Hn ≤ Gn and an orbit A of Hn with |A| ≥ c · n such that

Alt(A) ≤ H([d]\A)
n .

(ii) [Symd : Gn] ≥ 1
n ·
(

2d·α
e

)cn/2
· α`, where ` is the number of occurrences of the

transitive imprimitive case in the recursion starting with G and ending with the com-
position factor Altm or in another non-recursive case. The factor α is 1/(bc−1c!).

Proof. Fix n ∈ N and let d be such that Gn ≤ Symd (we suppress the subscript n in
the following). We prove the lemma by induction on the compositional structure of
G and choose a normal subgroup that we factor out in each step, until we arrive at
the composition factor Altm, which occurs in G according to the assumption of the
lemma. If G = Altm, then we are in case (i) and are done. Otherwise, G must have a
normal subgroup because else, G would be simple and would not contain the composi-
tion factor Altm. We choose this subgroup depending on which of the following is the case:

Case 1: G is intransitive.
Let Ω ⊆ [d] be an arbitrary orbit with |Ω| ≥ cn. Such an orbit must exist because
otherwise, G cannot have Altm for m ≥ cn as a composition factor. To see this, con-
sider a chain of normal subgroups that pointwise fix an orbit, one after the other. The
corresponding factor groups are always the restrictions of the next normal subgroup to
one orbit, and so they can never contain Altm if all orbits are too small. Eventually,
we have fixed every orbit pointwise, which leads to the trivial group, and this cannot
contain Altm, either. Therefore, at least one large enough orbit Ω must exist.
Let N := G(Ω) be the pointwise stabiliser of that orbit. It holds N CG, and the factor
G/N is isomorphic to GΩ, the action of G on Ω. Let ∆ := [d] \ Ω be the complement
of the orbit. Now we apply Lemma 4.3.3. It tells us that the large alternating group
which must appear as a composition factor in G is either isomorphic to G/N , or it is a
composition factor of N or of G/N .

If Altm is a composition factor of N , then we apply the inductive hypothesis to
N∆ ∼= N . It yields in case (i) a subgroup H ≤ N ≤ G and a set A ⊆ [d] \ ∆ with
|A| ≥ c · n that is an H-orbit and satisfies Alt(A) ≤ H(∆\A). Note that in the induction,
only the degree d decreases, but c · n remains fixed for each group Gn. Therefore, the
size of the set A that we get by induction is indeed ≥ cn. Since N fixes Ω pointwise, so

75

4 Symmetries and Permutation Groups

does H, and thus, we have Alt(A) ≤ H([d]\A). So we also have case (i) for G.
If case (ii) applies to N , then let d′ := |∆| be the degree of N∆ ∼= N . The induction

hypothesis yields [Sym
(Ω)
d : N] = [Sym(∆) : N] ≥ 1

n ·
(

2d′·α
e

)cn/2
· α`. We have

[Symd : N] = [Symd : Sym
(Ω)
d] · [Sym

(Ω)
d : N] = (d!/d′!) · [Sym

(Ω)
d : N].

Since N ≤ G ≤ Symd, we also have [Symd : N] = [Symd : G] · [G : N]. We know that
[G : N] ≤ (d− d′)! because [G : N] is the order of G/N , whose permutation domain is Ω.

In total we get for [Symd : G], using the Stirling approximation n! ≈
√

2πn ·
(
n
e

)n
:

[Symd : G] =
[Symd : N]

[G : N]
≥ d!

d′! · (d− d′)!
· 1

n
·
(2d′ · α

e

)cn/2
· α`

≈ 1

n
·
(2d′ · α

e

)cn/2
· α` ·

√
2πd · (d/e)d

d′! · (d− d′)!

=
1

n
·
(2d · α

e

)cn/2
· α` · d

d−(cn/2) · d′cn/2 ·
√

2πd

d′! · (d− d′)! · ed

≈ 1

n
·
(2d · α

e

)cn/2
· α` · dd−(cn/2) · d′cn/2 ·

√
2πd

d′d′ · (d− d′)d−d′ · 2π
√
d′(d− d′)

Now since d′ ≥ cn (otherwise N cannot have Altm as a composition factor), we can use
the d− (cn/2) many d-factors in the numerator to dominate all factors (d− d′) in the
denominator. This yields:

≥ 1

n
·
(2d · α

e

)cn/2
· α` · dd

′−(cn/2) ·
√

2πd

d′d′−(cn/2) · 2π
√
d′(d− d′)

≥ 1

n
·
(2d · α

e

)cn/2
· α` · (1 + (c/(1− c)))d′−(cn/2)

√
2πd′

In the last step, we used that d/d′ ≥ (d′+cn)/d′ ≥ 1+ c
1−c . This holds because d−d′ ≥ cn

by the choice of Ω (and therefore, d′ ≤ (1 − c)n). Furthermore, we cancelled
√
d and√

d− d′. Now the exponent d′ − (cn/2) is at least d′/2 (because d′ ≥ cn), and the base
is some constant > 1, so it can be checked that the whole fraction in the right factor is
≥ 1, unless d′ and hence cn is smaller than some constant depending on c. So, for large
enough n, we can remove the factor on the right and are left with:

≥ 1

n
·
(2d · α

e

)cn/2
α`.

So (ii) holds for G. It remains to deal with the case that the large alternating group is a
composition factor of G/N ∼= GΩ or that it is isomorphic to G/N . In the latter case, G
acts on Ω as Altm, for m = |Ω| ≥ cn. If Alt(Ω) ≤ G(∆), then we are done and have case
(i) for G. If G does not act as Alt(Ω) when it fixes ∆ pointwise, then by Lemma 4.3.4,

76

4.3 Every large permutation group contains a product of large alternating groups

for every g ∈ G, the effect of g on Ω is fully determined by the effect of g on ∆. Thus,
|G| ≤ |∆|! = d′!. Then [Symd : G] ≥ d!

d′! . We have d′ ≤ d− cn because |Ω| ≥ cn. So

[Symd : G] ≥ d!

d′!
≥ d!

(d− cn)!
≥
(d
e

)cn
·
√
d/(d− cn) ≥

(2d

e · bc−1c!

)cn/2
=
(2d · α

e

)cn/2
.

The third inequality uses again the Stirling approximation for the factorials, and the last
inequality holds because d

e ≥
2
c−1 . Therefore, if this happens, we have case (ii) for G (the

additional factors 1
n · α

` in case (ii) only make the expression smaller).

If G/N is not isomorphic to the alternating group, then Altm must be a composition
factor of G/N = GΩ. We apply the induction hypothesis. Again, this gives us two cases
that can arise for G/N . In case (i), there exists H ≤ GΩ and an orbit A ⊆ Ω of H
with |A| ≥ c · n such that Alt(A) ≤ H(Ω\A). Then let H ′ be a subgroup of G whose
restriction to Ω is H. If Alt(A) ≤ H ′([d]\A), then we have case (i) for G, as witnessed by
H ′. Otherwise, we use again Lemma 4.3.4, which says that the action of H ′ outside of A
determines the action in A. We claim that this also true for G itself, i.e. there are no
two g, g′ ∈ G which are different on A and equal on [d] \A.
Proof of claim: If the claim is not true, then G([d]\A) is non-trivial. Hence G([d]\A) is
not a subgroup of H ′ because then, the action of H ′ on A would not be determined
by its action outside of A. If G([d]\A) is not a subgroup of H ′, then (G([d]\A))Ω is not a
subgroup of H, either. But we can always assume that H contains (G([d]\A))Ω: The fact
that Alt(A) ≤ H(Ω\A) will still hold if we add to H all permutations in G([d]\A). This
can at most push H(Ω\A) from Alt(A) to Sym(A). Thus, we can assume that H is such
that the claim holds and the action of G on A is indeed determined by its action on [d]\A.

It follows that |G| ≤ (d− |A|)!, and since |A| ≥ cn, we get the same lower bound for
[Symd : G] as above in the case where G/N ∼= Altm. So in this case, case (ii) applies to G.

It remains to check what happens if the induction gives us case (ii) for G/N . Then we

have [Sym(Ω) : G/N] ≥ 1
n ·
(

2(d−d′)·α
e

)cn/2
· α`. It holds

|G/N | = |Sym(Ω)|/[Sym(Ω) : G/N] =
(d− d′)!

[Sym(Ω) : G/N]
.

We have |G| = |N | · |G/N |, and |N | ≤ d′!. We get a similar chain of inequalities as before:

[Symd : G] =
d!

|G|
=

d!

|N | · |G/N |

≥ d! · (2(d− d′)α)cn/2 · α`

d′! · (d− d′)! · n · ecn/2

≈ 1

n
·
(2dα

e

)cn/2
· α` · dd−(cn/2) · (d− d′)cn/2 ·

√
2πd

d′d′ · (d− d′)d−d′ · 2π
√
d′(d− d′)

≥ 1

n
·
(2dα

e

)cn/2
· α` · dd

′

d′d′ ·
√

2π · d′
(?)

77

4 Symmetries and Permutation Groups

In the last step, we cancelled all factors (d−d′) in the denominator with the factors d and

(d− d′) in the numerator, and also removed
√
d√

d−d′ . Now we can almost continue as in the

case before, except that we need a case distinction. The important difference is that now,
we have no lower bound for d′ because this time, the factor Altm is in GΩ, so [d]\Ω might
be arbitrarily small (at least size 1 because it contains at least one orbit). We distinguish
the cases whether d′ ≥ cn or d′ < cn. Let us start with the latter case. As above, we have
d/d′ ≥ (d′+ cn)/d′, because this only depends on the fact that |Ω| ≥ cn, which still holds
by choice of Ω. If d′ < cn, then this becomes: d/d′ ≥ (d′ + cn)/d′ ≥ 2. So then, the right

factor in (?) is at least 2d
′

√
2πd′

. This is greater than one for all values of d′ ≥ 2. If d′ = 1,

then we can argue differently. Then, the right fraction in (?) is equal to d/
√

2π, which is
also greater than one for all large enough n (because d ≥ cn). In case that d′ ≥ cn, we
make the same argument as before, and use the bound d/d′ ≥ (d′ + cn)/d′ ≥ 1 + c

1−c .

Then the right factor in (?) is at least
(1+ c

1−c)d
′

√
2πd′

. Again, for large enough d′, this is ≥ 1.

Since d′ ≥ cn, this happens for large enough n. So in all cases, we can remove the right
factor and the product only gets smaller. So all in all, we have

[Symd : G] ≥ 1

n
·
(2d · α

e

)cn/2
α`,

as desired. This finishes the case where G is intransitive.

Case 2: G is transitive, but not primitive.
In this case, G has a non-trivial block system. Let N CG be the normal subgroup that
stabilises each block setwise. Then G/N is the action of G on the set of blocks. Again,
according to Lemma 4.3.3, the large alternating group is either a composition factor of N ,
of G/N , or it is isomorphic to G/N . In the latter case, (ii) applies to G: If G/N ∼= Altm
for some m ≥ c · n, then the block system has m ≤ d/2 blocks. Each block has size
t, with 2 ≤ t ≤ bc−1c (note that this case can only happen if c ≤ 1

2). Then we have
|G| ≤ (t!)m ·m!. Thus,

[Symd : G] ≥ d!

(t!)m ·m!
≥ d!

(t!)m · (d/2)!

≥
√

2 · (2d/e)(d/2)

(t!)(d/2)
≥
(2d · α

e

)d/2
≥
(2d · α

e

)c·n/2
≥ 1

n
·
(2d · α

e

)c·n/2
· α1.

The last step holds because α ≤ 1. The next case is that Altm is a composition factor
of G/N . Then we do not need the inductive step either and can immediately con-
clude with the same lower bound as above for [Symd : G]. This is because if Altm
is a composition factor of G/N , the degree of G/N must be at least m ≥ cn, and so,
the number of blocks must also be greater than cn, and the block size can be at most bc−1c.

78

4.3 Every large permutation group contains a product of large alternating groups

It remains the case that N has Altm as a composition factor. We apply the inductive
hypothesis to N . Should case (i) hold for N , then we immediately know that case (i)
also applies to G, because then we have some H ≤ N ≤ G (so in particular, H ≤ G) and
an H-orbit A ⊆ [d] such that Alt(A) ≤ H([d]\A) (this is easier than before because N
and G have the same permutation domain now).

If we instead have case (ii) for N , then [Symd : N] ≥ 1
n ·
(

2d·α
e

)c·n/2
· α`−1.

Each block must be of size at least c · n because N has an alternating group of that
degree as a composition factor, and the blocks are the orbits of N . If these orbits were
smaller than c · n, then N could not have a composition factor of that degree, as we
already argued in the intransitive case. Therefore, the number of blocks is at most bc−1c
and so, |G/N | = [G : N] ≤ bc−1c!. In total, we have

[Symd : G] = [Symd : N]/[G : N] ≥ 1

n
·
(2d · α

e

)c·n/2
· α

`−1

bc−1c!

=
1

n
·
(2d · α

e

)c·n/2
· α`.

This finishes the transitive and imprimitive case.

Case 3: G is primitive.
It remains the case that G is primitive. Since G has Altm as a composition factor, with

m ≥ cn, we have for the order of G: |G| ≥ (cn)!/2 ≈ 1
2

(
cn
e

)cn
·
√

2πcn ≥ n1+logn ≥
d1+log d. Thus, by Theorem 4.3.2, G has a normal subgroup N of index ≤ d such that N

has a block system on which it acts as a Johnson group Alt
(t)
k , where k ≥ log d. Here,

k is the size of the permutation domain, and t is the length of the tuples over [k] of
the Johnson action. Since the index of N in G is ≤ d, G/N has order at most d, so it
is too small to have the composition factor Altm. Therefore, N must have Altm as a

composition factor. Now N acts as Alt
(t)
k on the blocks of its block system. We have

k ≥ log d, and every block is identified with a t-tuple over a k-element domain. So the
number of blocks is kt ≥ (log d)t. Thus, the block-size is at most d/(log d)t. Even for
t = 1, this is asymptotically less than cn (recall that d ≤ n). So if n is large enough,
then our sought alternating group cannot be a factor of the blockwise stabiliser N ′ CN
(whose orbits are the blocks), but it must be a factor of N/N ′, which is the action of
N on the blocks. This requires the number of blocks to be ≥ cn. Then the block-size
can be at most bc−1c, as in Case 2 above. If the block-size is ≥ 2, then we obtain

[Symd : N] ≥
(

2dα
e

)cn/2
with exactly the same calculation as in Case 2. Then

[Symd : G] = [Symd : N]/[G : N] ≥ 1

n
·
(2d · α

e

)cn/2
.

Here, we used that [G : N] ≤ d ≤ n. Thus, we get the desired index-bound for G without
having to recurse any further. In the case that the block system of N is trivial and the
blocks are singletons, then we must have t = 1: If t ≥ 2, then N is isomorphic to an

79

4 Symmetries and Permutation Groups

alternating group on ≤
√
d < cn points. Alternating groups have no normal subgroups

other than the trivial group and itself, so in this case, N cannot have Altm with m ≥ cn
as a composition factor. So it remains the case that t = 1, and N = Altd. Since N ≤ G,
we have case (i) for G then.

We now combine this lemma with the following result from the literature, which
guarantees the existence of a large alternating group as a composition factor in any
sufficiently large group.

Lemma 4.3.6 (Lemma 2.2 in [14]). Let G be a permutation group of degree n. If
G has no composition factor isomorphic to an alternating group of degree > C, then
|G| ≤ Cn−1(C ≥ 6).

We get the following consequence for groups of bounded index:

Corollary 4.3.7. Let (Gn)n∈N be a family of groups such that for all n, Gn ≤ Symn.
Assume that there exists some constant k ∈ N such that asymptotically, [Symn : Gn] ≤
2nk.
Then there is a function f(n) ∈ Θ(n) such that for all large enough n, Gn has a
composition factor isomorphic to Altm, for some m ≥ f(n).

Proof. Let f(n) : N −→ N be the smallest upper bound for the maximum degree of an
alternating group that appears as a composition factor of Gn. We have to show that
f(n) is linear in n. Suppose for a contradiction that f(n) ∈ o(n). Let g(n) := f(n) + 1,
for example. Then g(n) ∈ o(n), and it holds for all large enough n that Gn has no
composition factor isomorphic to Altg(n). By Lemma 4.3.6, we have |Gn| ≤ g(n)n−1.
Then we get for the index:

[Symn : Gn] ≥ n!

g(n)n−1
.

Using the Stirling approximation, we obtain:

n!

g(n)n−1
≈
(n

e · g(n)

)n−1
·
(n · √2πn

e

)
.

Since g(n) is sublinear, the fraction n
e·g(n) is not bounded from above by any constant, so

we have [Symn : Gn] > 2nk, for every constant k ∈ N. This is a contradiction, so f(n)
must be linear.

Finally, we can put everything together to show that every group of index ≤ 2nk has a
large alternating subgroup. This lemma is the version of Theorem 5.2A in [45] for groups
of index ≤ 2nk.

Lemma 4.3.8. Let (Gn)n∈N be a family of groups such that for all n, Gn ≤ Symn. As-
sume that there exists some constant k ∈ N such that asymptotically, [Symn : Gn] ≤ 2nk.

Then there exists a constant 0 < c ≤ 1 such that for all large enough n, Gn has a

subgroup Hn such that Alt(A) ≤ H([n]\A)
n for some Hn-orbit A of size |A| ≥ cn.

80

4.3 Every large permutation group contains a product of large alternating groups

Proof. Corollary 4.3.7 states that all large enough Gn have a composition factor isomor-
phic to Altm, where m ≥ f(n), for some function f(n) ∈ Θ(n). There is a constant
0 < c ≤ 1 such that f(n) = c · n. Hence, Lemma 4.3.5 applies (where d := n).
We now want to show that case (ii) from Lemma 4.3.5 cannot occur for any of the Gn.

Suppose for a contradiction that [Symn : Gn] ≥ 1
n ·
(

2n·α
e

)cn/2
·α` for some large enough

n. First, we bound `. In Lemma 4.3.5, this was defined as the number of times the
transitive and imprimitive case occurs in the recursion. By inspection of the proof, we see
that this case occurs only if G is transitive and imprimitive, and the sought composition
factor Altm is in the blockwise stabiliser N C G. In this case, the block-size must be
≥ cn. Whenever this case occurs, we continue with the intransitive case where the orbits
are the blocks, which means that we eventually end up with a group whose degree is
at most the block size of the block system of G. So whenever we have the transitive
imprimitive case and continue the recursion, we at least halve the degree. We may only
do this until the degree drops below cn, so we have ` ≤ log n (actually, the bound could
be made even smaller, but log n is already much tighter than we really need). Thus,

[Symn : Gn] ≥ 1

n
·
(2n

e · bc−1c!

)cn/2
·
(1

bc−1c!

)logn

≥
(2n

e · bc−1c!2
)cn/2

Now for every constant k ∈ N that we could choose, 2kn can be written as an for some
constant a (that can be arbitrarily large but still constant). Comparing the above
expression with an, we find:

[Symn : Gn]

an
≥
(2n

e · (c−1)!2

)cn/2
· 1

an

=
(2n

a2/c · e · (c−1)!2

)cn/2
.

Clearly, for any constant a, this fraction tends to infinity in the limit. So, if [Symn : Gn]
is bounded from above by 2kn, then for all large enough n, case (ii) from Lemma 4.3.5
cannot possibly apply to Gn.

Theorem 4.3.1 now follows from this lemma.

Proof of Theorem 4.3.1. Assume for a contradiction that there was a constant 0 < c ≤ 1
such that for every large enough n, there exists a subset ∆n ⊆ [n] of size |∆n| ≥ cn,
which is precisely the set of elements in singleton parts in SPA(Gn). In the following, we
assume that the size of ∆n is not only lower-bounded linearly, but that there also exists
some other constant 1 > d > c such that |∆n| ≤ dn, for all large enough n. We deal with
the other case in the end.
Let Hn := (G

([n]\∆)
n)∆ be the subgroup of Gn that fixes every point outside of ∆, re-

stricted to its action on ∆. We now show that [Sym(∆) : Hn] > 2nk, for every k ∈ N.

81

4 Symmetries and Permutation Groups

Indeed, if there were a k ∈ N such that [Sym(∆) : Hn] ≤ 2nk for all large enough n,
then by Lemma 4.3.8, all the Hn would have a subgroup H ′n containing the alternating
group on an orbit A of size |A| ≥ c′ · |∆|, where c′ is the constant from the lemma. More

precisely, Alt(A) ≤ H ′(∆\A)
n . Thus, every even permutation on A (that fixes everything

in ∆ outside of A) would be contained in Hn, and since Hn is a subgroup of Gn that fixes
everything outside of ∆, this means that Alt(A) ≤ G([n]\A). But then, A ⊆ ∆ would
be a part of the coarsest alternating supporting partition SPA(Gn). This contradicts
the fact that SPA(Gn) only has singleton parts on ∆. Therefore, we must have that
[Sym(∆n) : Hn] > 2nk, for every k ∈ N.
As a next step, we calculate that this entails a violation of the assumption that [Symn :
Gn] can be upper-bounded by 2nk, for some k. Namely, if [Sym(∆n) : Hn] > 2nk for all

k ∈ N, then |Hn| < |∆n|!
2nk

, for every choice of k. Then we also have |Gn| < |∆n|!
2nk
·(n−|∆n|)!.

This is because by Lemma 4.2.10, every element of Gn stabilises SPA(Gn) setwise and so
in particular, maps singleton parts only to singleton parts; therefore, [n] \∆ is a union of
G-orbits and so Hn is normal in Gn. It follows for the index, for every k ∈ N:

[Symn : Gn] =
n!

|Gn|
>

n! · 2nk

|∆n|! · (n− |∆n|)!
.

Since cn ≤ |∆n| ≤ dn, we have |∆n| ≤ dn and n− |∆n| ≤ (1− c)n. So we can continue:

n! · 2nk

|∆n|! · (n− |∆n|)!
≥ n! · 2nk

(dn)! · ((1− c)n)!

≈ 2nk ·
(1

d

)dn
·
(1

1− c

)(1−c)n
· 1√

2π · d(1− c) · n

Since d < 1 and (1 − c) < 1, the above product is greater than 2nk (for large enough
n). Because this lower bound for [Symn : Gn] holds for every k ∈ N, we can conclude
that [Symn : Gn] > 2nk, for every k. But the assumption of Theorem 4.3.1 says that
there exists a k ∈ N such that for all large enough n, [Symn : Gn] ≤ 2nk. This is a
contradiction. This proves the theorem in case that |∆n| can be upper-bounded by some
linear function d · n, for d < 1. The case that |∆n| > dn, for all d < 1, cannot occur:
Lemma 4.3.8 applied to Gn states that Gn contains an alternating group of linear degree
(which fixes the rest pointwise). Therefore, for all large enough n, SPA(Gn) must have
at least one part of linear size. So it is impossible that all but sublinearly many elements
of [n] are in singleton parts in SPA(Gn).

4.4 Orbits, supports and Choiceless Polynomial Time

As we already discussed in Chapter 3, no Choiceless Polynomial Time sentence can
activate a h.f. set whose orbit with respect to the automorphism group of the input
structure has super-polynomial size. Therefore, a way of proving that certain objects are
not CPT-definable in a given family of input structures is to show that the size of their
orbit grows super-polynomially in the structure size. This is also what we do in Chapter

82

4.4 Orbits, supports and Choiceless Polynomial Time

7.
The ultimate goal is to show that some polynomial time decision problem is not CPT-
definable. In order to accomplish this with the symmetry approach, one has to prove first
that solving the decision problem in CPT requires the construction of hereditarily finite
sets with certain properties; as a next step, one shows that these necessary properties
always come at the cost of a super-polynomial orbit.

Usually, this necessary property of h.f. objects is the minimum size of a support : It
turns out that for model-theoretic reasons (a connection between the support size and
the number of pebbles needed to distinguish structures in a pebble game), solving certain
decision problems in CPT requires the construction of objects whose smallest support is
large. Intuitively speaking, the larger the support of an object is, the less symmetric it is:
If a h.f. set x over some structure A is only fixed by those permutations in Aut(A) which
also fix, say, half of the elements in A, then one would expect that x is moved by most
automorphisms of A. Indeed, for suitably symmetric structures A, it can be shown that
a large support size also implies super-polynomial orbit size for any h.f. set x over A.

The first time that this line of argument was employed was already in [21] in 1999,
where CPT was introduced. Blass, Gurevich and Shelah showed that CPT without count-
ing cannot define the EVEN-query (asking whether the universe of the input structure
has even cardinality) on sets without any relations. Their argument is this: Let A and
B be sufficiently large structures with empty vocabulary, and Ak,Bk be the structures
enriched with all h.f. sets over the respective universe that are transitively k-supported,
i.e. all sets x such that every y ∈ tc(k) has a support of size ≤ k.
It turns out that for any constant m, it holds Ak ≡Lm∞,ω Bk, provided that A and B are
large enough. In other words, even if a CPT-program (without counting) activated all
sets of support ≤ k on input A or B, it would not be able to tell any difference between
the structures, in particular between their cardinalities. Consequently, solving EVEN in
CPT without counting requires the construction of objects with larger support than any
constant k ∈ N.

In a second step, the authors show that any object whose smallest support has super-
constant size has a super-polynomial orbit. They conclude that CPT without counting
cannot distinguish the cardinalities of arbitrarily large structures. The proof of this
second step explicitly constructs exponentially many distinct automorphic images of any
given object x with super-constant support. It is quite lengthy and technically involved,
but for the sake of illustration, we consider the easier case where x ⊆ [n] is simply a
subset of the universe [n]:

Example 4.4.1. Let x ⊆ [n] be a subset of the structure [n]. Suppose f(n) ≤ |x| ≤ n/2,
for some super-constant function f . Since Aut([n]) = Symn, the smallest support
of x is x itself (moving any element from x outside of x also moves x). Thus, the
minimum support size of x is super-constant in n. Its orbit is super-polynomial: We
have |Orb(x)| ≥

(
n

f(n)

)
≈ nf(n), which is greater than nk, for any constant k.

83

4 Symmetries and Permutation Groups

This is a very simple example for the kind of support-orbit connection that is crucial for
proving CPT lower bounds. The proof in [21] generalises the argument from the example
to all h.f. sets over [n] with super-constant support. Whenever the automorphism group of
the structure in question is the full symmetric group on its universe, then the techniques
from [21] are sufficient to show that super-constant support implies a super-polynomial
orbit. For structures with smaller automorphism groups, though, it is not clear how
to prove super-polynomial orbit results in this style. It seems like this is one of the
main challenges on the way to a separation of CPT and Ptime because we expect that
difficult and interesting problems require inputs with more structure than just naked
sets or complete graphs (which are the typical structures with “full” automorphism
groups). Intuitively, the more structure and “information” there is in the instances, the
less symmetric they are and the more difficult it is to prove super-polynomial orbits
theorems for objects with large supports.

Nevertheless, it makes sense to systematically explore to what extent the techniques
from [21] are applicable. This was done by Benjamin Rossman in 2010 [95]. He extracted
the key properties that the automorphism group of a structure must have such that the
statement “super-constant support leads to super-polynomial orbit” can be shown with
essentially the same method as in [21].

4.4.1 Groups with the (k,r)-support property

A group has the (k, r)-support property if every (k, r)-constructible subgroup is k-supported.
Roughly speaking, this means that every subgroup that can occur as the stabiliser of a
CPT-definable hereditarily finite set has a support of size at most k. Here is the formal
definition:

Definition 4.4.2 (Definition 4.1 in [95]). Let A be a set of size n and G be a group
acting faithfully on A. A subgroup of G is k-supported if it has a support S ⊆ A with
|S| ≤ k.
For all k and r, the set of (k, r)-constructible subgroups of G is the minimal family of
subgroups such that

• every k-supported subgroup is (k, r)-constructible, and

• if H1, ...,Hr are (k, r)-constructible, H1 ∩ ... ∩Hr ⊆ H and [G : H] ≤ nk, then H
is (k, r)-constructible.

The group G has the (k, r)-support property if every (k, r)-constructible subgroup of G is
k-supported.

The definition of (k, r)-constructibility reflects the fact that the (setwise) stabiliser of
any set x = {y1, ..., yr} is at least the intersection of the stabilisers Stab(y1)∩...∩Stab(yr).
Potentially, Stab(x) may be larger than that because permutations of the r elements of x
are also in its stabiliser. However, if G is the automorphism group of some input structure
A, and we are considering a CPT-program with resource bound nk that activates x, then

84

4.4 Orbits, supports and Choiceless Polynomial Time

we know that [Aut(A) : Stab(x)] ≤ nk (because of the Orbit-Stabiliser Theorem and the
closure of definable sets under automorphisms). Thus, in structures whose automorphism
group has the (k, r)-support property, CPT can only define sets of bounded support.
Formally, Rossman shows the following fact. Recall that the variable rank of a CPT
program is the maximum number of free variables in any of its terms.

Lemma 4.4.3 (Proposition 4.3 / Lemma 4.5 in [95]). Let Π be a program in CPT(nk)
with variable rank ≤ r. Then for every finite structure A and every x ∈ HF(A) that
is activated in the run of Π on A, StabAut(A)(x) is a (k, r)-constructible subgroup of
Aut(A).

Consequently, the power of CPT to define objects with large support is limited on
structures whose automorphism groups have the (k, r)-support property. We summarise
this as follows.

Theorem 4.4.4. Let (An)n∈N be a family of τ -structures and let k ∈ N be fixed. If for
every r ∈ N, there exists n0 ∈ N such that for all n ≥ n0, Aut(An) has the (k, r)-support
property, then there is no CPT-program that can activate sets whose smallest support
has size > k on the structures An, for arbitrarily large n.

Proof. Let Π be any CPT-program with vocabulary τ . Let r ∈ N be the variable rank
of Π. Then for all An with n ≥ n0, by Lemma 4.4.3 it holds that every object that Π
activates on input An has a support of size at most k. Thus, there exists no CPT-program
that can activate objects whose smallest support has size > k on structures An, for n
arbitrarily large.

Groups for which the (k, r)-support property is known are the symmetric group and
the group of linear automorphisms of finite vector spaces:

Theorem 4.4.5 (Proposition 5.2 in [95]). For n > 2kr, Symn has the (k, r)-support
property.

Theorem 4.4.6 (Proposition 6.2 in [95]). If V is a finite vector space of dimension
> r2k2, then the group GL(V) of linear automorphisms has the (k, r)-support property.

An immediate consequence of this is Theorem 3.2.3, stating that the set of hyperplanes
of a given finite vector space is not CPT-definable; the smallest support of such a hyper-
plane in an n-dimensional space has size n− 1, which is greater than k in the theorem
above. Therefore, by Theorem 4.4.4, no CPT-program can define such hyperplanes in a
finite vector space.

The proofs of Theorems 4.4.5 and 4.4.6 are similar. They roughly work the same
way as the original proof by Blass, Gurevich and Shelah [21] for the non-definability
of the EVEN problem in CPT− but are much shorter and simpler. In short, the main
properties of Symn (and GL(V)) that Rossman’s proof of the (k, r)-support property
is based on are:

85

4 Symmetries and Permutation Groups

• Supports (of size < n/2) of subgroups of Symn are closed under intersection.
Therefore, any (n/2)-supported subgroup has a unique minimal support.

• For any set V ⊆ [n] with |V | < (n/2), it holds for the index of the setwise stabiliser:
[Symn : Stab(V)] =

(
n
|V |
)
, which is super-polynomial in n if |V | is super-constant.

The second property essentially says that subsets of [n] of super-constant size have a
super-polynomial orbit, as we mentioned in Example 4.4.1. Thus, Rossman’s analysis
shows that for groups where the supports are closed under intersection, it suffices to
consider the orbit size of subsets of the universe in order to prove that also any higher-
order object with large support has a large orbit. For completeness, we also state an
important characterisation of groups with the (k, r)-support property that is used in the
proofs of Theorems 4.4.5 and 4.4.6.

Lemma 4.4.7 (Lemma 4.2 in [95]). G has the (k, r)-support property if and only if every
kr-supported subgroup with index ≤ nk is k-supported.

Using this, it is not difficult to prove the (k, r)-support property also for other groups
that are similar to Symn. For example, the proof of Proposition 5.2 in [95] works also for
Altn. Essentially, this is because the alternating group also satisfies the two properties
mentioned above: The first property can be shown like in the proof of Lemma 5.3 in
[95], with the only difference that the supports whose intersection is taken must be of
size < n/2 − 1 instead of < n/2. The second property is satisfied because Altn acts
transitively on the subsets of [n] of fixed size. It is also straightforward to generalise the
proof to direct products of symmetric or alternating groups. In the next chapter, we
introduce the automorphism group of the n-dimensional hypercube, and it also contains
Symn. However, in that case, Symn is acting on a set of size 2n instead of n, so the proof
of the (k, r)-support property for Symn does not translate to that setting. This is impor-
tant because the hard CFI-instances we study in this thesis are based on n-dimensional
hypercubes. If it were clear that their automorphism groups satisfied the (k, r)-support
property, then CPT lower bounds on such structures would follow directly from Ross-
man’s results and we would not have to go to such lengths in the study of their symmetries.

In summary, structures whose automorphism groups have the (k, r)-support property
for constant or at least slowly growing values of k are good candidate inputs on which
limitations of the power of CPT can be shown – provided that a connection between
support size and expressive power can also be established. The disadvantage of this
approach is that – as it seems – only extremely symmetric structures do have this
property: For example, (disjoint unions of) complete graphs or the like. It is not obvious
that there exists a decision problem whose instances are limited to such highly symmetric
structures that could potentially separate CPT from Ptime. In fact, as we discuss in
Section 5.2, the automorphism groups of Cai-Fürer-Immerman structures do not have
the (k, r)-support property. The isomorphism problem of these structures is, however, a
promising candidate for the separation of CPT from Ptime.

86

4.5 Outlook: Symmetries beyond automorphisms

4.5 Outlook: Symmetries beyond automorphisms

The approach towards CPT lower bounds via the estimation of orbit sizes has its
limitations: It is useless on, for example, rigid structures, i.e. structures with no non-
trivial automorphisms. An important class of such structures are multipedes [67]. These
are similar to Cai-Fürer-Immerman graphs and have a polynomial time isomorphism
problem, but are indistinguishable in bounded-variable counting logic. The difference to
CFI-structures is that multipedes are rigid. So, in case that CPT can define isomorphism
of unordered CFI-graphs but not of multipedes, then the methods we employ in this
thesis are too weak to detect this: We always argue via super-polynomial orbit sizes
of h.f. sets, but on rigid structures, all CPT-definable objects trivially have orbit size
1, which is of course not super-polynomial. Nonetheless, it is quite clear that CPT
cannot make arbitrary choices in multipedes because in any pair of “feet” of a multipede,
the feet are indistinguishable in Ck. The individual computation steps of CPT are
not only orbit-invariant but actually even invariant under Ck-types, for a constant k
that depends on the CPT program. Therefore, CPT cannot distinguish the feet of
a multipede (at least not in a single step), even though they are in singleton orbits.
This type-invariance of CPT will become clearer in Chapter 10, when we consider the
computation model Deep Weisfeiler Leman (DWL). DWL has the same expressive power
as CPT, and the steps of a DWL-computation are C3-type invariant by definition (e.g.
the Pair-operation is always executed for all pairs of objects with the same C3-type). The
C3-type partition of a structure can generally be coarser than its orbit-partition, and
so, type-invariance is a stronger limitation than orbit-invariance. The reason why we
focus so much on orbit-invariance is that automorphisms of structures are relatively easy
to understand. They form groups, and so we have all the group-theoretic techniques
available, that we have presented in this chapter. It is less clear how the type-invariance
of CPT could be exploited and turned into an argument against the power of CPT. In
personal communication, it has been suggested to us by Anuj Dawar that there may be a
connection between the type partition of a structure and certain groupoids (rather than
automorphism groups). A groupoid is essentially a “group” G whose binary operation
◦ : G×G −→ G is only a partial function. A potential way how groupoids might come
into the picture is when we consider partial automorphisms (“motions”), as in the proof
of the zero-one law for CPT− [18]. A partial automorphism is a bijection between subsets
of the universe with small size. The composition of such partial automorphisms is only
defined when co-domain and domain of the two match, so they indeed form a groupoid.
As shown in [18], one can even define a suitable notion of supports with respect to partial
automorphisms. However, we do not know in how far the Orbit-Stabiliser Theorem
generalises to such groupoids, or if the concept of an orbit even makes any sense at
all for groupoids. Thus, at least the super-polynomial orbit argument will be difficult
to make using only partial automorphisms. Anyway, we feel like the group-theoretic
techniques that we mostly employ in this thesis have not yet reached their limitations.
Therefore, we decided to explore the group-theoretic route towards CPT lower bounds in
depth and to leave the type-based “groupoid method” for the future, in case that the
automorphism-based method does not suffice to separate CPT from Ptime.

87

5 The Cai-Fürer-Immerman graphs and
their symmetries

The Cai-Fürer-Immerman construction [29] is a central tool for proving lower bounds
in finite model theory. Basically, the construction takes a family of connected base
graphs and substitutes the vertices and edges of each graph by certain “CFI-gadgets”.
These gadgets exist in twisted and non-twisted versions and depending on how many
vertex-gadegts are twisted, two CFI-graphs on the same base graph are either isomorpic or
not. The point of the construction is that the “twists” are hard to detect for Spoiler in the
bijective k-pebble game and thus, the difference between two non-isomorphic CFI-graphs
is hard to express in counting logic/FPC. In Chapter 6 we give a detailed account on what
is known about the connection between pebble games and CPT. Indeed, there is strong
evidence that distinguishing general CFI-graphs might be hard not only for FPC, but
also for CPT (see [40]). A proof that CPT cannot distinguish certain CFI-graphs would
separate CPT from Ptime since the isomorphism problem of CFI-graphs reduces easily
to a linear equation system over the finite field F2 [10], which can be solved efficiently by
Gaussian elimination. There exist also generalised CFI-constructions which correspond to
equation systems over other finite fields or rings (see [55], [82]), but these are more rele-
vant for the study of rank logic, so we only focus on the classical construction over F2 here.

It is important to note that in the case of CPT, the presence or absence of any kind
of ordering on the CFI-graphs makes an enormous difference – this is not the case with
weaker logics like FPC. Therefore, the CFI-graphs that we consider in this thesis differ
from the usual presentation in the literature in that regard. In other contexts, the
base graphs for the CFI-construction are often taken to be linearly ordered or at least
preordered with small colour classes. This induces an order on the vertex-gadgets of the
corrresponding CFI-structures. Whether or not FPC can distinguish non-isomorphic
CFI-graphs does not depend on the presence or absence of the order on the gadgets.
However, CPT can distinguish CFI-graphs if there is an order on the gadgets [40], but
as the evidence that we collect in this thesis suggests, this may not be possible if the
structures are completely unordered.

In this chapter, we present the definition of unordered CFI-graphs and examine their
automorphism groups. These are more complex than the automorphisms of ordered CFI-
graphs because we not only have the “edge-flip automorphisms” that have already been
mentioned in the literature, but also automorphisms of the base graph itself. Furthermore,
we present CFI-graphs on unordered hypercubes – as the results in Chapters 7 and 9
suggest, this is a family of CFI-structures which may be particularly hard to distinguish

89

5 The Cai-Fürer-Immerman graphs and their symmetries

in CPT, due to their symmetries. An even more symmetric family of base graphs
are complete graphs but they are not a suitable candidate because CPT can define
isomorphism of CFI-structures over complete graphs [91].

5.1 The CFI-construction

Fix an undirected (and unordered) connected graph G = (V,E) as the base graph for
the CFI-construction. We turn G into a CFI-graph by replacing the edges with certain
edge-gadgets and the vertices with vertex-gadgets. There are two types of vertex-gadgets,
called odd and even. To construct a concrete CFI-graph over G, we have to fix a set
S ⊆ V of vertices which are replaced by the odd gadget. The vertices in V \ S will be
turned into the even gadget. Following the notation in [40], we denote the resulting
CFI-graph by GS . The precise definition is as follows:
Let

Ê := {e0, e1 | e ∈ E}.

These are the vertices that will form the edge-gadgets of GS , so there are two vertices
per edge-gadget. To define the vertices in vertex-gadgets, we let, for each v ∈ V ,

v∗S :=

{
{vX | X ⊆ E(v), |X| even } if v /∈ S
{vX | X ⊆ E(v), |X| odd } if v ∈ S

Here, E(v) ⊆ E are the edges incident to v in G. The vertices in v∗S form the vertex-gadget
of v. In total, we let

V̂S :=
⋃
v∈V

v∗S .

Then the vertex-set of GS is V (GS) := V̂S ∪ Ê. The edges of the CFI-graph are given by

E(GS) := {{vX , ei} | vX ∈ V̂S , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

In other words, for every v ∈ V , we connect each vX ∈ v∗S with the edge-gadgets of all
edges e ∈ E(v) in such a way that vX is connected with e0 if e /∈ X, and otherwise with
e1. Also, we connect e0 and e1 to ensure that no automorphism of GS can tear apart the
edge-gadgets.

Below are the gadgets v∗S , w
∗
S for two vertices v, w ∈ V , and the gadget for the

edge e ∈ E connecting them. In this example, we have v /∈ S,w ∈ S, and E(v) =
{e, f, g}, E(w) = {e, h, i}. Only the edge e is drawn. Notice that v∗S and w∗S look the
same when we only consider their connections to the e-gadget, even though one gadget is
even and the other is odd.

90

5.1 The CFI-construction

e0

e1

v∅

v{e,f}

v{e,g} v{f,g}

w{e}

w{h}

w{i}w{e,h,i}

Figure 5.1: Gadgets v∗S , w
∗
S , connected by the gadget for the edge e.

If not stated otherwise, GS is unordered, i.e. its only relation is E(GS). In ordered or

preordered versions of the problem, the CFI-structure has an additional relation ≺GS .
This is usually inherited from a given order or preorder ≺G on the base graph: Each
colour class of ≺GS is the union of the vertex-gadgets v∗S in the corresponding colour
class of ≺G. The colour class of each edge gadget in GS is determined by the colour
classes of the endpoints of the edge.

The CFI-query asks for the parity of |S|, given a CFI-graph GS . This is essentially
the same question as the graph isomorphism problem for CFI-graphs:

Theorem 5.1.1 ([29] [40]). For two given CFI-graphs over the same base graph, it holds

GS ∼= GR if and only if |S| ≡ |R| mod 2.

Alternatively, deciding the parity of |S| can be phrased as a linear equation system
over F2 in the variables Ê (see for instance [10]). Since the reduction to a linear equation
system is easily computable from the given CFI-graph GS , and linear equation systems
can be efficiently solved using, for example, Gaussian elimination, we have the following
well-known result:

Theorem 5.1.2. Let G be any family of undirected connected graphs. There is a
polynomial time algorithm that receives as input (a binary encoding of) a CFI-structure
GS, over a base graph G ∈ G, and decides the parity of |S|.

Linear-algebraic logics that have a built-in ability to solve linear equation systems over
F2 can therefore also decide the CFI-query quite easily. The reason why this problem is
hard for many other logics is that the vertices e0, e1 within each edge gadget cannot be
easily distinguished by a logic. If we knew for every edge e ∈ E, which of the vertices e0, e1

is which, then we could look at every vertex-gadget v∗S , and determine whether it is odd
or even by checking how it is connected to its incident edge-gadgets. Actually, we do not
need to know that e0 is the zero-vertex and e1 the one-vertex of an edge-gadget: Even if
we pretend that it is the other way round, we can still determine the parity of |S| correctly.
This is because if we “flip” the edge e = {v, w} (i.e. we treat e0 as e1 and vice versa),
then this corresponds to the isomorphic CFI-graph GS4{v,w}, so this makes no difference.
These considerations lead to a polynomial time algorithm for the CFI-query, that is more
direct than Gaussian elimination: For each edge e ∈ E, label the vertices e0, e1 with 0
and 1 arbitrarily (which is possible on a Turing machine) and then use these labels to

91

5 The Cai-Fürer-Immerman graphs and their symmetries

determine for each v ∈ V , if v∗S is the odd or even gadget. Simulating this algorithm in
Choiceless Polynomial Time is, however, difficult: We simply do not have the possibility
to choose a fixed {0, 1}-assignment to all vertices in Ê. Nonetheless, when the base graph
is linearly ordered, there is a trick to still accomplish this in CPT. This was invented in
[40], where Dawar, Richerby and Rossman construct so-called super-symmetric objects.
These deeply nested sets allow in a way to consider all possible {0, 1}-assignments at
once without violating polynomial bounds. In Chapter 6, we present this technique in
detail. Whether CPT can decide the CFI-query on unordered instances is open, however.

For logics that lack the ability to create higher-order objects, such as bounded-variable
counting logic and hence FPC, it is provably impossible to distinguish non-isomorphic
CFI-graphs, provided that the treewidth of the base graphs is super-constant:

Theorem 5.1.3 ([29] [10]). Let G = (V,E) be an undirected connected graph with
treewidth t. Then for any two sets S, S′ ⊆ V , it holds

GS ≡Ct GS′ ,

even if GS 6∼= GS′.

This holds because Duplicator has a winning strategy in the bijective t-pebble game on
GS and GS′ . Intuitively, the difference between GS and GS′ manifests itself in one single
edge whose gadget is twisted, and the aim of Duplicator is to move this twist around in
such a way that it is never exposed by the t pebbles. This can be achieved by playing
similarly as the robber in the cops and robbers game which witnesses the treewidth to
be at least t.

Since for any fixed FPC-sentence ψ, there is a k such that ψ cannot distinguish
Ck-equivalent structures, it follows:

Corollary 5.1.4. Let (Gn = (Vn, En))n∈N be a family of graphs whose treewidth is not
bounded from above by a constant. Then there is no sentence ψ ∈ FPC such that, for all
n ∈ N and all S ⊆ Vn,

GS
n |= ψ iff |S| ≡ 0 mod 2.

5.2 Automorphisms of unordered CFI-graphs

For a CFI-graph GS over an unordered base graph G = (V,E), two different kinds of
automorphisms play a role: Firstly, there are what we call “CFI-automorphisms” or
-isomorphisms. These are induced by swapping e0 and e1 in some edge-gadgets (this is
called “flipping the edge”). Secondly, there are the automorphisms of the underlying
graph G itself.

To speak about the CFI-isomorphisms, we use the terminology from [40]: For a given
base graph G, we consider not only a concrete CFI-instance with odd and even vertex

92

5.2 Automorphisms of unordered CFI-graphs

gadgets, but we can also construct the “full” CFI-graph G, in which every vertex gadget
is both even and odd. Formally, for v ∈ V , let

v∗ := v∗∅ ∪ v
∗
{v} = {vX | X ⊆ E(v)},

and
V̂ :=

⋃
v∈V

v∗.

The vertex-set of G is V̂ ∪ Ê, and the edge-set is

E(G) := {{vX , ei} | vX ∈ V̂ , ei ∈ Ê, |X ∩ {e}| = i} ∪ {{e0, e1} | e ∈ E}.

Every CFI-instance GS is an induced subgraph of G.
For each edge e = {v, w} ∈ E, let ρe denote the automorphism of G induced by flipping
the edge e. Formally, ρe(e0) = e1, ρe(e1) = e0, and ρe(v

X) = vX4{e}, ρe(w
X) = wX4{e}

for all vX , wX ∈ v∗∪w∗. All other vertices in V̂ are fixed by ρe. One can check that this is
indeed an automorphism of G; furthermore, ρe is an isomorphism from any CFI-instance
GS to GS4{v,w} (see also [40]).
It is easy to see that these edge-flip automorphisms commute, so for F = {e1, ..., em} ⊆ E
we may write ρF for ρe1 ◦ ρe2 ◦ ... ◦ ρem .

So in total, for every F ⊆ E, ρF is an automorphism of G. For any edge-set F ⊆ E,
and v ∈ V let degF (v) := |E(v) ∩ F |, i.e. the number of incident edges that are in F .
We have ρF (GS) = GS4T , where T = {v ∈ V | degF (v) is odd }. In particular, if every
v ∈ V is incident to an even number of edges in F (so F is the symmetric difference over
a set of cycles in G), then ρF is also an automorphism of GS , not only of G.

To sum up, we have the following groups of CFI-automorphisms of G and GS :

AutCFI(G) := {ρF | F ⊆ E}.

This group is isomorphic to the Boolean vector space FE2 : Each F ⊆ E is identified with
its characteristic vector χ(F) ∈ FE2 . It holds ρF ◦ ρF ′ = ρF4F ′ , and this corresponds to
the vector χ(F) + χ(F ′) ∈ FE2 . It is sometimes convenient to view the group of edge-flips
as this vector space.
As already said, for a CFI-instance GS , i.e. an induced subgraph of G, we have

AutCFI(G
S) := {ρF ∈ AutCFI(G) | degF (v) is even for every v ∈ V }.

This group is isomorphic to a subspace of FE2 . In addition to the CFI-automorphisms, we
also have to consider Aut(G) ≤ Sym(V), i.e. the automorphism group of the unordered
underlying graph; this is different from the typical scenario studied in the literature,
where G is ordered and so the automorphisms of GS are just given by the edge-flips.

In total, the automorphism group of the full CFI-graph G is isomorphic to the fol-
lowing semi-direct product (recall Definition 4.1.2):

Aut(G) ∼= AutCFI(G)oAut(G) = {(ρF , π) | ρF ∈ AutCFI(G), π ∈ Aut(G)}.

93

5 The Cai-Fürer-Immerman graphs and their symmetries

The action of a pair (ρF , π) on V (G) is determined by its action on Ê: Let ei ∈ Ê with
i ∈ {0, 1} and e = {v, w} ∈ E. Then (ρF , π)(ei) = fj , where f = {π(v), π(w)}, and

j = i+ |F ∩{e}| mod 2. This action on Ê extends to an automorphism of G in a unique
way. For future reference, we state the following fact about the interplay of the two
constituents of Aut(G):

Lemma 5.2.1. For any π ∈ Aut(G), and any ρF ∈ AutCFI(G), viewed as functions on
Ê, it holds ρπF = π ◦ ρF ◦ π−1.

Proof. Let ei ∈ Ê be a vertex in an edge gadget. Then ρπF (ei) = ej , where j 6= i
iff e ∈ πF . Moreover, (ρF ◦ π−1)(ei) = (π−1e)k, where k 6= i iff π−1e ∈ F . Then
π((π−1e)k) = ek. It holds π−1e ∈ F iff e ∈ πF . So k 6= i iff e ∈ πF . This shows that on
Ê, the equality ρπF = π ◦ ρF ◦ π−1 is valid.

When we consider a CFI-instance GS , as opposed to G, then the automorphism group
becomes smaller and somewhat more complicated, because now, the vertex gadgets
may have different parities, so we cannot map all vertices to each other without further
“corrections”. To describe Aut(GS) formally, we associate with each π ∈ Aut(G) the set
T (π) := {v ∈ V | |{v, π(v)} ∩ S| = 1}.

A T -join for a graph G and a vertex-set T ⊆ V (G) is a subset F of the edges such
that a vertex v is incident with an odd number of edges in F iff v ∈ T .
With this notion, we can describe the automorphism group of GS as follows:

Lemma 5.2.2.

Aut(GS) ∼= {(ρF , π) ∈ Aut(G) | F is a T (π)-join in G}.

Proof. “⊇:” Let (ρF , π) ∈ Aut(G) such that F is a T (π)-join in G. From the above
definition of the action of (ρF , π), we have that (ρF , π)(GS) = π(ρF (GS)). That is, we
first flip the edges in F , and then we map each edge gadget {e0, e1} to {(π(e))0, (π(e))1}
such that e0 goes to (π(e))0, and e1 to (π(e))1. We have that ρF (GS) = GS4T (π). So in
this CFI-graph, exactly the vertices in S4T (π) have the odd gadget. As already said,
we now apply π to GS4T (π) without flipping edges. So let v ∈ V and w := π(v). For
each vX ∈ v∗S4T (π), we have π(vX) = wX ∈ w∗. In other words: If v and w have the

same membership status in S4T (π) (i.e. both have the odd gadget, or both have the
even gadget), then π(v∗S4T (π)) = w∗S4T (π). Otherwise, if v and w differ with respect to

membership in S4T (π), then π(v∗S4T (π)) = w∗S4T (π)4{w}.

By definition of T (π), we have v ∈ T (π) iff |{v, w} ∩ S| = 1. It holds: |{v, w} ∩
(S4T (π))| = 1 iff w ∈ T (π). This can be seen by going through all possible combinations
of memberships of v, w in S and T (π).
Hence, π “flips” w iff w ∈ T (π).
From these considerations and the fact that π ∈ Aut(G), it follows that π(GS4T (π)) =
GS .

94

5.2 Automorphisms of unordered CFI-graphs

“⊆:” It is easy to see that Aut(GS) embeds into Aut(G). So it suffices to take an
arbitrary (ρF , π) ∈ Aut(G) where F is not a T (π)-join in G, and show that this is not
an automorphism of GS . If F is not a T (π)-join, then there is a v ∈ T (π) incident to an
even number of edges in F , or a v /∈ T (π) incident to an odd number of edges in F . We
consider the first case. The second case is symmetric.
Since degF (v) is even, either v has the odd gadget in GS and in ρF (GS), or it has the
even gadget in both graphs. W.l.o.g. assume v ∈ S. Since v ∈ T (π), it holds π(v) /∈ S.
Let R ⊆ V be such that π(ρF (GS)) = GR. As already argued above, it follows that
π(v) ∈ R, so R 6= S. Hence, the action of (ρF , π) on G does not map the subgraph GS

to itself, so it is not an automorphism of GS .

Thus, not for every edge-flip ρF ∈ AutCFI(G), the pair (ρF , idG) is also an automor-
phism of GS .

In Section 4.4.1, we presented a class of groups which – if they occur as automorphism
groups of structures – guarantee that CPT cannot define very complex (in terms of
support size) objects in these structures. These are the groups with the (k, r)-support
property. We now show that this technique for proving lower bounds – that is, Theorem
4.4.4 – has its limitations: The automorphism groups of CFI structures fail to have the
(k, r)-support property.

Lemma 5.2.3. Let (Gn = (Vn, En))n∈N be a family of connected base graphs of size
Θ(n). Then for all k and r (that may be functions of n) such that for all large enough
n, 2 ≤ r ≤ log |GS

n | and k ≤ n/r, the group AutCFI(Gn) fails to have the (k, r)-support
property, for all large enough n.

Proof. Fix functions k and r such that for all large enough n, r ≤ log |GS
n | and k ≤ n/r.

According to Lemma 4.4.7, AutCFI(Gn) has the (k, r)-support property if and only if
every kr-supported subgroup with index ≤ |GS

n |k is k-supported. We show that for large
enough n, this condition is not satisfied. Let v1, ..., vkr ∈ Vn be a collection of distinct
vertices. Since the base graphs have size Θ(n), enough vertices exist. Let

Γ := {ρF | F does not intersect any edge incident to any vi, for i ∈ [kr]} ≤ AutCFI(Gn)

be the subgroup of edge flips that fix v1, ..., vkr. Clearly, this group is kr-supported
because we can form a support by fixing one vertex in each vertex gadget v∗i , for all
i ∈ [kr]. The index is [AutCFI(Gn) : Γ] = 2|En|/2|En|−kr = 2kr. Since r ≤ log |GS

n |, this is
at most |GS

n |k. But Γ is not k-supported: Since r ≥ 2, it holds k < kr, and it is obvious
that any support of Γ must contain at least one vertex of V (GS

n) per vi, for i ∈ [kr]. So
kr is the smallest support size of Γ. Thus, by Lemma 4.4.7, AutCFI(Gn) does not have
the (k, r)-support property.

Recall Theorem 4.4.4. It says that no CPT-program can activate sets of support size
> k on a sequence of structures whose automorphism groups have the (k, r)-support
property, for every constant r. The above lemma rules out the (k, r)-support property
for all constant values of r, and linear k. Therefore, Theorem 4.4.4 cannot be used to

95

5 The Cai-Fürer-Immerman graphs and their symmetries

disprove the CPT-definability of sets with linear support in CFI-graphs. As we will see
in the next chapter, the non-definability of the CFI-query could be shown by proving the
non-definability of sets with linear support (Theorem 6.2.7). Thus, the (k, r)-support
property as a group-theoretic criterion by itself is probably not sufficient to prove the
non-definability of the CFI-query.

5.3 CFI-structures over hypercubes

A particular family of base graphs that we consider because of their symmetries are
n-dimensional hypercubes. Let Hn = ({0, 1}n, En) denote the n-dimensional hypercube.
For binary words u and v, we denote by d(u, v) their Hamming-distance, i.e. the number
of positions at which the words differ. The (undirected) edges of the hypercube connect
words with Hamming-distance exactly one, so En := {{u, v} ∈ {0, 1}n | d(u, v) = 1}.

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

1110 1101 1011 0111

1111

Figure 5.2: The 4-dimensional hypercube.

The automorphisms of Hn consist in “rotations” of the cube and permutations of the
neighbourhood of the vertex 0n. The rotation is fully specified by saying which vertex
v is mapped to 0n. Permuting the neighbourhood of 0n according to any permutation
in Symn is propagated through the hypercube and fully determines the automorphism.
Formally, this group can be written as the following semi-direct product [69]:

Aut(Hn) = Fn2 o Symn.

For a pair (w, π) ∈ Aut(Hn), and a vertex v ∈ {0, 1}n, (v, π)(v) = π(v+w). Here, v+w is
the result of the position-wise XOR of v and w. For any word v ∈ {0, 1}n, π(v) is obtained
from v by permuting its positions according to π, i.e. π(v) = vπ−1(1)vπ−1(2)...vπ−1(n).

We have |Aut(Hn)| = 2n · n!. This is super-polynomial (in fact, quasipolynomial) in
the size of the hypercube, which is 2n = |{0, 1}n|. Therefore, it is indeed possible for
h.f. objects over hypercubes to have orbits of super-polynomial size – if this were not so,

96

5.3 CFI-structures over hypercubes

then CFI-structures over hypercubes would not be an interesting candidate for proving
lower bounds against CPT. Actually, the super-polynomial size of the automorphism
group is due to the symmetric group acting on the positions of the binary strings, and
the subgroup Fn2 does not matter for this size. Therefore, to simplify matters, we will
often pretend that the vertex 0n is fixed, so the automorphism group is just Symn. If
we can show that certain objects over Hn have a super-polynomial orbit with respect to
Symn, then this is also true for the whole group Aut(Hn), so this simplification is not
problematic.

For S ⊆ {0, 1}n, we denote the unordered CFI-structure with base graph Hn as HSn . Its
automorphism group is the semi-direct product of AutCFI(H

S
n) by Aut(Hn), as explained

in the previous section. The treewidth of n-dimensional hypercubes is slightly sublinear in
their size but still so large that distinguishing non-isomorphic hypercube CFI-structures
is difficult (and in particular, impossible in FPC):

Lemma 5.3.1 (Theorem 5 in [102]). The treewidth of the n-dimensional hypercube Hn
is a function in Θ(2n/

√
n).

We will get back to hypercube CFI-structures in Chapter 7 and in more detail in
Chapter 9; based on our results, we conjecture that the CFI-query on the structures
(HSn)n∈N is a particularly hard problem for CPT.

97

6 Prior research on the choiceless
(non-)definability of Cai-Fürer-Immerman
problems

This chapter is mostly a review of “Choiceless polynomial time, counting and the Cai-
Fürer-Immerman graphs” from 2008 by Dawar, Richerby and Rossman [40]. This paper
is the main starting point and inspiration for many of our investigations. Its relevance is
two-fold: Firstly, it introduces a “design principle” for h.f. sets over CFI graphs which
allows to compute the parity of a given ordered CFI instance in CPT. These objects are
called super-symmetric and the underlying idea of their construction has been picked up
in subsequent works ([91], [89]) to tackle the CFI query on different variants of ordered
structures (or base graphs with large degree). All known CPT algorithms for the CFI
query or for canonisation of certain restricted structure classes can be traced back to this
idea of super-symmetric objects. A large part of this thesis is devoted to understanding
the limitations of this technique, which is why we review it in detail in this chapter.

A second important contribution of [40] is a fundamental argument that can be used
to prove limitations for the power of CPT. Namely, the classical bijective k-pebble
game, which characterises the power of counting logic and hence FPC, can be lifted
to CPT. In some sense, the distinguishing power of any CPT-program on a given class
of (homogeneous) structures depends on the support size of the objects the program
activates. It is shown that this support size is related to the number of pebbles in the
bijective pebble game and thus controls the expressive power of the CPT program. As
a consequence, any CPT-program that decides the CFI query must activate a set with
large support. We use this fact in Chapters 8 and 9 to develop a circuit-based lower
bound approach for the power of CPT on CFI-graphs.

6.1 Positive results: The super-symmetric object technique

6.1.1 Defining the CFI query on linearly ordered base graphs

Recall that the CFI query on linearly ordered base graphs is the following problem:
Given a CFI graph GS over some linearly ordered graph G, determine the parity of |S|.
The linear order on V (G) is translated into a preorder ≺ on V (GS), which is part of
the vocabulary of GS . Any two vertices within the same vertex or edge gadget of GS

are incomparable with respect to ≺, and vertices in distinct edge or vertex gadgets are
compared with respect to their order in G (where the order extends to the edges via the

99

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

order of their endpoints).

The approach for deciding the CFI query on such instances consists of two phases: In
the first phase, a highly nested h.f. set µ is constructed that encodes in its structure the
parity of |S|. In the second phase, this parity is extracted from µ. The authors of [40]
have called µ a super-symmetric object, and this is really the point of the construction.
Namely, the set µ is stabilised by all automorphisms in AutCFI(G), which are in general
more than the automorphisms of the instance GS . As we explained in the previous
chapter, AutCFI(G) consists of all edge flips, whereas only the edge flips along cycles in G
are automorphisms of the structure GS . The other edge flips correspond to isomorphisms
from GS into isomorphic CFI graphs. The reason why such a super-symmetric object
is algorithmically useful is because it allows us to determine the parity of |S| by trying
out all interpretations of the vertices in edge gadgets: For each e ∈ E(G), we have the
vertices e0 and e1 in the gadget of e. Once we have fixed for each edge which one is
which, it is easy to decide which vertex gadget is an even gadget and which is an odd
gadget by just looking at the neighbourhoods of the nodes in each vertex gadget v∗S and
checking if these nodes vX ∈ v∗S are connected to an even or odd number of e1 nodes.
Actually, for the parity of |S|, it does not even make a difference which way round we
interpret the nodes e0 and e1 in each edge gadget, because flipping any edge just leads
to an isomorphic CFI graph where the parity of the odd vertex gadgets is the same.
Therefore, the problem is really to fix an assignment of e0 and e1 to 0 and 1 in every
edge in a choiceless fashion. Because e0 and e1 are symmetric, we cannot expect this
to be possible, and therefore, we have to try out both the assignments e0 7→ 0, e1 7→ 1
and e0 7→ 1, e1 7→ 0 for each edge. This is why we need the super-symmetric object µ:
Because it is symmetric under all possible edge flips, we can replace all atoms e0, e1 in its
transitive closure with 0 and 1 both ways round, and both these replacements will result
in the same object. So once we have µ, we can iterate over the edges in E(G) (using the
linear order on G) and replace, for each edge e, e0 and e1 with 0 and 1 in both ways,
which will always result in the same h.f. object. In the end, we obtain a unique object
in which all atoms are 0 or 1. From this, it will be possible to extract the parity of |S|
quite easily. If µ were not super-symmetric, then this procedure would not necessarily re-
main in polynomial bounds because it would produce a greater number of distinct objects.

So the most challenging part is to come up with a h.f. set µ that both contains the
relevant information about the parity of |S| and is super-symmetric (and of course, CPT-
definable in the structure GS). Dawar, Richerby and Rossman solved this by building µ
out of sets that represent the vertex gadgets in GS . For every v ∈ V (G), the set τSv is
defined as:

τSv :=
{
N≺(vX) : X ⊆ E(v) | X is even iff v /∈ S

}
τ̃Sv :=

{
N≺(vX) : X ⊆ E(v) | X is even iff v ∈ S

}
.

Here, N≺(vX) is an ordered tuple (with respect to ≺) containing the neighbourhood of

100

6.1 Positive results: The super-symmetric object technique

vX . For example, if the edges incident to v in G are E(v) = {e, f, g}, and v ∈ S, then

τSv :=
{
〈e1, f0, g0〉, 〈e0, f1, g0〉, 〈e0, f0, g1〉, 〈e1, f1, g1〉

}
τ̃Sv :=

{
〈e0, f0, g0〉, 〈e1, f1, g0〉, 〈e1, f0, g1〉, 〈e0, f1, g1〉

}
.

Essentially, the set τSv corresponds to the vertex gadget v∗S in GS (see Section 5.1). Its
counterpart τ̃Sv can be thought of as the vertex gadget v∗S4{v}, so this is exactly the

opposite type of gadget than the one we have for v in GS . Thus, we define h.f. sets not
only for the vertex gadgets that actually exist in GS , but also for their flipped versions.
This is necessary because we want our final object to be stabilised also by edge flips in
AutCFI(G), and these might flip vertex gadgets as well.

Now in the super-symmetric object that we would like to construct, we aggregate these
τSv and τ̃Sv in the order given by ≺. Let v1, v2, ..., vn be the ordered vertices of G, and let
τSi := τSvi . We define µS1 := τS1 and µ̃S1 := τ̃S1 . Then for i ∈ [n− 1], let

µSi+1 :=
{
〈µSi , τSi+1〉, 〈µ̃Si , τ̃Si+1〉

}
µ̃Si+1 :=

{
〈µSi , τ̃Si+1〉, 〈µ̃Si , τSi+1〉

}
.

In some sense, µSi+1 adds the vertex vi+1 to the “parity count” of µSi : Any edge flip that
flips both µSi and τSi+1 at the same time is “hidden” by the set µSi+1 and has no effect
on it. Thus, intuitively, µSi+1 implements the XOR over µSi and τSi+1. This can be made
precise and it can be shown inductively (Lemma 12 in [40]) that for all S, T ⊆ V (G), and
all k ∈ [n], it holds:

µSk = µTk ⇔ µ̃Sk = µ̃Sk ⇔ |S ∩ {v1, ..., vk}| ≡ |T ∩ {v1, ..., vk}| mod 2.

µSk = µ̃Tk ⇔ µ̃Sk = µSk ⇔ |S ∩ {v1, ..., vk}| 6≡ |T ∩ {v1, ..., vk}| mod 2.

So in this sense, µSk tracks how many vertices among the first k ones have an odd gadget,
i.e. are in S. If an odd number of vertex gadgets in {v1, v2, ..., vk} change their parity,
then µSk flips and becomes µ̃Sk . This can happen for example if ρe ∈ AutCFI(G) is applied
to µSk , for some edge e ∈ E(G) that has one endpoint in {v1, ..., vk} and one endpoint
outside. Thus, {µSk , µ̃Sk } forms an AutCFI(G)-orbit, whose two elements – informally
speaking – stand for the two parities odd and even. Note that the AutCFI(G

S)-orbit
of µSk is a singleton because AutCFI(G

S) stabilises each vertex gadget and hence each
τSi . The final object, µSn , is super-symmetric because it is stabilised by all edge flips
in AutCFI(G). This follows directly from the result mentioned above because for every

edge flip ρe ∈ AutCFI(G), we have ρe(µ
S
n) = µ

S4{u,v}
n , if u and v are the endpoints of

e. Since |S4{u, v}| ≡ |S| mod 2, it follows that ρe(µ
S
n) = µSn . Moreover, as shown

in Lemma 11 in [40], the object µSn can be constructed in CPT, given the input struc-
ture GS . Doing this in CPT presupposes the linear order on the base graph because
constructing µi+1 requires having constructed µi first. Actually, it can be seen that

101

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

the structure of the h.f. set µn is that of a linear order on V (G). Each τi occurs
in µn at a distinct nesting depth, so constructing µn in a completely unordered CFI
instance would be tantamount to computing a linear order on the base graph. This
is why this particular approach is limited to the CFI query on totally ordered base graphs.

This finishes the first phase of the algorithm. In the second phase, the atoms in µSn are
removed and replaced by constants 0 and 1 (these can for example be encoded as h.f. sets
∅ and {∅}). We omit the technical details but the idea is to again iterate over the edges
of G according to the linear order on the base graph and to apply, for each edge e, two
operations to µSn : First, replace every occurrence of the atom e0 in µSn with 0, and each
atom e1 with 1. After that (or simultaneously), we perform the same substitutions in µSn
but with 0 and 1 swapped. Together, these two replacements are isomorphism-invariant
and as explained above, they yield the same object because µSn is super-symmetric. Using
the Unique-operator of CPT, we can obtain this unique result of the replacement. After
we have done this for every edge in E(G), we are left with an object in HF({0, 1}), which
is called B(µSn) in [40].

It remains to extract the parity of |S| from B(µSn). This is done using a parity function
p : HF({0, 1}) −→ {0, 1} that is recursively applied to the elements of the transitive
closure of B(µSn). For atoms 0 and 1, we let p(0) := 0, p(1) := 1. For sets y = {x1, ..., xk},
we let p(y) :=

∏k
i=1 p(xi), and for tuples y = 〈x1, ..., xk〉, p(y) :=

∑k
i=1 xi mod 2. It is

not difficult to implement this function in CPT. One can check that it indeed computes
the parity of |S| correctly: For every τSv in tc(µSn), every tuple in τSv evaluates to the
same value, and this value is 1 if and only if v ∈ S. Similarly, p(τ̃Sv) = 1 if and only if
v /∈ S. For µSi+1, we can again see that the p-value of both tuples in it is always the same,
so the product of these values is 1 if and only if p(〈µSi , τSi+1〉) = p(〈µ̃Si , τ̃Si+1〉) = 1. By
induction, this holds if and only if |S ∩ {v1, ..., vi+1}| is odd (because p(µSi) is the parity
of |S ∩ {v1, ..., vi}|). Therefore, p(µSn) = |S| mod 2.

In total, we have:

Theorem 6.1.1 (Theorem 17 in [40]). There is a CPT-algorithm that outputs |S| mod 2
on a given CFI structure GS = (V (GS), E(GS),≺) over a linearly ordered base graph
G = (V (G), E(G), <).

It should be noted that this CPT-program can even be implemented without counting,
so it is actually in CPT−. Again, we stress that the linear order on the base graph is
indispensable for this algorithm. It is needed both for the construction of µSn and for
the replacement of the atoms with zero and one: Even though each of the 2|E| many
different replacements leaves the super-symmetric object invariant, these would still be
exponentially many computation steps if they all had to be done simultaneously. As we
will see next, the technique can be generalised to an extent such that it also works on less
ordered CFI-structures. This requires to modify the definition of the super-symmetric
objects a bit and also to perform the edge replacements with a different strategy. However,
without any kind of ordering on the input, it is not clear if any of the two phases of

102

6.1 Positive results: The super-symmetric object technique

the algorithm could be implemented in CPT (unless the CFI-structures contain implicit
padding, as in Section 6.1.3).

6.1.2 Defining the CFI query on preordered base graphs

In [91], Wied Pakusa, Svenja Schalthöfer and Erkal Selman generalised the above algo-
rithm. There, it is applied to CFI-graphs GS equipped with a preorder ≺ on V (GS) which
originates from a preorder on the base graph. The preorder on V (G) orders the base graph
up to colour classes whose size is bounded by log |V (G)|. Thus, in the corresponding
preorder in the CFI graph, up to log |V (G)| many vertex gadgets are together in a colour
class. The edge gadgets are again ordered according to their endpoints, so edges between
vertices in the same colour class are incomparable.

The main difference from the algorithm for linearly ordered base graphs is the definition
of the µ- and µ̃-objects. Their basic building blocks, the sets τSv and τ̃Sv are the same
as in the other algorithm (with a slight modification that is needed for implementation
purposes, which we ignore here). In the linearly ordered setting, we had µi and µ̃i for
every vertex vi ∈ V (G). Now we have one such set for every subset of each colour class.
Formally, let C1, ..., Cm ⊆ V (G) be the ordered collection of colour classes of G. For each
i ∈ [m], let Mi be the set of all M ⊆ V (G) such that

⋃
j<iCj ⊆ M and M ⊆

⋃
j≤iCj .

In other words, Mi is the set of all subsets of Ci, each taken together with
⋃
j<iCj . Let

M be the set of all M ⊆ V that are in Mi, for some i. For every M ∈ M, we have
objects µSM and µ̃SM . In the base case, M is a set of size 1. Then µM is simply the
corresponding τ -object. For larger sets M , the object µSM is built from a τ -object for
some v ∈M and the µ-object for M \ {v} that we have by induction. To this end, we
need intermediate “aggregation objects” µM,v, which add together the parity information
of M and v, similarly as it is done in µi+1 in the previous subsection.

µS{v} := τSv

µ̃S{v} := τ̃Sv

µSM,v :=
{
〈µSM , τSv 〉, 〈µ̃SM , τSv 〉

}
µ̃SM,v :=

{
〈µSM , τ̃Sv 〉, 〈µ̃SM , τSv 〉

}
.

With these, we can define µSM for all M of size ≥ 2 by splitting M into a single vertex w
and the rest, in all possible ways (because we cannot make a choice for w):

µSM :=
{
µSN,w | N ∈M and N] {w} = M

}
µ̃SM :=

{
µ̃SN,w | N ∈M and N] {w} = M

}
.

103

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

The final object is then µSG(V). It can be shown that these objects are CPT-definable in

GS by iterating over the colour classes according to the preorder. The size of tc(µSV (G)) is

polynomial in |GS | because each colour class has ≤ 2log |V (G)| = |V (G)| many subsets. All
these subsets appear in the construction of µSV (G), which is why this particular algorithm
cannot work for preorders with larger colour classes. Interestingly, as we will see in
Chapter 8, this is in some sense best-possible: There, we show that all h.f. sets that
are constructed in this parity-aggregating fashion (this can be made precise) correspond
to XOR-circuits in a well-defined way. In a certain sense, these XOR-circuits can at
most aggregate a logarithmic number of parities in each gate because otherwise, the
polynomial bound on the orbit size of the corresponding h.f. sets would be violated.
This loosely fits to the fact that the µ-objects here also essentially aggregate parities in
log-sized chunks. Note also that the object µSV (G) implicitly defines in its structure the
preorder on G because different colour classes appear at different nesting depths in the
h.f. set. For this reason, the algorithm cannot work on unordered CFI instances unless
they admit a CPT-definable preorder with log-sized colour classes. In the next chapter,
we will show that n-dimensional hypercubes are a class of graphs that do not admit such
CPT-definable preorders.

As for the µ-objects in the previous algorithm, it can be shown inductively (Lemma 5.5
in [91]) that they have the desired behaviour with respect to |S| mod 2: For all M ∈M,

µSM = µTM ⇔ µ̃SM = µ̃SM ⇔ |S ∩M | ≡ |T ∩M | mod 2.

µSM = µ̃TM ⇔ µ̃SM = µSM ⇔ |S ∩M | 6≡ |T ∩M | mod 2.

So µSM represents the parity of S in M . The second phase of the algorithm is again
the replacement of atoms with 0 and 1 in µSV (G). This is now a bit more complicated
than in the previous algorithm because we have no linear order on the edges. Therefore,
the mapping e0 7→ 0, e1 7→ 1 (and vice versa) is not applied edge by edge but we again
consider, for each M ∈M, all partitions of the form M = N] {w}. Then we process all
edges in the cut between N and w simultaneously, and apply all possible 0-1-assignments
to them. This is not too high a number of simultaneous assignments because the CFI
gadget w∗ contains one node for each subset of incident edges, so 2|NG(w)| is polynomial
in |GS |. All these replacements of edges in the cut in all possible ways result in a unique
object again, by super-symmetry. So we can remove all edges from µSV (G) in the same

recursive manner as we constructed µ: Process all cuts of the form M = N] {w}, for all
M ∈M, in the same order as in the construction of µ. The details are a bit technical, so
we refer to [91] for this. After all atoms have been removed, it is possible to compute the
parity of |S| with the same recursive function p as in the previous algorithm: Whenever
we have a tuple 〈x1, ..., xk〉, we take the sum over the parities, and for sets, we take the
product over its members. Altogether, this shows:

Theorem 6.1.2 (Theorem 5.1 in [91]). Let K be a class of connected preordered base
graphs G = (V,E,≺) such that the size of each colour class is at most log |V |. There
exists a CPT-program that computes the parity of |S| in each input structure GS over a
base graph from K.

104

6.2 Negative results: Lower bounds on the support size

6.1.3 Defining the CFI query on base graphs of large degree

Finally, there is another variation of the “super-symmetric technique” that was also
presented in [91]. This time, the CFI structures are not ordered at all, but the base
graphs contain at least one vertex of linear degree. The CFI gadget of such a linear-degree
vertex contains exponentially many nodes. So one could say that these CFI structures
are implicitly padded and hence, we may use much larger h.f. sets in the algorithm that
decides the CFI query.

Theorem 6.1.3 (Theorem 6.1 in [91]). For every k ∈ N, the CFI query over unordered

base graphs G = (V,E) with maximal degree ≥ |V |k is CPT-definable, using only sets of
constant rank not depending on k.

The µ-objects for this algorithm are actually quite simple because as already explained,
we now have the resources to consider all 2|V | many subsets of the vertices, and so, there
is no need to be careful about space.
Let µS{v} = {{τSv }} and µ̃S{v} = {{τ̃Sv }}, and for every M with |M | ≥ 2, define

µSM := {{τSv | v ∈M} | τSv ∈ {τSv , τ̃Sv }}. Then, for every M ⊆ V , let:

µSM :=
{
m ∈ µSM | the number of τ̃Sv in m is even

}
µ̃SM :=

{
m ∈ µSM | the number of τ̃Sv in m is odd

}
.

It is not hard to see that for every M ⊆ V , µSM characterises the parity of |S ∩M | in
the same way as before because µSM is stabilised by any even number of “vertex flips” in M .

Removing the edge atoms from µSV is again done by processing all edges in a cut
between some set N ⊆ V and a vertex w. Because no such w can be chosen in CPT,
this has to be done by iteratively enlarging the sets M , from size 1 to |V |. So we do not
construct µSV at once (even though it would be possible) but instead we define first, for
every M ⊆ V , the sets µSM and µ̃SM by combining µSN and µ̃SN with τSw , τ̃Sw , respectively,
for all partitions M = N] {w}, while removing the edge atoms along the cut between
N and w. For all these partitions, we get the same result, namely µSM or µ̃SM , with all
edges inside M removed. In the end, we can again apply a recursive parity function to
µSV , after all atoms have been replaced by 0 or 1.
The existence of this algorithm is the reason why the CFI-query over complete graphs is
not a separating example for P and CPT, despite its high symmetry.

6.2 Negative results: Lower bounds on the support size

As we have seen, it is indeed possible to define the CFI-query in CPT at least for certain
classes of base graphs. The algorithms we presented make use of quite complicated
h.f. set constructions, which are deeply nested (except in the linear degree case). In
[40], Dawar, Richerby and Rossman not only developed the concept of super-symmetric
objects but also managed to prove that solving the CFI-query in CPT actually requires

105

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

the construction of such, let us say, “non-trivial” h.f. sets. Concretely, they proved
that a h.f. set with large support must be activated by every CPT-program that decides
the CFI-query. Moreover, they showed that such sets with large support must have a
super-constant nesting depth. We follow the entire line of argument that leads to this
result. Some of the more straightforward proofs will be omitted. We stick with the
notation from [40], so in particular, structures are usually called I or J , and the same
letter is used for their universe.

Let I be a σ-structure and k ∈ N. The transitively k-supported elements of HF(I) are
those sets x such that every y ∈ tc(x) has a support of size at most k in I. We denote
by Ik the set of all transitively k-supported objects in I, and also the corresponding
structure with vocabulary σ ∪ {∈, ∅}. It is not necessary to define this structure here in
detail; it is clear that HF(I) and subsets thereof have such a structural representation.

Simulation of CPT in FPC
The first step towards the support lower bound is a simulation of CPT in fixed-point logic
with counting. Since CPT is known to be more powerful than FPC, such a simulation is
of course not possible in a general sense. But what is shown in [40] is that if we enrich
the input structure I with all h.f. objects that a given CPT-program Π activates on input
I, then on that enriched input structure, the evaluation of Π reduces to a fixed-point
process and is therefore FPC-definable.

Lemma 6.2.1 (Corollary 21 in [40]). Let Π be a CPT-program and I an input structure.
There is a formula ϕ ∈ FPC such that Active+(I) |= ϕ if and only if Π accepts I.

Here, Active+(I) denotes the structural representation of all objects that Π activates
during its run on I. The + stands for the numbers, so formally, this is a subset of
HF(I ∪N), where N is some structure that encodes a suitable ordered initial segment of
N. The proof of this result is more or less straightforward. The program Π is viewed
as an abstract state machine whose computation stages can be encoded as a relation
over Active+(I) (specifically because numbers are available in this structure). The state
update is definable, so the whole computation is expressible in FPC.

This simulation in FPC will allow us to use the bijective k-pebble game in order to
show that CPT cannot distinguish certain structures – at least when we restrict the set
of active objects:

Corollary 6.2.2. Let Π be a CPT-program and I a structure that contains a sufficiently
long initial segment of N to encode the numbers that may occur in the evaluation of Π on
I. Let k ∈ N such that Π activates only sets with a support of size ≤ k on input I. Then
there is a formula ϕ ∈ FPC such that Ik |= ϕ if and only if Π accepts I.

This follows immediately from Lemma 6.2.1. The extra requirement that I contain
an initial segment of N is needed for the counting. As mentioned on page 46 in [40], we
can always assume the presence of such a linear order because it does not change the

106

6.2 Negative results: Lower bounds on the support size

essential properties of the structure.

At this point, let us already state the main technical theorem, the proof of which we
are presenting here. It transfers Cmk-equivalence of structures to Cm-equivalence of their
augmentations with all transitively k-supported objects. Together with the previous
corollary, it means that we can indeed use pebble games to bound the power of CPT as
long as the CPT-programs only activate sets of bounded support.

Theorem 6.2.3 (Theorem 33 in [40]). Let k ≥ 0 and m > 1 and let I and J be Cmk-

homogeneous structures of the same vocabulary. If I ≡Cmk J , then Ik ≡C
m
Jk.

Remark: It is sufficient to have Cmk-homogeneity for all tuples of length ≤ 2k.

The proof requires some preparation. First of all, we introduce the concept of homo-
geneity because the theorem requires this condition on the structures. However, it seems
that homogeneity does not play a central role in the proof and perhaps, this condition
just simplifies matters, but could in principle be dispensed with. We will comment on
this question later.

Homogeneity, forms and molecules

Definition 6.2.4 (Types and homogeneity, Definition 32 in [40]). The Cm-type of a
tuple a in a structure I is the collection of Cm-formulas that are true in (I, a).
A structure I is Cm-homogeneous if, whenever tuples a and b of length ≤ m have the
same Cm-type in I, then there is an automorphism of I that maps a to b.

We often use homogeneity in a slightly weaker sense and only require that the condition
be satisfied by all tuples of some shorter length than m. In that case, we mention this
explicitly (as in the theorem above). Note that homogeneity is “upwards closed” but not
“downwards closed”. If a structure is Cm-homogeneous, it is not necessarily homogeneous
for values < m, but it is then C≥m-homogeneous. This is because the partition of m-tuples
into Cm′-types is equal to or coarser than the orbit partition of Im, and increasing m′

makes the partition finer while decreasing m′ makes it coarser.

The reason why homogeneity is needed for Theorem 6.2.3 is that on homogeneous
structures I, the elements of Ik admit a very useful representation. Every transitively
k-supported set can be written as a combination of forms and molecules. This idea goes
back to the paper that introduced CPT [21]. A form can be seen as a description or
a template of a set, which takes as “input” a molecule (this is literally a sequence of
atoms). Form and molecule together specify a concrete h.f. set. Interestingly, forms
involve types. Therefore, the objects that can be expressed by forms are inherently
symmetric with respect to types. This is also a property of CPT-definable objects, which
becomes perhaps most clear in Chapter 10, where we take a look at the Deep Weisfeiler
Leman computation model.

107

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

A molecule on a structure I is a sequence α = α1...αk of atoms. Here, k is supposed to
be the fixed number from Theorem 6.2.3 because we are going to use supports as molecules.

For the definition of forms, we fix some list c1, ..., ck of new symbols. The set of forms
is the least set containing each of the ci and every finite set of pairs (ϕ, τ), where ϕ is a
form and τ is a Cmk-type of tuples of length exactly 2k. In the following, when we write
tpI(α, β) for two molecules α and β, we mean the Cmk-type of the tuple αβ in I.

In a given structure I, a form ϕ and a molecule α together define a h.f. set in HF(I),
which is called the denotation ϕ ? α of ϕ and α. The inductive definition is ci ? α := αi
and ϕ ? α := {ψ ? β | (ψ, tpI(α, β)) ∈ ϕ}, if ϕ is a set.

Now it is shown in [40] that Ik is exactly the set of objects which are representable
as the denotation of a form and a molecule (of length k). First of all, it is proven via
induction on the nesting depth of a form, that applying an automorphism to a denotation
has the same effect as applying it to the molecule:

Lemma 6.2.5 (Lemma 37 in [40]). If ρ ∈ Aut(I), then ρ(ϕ ? α) = ϕ ? ρ(α).

We skip the proof because it is not difficult. It only uses the fact that automorphisms
preserve types. Next, we come to the representation result that we are mainly interested
in:

Lemma 6.2.6 (Lemma 38 in [40]). Assuming that I is Cmk-homogeneous (it suffices for
tuples of length ≤ 2k), it holds: x ∈ Ik if and only if x = ϕ ? α for some I-molecule α
and some form ϕ.

Proof. Let x = ϕ?α. We want to show that x is transitively k-supported. Let ρ ∈ Aut(I)
be an automorphism that fixes α. By Lemma 6.2.5, ρ(ϕ ? α) = ϕ ? ρ(α). Therefore, α
is a support of ϕ?α. Every y ∈ tc(x) is also of the form y = ψ?β, so it is also k-supported.

Now let x ∈ Ik. We show via induction on the structure of x that it can be written as
the denotation of a form and a molecule. If x = a for some atom a, then x = c1 ?α for any
molecule with α1 = a. If x = ∅, then x = ∅ ? α for any α. Suppose that x ∈ Ik is a non-
empty set. There must be some molecule α supporting x. By the inductive hypothesis,
x = {ϕy ? αy | y ∈ x}. We show that x = ϕ ? α, where ϕ = {(ϕy, tpI(α, αy)) | y ∈ x}.

ϕ ? α = {ψ ? β | (ψ, tpI(α, β)) ∈ ϕ}
= {ϕy ? β | y ∈ x and tpI(α, β) = tpI(α, αy)}.

Then x ⊆ ϕ ? α because for every y ∈ x, ϕy ? αy is a member of the above set. For
the converse ϕ ? α ⊆ x, we need the homogeneity of I. Suppose that z ∈ ϕ ? α. We
must have z = ψ ? β with (ψ, tpI(α, β)) ∈ ϕ. Further, there must be y ∈ x with ψ = ϕy
and tpI(α, β) = tpI(α, αy). Now it follows from the Cmk-homogeneity that there exists
ρ ∈ Aut(I) such that ρ(αβ) = ααy. Since ρ fixes α pointwise, it also fixes x, so z ∈ x.

108

6.2 Negative results: Lower bounds on the support size

The last step of the above proof is the only place where homogeneity is ever needed in
the proof of Theorem 6.2.3. Intuitively, its role is to ensure that we can write any x ∈ Ik
as the denotation of a form built from the set of types tpI(α, αy), for all y ∈ x. The
point is that this set of types, in combination with the molecule α, might in general yield
a superset of x. Roughly speaking, this can happen when the type-partition in I is too
coarse, i.e. coarser than the orbit-partition. This is ruled out by requiring homogeneity.
But should Theorem 6.2.3 ever be needed for non-homogeneous structures, here is a
thought on how to get by without the homogeneity condition: If the type-partition of I is
coarser than its orbit-partition, then, presumably, the sets that CPT can define are also
more symmetric than the ones which are definable on homogeneous structures. This is
because CPT is not only isomorphism-invariant, but also has to satisfy certain symmetries
with respect to types. Thus, it could be that on general structures, CPT cannot define
all objects in Ik, but only a subset of them, which are sufficiently “type-symmetric”. For
these specific h.f. sets in Ik, it is conceivable that Lemma 6.2.6 goes through even without
the homogeneity condition. This would be sufficient for the purposes of CPT lower
bounds. In fact, we only need Theorem 6.2.3 for the set of all transitively k-supported
CPT-definable objects, not for the whole sets Ik and Jk.
We will make use of Theorem 6.2.3 in Chapter 9, where we consider unordered CFI
graphs over hypercubes. We show that these structures are sufficiently homogeneous, so
the need to strengthen the theorem and drop the homogeneity condition does not arise
in this thesis.

Playing pebble games on supports of hereditarily finite sets
For the proof of Theorem 6.2.3, we have to lift the winning strategy for Duplicator
in the bijective mk-pebble game on I and J to a winning strategy in the m-pebble
game on Ik and Jk. This is done in [40] as follows: Let x and y denote the pebbled
elements of Ik and Jk, respectively. Duplicator ensures that, after every move, there are
forms ϕ1, ..., ϕm, I-molecules α1, ..., αm and J-molecules β1, ..., βm such that, for every
i ∈ {1, ...,m}, xi = ϕi ? αi and yi = ϕi ? βi, and such that tpI(α1...αm) = tpJ(β1...βm).
Here, tp refers to the Cmk-type of the tuples. First, we show that Duplicator can indeed
maintain this invariant, and then, that she wins this way.
Suppose the play is in a position where the condition holds, and w.l.o.g. Spoiler picks
up pebbles x1 and y1 (or none). We define Duplicator’s bijection f : Ik −→ Jk. Since

I ≡Cmk J , there is a bijection g : Ik −→ Jk such that for all α ∈ Ik, tpI(αα2...αm) =
tpJ(g(α)β2...βm). To see this, suppose that such a bijection did not exist. Then there is
some α ∈ Ik such that

|{α′ ∈ Ik | tpI(α′α2...αm) = tpI(αα2...αm)}|
6=|{β ∈ Jk | tpJ(ββ2...βm) = tpI(αα2...αm)}|.

But then, tpI(α2...αm) 6= tpJ(β2...βm) because the sizes of the above sets are definable
in Cmk from the parameters α2...αm and β2...βm, respectively (since on finite structures,
Cmk-types are determined by a single formula). Since by the invariant that Duplicator
has maintained so far, tpI(α2...αm) = tpJ(β2...βm), we know that a type-preserving

109

6 Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems

bijection g as claimed must exist.
By Lemma 6.2.6, every x ∈ Ik can be written as ϕx ? αx for an appropriate form and a
molecule. We set f(ϕx ? αx) := ϕx ? g(αx). It can be verified that f is indeed a bijection
between Ik and Jk. Essentially this follows from Lemma 39 in [40]. This lemma says
that for any two denotations ϕ ? α, ψ ? β, it only depends on ϕ,ψ and tp(α, β) whether
ϕ?α = ψ?β and whether ϕ?α ∈ ψ?β. In particular, this is independent of the structure
from which the molecules come. Thus, since g preserves tp(αα′), we have ϕ?α = ϕ′ ?α′ if
and only if ϕ?g(α) = ϕ′ ?g(α′). This shows that f is injective. Using a similar argument,
one can see that every ψ ? β ∈ Jk has an f -preimage ψ ? g−1(β) ∈ Ik. Hence, f is a
bijection.
Now when Spoiler places pebbles on elements x ∈ Ik and f(x) = y ∈ Jk, then Duplicator
sets ϕ1 := ϕx and α1 := αx, β1 := g(αx). So the invariant is maintained. It remains to
show that the pebbled objects in Ik and Jk induce a local isomorphism. The relations
of the structures I and J are preserved because tpI(α1...αm) = tpJ(β1...βm). The fact
that the nesting structure (and equality) of the sets is preserved follows again from
Lemma 39 in [40]. So we have xi = xj iff yi = yj and xi ∈ xj iff yi ∈ yj , because
these relations only depend on the respective forms ϕi, ϕj and on the types tp(αiαj) and
tp(βiβj) = tp(g(αi)g(αj)) = tp(αiαj). This concludes the proof of Theorem 6.2.3.

Support lower bounds for the CFI query
Finally, we can show the desired lower bound on the support size of h.f. sets that need to
be activated in order to distinguish non-isomorphic CFI-structures. The next theorem is
implicit in the proof of Theorem 40 in [40].

Theorem 6.2.7. Let (Gn)n∈N be a family of base graphs and let twn denote the treewidth
of Gn. Let G0

n,G
1
n denote the even and odd CFI-structures over Gn. Let f(n) ≤ twn be

a function such that G0
n and G1

n are Ctwn-homogeneous for all tuples of length ≤ 2f(n).
Then any CPT-program that distinguishes G0

n and G1
n for all n ∈ N must activate on

input Gi
n a h.f. set x whose smallest support has size at least Ω(f(n)).

Proof. Let Π be a CPT-program that distinguishes all mentioned CFI-graphs. Suppose
for a contradiction that there is a function f(n) ∈ o(kn) such that Π activates on input
I := G0

n only sets whose support is bounded by f(n). These are objects in If(n). Let
I := G1

n. As is well-known (Theorem 5.1.3), it holds I ≡Ctwn J . Theorem 6.2.3 now
entails: If(n) ≡Ctwn/f(n) Jf(n). Because f(n) ∈ o(twn), twn/f(n) cannot be upper-
bounded by a constant. Therefore, there is no fixed FPC-sentence ϕ that distinguishes
If(n) and Jf(n) (for all n). But this contradicts Corollary 6.2.2, which says that there is

an FPC-sentence ϕ equivalent to Π on input structures If(n) and Jf(n).

Rank lower bound
From Theorem 6.2.7, one can infer that not only the support but also the rank, i.e. the
nesting depth of one of the activated h.f. sets must be sufficiently large for any CPT-
program defining the CFI query. This follows from Lemma 29 in [40], which basically
says that the support of a h.f. set x is at most by a factor log |Orbit(x)| larger than the

110

6.2 Negative results: Lower bounds on the support size

supports of its elements. Since the sets that CPT activates have polynomial orbit size in
the input structure, the support growth rate per nesting depth is at most logarithmic in
the size of the input. One can conclude that constant-rank sets can only have support at
most logc(|GS |), for a constant c; so together with Theorem 6.2.7 – using base graphs
with treewidth > logc(|GS |) – we can infer:

Theorem 6.2.8 (Theorem 40 in [40]). The parity query for pre-ordered CFI graphs is
not defined by any CPT-program that activates sets of rank at most o(logn

log logn).

At first sight, it might seem strange that there does exist a CPT-algorithm that decides
the CFI-query on base graphs with linear degree using only sets of constant rank (see
Theorem 6.1.3). However, this is no contradiction: The CFI-structures in the linear-
degree setting have exponential size in the size of the base graph |G|. Therefore, also the
orbit size of the activated sets may be exponential in |G|, and thus, the support growth
per nesting depth can be polynomial in |G|, instead of log |G|. So, it is then possible for
a constant-rank set to have a sufficiently large support to decide the CFI-query.

111

7 The non-definability of preorders with
small colour classes in hypercubes

This chapter is based on [87], which was published at CSL 2021. In it, we explore
the limitations of the choiceless algorithms for the ordered versions of the CFI-query
that we introduced in the previous chapter. Concretely, we prove that there are base
graphs for the CFI-construction in which neither a linear order nor a preorder with
colour classes of logarithmic size is CPT-definable. Thus, the unordered CFI-query over
these base graphs cannot be tackled in CPT with any of the known algorithms. This
family of base graphs are the n-dimensional hypercubes. Actually, the non-definability
of the required preorders holds also in complete graphs, and is even easier to prove
there. However, Theorem 6.1.3 from the last chapter shows that the CFI-query over
complete graphs is CPT-definable anyway because of the implicit padding in high-degree
CFI-graphs. Thus, the non-definability of preorders in such graphs is not an obstacle for
the definability of the CFI-query. However, on CFI-structures over hypercubes, the status
of the CFI-query is open and the failure of the preorder-based algorithm on unordered
hypercube CFI-graphs can be taken as an indication that these instances are hard for
CPT. In particular, hypercubes are a good compromise between the high symmetry of
complete graphs and avoiding high degree vertices. All vertices in the n-dimensional
hypercube have logarithmic degree, which means that the CFI-construction does not
lead to a super-polynomial size blow-up.

In order to prove the non-definability of the said preorders, we show that their orbit-
size with respect to the automorphism group of the n-dimensional hypercube grows
super-polynomially in the size of the hypercube. Then it follows with Corollary 3.0.6
that no hereditarily finite set that encodes such a preorder is CPT-definable.

As in Section 5.3, we let (Hn)n∈N be the family of n-dimensional hypercubes. The
vertex-set of Hn is {0, 1}n, so n is the logarithm of the size of the hypercube. As explained
in Section 5.3, the group Symn acts on {0, 1}n by permuting the positions of the binary
words. This constitutes a subgroup of Aut(Hn).

We view a preorder of Hn as an ordered partition (C1, ..., Cm) of {0, 1}n. Its parts are
called colour classes. A set x ∈ HF({0, 1}n) encodes such an ordered partition if there
exists a BGS-term t with a polynomial bound which computes the following natural
representation of (C1, ..., Cm), given x: Jt(x)KHn = {C1, {C2, {C3, {...}}}}. If the ordered
partition into colour classes has a super-polynomially large orbit, then the same is true
for any encoding as a h.f. set. Therefore, we do not need to specify a concrete one.

113

7 The non-definability of preorders with small colour classes in hypercubes

Lemma 7.0.1. For each n ∈ N, let Pn = (C1, ..., Cmn) be an ordered partition of {0, 1}n,
and xn ∈ HF({0, 1}n) be a set that encodes Pn. If the orbit of Pn with respect to the
action of Symn on {0, 1}n grows super-polynomially in 2n = |{0, 1n}|, then the orbit of
xn with respect to the action of Aut(Hn) grows super-polynomially in 2n.

Proof. Assume for a contradiction that the Aut(Hn)-orbit of xn has at most polynomial
size in 2n. Since xn encodes Pn, the corresponding preorder ≺, whose colour classes
are the parts of Pn, is CPT-definable from xn in Hn. Let t be the BGS-term such
that Jt(xn)KHn = {C1, {C2, {C3, {...}}}}. Since t has just a single free variable and CPT
is isomorphism-invariant, the output of t is invariant under all automorphisms that
stabilise its input xn. Thus, |OrbitAut(Hn)(Jt(xn)KHn)| ≤ |OrbitAut(Hn)(xn)|. Hence,
the Aut(Hn)-orbit-size of Pn is only polynomial in 2n = |Hn|. For the last step, we
just have to observe that Symn with its action on {0, 1}n is a subgroup of Aut(Hn)
(see Section 5.3). Therefore, |OrbitSymn

(Pn)| ≤ |OrbitAut(Hn)(Pn)|, so this orbit-size
is also only polynomial in 2n. This is a contradiction to the assumption of the lemma,
which says that |OrbitSymn

(Pn)| is super-polynomial in 2n.

The main result of this chapter reads as follows:

Theorem 7.0.2. Let (Hn)n∈N be the family of n-dimensional hypercubes. For each
n ∈ N, fix an ordered partition Pn = (C1, ..., Cmn) of {0, 1}n such that each part Ci has
size at most O(n).
Then there exists no CPT-sentence Π such that for all n ∈ N, Π activates on input Hn a
h.f. set that encodes Pn.

Since the algorithm for the preordered CFI-query presented in Section 6.1.2 constructs
a h.f. set whose nesting structure implicitly defines a preorder with log-sized colour classes
on the base graph, we can immediately conclude:

Corollary 7.0.3. The CPT-algorithm for preordered CFI-graphs from Theorem 6.1.2
cannot decide the CFI-query over the family of unordered n-dimensional hypercubes, not
even with any CPT-definable preprocessing.

Theorem 7.0.2 follows directly from the technical result below, together with Lemma
7.0.1 and Corollary 3.0.6 (since |Hn| = 2n).

Theorem 7.0.4. Let (Hn)n∈N be the family of n-dimensional hypercubes. For each
n ∈ N, fix an ordered partition Pn = (C1, ..., Cmn) of {0, 1}n such that each colour class
Ci has size at most O(n).
Then the orbit-size of Pn with respect to the action of Symn on {0, 1}n grows super-
polynomially in 2n.

For the proof of Theorem 7.0.4, we employ the Orbit-Stabiliser Theorem (Theorem
4.1.3), which tells us that instead of directly proving a lower bound for the orbit size, we
can alternatively upper-bound the size of the corresponding stabiliser. For the remainder
of this chapter, fix an ordered partition Pn = (C1, ..., Cmn) of {0, 1}n for each n ∈ N, as

114

7.1 Using supporting partitions to estimate the stabiliser sizes

in Theorem 7.0.4. Even though Pn is technically a tuple, we will write Ci ∈ Pn for its
parts. Our aim is to show a good upper bound on the size of

Stab(Pn) := {π ∈ Symn | π(Ci) = Ci for each Ci ∈ Pn} =
⋂

i∈[mn]

Stab(Ci).

Then Theorem 7.0.4 will follow with the Orbit-Stabiliser Theorem.

7.1 Using supporting partitions to estimate the stabiliser sizes

In order to estimate the sizes of the groups Stab(Pn) and Stab(Ci), we look at their
coarsest supporting partitions (see Definition 4.2.3 in Section 4.2). We write SP(Pn) =
SP(Stab(Pn)) and SP(Ci) = SP(Stab(Ci)) to denote the respective coarsest supporting
partition. Recall that this is the coarsest partition of [n] such that every π ∈ Symn that
fixes every part of SP(Ci) setwise also fixes the set Ci ⊆ {0, 1}n setwise (and likewise for
SP(Pn))). It is also important to recall Lemma 4.2.5, which relates the pointwise and
setwise stabilisers of the respective supporting partitions to the stabiliser of the object
that is being supported:

Stab•(SP(Ci)) ≤ Stab(Ci) ≤ Stab(SP(Ci)).

So in particular, every π ∈ Stab(Ci) stabilises the partition SP(Ci) setwise and induces
a permutation on its parts. The same holds of course for Stab(Pn) and SP(Pn).

Example 7.1.1. Let n = 6, and consider the length-n binary string a := 111000. Then,
SP(a) = SP(Stab(a)) = {{1, 2, 3}, {4, 5, 6}}. As one can see, for single bitstrings a, the
stabiliser of a coincides with the pointwise stabiliser of its coarsest supporting partition.
In contrast, consider now A = {111000, 000111}.
Again, it holds SP(A) = {{1, 2, 3}, {4, 5, 6}}, but now Stab(A) = Stab(SP(A)), i.e. the
stabiliser of the set A is the setwise stabiliser of its support. These two examples illustrate
the two ”extremes” of Lemma 4.2.5. In general, the stabiliser of an object may be located
strictly between the pointwise and setwise stabiliser of its coarsest supporting partition
and can then only be approximated.

Some notation regarding partitions to keep in mind: For a partition P of [n], |P| denotes
its size, that is, the number of parts it has. Moreover, for k ∈ [n], we write P(k) for the
part in P that contains k. Additionally, we will frequently consider the “intersection” of
several supporting partitions. By this, we do not mean the intersection of the sets of
parts but rather the coarsest partition that refines the two partitions we are intersecting.
We use the symbol u for this type of partition-intersection.

Definition 7.1.2. Let P,P ′ be partitions of [n]. The intersection P u P ′ is defined like
this:

P u P ′ := {P(k) ∩ P ′(k) | k ∈ [n]}.

115

7 The non-definability of preorders with small colour classes in hypercubes

7.2 Proof of the Superpolynomial-Orbit Theorem

In this section, we prove Theorem 7.0.4 by upper-bounding the size of Stab(Pn). Our
analysis of |Stab(Pn)| is divided into two main cases that we treat separately. The
distinction is with respect to the maximum size of the coarsest supporting partition of any
of the colour classes Ci in Pn, viewed as a function of n: Let Bn ⊆ {0, 1}n be the part of
Pn such that |SP(Bn)| (i.e. its number of parts) is maximal among {|SP(Ci)| | Ci ∈ Pn}.
Then the two cases we distinguish are:

(1) The maximal support size of a colour class grows sublinearly: |SP(Bn)| ∈ o(n).

(2) The maximal support size of a colour class grows linearly: |SP(Bn)| ∈ Θ(n).

In Case (1), we bound the number of permutations in Symn that setwise stabilize the
support of each colour class simultaneously. In other words, we bound |

⋂
Ci∈Pn Stab(Ci)|.

This is equal to |Stab(Pn)|. Unfortunately, our analysis only leads to a meaningful bound
if the maximum support size grows strictly sublinearly in n, which is why we cannot avoid
the case distinction. To see the problem, simply assume that the coarsest supporting
partition of every Ci ∈ Pn consists only of singleton parts (and thus has linear size).
Then the whole group Symn stabilises each of those supporting partitions setwise, so we
cannot infer any bound on |Stab(Pn)|.

Therefore, in Case (2), we use some more involved arguments to deduce details about the
structure of the set Bn based on the fact that it has a very fine supporting partition. We
are able to show that Stab(Bn) is relatively small, and as a consequence, the orbit of
the colour class Bn (and thereby of the whole preorder given by Pn) is large enough to
prove the statement of the theorem. The result for this case can also be phrased as: No
subset of {0, 1}n of size O(n) and with linearly many parts in its supporting partition
has a polynomially-sized orbit in |{0, 1}n| = 2n.

We deal with the two cases in the next two subsections. Their results are summa-
rized in Lemma 7.2.1 and Lemma 7.2.7. Together they imply the theorem.

7.2.1 The case of sublinearly bounded supports

The result of this subsection is:

Lemma 7.2.1. Assume the following three conditions hold:

1. Every v ∈ {0, 1}n occurs in at least one of the colour classes Ci in Pn.

2. The function maxi∈[mn] |Ci| is in O(n).

3. |SP(Bn)| ∈ o(n).

Then the orbit size of Pn w.r.t. the action of Symn on {0, 1}n grows faster than any
polynomial in 2n.

116

7.2 Proof of the Superpolynomial-Orbit Theorem

It may seem somewhat superfluous to state the first condition explicitly, since we are
assuming that Pn is an ordered partition of {0, 1}n, so this is always satisfied. However,
we would like to stress that our result crucially depends on this fact and thus, the proof
will not directly go through if we replace the preorder by, say, a partial one that only
partitions a small subset of {0, 1}n into colour classes.
The second condition says that the colour classes of the preorder have logarithmic size
(compared to the size of the hypercube) and is also required in Theorem 7.0.4. The third
condition is specific to the case that we treat in this subsection.

We prove the lemma on the next few pages. By Lemma 4.2.5, we have for the sta-
biliser of Pn:

Stab(Pn) ≤
⋂

Ci∈Pn

Stab(SP(Ci)).

Let us briefly outline how we will use this fact to bound |Stab(Pn)|. For each colour
class Ci ∈ Pn, Sym(SP(Ci)) denotes the symmetric group on the parts of the sup-
porting partition SP(Ci) (in constrast, Symn is the symmetric group on the set [n]
that underlies this partition). Every π ∈ Symn that stabilises SP(Ci) as a set induces
(or realises) a σ ∈ Sym(SP(Ci)) in the sense that σ(P) = {π(k) | k ∈ P} for all
P ∈ SPi(xn). This can also be extended to a set Jn ⊆ Pn of several colour classes: Every
π ∈

⋂
Ci∈Jn Stab(SP(Ci)) induces a σ ∈×Ci∈Jn Sym(SP(Ci)). Here, σ is the tuple of

permutations that π realises simultaneously on the parts of the respective supporting
partitions.

Now in order to bound |Stab(Pn)|, we will choose a subset of colour classes Jn ⊆ Pn
with certain properties that will enable us to bound two quantities: Firstly, there will be
an upper bound on the number of σ ∈×Ci∈Jn Sym(SP(Ci)) that can be realised by any
π ∈ Stab(Pn). Secondly, we observe that each such σ can only be realised by a small
number of distinct π ∈ Stab(Pn). The product of these two bounds is then an upper
bound for |Stab(Pn)|.

We start the proof of Lemma 7.2.1 with the second part of the above proof sketch,
namely we show how we can generally bound the number of realisations of a given
σ ∈×i∈[m] Sym(SP(Ai)), where A1, ..., Am are sets of length-n bit-strings (in our case,

the colour classes of Pn). We refer back to Definition 7.1.2 for the definition of u, the
intersection of partitions. The following lemma shows that any π ∈ Symn that realises
the mentioned tuple of permutations σ of the parts of the supports has to permute the
parts of the intersection partition

dm
i=1 SP(Ai) in the same way.

Lemma 7.2.2. Let A1, ..., Am ⊆ {0, 1}n be a collection of sets of bit-strings. Fix
any simultaneous permutation σ of the parts of the supports of the sets, i.e. σ ∈
×m

i=1 Sym(SP(Ai)).

There exists a ϑσ ∈ Sym(
dm
i=1 SP(Ai)) such that every π ∈ Symn that realises σ

also realises ϑσ.

117

7 The non-definability of preorders with small colour classes in hypercubes

Proof. We show the statement via induction on m. For m = 1, there is only one set A1,
so σ ∈ Sym(SP(A1)). Hence, ϑσ := σ is the desired permutation.
For the inductive step, assume the statement holds for a fixed m. Consider now a
collection A1, ..., Am+1 ⊆ {0, 1}n, and σ ∈×m+1

i=1 Sym(SP(Ai)). Let σ′ be the m-tuple
that is the restriction of σ to its first m components. By the induction hypothesis there
exists a ϑσ′ ∈ Sym(

dm
i=1 SP(Ai)) that is induced by every π ∈ Symn realising σ′, and

therefore also by every π realising σ. Furthermore, every π ∈ Symn that realises σ has to
realise σm+1 ∈ Sym(SP(Am+1)). So we know the following constraints for π: For every
P ∈ SP(Am+1), π(P) = σm+1(P), and also, for every P ∈

dm
i=1 SP(Ai), π(P) = ϑσ′(P).

Hence, the desired ϑσ ∈ Sym(
dm+1
i=1 SP(Ai)) is defined as follows: Let P ∈

dm+1
i=1 SP(Ai),

and call QP ∈
dm
i=1 SP(Ai) the part such that P ⊆ QP , and let Q′P ∈ SP(Am+1) be

such that P ⊆ Q′P (the parts QP , Q
′
P must exist because the partition

dm+1
i=1 SP(Ai)

refines both
dm
i=1 SP(Ai) and SP(Am+1)). Then:

ϑσ(P) := ϑσ′(QP) ∩ σm+1(Q′P).

One can easily check that indeed, ϑσ ∈ Sym(
dm+1
i=1 SP(Ai)), and, as we argued already,

that every π ∈ Symn that realises σ must realise ϑσ as well. Below is a visualisation for
the first inductive step, that adds A2 to A1.

SP(A1)

SP(A2)

SP(A1) u SP(A2)

Figure 7.1: Suppose σ is the identity permutation in both SP(A1) and SP(A2). Then
any π ∈ Symn realising σ must stabilise each of the three parts of SP(A1) u
SP(A2) setwise.

So, intuitively speaking, the finer the partition
dm
i=1Ai is, the fewer realisations are

there for any σ ∈×m
i=1 Sym(SP(Ai)). Therefore, we will aim to select a subset of the

colour classes in Pn such that the intersection over the supports is as fine as possible.
More precisely, we would like it to consist of many singleton parts.
For the rest of this subsection we denote by Sn ⊆ [n] the set of positions which are in
singleton parts in

d
Ci∈Pn SP(Ci), i.e.

Sn := {k ∈ [n] | {k} ∈
l

Ci∈Pn

SP(Ci)}.

It turns out that there can only be few positions which are not in singleton parts ind
Ci∈Pn SP(Ci); this is a consequence of the assumption that every element of {0, 1}n

occurs in a colour class of Pn, together with the size bound on the colour classes (the
first and second condition of Lemma 7.2.1):

118

7.2 Proof of the Superpolynomial-Orbit Theorem

Lemma 7.2.3. Let c be a constant such that for every colour class Ci ∈ Pn, for large
enough n ∈ N, it holds: |Ci| ≤ c · n. Further, assume that every element of {0, 1}n occurs
in at least one Ci ∈ Pn. Then, for all large enough n:

|[n] \ Sn| < 8 log n.

Proof. Assume for a contradiction: |[n] \ Sn| ≥ 8 log n. Let

P2 := {P ∈
l

Ci∈Pn

SP(Ci) | |P | ≥ 2}.

Choose a string a ∈ {0, 1}n such that its substring at the positions in P , denoted a[P],
contains an equal number of zeros and ones (or almost equal if |P | is odd) for each
P ∈ P2. Let An denote the colour class Ci ∈ Pn such that a ∈ Ci. This exists by the
assumptions of the lemma. For each P ∈ P2, a superset of P (or P itself) must occur as
a part of SP(An). We conclude that Stab(An) must contain all permutations π ∈ Symn

which are the identity on Sn, and arbitrarily permute the elements within each part
P ∈ P2 (due to Lemma 4.2.5). So let

ΓP2 := {π ∈ Symn | π(s) = s for all s ∈ Sn and π(P) = P for all P ∈ P2} ≤ Stab(An)

be this subgroup of Symn.
All images of a under the permutations in ΓP2 must also be in An. This entails a violation
of the size bound on |An|, as we show now. It is easy to see (observing that within
every P ∈ P2, the |P |/2 many ones in a[P] can be moved to an arbitrary subset of the
positions P) that the orbit of a with respect to ΓP2 has size at least

OrbitΓP2
(a) ≥

∏
P∈P2

(
|P |
|P |/2

)
≥
∏
P∈P2

δ · 2|P |√
|P |

= 2|[n]\Sn| ·
∏
P∈P2

δ√
|P |

(?)

Here, 0.6 ≤ δ < 1. The inequality is quite well-known and can be computed with Stirling’s
approximation. The equality is clear because the parts in P2 cover exactly the positions
[n] \ Sn.
As for the large product, we can check that its value becomes smallest possible if all parts
P ∈ P2 are doubleton parts (plus potentially one part with three elements). To see this,
take any part P ∈ P2 with |P | ≥ 4 and split off two elements, such that P = P1∪̇P2,

|P1| = 2. Then the contribution of P changes from δ√
|P |

to δ2√
2(|P |−2)

. The latter is

strictly smaller because δ < 1. Repeating this argument shows that we get the minimal
value of (?) if we assume that all parts in P2 are doubletons. In that case, (?) becomes
this:

OrbitΓP2
(a) ≥

(
4δ√

2

)|[n]\Sn|/2
≥
√

2
|[n]\Sn|/2

.

Now plugging in our initial assumption |[n] \ Sn| ≥ 8 log n, this expression is ≥ n2. This
is a contradiction to the fact that |An| ≤ cn, for some constant c.

119

7 The non-definability of preorders with small colour classes in hypercubes

Now that we know that the set of singleton positions Sn is almost [n] itself, we proceed
to construct our subset of the colour classes Jn ⊆ Pn such that the intersection of its
supports already individualises all positions in Sn. Furthermore, we make sure that there
are not too many ways how the supports of the colour classes in Jn can be permuted
simultaneously; this will show that

⋂
Ci∈Pn Stab(SP(Ci)) cannot be too large, which is

precisely our goal.

Lemma 7.2.4. Let f(n) ∈ o(n) such that (for large enough n) for all colour classes
Pi ∈ Pn, |SP(Pi)| ≤ f(n).
For large enough n, there exists a subset Jn ⊆ Pn of colour classes with the following two
properties:

(1) Every position in Sn is in a singleton part of
d
Pj∈Jn SP(Pj).

(2) The following bound for the number of realisable simultaneous permutations of the
supporting partitions holds:

|{σ ∈ ×
Cj∈Jn

Sym(SP(Cj)) | there is a π ∈ Symn that realises σ}|

≤ (f(n)!)dn/(f(n)−1)e · 2n

Proof. We construct Jn stepwise, starting with J0
n := ∅ and adding one new colour class

Cji ∈ Pn in each step i ≥ 1 in such a way that∣∣∣ l

Cj∈Ji−1
n

SP(Cj) u SP(Cji)
∣∣∣> ∣∣∣ l

Cj∈Ji−1
n

SP(Cj)
∣∣∣.

Let s be the number of construction steps needed, i.e. Jn := Jsn is such that property
(1) of the lemma holds for this subset of Pn. By definition of Sn, it is clear that such a
subset exists because Pn itself satisfies property (1).
For each construction step i, we let

Γi := {σ ∈ ×
Cj∈Jin

Sym(SP(Cj)) | there is a π ∈ Symn that realises σ}.

Furthermore, for each step i we let ki be the increase in the number of parts in the
intersection that is achieved in this step:

ki := |
l

Cj∈Jin

SP(Cj)| − |
l

Cj∈Ji−1
n

SP(Cj)|.

The main part of the proof consists in showing the following

Claim 7.2.1. For each step i, the size of |Γi| is bounded by

|Γi| ≤
i∏

j=1

(min{(kj + 1), f(n)})!

120

7.2 Proof of the Superpolynomial-Orbit Theorem

Proof of claim. Via induction on i. For i = 1, we have k1 = |SPj1(xn)| ≤ f(n), where j1
is the level chosen in the first step of the construction of Jn. The group Γ1 is a subgroup
of Sym(SPj1(xn)), whose size is bounded by |SPj1(xn)|!. Therefore, the claim holds.

For the inductive step, consider the step i + 1 of the construction. Let ji+1 be the
colour class of the preorder that is added in this step. In order to bound the size of Γi+1,
we consider for each σ ∈ Γi the following set:

Γσi+1 := {σ ∈ Sym(SP(Cji+1)) | there is a π ∈ Symn that realises σ and σ}.

We need to show that for each σ ∈ Γi, it holds |Γσi+1| ≤ (min{(ki+1 + 1), f(n)})!.
Since |SP(Cji+1)| ≤ f(n), the bound |Γσi+1| ≤ f(n)! is clear. It remains to show that for
an arbitrary fixed σ ∈ Γi, it holds |Γσi+1| ≤ (ki+1 + 1)!.

For a part P ∈ SP(Cji+1), let

Q(P) := {Q ∈
l

Cj∈Jin

SP(Cj) | Q ∩ P 6= ∅}.

Then we define an equivalence relation ∼⊆ SP(Cji+1)2: For parts P, P ′ ∈ SP(Cji+1), we
let

P ∼ P ′ iff Q(P) = Q(P ′).

Now we show how the equivalence classes of ∼ can be used to approximate the images
of the parts in SP(Cji+1) under permutations in Γσi+1: Every π ∈ Symn that realises
any σ ∈ Γσi+1 also realises σ ∈ Γi. Hence, by Lemma 7.2.2, all such π induce the
same ϑσ ∈ Sym(

d
Cj∈Jin SP(Cj)). This means that for any σ ∈ Γσi+1, and every part

P ∈ SP(Cji+1),

σ(P) ⊆
⋃

Q∈Q(P)

ϑσ(Q).

The situation is visualised in the figure below.

121

7 The non-definability of preorders with small colour classes in hypercubes

d
Cj∈Jin SP(Cj)

SP(Cji+1) P

Q(P)

σ(P)

ϑσ(Q(P))

Figure 7.2: A part P ∈ SP(Cji+1) and the associated parts Q(P) in
d
Cj∈Jin SP(Cj) that

it intersects. Any σ ∈ Sym(SP(Cji+1)) compatible with σ must map P to
the same position that Q(P) is mapped to by ϑσ.

Therefore, we can fix any σ̂ ∈ Γσi+1 and obtain:

{σ(P) | σ ∈ Γσi+1} ⊆ [σ̂(P)]∼.

Note that the class [σ̂(P)]∼ is independent of the choice of σ̂. Consequently, we can
bound |Γσi+1| as follows: Let m be the number of equivalence classes of ∼ and let `1, .., `m
denote the sizes of the respective classes. Then from our observations so far it follows:

|Γσi+1| ≤
∏
t∈[m]

`t! (?)

Next, we establish a relationship between the properties of ∼ and the number ki+1:

ki+1 =
∣∣∣SP(Cji+1) u

l

Cj∈Jin

SP(Cj)
∣∣∣−∣∣∣ l

Cj∈Jin

SP(Cj)
∣∣∣

=
∑

Q∈
d
Cj∈Jin

SP(Cj)

(|{P ∈ SP(Cji+1) | Q ∈ Q(P)}| − 1)

≥
∑
[P]∼,

P∈SP(Cji+1
)

(|[P]∼| − 1)

= |SP(Cji+1)| −m.

The inequality in this chain requires some explanation: Fix a choice function g that
maps each equivalence class [P]∼ to a part Q ∈ Q(P). By definition of ∼, we have
g([P]∼) ∈ Q(P ′) for every P ′ ∈ [P]∼. Hence, for every Q ∈

d
Cj∈Jin SP(Cj), it holds:

|{P ∈ SP(Cji+1) | Q ∈ Q(P)}| − 1 ≥
∑

[P]∼∈g−1(Q)(|[P]∼| − 1).
We can sum up the result of these considerations like this:

m ≥ |SP(Cji+1)| − ki+1. (??)

122

7.2 Proof of the Superpolynomial-Orbit Theorem

This means that the relation ∼ has rather many equivalence classes if ki+1 is small. Let
us now finish the proof of the claim:

We have already established the upper bound (?) for |Γσi+1|. Let p ∈ [m] be such that
`p ≥ `t for all t ∈ [m]. A consequence of (??) is: `p ≤ ki+1 + 1. It can be checked that
the values `1, ..., `m that maximise the bound in (?) and satisfy (??) are such that `t = 1
for all t 6= p: If there is some t 6= p with `t ≥ 2, then decrease `t by one and increase `p
by one. This does not change the number m of equivalence classes, so it still satisfies
(??), but the value of

∏
t∈[m] `t! is strictly increased.

Therefore, (?) becomes:

|Γσi+1| ≤ `p! ≤ (ki+1 + 1)!

This concludes the proof of the claim.

Hence, in order to finish the proof of the lemma, we have to bound

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})!

from above (recall that s is the number of steps needed to construct Jn satisfying property
(1)). We know that

∑s
i=1 ki is some fixed value ≤ n. The values of the above product

and of the sum solely depend on the sequence (ki)i∈[s]. Now we can make a “redistribute-
weight argument” again: Let kj be such that kj + 1 < f(n), and such that there is a
ki ≤ kj with ki > 1. We can decrease ki by one and increase kj by one. This does not
change the value of the sum, and the value of the product of factorials can only get larger
(as kj + 1 does not exceed f(n)). If we iterate this process, we see that the value of the
product is maximised for a sequence (ki)i∈[s], where every ki is either 1 or ki = f(n)− 1
(and there may be exactly one ki with 1 < ki < f(n)− 1).
For such a sequence of ki, the value of the product is at most

|Γs| ≤
s∏
i=1

(min{(ki + 1), f(n)})! ≤ f(n)!n/(f(n)−1) · 2n

Corollary 7.2.5. Assume the following three conditions hold:

1. Every v ∈ {0, 1}n occurs in at least one of the colour classes Ci in Pn.

2. The function maxCi∈Pn |Ci| is in O(n).

3. |SP(Bn)| ∈ o(n).

Then, for sufficiently large n:

|Stab(Pn)| ≤ (f(n)!)n/(f(n)−1) · 2n · (8 log n)!

123

7 The non-definability of preorders with small colour classes in hypercubes

Proof. Consider the set of colour classes Jn ⊆ Pn that exists by Lemma 7.2.4. Since every
π ∈ Stab(Pn) fixes every Ci ∈ Pn, by Lemma 4.2.5, it induces a tuple of permutations
on the supporting partitions σ ∈×Ci∈Pn Sym(SP(Ci)). In particular it also induces

a σ ∈×Ci∈Jn Sym(SP(Ci)). By Lemma 7.2.4, there are at most (f(n)!)n/(f(n)−1) · 2n
possibilities for such a σ. Furthermore, each such σ can be realised by at most (8 log n)!
distinct permutations π ∈ Stab(Pn): Due to Lemma 7.2.2 and property (1) of Jn (see
Lemma 7.2.4), every π realising σ permutes the positions in Sn in the same way, and
according to Lemma 7.2.3, there remain at most 8 log n positions which may be permuted
arbitrarily by π.

With this, we prove our final lemma of this subsection, which is just a more precise
formulation of Lemma 7.2.1.

Lemma 7.2.6. Assume again the three conditions from Corollary 7.2.5. Then for any
k ∈ N, the limit

lim
n→∞

|Orbit(Pn)|
2kn

= lim
n→∞

n!

|Stab(Pn)| · 2kn

does not exist. That is to say, the orbit of Pn w.r.t. the action of Symn on {0, 1}n grows
super-polynomially in 2n.

Proof. Plugging in the stabiliser bound from Corollary 7.2.5, we get for the fraction that
we are taking the limit of:

n!

|Stab(Pn)| · 2kn
≥ n!

(f(n)!)n/(f(n)−1) · (8 log n)! · 2(k+1)n

According to Stirling’s Formula, factorials can be approximated as follows:

0.5 · n! ≤
√

2πn ·
(n
e

)n
≤ n!

With this, we obtain the following chain of expressions, where we use the abbreviation
h(n) := f(n)+0.5

f(n)−1 .

n!

(f(n)!)n/(f(n)−1) · (8 log n)! · 2(k+1)n

≥1

2
·
√

n

8 log n
· 1

(8πf(n))0.5n/(f(n)−1)
·
(n

2k+1e

)n
·
(

e

8 log n

)8 logn

·
(

e

f(n)

)f(n)·(n/(f(n)−1))

≥1

2
·
√

n

8 log n
·
(

n

(8π)0.5/(f(n)−1) · 2k+1e · f(n)h(n)

)n
·
(

e

8 log n

)8 logn

=
1

2
·
√

n

8 log n
·

(
n(n−8 log logn)/n

(8π)0.5/(f(n)−1) · 2k+1e · f(n)h(n)

)n
·
(

log n · e
8 log n

)8 logn

=
1

2
·
√

n

8 log n
·

(
n(n−8 log logn)/n

(8π)0.5/(f(n)−1) · 2k+1e · f(n)h(n)

)n
·
(e

8

)8 logn

124

7.2 Proof of the Superpolynomial-Orbit Theorem

In this calculation we used that n8 log logn = (log n)8 logn. Now we need the following
claims:

Claim 7.2.2. f(n)h(n) ∈ Θ(f(n)).

Proof.

lim
n→∞

f(n)h(n)

f(n)
= lim

n→∞
f(n)

1.5
f(n)−1 = lim

n→∞
exp
(1.5

f(n)− 1
· ln(f(n))

)
= 1.

Claim 7.2.3. n(n−8 log logn)/n ∈ Θ(n).

Proof.

lim
n→∞

n(n−8 log logn)/n

n
= lim

n→∞
n(−8 log logn)/n = lim

n→∞
exp
(−8 log log n

n
· ln(n)

)
= 1.

From these claims and the fact that f(n) ∈ o(n) it follows that there is no constant c
such that

n(n−8 log logn)/n

f(n)h(n)
≤ c,

for all n. We can conclude that for large enough n,(
n(n−8 log logn)/n

(8π)0.5/(f(n)−1) · 2k+1e · f(n)h(n)

)n
≥ 2n.

Furthermore, (e
8

)8 logn
≥
(
n8

n24

)
= n−16.

So, the dominating factor is 2n, which means that the limit of the whole product does
not exist.

With this, we have proven the super-polynomial orbit theorem for preorders with log-sized
colour classes in case that the supporting partitions of the colour classes have at most
sublinearly many parts. We now move on to the remaining case.

125

7 The non-definability of preorders with small colour classes in hypercubes

7.2.2 The case of linearly-sized supports

This subsection is dedicated to proving the result for the case that |SP(Bn)| ∈ Θ(n).
Recall that Bn denotes the colour class Ci ∈ Pn whose supporting partition has the most
parts.

Lemma 7.2.7. Assume that the following conditions hold for Bn:

1. |Bn| ∈ O(n).

2. |SP(Bn)| ∈ Θ(n)

Then the orbit size of Bn (and therefore also of Pn) w.r.t. the action of Symn on {0, 1}n
grows faster than any polynomial in 2n.

Proving this lemma requires several steps, and again, a case distinction. The relevant
measure here is the number of singleton parts in SP(Bn). Firstly, we show that if the
number of singleton parts in SP(Bn) grows sublinearly in n, while the total number of
parts |SP(Bn)| is linear, the stabiliser of SP(Bn) is small enough such that Lemma 7.2.7
is true. This is a relatively straightforward calculation.

The difficult part of the proof is the case where the number of singleton parts grows lin-
early. An extreme example is SP(Bn) = {{k} | k ∈ [n]}. Then, Stab(SP(Bn)) = Symn,
so nothing can be inferred solely from the supporting partition. Therefore, we will need
more involved arguments that also take into account the set Bn itself, rather than only
its supporting partition. This is also where we rely on the assumption that |Bn| ∈ O(n).
Actually, if we used alternating supporting partitions, which we defined in Chapter 4,
then Theorem 4.3.1 would directly tell us that the number of singleton parts is at most
sublinear. However, the present chapter is a faithful presentation of the CSL paper [87],
and at that time, we had not yet discovered that the case of linearly many singletons can
be ruled out more generally with group-theoretic techniques. Therefore, we solve this
case here with a less general combinatorial argument.

Subcase 1: Sublinear number of singleton parts
Let us begin with the easier case, where the number of singleton parts in SP(Bn) grows
sublinearly. We denote by Sn ⊆ [n] the set of positions that are in singleton parts, i.e.

Sn := {k ∈ [n] | {k} ∈ SP(Bn)}.

Thus, the meaning of Sn is now slightly different as in the previous section. The size of
Stab(SP(Bn)) can be bounded as follows:

Lemma 7.2.8. Let sn := |Sn|, and tn := |SP(Bn)| − sn.

|Stab(SP(Bn))| ≤ sn! · tn! · ((n/tn)!))tn .

126

7.2 Proof of the Superpolynomial-Orbit Theorem

Proof. Recall that Stab(SP(Bn)) is the setwise stabiliser of the support, so it also
involves permutations that map parts to other parts. The factors sn! and tn! account
for these possible permutations of the parts: All the singleton parts of SP(Bn) can be
mapped to each other, and every non-singleton part can at most be mapped to every
other non-singleton part. The factor ((n/tn)!))tn is an upper bound for the number of
possible permutations within all non-singleton parts, as every non-singleton part can
have size at most (n/tn).

Corollary 7.2.9. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and assume
|SP(Bn)| ∈ Θ(n), i.e. there exists a constant 0 < c ≤ 1, such that for all large enough n,
|SP(Bn)| ≥ c · n. Then, for all large enough n, the following bound holds:

|Stab(SP(Bn))| ≤ f(n)! · (n/2)! · (d!)(n/2) .

Here, d is some positive constant.

Proof. We plug in the right values for sn and tn = |SP(Bn)| − n into Lemma 7.2.8. We
have sn ≤ f(n) by assumption. Further, using |SP(Bn)| ≥ c · n, and the fact that every
non-singleton part consists of at least two elements, we can bound tn as follows:

c · n− f(n) ≤ tn ≤
n

2
.

Now plug in the upper and lower bounds for tn and sn in the right places in the bound
from Lemma 7.2.8. Note that the expression 1

c−f(n)/n that occurs in this bound can

be upper-bounded by some 1
c−ε (for large enough n) because f(n) ∈ o(n). Then set

d := 1
c−ε .

Lemma 7.2.10. Let f(n) ∈ o(n) be a function such that sn ≤ f(n) and assume
|SP(Bn)| ∈ Θ(n). Then for any k ∈ N, the limit

lim
n→∞

|Orbit(Bn)|
2kn

≥ lim
n→∞

n!

|Stab(SP(Bn))| · 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn on {0, 1}n grows
super-polynomially in 2n.

Proof. We bound |Stab(SP(Bn))| according to the preceding corollary. Factorials can
be approximated by the Stirling Formula (in fact, the approximation is much closer to n!
than what we state here, but this is sufficient and makes the calculations nicer):

0.5 · n! ≤
√

2πn ·
(n
e

)n
≤ n!

Using the upper bound for |Stab(SP(Bn))| from Corollary 7.2.9, and the Stirling Formula

127

7 The non-definability of preorders with small colour classes in hypercubes

for the factorials n!, f(n)!, and (n/2)!, we get:

n!

|Stab(SP(Bn))| · 2kn
≥ 1

4
·
√

n

2π · f(n) · (n/2)
·
(n
e

)n
·
(

e

f(n)

)f(n)

·
(

e

n/2

)(n/2)

· 1

(d!)(n/2) · 2kn+2

≥ 1

4
· 1√

π · f(n)
·
(n
e

)(n/2)−f(n)
· 1

(d!)(n/2) · 2kn
.

For the last inequality, we cancelled some of the factors n
e with the other factors, leaving

a factor > 1 each time.
The factor 1

(d!)(n/2)·2kn can be written as ε(n/2), for a small enough constant ε > 0. For

large enough n, it holds that n− 2f(n) ≥ n/2, since f(n) ∈ o(n). Hence, we get in total:

lim
n→∞

n!

|Stab(SP(Bn))| · 2kn
≥ lim

n→∞

1

4
√
π · f(n)

·
(
ε2 · n
e

)(n/2)−f(n)

Again, observing that f(n) ∈ o(n), it can be seen that this limit does not exist.

This proves Lemma 7.2.7 under the assumption that Sn ∈ o(n). Now we deal with the
remaining case.

Subcase 2: Linear number of singleton parts
As already mentioned, this case requires more effort because we cannot solve it by only
counting the number of permutations that stabilise SP(Bn). Instead, we have to relate
SP(Bn) to the set Bn. Let Sym(Bn) be the group of all permutations of the strings in
Bn. For π ∈ Symn and σ ∈ Sym(Bn), we say that π realises or induces σ, if bπ = σ(b)
for every b ∈ Bn.
Each π ∈ Stab(Bn) ≤ Symn that permutes the positions of the strings in Bn induces
a unique permutation in Sym(Bn). Conversely, each σ ∈ Sym(Bn) can be realised by
multiple distinct π ∈ Stab(Bn), but not by too many: Roughly speaking, we will see
that the number of distinct realisations of a σ ∈ Sym(Bn) is related to |Stab•(SP(Bn))|
(which is small if there are many singleton parts). Therefore, the aim is to show that only
a bounded number of σ ∈ Sym(Bn) can be realised by a permutation π ∈ Stab(Bn) at
all, and that each such σ only has a small number of realisations. In total, this yields a
bound on |Stab(Bn)|.

Now let us go into the details: For a set A ⊆ {0, 1}n, we write
d
A for

d
a∈A SP(a).

Note that SP(a) is just the partition of [n] into the positions where there are zeros and
ones, respectively, in a. It can be seen that

d
A is a supporting partition for A, which is

finer or identical to its coarsest supporting partition.
First, we show: If we partially specify a σ ∈ Sym(Bn) by only fixing its behaviour on
a subset A ⊆ Bn, then any σ ∈ Sym(Bn) compliant with the specification can only be
realised by permutations π ∈ Symn which respect the parts of

d
A in some way. Roughly

128

7.2 Proof of the Superpolynomial-Orbit Theorem

speaking, if
d
A consists of many small parts, then each such σ will only have a small

number of realisations in Symn.
The second step is then to choose a suitable set An ⊆ Bn such that fixing the behaviour
of σ ∈ Sym(Bn) on An indeed only admits a small number of realisations of σ, and such
that An is sufficiently small to admit only few possibilities how σ can behave on An (as
|Bn| ∈ O(n), there are ≈ n|An| such possibilities).

First of all, we show how to bound the number of possible realisations of any σ ∈
Sym(Bn) if σ is fixed on some subset A ⊆ Bn. The next lemma is of a similar flavour as
Lemma 7.2.2.

Lemma 7.2.11. Let B ⊆ {0, 1}n, A ⊆ B. Let an injective mapping p : A −→ B be given.
Write

d
A :=

d
a∈A SP(a).

There is an assignment of positions to parts Qp : [n] −→
d
A with the property that

|Q−1
p (P)| = |P | for every P ∈

d
A, and such that:

Every π ∈ Symn realising any σ ∈ Sym(B) with σ−1(a) = p(a) for all a ∈ A satisfies:
π(k) ∈ Qp(k) for all k ∈ [n] (it may be that such a π does not exist).

a1

a2

a3

d
A

000000 111111

111111 000000

000 1111111111

111111 000000

000000 111111

1111111111 000

p(a1)

p(a2)

p(a3)

Qp

Figure 7.3: An example with A = {a1, a2, a3} ⊆ B and a mapping p that specifies an
image for each string in A. Every σ ∈ Sym(B) that acts as the inverse of p
on A can only be realised by a π ∈ Symn that complies with Qp.

Proof. Let σ ∈ Sym(B) be such that σ(a) = p(a) for each a ∈ A and assume σ is indeed
a permutation of the strings in B that can be realised by at least one π ∈ Symn. We
show the statement via induction on |A|.

If |A| = 1, then it is determined that σ(p(a)) = a, for the only string a ∈ A (and a
and p(a) must have the same Hamming-weight). In order to map p(a) to a, the ones and
zeros must be mapped correctly. Indeed, this automatically yields the desired assignment
Qp: Let P0, P1 ⊆ [n] be the positions where there are 0s and 1s, respectively, in a. Then

129

7 The non-definability of preorders with small colour classes in hypercubes

Qp(k) = P0, if and only if p(a)k = 0.

For the inductive step, assume the statement holds for |A| ≤ m. Consider now A with
|A| = m + 1. Take any m-element subset A′ ⊂ A. Any π ∈ Symn realising σ must in
particular induce the correct preimages on the elements of A′, and therefore, π has to
respect the assignment Q′p given by the induction hypothesis. That is, for each k ∈ [n], it
holds π(k) ∈ Q′p(k), where Q′p(k) is a part of

d
A′. Let a ∈ A \A′ be the unique string

not contained in A′. Let 0(a) := {k ∈ [n] | ak = 0}, and 1(a) := {k ∈ [n] | ak = 1}.

We define the desired assignment Qp : [n] −→
d
A as follows:

Qp(k) :=

{
Q′p(k) ∩ 0(a) , if p(a)k = 0

Q′p(k) ∩ 1(a) , if p(a)k = 1

It is easily seen that the range of Qp is indeed
d
A, since the range of Q′p is

d
A′, and

we have
d
A =

d
A′ u SP(a) =

d
A′ u {0(a),1(a)}.

Furthermore, it is clear that any π ∈ Symn realising σ must map every k ∈ [n] to a
position within Qp(k): By the induction hypothesis, π must map every k to a position
within Q′p(k), and since π(p(a)) = a, the zeros and ones in p(a) must be moved to zeros
and ones in a.

We will mainly need this lemma for the restriction of the parts in
d
A to the positions Sn

which are singletons in SP(Bn). Therefore, we state the following important corollary:

Corollary 7.2.12. Let A ⊆ Bn be arbitrary, and let an injective mapping p : A −→ B
be given. Then every π ∈ Symn that realises a σ ∈ Sym(Bn) with σ−1(a) = p(a) for all
a ∈ A satisfies:

π−1(P ∩ Sn) = Q−1
p (P) ∩ Sn for all P ∈

l
A,

where Qp : [n] −→
d
A is the assignment that exists by the preceding lemma.

Proof. Lemma 7.2.11 says that π−1(P) = Q−1
p (P). Since π realises a permutation in

Sym(Bn), π ∈ Stab(Bn). Hence, by Lemma 4.2.5, π ∈ Stab(SP(Bn)). This means that
π(Sn) = Sn, as singleton parts can only be mapped to singleton parts. Consequently, it
must be the case that π−1(P ∩ Sn) = Q−1

p (P) ∩ Sn.

We move on to the more involved step of the proof. Recall that Sn ⊆ [n] is the set of
positions that are in singleton parts in SP(Bn). As the next simple lemma shows, the
intersection over all strings in Bn yields a refinement of the coarsest supporting partition
SP(Bn), so in particular, the positions in Sn are also in singleton parts in

d
B.

Lemma 7.2.13. Let B ⊆ {0, 1}n. The partition
d
B is a supporting partition for B.

Proof. By the definition of the intersection, every string b ∈ Bn is constant zero or
constant one on every part P ∈

d
B. Hence, Stab•(

d
B) ⊆ Stab(Bn). This is the

definition of a supporting partition.

130

7.2 Proof of the Superpolynomial-Orbit Theorem

With this in mind, we can now select a subset An ⊆ Bn such that the partition
d
An

is sufficiently fine on the positions in Sn (such a subset must exist because Bn itself fulfils
this condition). If we take a suitable definition of what it means to be sufficiently fine on
Sn, we can even guarantee that An is considerably smaller than Bn. Later it will become
clear that An is chosen in such a way that if we partially specify a σ ∈ Sym(Bn) on An
(as in Lemma 7.2.11), then there are only few permutations in Symn that realise this σ.
The small size of An then implies that not too many permutations in Sym(Bn) can at
all be realised by permutations in Stab(Bn).

Lemma 7.2.14. There exists a subset An ⊆ Bn of size |An| ≤ |Sn|2 such that for each
part P ∈

d
An, one of the following two statements is true:

1. |P ∩ Sn| ≤ 2; or:

2. |P ∩ Sn| > 2 and for every b ∈ Bn \An, one of these two conditions holds:

• b is constant on P ∩ Sn; or

• b[P ∩ Sn] is imbalanced and, for every P ′ ∈
d
An with P ′ 6= P , |P ′ ∩ Sn| > 2,

b is constant on P ′ ∩ Sn.

By b[P ∩Sn] we mean the substring of b at the positions in P ∩Sn, and being imbalanced
means that b[P ∩ Sn] contains exactly one 0 and there is a 1 at all other positions, or
vice versa (exactly one 1 and the rest 0). Being constant means that the string has only
zeros or only ones at the respective positions.

d
An

b ∈ Bn \An

Sn

? 0001 111 ?

Figure 7.4: The set An ⊆ Bn is chosen such that on the large parts of
d
An in Sn (the

green area), every b ∈ Bn \An is constant/imbalanced. Elsewhere, b may be
arbitrary.

Proof. We construct An stepwise, starting with A0
n := ∅, and adding one string ai ∈ Bn

in step i.
For step i+ 1 of the construction, assume we have constructed Ain. For k ∈ [n], we write
Pi(k) for the part of

d
Ain that k is in. Now we let

Ki := {k ∈ Sn | |Pi(k) ∩ Sn| > 2}.

This is the set of positions whose parts need to be refined more. If Ki = ∅, then the
construction is finished because all parts of

d
Ain satisfy condition 1 of the lemma. So

131

7 The non-definability of preorders with small colour classes in hypercubes

assume Ki 6= ∅.

By Lemma 7.2.13,
d
Bn is a supporting partition for Bn and therefore at most as

coarse as SP(Bn). Hence, all positions in Sn are in singleton parts of
d
Bn.

We conclude that for all k ∈ Ki, there must be a string b ∈ Bn \Ain that can be added to
Ain in order to make Pi(k) ∩ Sn smaller when it is intersected with SP(b). In fact, there
may be several such strings b that we could choose to add in this step of the construction.
So let

Ck := {b ∈ Bn \Ain | b is non-constant on Pi(k) ∩ Sn}

be the non-empty set of such candidate strings. We restrict our candidate set further:

Ĉk := {b ∈ Ck | there are two distinct parts P, P ′ ∈
l
Ain

s.t. b is non-constant on P ∩ Sn and P ′ ∩ Sn, and

|P ∩ Sn| > 2 and |P ′ ∩ Sn| > 2}
∪{b ∈ Ck | b[Pi(k) ∩ Sn] is not imbalanced}.

We pick our next string ai+1 that is added in this step of the construction from one of
the sets Ĉk, where k ranges over all positions in Ki. If Ĉk = ∅ for all these k, then Ain is
already the desired set An because it satisfies the conditions of the lemma.
Otherwise, we choose ai+1 arbitrarily from one of the Ĉk and set Ai+1

n := Ain ∪ {ai+1}.
Then we proceed with the construction until Ki = ∅ or all Ĉk are empty. In both cases,
the constructed set is as required by the lemma.

It remains to show: |An| ≤ |Sn|2 , i.e. that the construction process consists of at most |Sn|2
steps. We do this by defining a potential function Φ that associates with any partition P
of [n] a natural number ≤ n that roughly says how many further refinement steps of P
are at most possible. Concretely:

Φ(P) :=
∑
P∈P

max{(|P ∩ Sn| − 2), 0}.

If P contains as its only part the whole set [n], then Φ(P) = |Sn| − 2. Now observe that
a necessary condition for adding a new string ai+1 to An is the existence of a part P with
|P ∩ Sn| > 2 in the current partition P =

d
Ain. This is the case if and only if Φ(P) > 0.

Therefore, all that remains to be shown is:

Φ
(l

Ain

)
− Φ

(l
Ai+1
n

)
≥ 2 (?)

for all construction steps i.
To this end, consider step i + 1: We add ai+1 to Ain. There are two (not necessarily
disjoint) cases:
The first case is: There are two distinct parts P, P ′ ∈

d
Ain such that ai+1 is non-constant

on P ∩Sn and P ′ ∩Sn, and |P ∩Sn| > 2 and |P ′ ∩Sn| > 2. In this case, both P ∩Sn and

132

7.2 Proof of the Superpolynomial-Orbit Theorem

P ′ ∩ Sn will be split when ai+1 is added, and each of these splits reduces the potential Φ
by at least one, so (?) holds.
In the second case, there is a part P such that ai+1[P ∩ Sn] is not imbalanced and
not constant. Therefore, P ∩ Sn will be split into two parts P1, P2 with |P1 ∩ Sn| ≥ 2,
|P2 ∩ Sn| ≥ 2. This means that the contribution of P ∩ Sn to Φ(

d
Ain), namely p :=

|P ∩ Sn| − 2, is reduced to |P1 ∩ Sn| − 2 + |P2 ∩ Sn| − 2 = p− 2 (here it is important that
the new parts both have size at least two). So also in this case, (?) holds.

Now we have almost all pieces that we need to prove a good bound on |Stab(Bn)|: Given
that |Bn| ≤ cn for some constant c, there are at most (cn)|Sn|/2 possibilities to specify
a σ ∈ Sym(Bn) on the elements of the set An from the previous lemma. It remains to
show that each such σ can not be realised by too many permutations in Symn. If for
all parts P ∈

d
An, we had |P ∩ Sn| ≤ 2, then Corollary 7.2.12 would already imply our

desired bound. However, there may also be parts P ∈
d
An where |P ∩Sn| is unbounded.

The next lemma shows how the properties of these parts that are stated in Lemma 7.2.14
help us to deal with them. Essentially, it says that a permutation in Stab(Bn) is already
fully specified if we only know how it moves the parts P ∈

d
An with |P ∩ Sn| ≤ 2. In

other words, we can count the number of permutations in Stab(Bn) by just looking at
their possible behaviour on the parts where |P ∩ Sn| ≤ 2.

Lemma 7.2.15. Let An ⊆ Bn be the subset that exists by Lemma 7.2.14, and let
p : An −→ Bn be an injective function. Let

Γp := {π ∈ Stab(Bn) | π(p(a)) = a for all a ∈ An}.

Further, let

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
An is the part that k is in}.

Then for any π, π′ ∈ Γp such that π−1|([n]\P>2) = π′−1|([n]\P>2), it also holds π−1|P>2 =
π′−1|P>2.

Proof. For a contradiction, we assume that there exist π, π′ ∈ Γp such that π−1|([n]\P>2) =
π′−1|([n]\P>2), but π−1|P>2 6= π′−1|P>2 . Then there is x ∈ [n] such that π(x) ∈ P>2, and
π′(x) 6= π(x) (i.e. π(x) is the point where π−1 and π′−1 differ). Let y := π(x), y′ := π′(x).
Let P (y) ∈

d
An be the part that y is in, and let P̂ (y) := P (y) ∩ Sn. We know that

y′ ∈ P (y), too, because π, π′ ∈ Γp, so this follows from Lemma 7.2.11. As y ∈ P>2, in
particular, y ∈ Sn. Hence, also x, y′ ∈ Sn because π, π′ ∈ Stab(Bn), and by Lemma
4.2.5, singleton parts must be mapped to singleton parts. We conclude that we even have
y′ ∈ P̂ (y).
Now, our goal is to show that the transposition τ := (y y′) is contained in Stab(Bn).
This is a contradiction because in SP(Bn), y, y′ are both in singleton parts. However, if
(y y′) ∈ Stab(Bn), then there is a coarser supporting partition in which {y, y′} forms
one part. This is a contradiction as SP(Bn) is the coarsest possible support.
In order to show τ ∈ Stab(Bn), we only need to deal with those strings in Bn which
are not constant on the positions {y, y′}. More precisely, we have to show that every

133

7 The non-definability of preorders with small colour classes in hypercubes

b ∈ Bn with by 6= by′ has a ”swapping partner” b′ ∈ Bn where b′y = by′ and vice versa,
and b′i = bi for all other i.
So take any b ∈ Bn such that w.l.o.g. by = 0, by′ = 1. Note that b /∈ An, as every
string in An is constant on P (y) (otherwise, P (y) would not be a single part in

d
An).

Furthermore, |P̂ (y)| > 2, since y ∈ P>2. Therefore, Lemma 7.2.14 implies that the
substring b[P̂ (y)] is imbalanced and b is constant on every P ′ ∩ Sn, for all P ′ ∈

d
An

with P ′ 6= P (y), |P ′ ∩ Sn| > 2. W.l.o.g. let the imbalance of b[P̂ (y)] be such that bi = 1
for every position i ∈ P̂ (y), i 6= y. We claim that b′ := (π′ ◦ π−1)(b) ∈ Bn is the desired
swapping partner of b, i.e. τ(b) = b′ and vice versa. The strings b and (π′ ◦ π−1)(b) look
somewhat like this:

b

bπ
′◦π−1

Sn

0111111111111

y y′P̂ (y)

π−1

x

π′

1111111111110

To see that τ(b) = (π′ ◦π−1)(b), consider firstly π−1(b) ∈ Bn. Obviously, (π−1(b))x = 0.
The string (π′ ◦ π−1)(b) is also in Bn and we have (π′ ◦ π−1)(b)y′ = 0. Moreover, the

substring π−1(b)[π−1(P̂ (y))] is imbalanced just like b[P̂ (y)], so (π−1(b))j = 1 for all j ∈
π−1(P̂ (y)) \ {x}. As a consequence of Corollary 7.2.12, we have π−1(P̂ (y)) = π′−1(P̂ (y)).
Therefore, the substring (π′◦π−1)(b)[P̂ (y)] is also imbalanced and has a 1 at each position
except y′.
This shows that (τ(b))[P̂ (y)] = b′[P̂ (y)]. It remains to show that bi = b′i for all i ∈
[n] \ P̂ (y).
We have (π′ ◦π−1)(i) = i for i ∈ [n]\P>2, because π−1|([n]\P>2) = π′−1|([n]\P>2), so bi = b′i
for i ∈ [n] \ P>2.
For i ∈ P>2 \ P̂ (y), let P̂ (i) be the part of

d
An that i is in, intersected with Sn. As

already said, we know from Lemma 7.2.14 that b is constant on P̂ (i). Analogously
to what we argued already for P̂ (y), we get that (π′ ◦ π−1)(P̂ (i)) = P̂ (i), so also for
i ∈ P>2 \ P̂ (y), we have bi = b′i.
In total, this shows that indeed, b′ = τ(b), and since b′ ∈ Bn, we have τ ∈ Stab(Bn).
This is a contradiction and finishes the proof of the lemma.

With this, we can finally compute our upper bound on |Stab(Bn)|.
Lemma 7.2.16. Let c be a constant such that |Bn| ≤ c · n (for large enough n). Then,
for large enough n, it holds:

|Stab(Bn)| ≤ (2cn)|Sn|/2 · (n− |Sn|)!

134

7.2 Proof of the Superpolynomial-Orbit Theorem

Proof. Let An ⊆ Bn be the subset of Bn whose existence is stated in Lemma 7.2.14. Fix
any injective function p : An −→ Bn. As in the previous lemma, let

Γp := {π ∈ Stab(Bn) | π(p(a)) = a for all a ∈ An}.

We bound |Γp| by counting the number of possible π ∈ Γp. We know by Lemma 7.2.15
that we only have to count the number of possibilities to choose the preimages of the
elements in [n] \ P>2, where again,

P>2 := {k ∈ Sn | |P (k) ∩ Sn| > 2, where P (k) ∈
l
An is the part that k is in}.

For every part P ∈
d
An with |P ∩ Sn| ≤ 2, we know by Corollary 7.2.12 that

π−1(P ∩ Sn) ⊆ Sn is the same fixed set of size ≤ 2 for all π ∈ Γp, so we only have
two options how π−1 can behave on P ∩ Sn. The number of such parts P is at most
|Sn|/2.

For i ∈ [n] \ Sn, we can only say that π−1(i) /∈ Sn (by Lemma 4.2.5). Hence, ev-
ery π ∈ Γp can in principle permute the set [n] \ Sn arbitrarily. In total, we conclude:

|Γp| ≤ 2(|Sn|/2) · (n− |Sn|)!

This is for a fixed function p. The number of possible choices for p is bounded by
(cn)|Sn|/2, since |An| ≤ |Sn|/2 (Lemma 7.2.14) and we are assuming |Bn| ≤ cn.
Every π ∈ Stab(Bn) must occur in at least one of the sets Γp for some choice of p, so
indeed, (2cn)|Sn|/2 · (n− |Sn|)! is an upper bound for |Stab(Bn)|.

As in the case where |Sn| grows sublinearly in n, we conclude this part of the proof by
computing the orbit size of Bn based on the stabiliser bound and comparing this to any
polynomial in 2n.

Lemma 7.2.17. Let c be a constant such that |Bn| ≤ c · n, and δs > 0 be a constant
such that |Sn| ≥ δs · n (for large enough n). Then for any k ∈ N, the limit

lim
n→∞

|Orbit(Bn)|
2kn

= lim
n→∞

n!

|Stab(Bn)| · 2kn

does not exist. That is to say, the orbit of Bn w.r.t. the action of Symn on {0, 1}n grows
super-polynomially in 2n.

Proof. Plugging in |Sn| ≥ δs · n into the stabiliser-bound from Lemma 7.2.16 yields:

|Stab(Bn)| ≤ (2cn)(δsn)/2 · ((1− δs)n)!

This is true because larger values for |Sn| only make the expression 2|Sn|/2 · (n− |Sn|)!
smaller.

135

7 The non-definability of preorders with small colour classes in hypercubes

Replacing factorials with the Stirling Formula, the fraction that we are taking the limit
of becomes at least:

1

2
√

1− δs
·
(

1

(1− δs)

)(1−δs)n
·
(n
e

)δsn
· 1

(2cn)(δsn)/2
· 1

2kn

=
1

2
√

1− δs
·
(

1

2k(1− δs)

)(1−δs)n
·
(n

2c · 4k · e2

)(δsn)/2

=
1

2
√

1− δs
·
(

n

(2k(1− δs))2(1−δs)/δs · 2c · 4k · e2

)(δsn)/2

The denominator is constant, so the limit does not exist.

This lemma together with Lemma 7.2.10 proves Lemma 7.2.7.
Theorem 7.0.4 now follows directly from Lemmas 7.2.1 and 7.2.7, since these two lemmas
cover all cases.

7.3 Conclusion and future research

We have computed an estimate for the orbit-size of any ordered partition of {0, 1}n
into classes of size O(n), which is logarithmic in |{0, 1}n|. The result is that no matter
how these partitions are chosen for all values of n, the size of their Symn-orbit grows
faster than 2nk, for any fixed constant k ∈ N. This is super-polynomial in the size of
the n-dimensional hypercube, and so, hypercubes do not admit CPT-definable preorders
with colour classes of at most logarithmic size. One can now ask in how far this result
generalises to preorders with larger colour classes. There must be some colour class size
at which the orbit-size of the preorders drops from super-polynomial to polynomial in 2n;
namely, orbit-size one can be achieved, at the latest when the colour class size equals
the structure size. It would be interesting to know which colour class size marks the
boundary between polynomial and super-polynomial orbits. This would rule out even
more (hypothetical) preorder-based CPT-algorithms for the CFI-query.
The proof that we have presented in this chapter can probably be generalised to colour
classes of size o(n1.9) but one can check that the case with linearly many singleton parts
in the supporting partition no longer works if the colour classes have size Ω(n2). However,
with the new technique of alternating supporting partitions and Theorem 4.3.1, we can
deal with this case regardless of the colour class size. Then the only remaining bottleneck
is Lemma 7.2.3, which shows that a small colour class size implies a large number of
singleton parts in the intersection over the supporting partitions of all colour classes.
This is necessary to get a good bound on the stabiliser of the whole preorder in Case
1 of our proof. It seems plausible that Lemma 7.2.3 would still yield a sufficient lower
bound on the number of singletons in the intersection partition if the colour classes
are of polylogarithmic size, i.e. O(nk). Then in total, we might be able to prove the
non-definability of preorders with polylogarithmic colour classes in hypercubes.

136

7.3 Conclusion and future research

However, carrying out this idea is left for future work because firstly, lifting our result
to polylogarithmic colour classes would not give any immediate benefit in the current
situation, and secondly, we found the crucial Theorem 4.3.1, which opens up this per-
spective, only towards the end of writing this thesis.

Therefore, we move on to the next chapter, in which we abandon the preorders and
study more symmetric objects instead, namely XOR-circuits. These can be seen as
the structural backbone of the h.f. sets constructed in general CPT-algorithms for the
CFI-query.

137

8 Lower bounds for Choiceless Polynomial
Time via Symmetric Circuits

In the previous chapter we saw that there are unordered CFI-structures which cannot be
preordered in CPT such that each colour class has at most logarithmic size. This shows
that the CPT-algorithm from [91] for the CFI-query on such preordered structures is not
helpful in the unordered case. In this chapter, we go beyond this particular algorithm
and aim to understand the limitations of a broader class of CPT-algorithms for the
CFI-problem. The overarching idea in the previous chapter and in this one is the following
observation: A necessary condition for a CPT-algorithm or a family of CPT-algorithms
being able to solve the CFI-query on some class K of unordered base graphs is always the
existence of certain combinatorial objects whose symmetries are similar to the symmetries
of the graphs in K. In case of the preorder-based algorithm, it is clear that it can only
be adapted to CFI-graphs over K if for each graph in K, there exists a preorder with
logarithmic colour classes whose orbit is at most of polynomial size (i.e. a preorder which
does not break the symmetry of the graph “too much”). For the more general algorithms
that we will study now, it turns out that the appropriate combinatorial objects are not
preorders, but Boolean XOR-circuits (which actually subsume preorders): The existence
of certain polynomial-size XOR-circuits with the right symmetries is a necessary condition
for the CFI-problem on a class K being solvable by a CPT-algorithm from the family of
algorithms we are going to define. This establishes the study of symmetric circuits as a
potential route towards separating CPT from P.
In the case of preorders, we were able to show that indeed, there is a graph class (n-
dimensional hypercubes) on which no sufficiently symmetric preorder exists. This was a
feasible task because preorders with small colour classes are inherently very asymmet-
ric objects. In the next chapter, we attempt a similar analysis for the XOR-circuits
from this chapter, again with respect to the symmetries of hypercubes. We do not
completely succeed in showing that the required symmetric XOR-circuits do not exist
but we come close: There are only few extra restrictions we have to put on the cir-
cuits in order to rule out their existence. Thus, the route towards CPT lower bounds
via the study of symmetric circuits that we open up in this chapter may indeed have
the potential to separate a large class of CPT-algorithms (or even all of CPT) from Ptime.

The first step is to define a class of hereditarily finite objects over unordered CFI-
structures which generalises the design principle of the objects that were used in [40]
and [91] to decide the CFI-query (see Chapter 6). We call these objects CFI-symmetric.
In [40], the term super-symmetric was also used to describe the relevant objects; this
concerns another property of these h.f. sets that is independent of what we call CFI-

139

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

symmetry. The family of choiceless CFI-algorithms that we mainly consider consists of all
algorithms which construct such CFI-symmetric and super-symmetric h.f. objects. More
important for our techniques is the CFI-symmetry – the requirement that the sets also
be super-symmetric can be dropped but this leads to slightly weaker results. Anyway,
the algorithms from [40] and [91] for the CFI-query over linearly ordered base graphs,
preordered base graphs, and base graphs with linear degree are both CFI-symmetric
and super-symmetric. As we will show, the power of all these algorithms and potential
generalisations of them depends on whether or not certain symmetric XOR-circuits exist.
This is the second step in this chapter. It consists in a construction that transforms
CFI-symmetric h.f. sets into XOR-circuits. Under the assumption that the CFI-symmetric
set is constructed by a CPT-algorithm which decides the CFI-query on a class K of base
graphs, the resulting XOR-circuit will have certain properties, such as symmetry and a
specific fan-in bound on the XOR-gates. Therefore, the existence of XOR-circuits that
satisfy these conditions is a necessary condition for the existence of a CPT-algorithm
that solves the CFI-query on a graph class K via the construction of a CFI-symmetric
h.f. set. This is formally stated in Theorem 8.5.2. We can summarise it less formally as
follows:

Theorem 8.0.1. Let (Gn = (Vn, En))n∈N be a sequence of base graphs. Let GS
n be a CFI-

graph over Gn, and let twn denote the treewidth of Gn. If there exists a CPT-program Π
that is super-symmetric and CFI-symmetric and decides the CFI-query on the instances
GS
n, for all n ∈ N, then there also exists a family (Cn)n∈N of XOR-circuits such that

1. The number of gates in Cn is polynomial in |GS
n |.

2. The Aut(Gn)-orbit of the circuit has size polynomial in |GS
n |.

3. Cn is sensitive to Ω(twn) many input bits.

4. The fan-in dimension of Cn is O(log |GS
n |).

The input gates of these circuits Cn are labelled with the edges En of the base graph.
Therefore, Aut(Gn) acts on these circuits in a natural way. The fan-in dimension of
the circuits is a generalisation of the more standard fan-in degree, which we introduce in
Section 8.3.

After the proof of Theorem 8.5.2, in Section 8.6, we attempt to generalise the corre-
spondence between h.f. sets over CFI-graphs and XOR-circuits to arbitrary sets. That
is, we drop the requirement that the h.f. set be CFI-symmetric. This does work out as
long as certain Boolean vector spaces that appear as “local stabilisers” within the h.f. set
possess a symmetric basis. We do not know for which h.f. sets this is the case but we
have a counterexample (Lemma 8.6.30), so the class of “h.f. sets with symmetric bases”
is a strict generalisation of the CFI-symmetric h.f. sets (see Lemma 8.6.28 and Example
8.6.29), but still does not seem to encompass all CPT-definable sets. In order to separate
CPT from P via lower bounds against symmetric XOR-circuits, it would be desirable to
establish a connection between these circuits and all possible CPT-algorithms for the

140

8.1 Symmetries and supports of hereditarily finite sets over CFI graphs

CFI-query. It remains open whether such a general correspondence can be achieved
but at least for the algorithms we call CFI-symmetric, XOR-circuits are a fairly natural
description of the relevant h.f. sets.

8.1 Symmetries and supports of hereditarily finite sets over CFI
graphs

In Chapter 5, we discussed the automorphisms of unordered CFI-structures GS over a
base graph G = (V,E). Recall that the universe of GS is V̂S ∪ Ê, which denotes the
vertices within vertex and edge gadgets, respectively. In this chapter, we are concerned
with the action of Aut(GS) on the objects in HF(Ê). We only focus on h.f. objects in
HF(Ê) and neglect the vertices V̂S in vertex-gadgets. This simplifies matters and it is not
really a restriction because any CPT-algorithm that solves the CFI-query by constructing
objects in HF(Ê ∪ V̂S) should also be able to work only with objects from HF(Ê). We do
not formally prove this but, informally speaking, any atom from vX ∈ V̂S that might occur
in a h.f. set can alternatively be described by the set {ei ∈ Ê | {vX , ei} ∈ E(GS)}, its
neighbourhood in the CFI-graph. So for each vX ∈ V̂S , there is a unique definable object
in HF(Ê) that serves as a “name” for vX . Therefore, we only focus on CPT-algorithms
that activate objects in HF(Ê).

Let GS be a CFI-graph over G = (V,E) and x ∈ HF(Ê). The automorphism group
Aut(GS), as well as the edge-flip-group AutCFI(G), and the automorphisms of the base
graph Aut(G) act on Ê and therefore also on HF(Ê): For example, let π ∈ Aut(G),
and x ∈ HF(Ê). Then πx = {πy | y ∈ x}. If x is an atom ei, with i ∈ {0, 1} and e ∈ E,
then πx = π(e)i.
An automorphism π ∈ Aut(G) (or more generally, any permutation in Sym(V)) stabilises
an object x ∈ HF(Ê), if πx = x. More precisely, this means that π, which acts on the
atoms of x, extends to some automorphism σ of the DAG-structure (tc(x),∈), such that
for every atom ei ∈ tc(x), σ(ei) = π(e)i.
Now we briefly introduce the different orbits and corresponding stabiliser groups of any
object x ∈ HF(Ê). Recall from Section 5.2 that the automorphism group Aut(GS) of the
CFI-structure is composed of Aut(G) and AutCFI(G

S), the automorphisms of the base
graph, and the edge flips of the CFI structure. We treat the actions of these two groups
separately. In addition, we consider the group AutCFI(G) ∼= FE2 of all possible edge flips,
including ones that are not automorphisms of GS . This group is easier to deal with and
plays an important role in the context of super-symmetric CFI-algorithms. Since the
group of edge-flips, AutCFI(G), is isomorphic to the Boolean vector space FE2 , we often
identify an automorphism ρF ∈ AutCFI(G) with its characteristic vector χ(F) ∈ FE2 . We

141

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

will use the following notation:

OrbE(x) := {ρF (x) | ρF ∈ AutCFI(G)}.
StabE(x) := {χ(F) | ρF ∈ AutCFI(G), ρF (x) = x} ≤ FE2 .

OrbCFI(x) := {ρF (x) | ρF ∈ AutCFI(G
S)}.

StabCFI(x) := {χ(F) | ρF ∈ AutCFI(G
S), ρF (x) = x} ≤ FE2 .

OrbGS (x) := {(ρF , π)(x) | (ρF , π) ∈ Aut(GS)}.
StabGS (x) := {(ρF , π) ∈ Aut(GS) | (ρF , π)(x) = x}.

OrbG(x) := {(ρ∅, π)(x) | π ∈ Aut(G)}.
StabG(x) := {π ∈ Aut(G) | (ρ∅, π)(x) = x}.

It should be emphasised that StabE(x) is always a subspace of FE2 , so it makes sense to
speak about its dimension and to apply linear transformations to it. At this point, we
observe for future reference that all objects in the same AutCFI(G)-orbit have the same
AutCFI(G)-stabiliser because the group is Abelian:

Lemma 8.1.1. Let x, x′ ∈ HF(Ê) such that x′ = ρF (x), for some ρF ∈ AutCFI(G).
Then StabE(x) = StabE(x′).

Proof. We have StabE(x′) = {χ(F) + α+ χ(F) | α ∈ StabE(x)}. Since χ(F) = χ(F)−1

and FE2 is Abelian, we have StabE(x′) = StabE(x).

Ultimately, the main property of CPT-definable objects x that we always exploit is
their bounded orbit-size. This applies not only to a set x itself but also to all elements in
its transitive closure. Therefore we define:

maxOrbE(x) := max
y∈tc(x)

|OrbE(y)|.

maxOrbCFI(x) := max
y∈tc(x)

|OrbCFI(y)|.

Lemma 8.1.2. Let x ∈ HF(Ê). Then maxOrbE(x) ≤ |OrbE(x)| · |tc(x)| and
maxOrbCFI(x) ≤ |OrbCFI(x)| · |tc(x)|.

Proof. Let y ∈ tc(x) be the set where maxOrbE(x) is attained, i.e. |OrbE(y)| =
maxOrbE(x). Let Y := OrbE(y) ∩ tc(x). Clearly, for any ρF ∈ AutCFI(G), ρF (Y) ⊆
tc(ρF (x)), and ρF (x) ∈ OrbE(x). Hence:

|OrbE(y)| ≤
∣∣∣ ⋃
ρF∈AutCFI(G)

ρF (Y)
∣∣∣ ≤ |OrbE(x)| · |tc(x)|.

Similarly, the statement for maxOrbCFI(x) is proven.

If x is CPT-definable in GS , then its Aut(GS)-orbit and therefore |OrbCFI(x)| has
polynomial size. By the preceding lemma, then also maxOrbCFI(x) is polynomially

142

8.1 Symmetries and supports of hereditarily finite sets over CFI graphs

bounded. As indicated earlier, the group FE2 ∼= AutCFI(G) is easier to handle than
AutCFI(G

S), which is why some of our results are phrased in terms of maxOrbE(x)
rather than maxOrbCFI(x). However, the CPT-definability of x only entails a polynomial
bound on maxOrbCFI(x), not on maxOrbE(x). Therefore, it is sometimes convenient
to restrict ourselves to super-symmetric objects x. In [40], this term has been coined for
objects that are stable under the group of all edge flips AutCFI(G). From now on, we
will use it in the following precise sense:

Definition 8.1.3 (Super-symmetric objects). Fix a family of CFI-graphs (GS
n)n∈N and

a µn ∈ HF(Ên) for every n. The objects µn are super-symmetric if

|OrbE(µn)| ≤ poly(|GS
n |).

So super-symmetric objects in this sense satisfy the same orbit bound with respect to
the bigger symmetry group FE2 ∼= AutCFI(G) as all CPT-definable objects naturally do
with respect to the automorphism group of the input structure. In [40], super-symmetry
is meant in the even stricter sense that a h.f. object has orbit-size 1 under the group
AutCFI(G).

Lemma 8.1.4. If µn is super-symmetric and CPT-definable in GS
n, then maxOrbE(µn)

is polynomially bounded in |GS
n |.

Proof. By super-symmetry, |OrbE(µn)| is polynomially bounded. By CPT-definability,
|tc(µn)| is polynomially bounded. Hence the statement follows with Lemma 8.1.2.

Supports for CFI automorphisms
Recall from Chapter 4 that a support of a permutation group Γ ≤ Sym(A) is a subset
S ⊆ A such that Stab(S) ≤ Γ. A support of a h.f. set is a support of its stabiliser group.
In this chapter, we will use a slightly modified notion of support, that we call CFI-support.
The reason why we consider this modification is again because the automorphism group
of unordered CFI-structures is composed of two groups that we would like to deal with
separately. CFI-supports are essentially supports with respect to the group of edge-flips
AutCFI(G).

Definition 8.1.5 (CFI-support). A CFI-support of an object x ∈ HF(Ê) is a subset
S ⊆ E such that every ρF ∈ AutCFI(G) with F ∩ S = ∅ fixes x.

There is always a unique minimal CFI-support:

Lemma 8.1.6. Let GS be a CFI-instance and x ∈ HF(Ê). Let A1, A2 ⊆ E be CFI-
supports of x. Then A1 ∩A2 is also a CFI-support of x.

Proof. Assume A1 ∩A2 was not a CFI-support of x. Then there is F ⊆ E disjoint from
A1 ∩ A2 such that ρF (x) 6= x. Let F1 := F ∩ A1 and F2 := F ∩ A2. These sets are
both non-empty, because: If F did not intersect A1, then ρF (x) = x because A1 is a
CFI-support for x. Similarly for A2. Also, by assumption, F1 and F2 are disjoint from
A1∩A2, and therefore, also F1∩F2 = ∅. Furthermore, F ′ := F \ (F1∪F2) is disjoint from

143

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

A1 ∪A2 and therefore, ρF ′ fixes x. It follows that flipping the edges in F1 ∪ F2 moves x,
because by assumption, ρF (x) 6= x. But this is a contradiction because ρF1(x) = x (since
F1 is disjoint from the support A2), and analogously, ρF2(x) = x.

This justifies the following definition:

Definition 8.1.7 (Minimal CFI-support). For x ∈ HF(Ê), supCFI(x) ⊆ E denotes the
unique minimal subset of E that is a CFI-support of x.

It should be noted that the minimum CFI-support of a h.f. object x over a CFI-structure
GS is not necessarily equal to a smallest AutCFI(G

S)-support of x. With this, we mean
a minimum size subset A ⊆ E of edges such that any ρF ∈ AutCFI(G

S) with F ∩A = ∅
stabilises x. The difference is that here, we only consider edge flips along cycles, while
our notion of CFI-support takes all possible combinations of edge flips into account.
The disadvantage of working with AutCFI(G

S)-supports is that smallest supports are
not necessarily unique then: Imagine the base graph G is just a cycle, and suppose x is
some h.f. object that is changed whenever any edge of G is flipped. Then the minimum
CFI-support of x contains the whole cycle, whereas any single edge of it is already a
smallest AutCFI(G

S)-support: Once any edge on the cycle is fixed, the whole cycle can
no longer be flipped. Thus, there exist as many smallest AutCFI(G

S)-supports as there
are edges on the cycle. For this and other reasons, our CFI-supports are defined with
respect to AutCFI(G) instead of AutCFI(G

S).

As explained above, for general CPT-definable objects, the orbit size can only be
bounded when the “true” automorphism group AutCFI(G

S) is considered. Only when
the object is additionally super-symmetric, also the AutCFI(G)-orbit size is polynomial.
However, depending on the structure of the base graph, we can sometimes bound the
AutCFI(G)-orbit size as well, even if the object is not necessarily super-symmetric:

Lemma 8.1.8. Let µ ∈ HF(Ê) be a h.f. set over GS. Let k be the number of connected
components in the graph G− supCFI(µ) (i.e. the base graph after removing the edges in
the minimum CFI-support). Then |OrbE(µ)| ≤ 2k

2 · |OrbGS (µ)|.

Proof. Let A = supCFI(µ) ⊆ E be the smallest CFI-support of µ. Then for every
ρF ∈ AutCFI(G) with F ∩A = ∅, it holds that ρF (µ) = µ. Thus, the effect of an edge-flip
ρF on µ depends only on F ∩A. So we have:

|OrbE(µ)| ≤ 2|A|,

because there are 2|A| ways how any F ⊆ E can intersect the support S, and if F ∩A =
F ′ ∩A, then also ρF (µ) = ρF ′(µ).
Now we compute a lower bound on |OrbGS (µ)| by analysing how many subsets of A can
occur as the intersection F ∩A for an automorphism ρF ∈ AutCFI(G

S). In contrast to the
edge-flips in AutCFI(G), these are the edge-flips along cycles in G. Let X1, ..., Xk ⊆ V (G)
denote the vertex-sets of the connected components in the graph G−A. We partition
the edge-set A into at most k2 many subsets, according to the components that the edges

144

8.2 CFI-symmetric hereditarily finite sets

connect. So for each pair (i, j) ∈ [k]2, let A(i,j) ⊆ A denote those edges in A that run
between the components Xi and Xj . Now it can be seen that for every pair i 6= j, for
every B ⊆ A(i,j) of even cardinality, there exists some symmetric difference of cycles CB
in G whose intersection with A is exactly B. This is because any two edges e, e′ ∈ A(i,j)

lie on a cycle through the components Xi and Xj . For A(i,i) ⊆ A, every subset B ⊆ A(i,i)

can be generated by the symmetric difference of some cycles because the endpoints of
every e ∈ Ai,i are in the same connected component (but for simplicity, we pretend that
also in this case, only the even subsets of A(i,i) can be hit by the symmetric difference of
some cycles). Summing up these considerations, we have:

|{B ⊆ A | there exists a ρF ∈ AutCFI(G
S) such that F ∩A = B}|

≥
∏

(i,j)∈[k]2

2|A(i,j)|−1 = 2|A|−k
2
.

Let s denote the number of B ⊆ A in the above set such that flipping B stabilises µ. Then
by the Orbit-Stabiliser Theorem, we have |OrbGS (µ)| ≥ 2|A|−k

2
/s and |OrbE(µ)| ≤

2|A|/s. Putting these two inequalities together, we get the desired bound |OrbE(µ)| ≤
2k

2 · |OrbGS (µ)|.

This lemma essentially says that it does not make a difference whether we consider
orbit-sizes with respect to the group AutCFI(G) of all edge flips or the group AutCFI(G

S)
of cycle edge flips, as long as the CFI-support of an object separates the base graph only
into a small number of components:

Corollary 8.1.9. Fix a family (GS
n) of CFI-structures. Let µn ∈ HF(Ên). If the

number of connected components in Gn − supCFI(µn) is at most O(
√

log |GS
n |), then

|OrbE(µn)| ≤ poly(|GS
n |) · |OrbGS (µ)|.

8.2 CFI-symmetric hereditarily finite sets

In this section, we formalise the specific class of h.f. objects that have a particularly
nice correspondence to XOR-circuits. We call these objects CFI-symmetric because
they consist of “building blocks” that have the same symmetry property as the vertex
gadgets in CFI-graphs: They are stabilised whenever an even number of “incident edges”
is flipped. This notion is independent of super-symmetry defined in the last section.
Super-symmetry means that a h.f. object is symmetric under AutCFI(G) whereas CFI-
symmetry tells us something about the internal structure of the object. Neither of these
kinds of symmetry implies the other, and both are satisfied by the objects in all known
choiceless CFI-algorithms.

As already said, a set µ ∈ HF(Ê) is CFI-symmetric if the objects of which it is
composed behave like CFI-gadgets: They are stabilised whenever an even number of their
“incident edges” is “flipped”, and they themselves are “flipped” whenever an odd number
of incident edges is flipped. This description uses the terminology of CFI-graphs; in order

145

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

to make it precise, we have to say what these words mean in the context of objects in
HF(Ê). By “objects of which µ is composed”, we do not mean the elements of tc(µ),
as it is usually the case when we talk about h.f. sets. We rather mean the connected
components of these sets, as this concept has been called in [40].

Let us first define the following equivalence relation ∼E on the elements x ∈ tc(µ):
For x, x′ ∈ tc(µ), we say x ∼E x′ iff there exists a ρF ∈ AutCFI(G) such that x′ = ρF (x).
Recall from Chapter 5 that AutCFI(G) = {ρF | F ⊆ E}, so this is the group of all
CFI-edge-flips (including ones that are not automorphisms of GS but isomorphisms from
GS into some other CFI-graph GR of the same parity). The ∼E-equivalence class in
tc(µ) of an object x ∈ tc(µ) is denoted [x]∼E or [x]. The relation ∼E induces a partition
C(x) on each x ∈ tc(µ), namely C(x) := {([z]∼E ∩ x) | z ∈ x}. In [40], the elements of
C(x) are called the connected components of x. Now in a CFI-symmetric object, each
connected component γ ∈ C(x), for each x ∈ tc(µ), behaves like a CFI-gadget. That is,
the component has exactly two images under AutCFI(G): It can either be flipped or
stabilised, and which of these two is the case, depends on the parity of flipped components
in the elements of γ. To make all this more clear, let us consider a h.f. object based on
the same idea as the ones in [40] and [91].

Example 8.2.1. Here is an example h.f. set µ{e,f,g} ∈ HF(Ê) with E = {e, f, g}. It is
structured similarly as the µ-objects in the known super-symmetric algorithms and tracks
the parity of edge-flips for the edges e, f, g. For better readability, the set is printed in a
structured form, so the sets µ{f,g} and µ̃{f,g} are shown in the level below.

µ{e,f,g} =
{
{µ{f,g}, e0}, {µ̃{f,g}, e1}

}
{{f0, g0}, {f1, g1}} {{f0, g1}, {f1, g0}}

Each of the µ-objects has only one connected component that consists of two sets which
are related by ∼E. For example, the two elements of µ{e,f,g} are mapped to each other
whenever an even number of edges is flipped. These two elements of µ{e,f,g} themselves
have two connected components: Clearly, e0 and µ{f,g} cannot be mapped to each other by
any edge-flip. The same goes for example for f0 and g0. They form distinct components of
the set {f0, g0}, while {{f0, g0}, {f1, g1}} again only has one component that is stabilised
if and only if an even number of edges in {f, g} is flipped. This pattern of alternation
between sets with two components and sets with one component is typical of the h.f. sets
constructed by the known CFI-algorithms.
Now we can observe that the objects which behave analogously to CFI-gadgets are the
connected components inside the sets, not the sets in tc(µ{e,f,g}) themselves. For example,
the sets {f0, g0} and {µ{f,g}, e0} cannot be “flipped” between two states, like a CFI-gadget.
Their orbit with respect to edge-flips has size four. But whenever these sets occur as
elements of another set, they occur together with a counterpart from their orbit, which
ensures that its connected component inside the parent set again has the “CFI-property”:

146

8.2 CFI-symmetric hereditarily finite sets

It has orbit-size two and is “flipped” if and only if an even number of elements are
flipped. Note that the number of flipped elements is always the same in every member of
a connected component. For example, in the component {{f0, g0}, {f1, g1}}, it is clear
that f0 is flipped iff f1 is flipped and g0 is flipped iff g1 is; so {f0, g0} and {f1, g1} are
always affected by the same number of flips, and the same is true for {µ{f,g}, e0} and
{µ̃{f,g}, e1}. Therefore, it makes sense to view the connected components inside each set
as analogues of CFI-vertex-gadgets, and the elements of each/any member of a component
as its “incident edges”, whose flips affect the “vertex-gadget”.

The above example illustrates the design pattern behind all the known CFI-algorithms:
The goal is always to construct a h.f. set that represents the parities of all CFI-gadgets
of a given instance. Whenever a new gadget is introduced into the h.f. set, this leads to
a sub-object with orbit size greater than two, but this is compressed down to two again
in later stages of the construction. H.f. sets that obey this design pattern are what we
call CFI-symmetric. They satisfy the condition that the connected components inside
every set in the transitive closure behave like CFI-gadgets, as we saw in the example.
Formally:

Definition 8.2.2 (CFI-symmetric components and objects). Let µ ∈ HF(Ê), x ∈ tc(µ),
and γ ⊆ x be a connected component of x. Then we say that γ is CFI-symmetric if
|OrbAutCFI(G)(γ)| = 2, and for each ρF ∈ AutCFI(G), it holds ρF (γ) = γ iff for each/any
y ∈ γ, the number of flipped components of y, that is |{γ′ ∈ C(y) | ρF (γ′) 6= γ′}|, is even.

The set µ is CFI-symmetric if the following two conditions are satisfied:

1. For each ρF ∈ AutCFI(G), it holds ρF (µ) = µ iff the number of flipped components
of µ, that is, |{γ ∈ C(µ) | ρF (γ) 6= γ}|, is even.

2. For every x ∈ tc(µ), every connected component γ ∈ C(x) is CFI-symmetric.

We will never deal with objects µ ∈ HF(Ê) in which only some, but not all connected
components of sets in tc(µ) are CFI-symmetric. Therefore, when we speak of “flipped
components of y” in the above definition, and denote these as {γ′ ∈ C(y) | ρF (γ′) 6= γ′},
the component ρF (γ′) 6= γ′ really is the “flip” of γ′, because the orbit of γ′ has size exactly
two. The condition |OrbAutCFI(G)(γ)| = 2 could actually be dropped because it follows
inductively from the fact that γ is fixed if and only if an even number of components in
each/any y ∈ γ is fixed.

We still have to show that the formulation “each/any” in Definition 8.2.2 is indeed
justified, as we already indicated in the example.

Lemma 8.2.3. Let µ ∈ HF(Ê), x ∈ tc(µ), and γ ⊆ x be a connected component of x.
For any two y, y′ ∈ γ and every ρF ∈ AutCFI(G), it holds

|{γ′ ∈ C(y) | ρF (γ′) 6= γ′}| = |{γ′ ∈ C(y′) | ρF (γ′) 6= γ′}|.

147

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

Proof. Fix ρF ∈ AutCFI(G). Further, let ρ ∈ AutCFI(G) be an automorphism such that
ρ(y) = y′. This exists because y ∼E y′. Thus, ρ induces a bijection from C(y) to C(y′), as
it maps each connected component of y to a connected component of y′. We show that
for each component γ′ ∈ C(y) it holds: ρF (γ′) = γ′ iff ρF (ρ(γ′)) = ρ(γ′). If ρF (γ′) = γ′,
then we have (because AutCFI(G) is Abelian): ρF (ρ(γ′)) = ρ(ρF (γ′)) = ρ(γ). Conversely,
if ρF (ρ(γ′)) = ρ(γ′), then γ′ = ρ−1(ρ(γ′)) = ρ−1(ρF (ρ(γ′))) = ρF (γ′), where the last
equality is again by commutativity. The lemma follows because |C(y)| = |C(y′)|.

Definition 8.2.4 (CFI-symmetric and super-symmetric algorithms). A CPT-program
Π that decides the CFI-query on a class K of base graphs is called CFI-symmetric if
it activates a CFI-symmetric h.f. set µ ∈ HF(Ê) on every input GS over a base graph
G = (V,E) ∈ K (and this set µ is necessary for deciding the CFI-query). Similarly, Π is
called super-symmetric if it necessarily activates a super-symmetric set. When Π is both
CFI-symmetric and super-symmetric, then these two properties apply to the same object
constructed by Π.

The condition that µ is necessary to decide the query is not very precise but it makes
sense in light of Theorem 6.2.7, which says that the activation of a h.f. set with large
support is necessary. So here, we mean that if Π did not activate µ, then it would not
be able to define the CFI-query, for example because µ is the only set with sufficient
support activated by Π.

Now that we have established the notion of CFI-symmetric sets and algorithms, one
may ask how natural this definition is and why we focus on such objects. The answer to
the second question is that our construction of XOR-circuits which capture the relevant
complexity parameters of sets in HF(Ê) works best if we restrict our attention to CFI-
symmetric sets. Towards the end of the chapter, we will discuss in how far it may be
possible to overcome this restriction and transform all sets in HF(Ê) into XOR-circuits.
The other motivation for defining CFI-symmetry in this way is the observation that we
made in Example 8.2.1, and which is in fact true of any of the various super-symmetric
h.f. sets that play the key role in the CFI-algorithms from [40] and [91]: All these objects
are built out of sets that alternate between having one connected component and having
multiple components. The sets with multiple components always introduce a new vertex
or edge gadget of the input graph into the object, while the sets with one component
ensure symmetry: They are “flippable” just like CFI-gadgets and their two possible
“states” are well-suited to track parities, which is what the CFI-query is all about. This
structural pattern, that has been applied successfully in these various CFI-algorithms,
is captured by our notion of CFI-symmetry. The class of CPT-algorithms that use
CFI-symmetric objects to solve the CFI-query can thus be considered a fairly natural
one.

The feature that makes these objects useful for deciding the CFI-query is, however,
super-symmetry and not CFI-symmetry. Super-symmetry is needed in all the known
algorithms because it allows to arbitrarily substitute the vertices e0, e1 from each edge

148

8.3 Symmetric XOR-circuits

gadget with 0 and 1 in both possible ways without producing two distinct objects (since
the object is invariant under any edge flip). The super-symmetric sets in these algo-
rithms happen to be sets of CFI-symmetric objects. Super-symmetry is achieved by
constructing an object which behaves like a CFI-vertex-gadget that is incident to every
edge of the base graph twice. That is, we can imagine the construction process of the
desired super-symmetric object as a successive contraction of the input CFI-graph into
a single vertex gadget that has one self-loop for each edge of the original base graph.
In short, super-symmetry is the main algorithmically useful property of a h.f. set, and
CFI-symmetry is a clever structural recipe for building super-symmetric sets. Informally
speaking, it seems that any sensibly constructed super-symmetric object should also
be CFI-symmetric: If the CFI-symmetry is dropped, the orbit-sizes just get bigger and
super-symmetry seems more difficult to achieve. Actually, CFI-symmetric objects in
some sense have the smallest possible “local orbit sizes”: If µ ∈ HF(Ê) is CFI-symmetric,
then any object x ∈ tc(µ) with orbit size > 2 can only occur as an element of another
set y ∈ tc(µ), if it occurs together with a part of its orbit, such that the orbit size is
compressed down to two again. This is in a sense smallest-possible because h.f. sets
which consist only of objects (or connected components) with orbit-size one are probably
rather meaningless. Therefore, for algorithms based on super-symmetric objects (which
is the only paradigm we know at the moment), we speculate that CFI-symmetry is no
true restriction, i.e. that the class of “super-symmetric CFI-algorithms” is a subclass of
the CFI-symmetric ones.

Some properties of our constructed XOR-circuits will be particularly nice when the
original object is super-symmetric. In total, our circuit construction will be most powerful
for objects that are super-symmetric and CFI-symmetric at the same time. As already
mentioned, this holds for all objects constructed in the known algorithms.

8.3 Symmetric XOR-circuits

An XOR-circuit is a connected directed acyclic graph C = (VC , EC) with a unique desig-
nated root r. Its internal nodes are understood as XOR-gates and its leafs correspond
to the input gates of the circuit. If (g, h) ∈ EC , then the output of gate h is an input
of gate g. Every XOR-circuit computes the Boolean XOR-function over a subset of its
input bits.
Such circuits are the combinatorial objects that we will use to capture the structure
of the CFI-symmetric h.f. sets in HF(Ê). When we consider these h.f. sets, we always
view them as objects over a given CFI-structure GS on some base graph G = (V,E).
Defining them in CPT requires to preserve the symmetries of the input structure GS ,
so in particular, the automorphisms Aut(G) of the base graph. This symmetry will
be reflected in the symmetry of the corresponding XOR-circuit. Therefore, we have to
formalise how the automorphisms of a graph G act on XOR-circuits:

We say that an XOR-circuit C is a circuit over a graph G = (V,E), if the input gates

149

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

of C are labelled with the edges in E. More precisely, let L ⊆ VC be the leafs of C. There
is an injective labelling function ` : L −→ E that relates the input gates with edges of G.
To speak about the semantics of the circuit, we introduce a set of formal propositional
variables V(G) := {Xe | e ∈ E}. For every input gate g ∈ L, the input bit of this gate is
the value of the variable X`(g).

Since every internal gate is an XOR-gate, the function computed by it is the XOR
over a subset of V(G). For our purposes, this subset is the main interesting property of a
gate, and we call it X (g). Formally, if g ∈ L, then X (g) := {`(g)} ⊆ E.
If g is an internal gate, then

X (g) :=
i

h∈gEC

X (h),

that is, the symmetric difference over the X (h) for all children of g. In other words,
X (g) ⊆ E is precisely the set of edges in E such that g computes the Boolean function⊕

e∈X (g)Xe. The function computed by the circuit C is the XOR over X (r), where r is
the root of C. An alternative way to think about this is to say that for any gate g, X (g)
is the set of input bits to which the function computed by g is sensitive, that is, flipping
a single input bit of the circuit changes the value of g if and only if the flipped edge is in
X (g).

8.3.1 Symmetries of circuits

A circuit C over a graph G is subject to the action of the automorphism group
Aut(G) ≤ Sym(V). Any π ∈ Aut(G) changes the labels of the input gates in
L. So let g ∈ L with `(g) = e = {u, v} ∈ E. Then π(g) is an input gate with
`(π(g)) = π(e) = {π(u), π(v)} ∈ E. This extends to subcircuits of C and to C itself, so
π(C) is just C with the input labels modified accordingly.

We say that π extends to an automorphism of C if there exists a bijection σ : VC −→ VC
that is an automorphism of the graph (VC , EC) and satisfies for each input gate g ∈ VC :
`(σ(g)) = π(`(g)). We write

StabG(C) = {π ∈ Aut(G) | π extends to an automorphism of C} ≤ Aut(G),

and:
OrbG(C) = {π(C) | π ∈ Aut(G)}.

Symmetric circuits have been studied as computation models capturing FPC and rank
logic by Dawar together with Anderson and Wilsenach, respectively (see [6] and [42]).
Our setting here is a bit different. The symmetric circuits from the literature – roughly
speaking – correspond to the case where Aut(G) = Sym(V) and StabG(C) = Sym(V),
so they are invariant under all possible permutations of V . That is also the reason why
their power can be bounded in terms of fixed-point logics, which are weaker than CPT.
In contrast, the circuits we consider here need not be symmetric in the sense that every
π ∈ Aut(G) induces a circuit automorphism, but rather we will be interested in circuits

150

8.3 Symmetric XOR-circuits

whose orbit size is at most polynomial in |G|, w.r.t. the action of Aut(G). Also, Aut(G)
may in general be much smaller than Sym(V).

Other examples for symmetric circuit lower bounds concern symmetric arithmetic
circuits for the permanent [41] and determinant [43], AC0-circuits for the parity function
[96], and Boolean circuits for the multiplication of permutation matrices [70]. An
interesting aspect about Rossman’s lower bound for AC0-circuits computing parity is the
symmetry group he considers: Contrary to the other mentioned results, the symmetry
group is in this case not a large permutation group on the input variables but a Boolean
vector space which acts on the set of input literals {X1, X1, ..., Xn, Xn} by swapping
specified literals Xi with their respective negations. Such Boolean vector spaces appear
also frequently in our proof as they correspond to the CFI-flips. Unfortunately, Rossman’s
lower bound does not seem to have a direct bearing on our problem, though, because he
shows the hardness of computing parities, whereas our circuits can achieve this with a
single XOR-gate.

8.3.2 The parameter fan-in dimension

The circuits that we obtain from h.f. sets over CFI-graphs GS will satisfy a certain
non-standard fan-in bound, which generalises the fan-in degree of the gates. This fan-in
bound originates from the orbit size of the h.f. set µ that the circuit represents. Recall
that the automorphism group of GS can be decomposed into the automorphisms of
the underlying graph G and the CFI-edge-flip automorphisms AutCFI(G

S) (see Lemma
5.2.2). The orbit of µ must be of polynomial size if µ is CPT-definable in GS . This orbit
size restriction with respect to AutCFI(G

S) will be reflected in a fan-in bound on the
corresponding circuit C(µ).
This fan-in bound, however, is not actually on the number of incoming wires of each gate
(as is more standard), but it is a bound on the “linear algebraic complexity of incoming
information”, so to say. The subsets of E form a Boolean vector space together with the
symmetric difference operation. This space is isomorphic to FE2 .

Now with each internal gate g ∈ VC , we can associate a Boolean matrix M(g) ∈ FgEC×E2 ,
that we call the gate matrix : The row at index h ∈ gEC is defined as the characteristic
vector of X (h) ⊆ E, transposed, i.e. M(g)h− = χ(X (h))T . Here and in what follows,
we write χ for the bijection from P(E) to FE2 that associates with each subset of E its

characteristic Boolean vector. If g is an input gate, then we define M(g) ∈ F[1]×E
2 as the

one-row matrix whose only row is χ(X (g)))T = χ({`(g)})T .

Definition 8.3.1 (Fan-in dimension). The fan-in dimension of a gate g is the dimension
of the row-space of M(g), or equivalently, rk(M(g)).
The fan-in dimension of g, restricted to the space AutCFI(G

S) (also called the restricted
fan-in dimension) is

dim(M(g) ·AutCFI(G
S)) = dim{M(g) · v | v ∈ AutCFI(G

S)}.

151

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

The (restricted) fan-in dimension of the circuit C is the maximum (restricted) fan-in
dimension of any of the gates in C.

Thus, the fan-in dimension of a gate g is the dimension of the subspace of FE2 that
is spanned by the characteristic vectors χ(X (h)) ∈ FE2 , for all children h of g. One
interpretation of rk(M(g)) is that it tells us how many different patterns of incoming
bits can occur at gate g: When we consider all 2|E| possible inputs of the circuit, the
number of distinct binary strings in {0, 1}gEC that can arise as the values of the children
of g is 2rk(M(g)).
Sometimes we will also need the restricted fan-in dimension. This describes how many
different input patterns of the gate can occur if we only allow circuit input vectors x ∈ FE2
where the 1-entries in x form a set of cycles in the base graph G (i.e. input vectors from
AutCFI(G

S)).

These notions are unusual but as we will show in the next section, they nicely capture
the orbit size of h.f. sets x ∈ HF(Ê) with respect to the action of the CFI-automorphisms.
Namely, the fan-in dimension of the corresponding XOR-circuit will be logarithmic in
the size of the largest AutCFI(G)-orbit of any element of tc(x), and similarly for the
restricted fan-in dimension and the size of the AutCFI(G

S)-orbits.

In total, the benefit of the circuit-representation of h.f. objects over CFI-graphs
is that this simplifies the effect of the complicated automorphism group Aut(GS) ≤
AutCFI(G) oAut(G): In order to show that the CFI-query is not in CPT, we would
ultimately like to prove that certain h.f. objects necessarily have super-polynomial orbits
w.r.t. Aut(GS). By translating these objects into circuits, we can express the restrictions
imposed by AutCFI(G) in terms of fan-in dimension, and are left with the task of
analysing the orbit-size w.r.t. Aut(G).

8.4 Constructing XOR-circuits from hereditarily finite objects

This is the main theorem that is responsible for the translation from CFI-symmetric h.f.
sets to symmetric XOR-circuits:

Theorem 8.4.1. Fix a family (Gn)n∈N of base graphs. For every n ∈ N, let GS
n be a

CFI-graph over Gn = (Vn, En) and let µn ∈ HF(Ên) be a CFI-symmetric h.f. set that is
CPT-definable on input GS

n (by the same CPT-program for the whole family of graphs).
Then for every n ∈ N, there exists an XOR-circuit C(µn) = (VC , EC) over Gn which
satisfies:

1. The size of the circuit, i.e. |VC |, is polynomial in |GS
n |.

2. The orbit-size |OrbG(C(µn))| of the circuit is polynomial in |GS
n |.

3. C(µn) is sensitive to an edge e ∈ En if and only if e ∈ supCFI(µn).

152

8.4 Constructing XOR-circuits from hereditarily finite objects

4. The fan-in dimension of C(µ) is O(log(maxOrbE(µ))). The fan-in dimension
restricted to the space AutCFI(G

S
n) is O(log(maxOrbCFI(µ))).

We now provide the construction of the circuit and prove several lemmas from which
it follows that the circuit has the desired properties. We fix µ ∈ HF(Ê) and denote
by C(µ) = (VC , EC) the corresponding XOR-circuit that we are going to define. The
gates of the circuit are the ∼E-equivalence classes of the objects in tc(µ). Recall that
∼E-equivalence is the same-orbit-relation with respect to the edge-flips AutCFI(G).
Whenever we write [x] for an x ∈ tc(µ), we formally mean [x] = {ρF (x) | ρF ∈
AutCFI(G) such that ρF (x) ∈ tc(µ)}. The circuit C(µ) is defined as follows:

• VC := tc(µ)∼E = {[x] | x ∈ tc(µ)}.

• EC := {([x], [y]) | there exists y′ ∈ [y] such that y′ ∈ x}.

• By definition, the leafs of C(µ) correspond to ∼E-classes of atoms in tc(µ). The set
of atoms is Ê, so any leaf of C has the form [e0], for some e ∈ E. We let `([e0]) := e.

• The root r of C(µ) is [µ].

In other words, the circuit is just the DAG (tc(µ),∈), with the ∼E-equivalence factored
out.

First of all, we have to check that the set of edges EC can indeed be defined in this
way, i.e. that whether or not there is an EC-edge between [x] and [y] is independent of
the choice of the representative of [x] in the definition. In the following lemma, let ∈µ
denote the element relation on tc(µ) within the h.f. set µ.

Lemma 8.4.2. Let [x], [y] ⊆ tc(µ) be two ∼E classes. If there exists y′ ∈ [y] such that
y′ ∈µ x, then for every x′ ∈ [x] there is a y′ ∈ [y] such that y′ ∈µ x′.

Proof. Let y′ ∈ [y] such that y′ ∈µ x. Now let x′ ∈ [x] be arbitrary, and let ρF ∈
AutCFI(G) be such that ρF (x) = x′. Then ρF (y′) ∈µ ρF (x) because ρF is applied
element-wise to x. The object ρF (x) ∈ [x] is an element of tc(µ) since [x] denotes the
∼E-class of x inside tc(µ). Therefore, we also have ρF (y′) ∈ tc(µ), and thus ρF (y′) ∈ [y].
This proves the lemma.

Now we are going to show several properties of C(µ), which altogether lead to a proof
of Theorem 8.4.1.

Property 2 from Theorem 8.4.1 states that the Aut(G)-orbit of C(µ) is sufficiently
small. We prove this by showing that this orbit cannot be larger than the Aut(G)-orbit
of the h.f. set µ; and for µ, we know that its orbit is polynomial in |GS |, because it is
CPT-definable by the assumptions of Theorem 8.4.1.

Lemma 8.4.3. Every π ∈ StabG(µ) ≤ Sym(V) extends to an automorphism of the
circuit C(µ), that is:

StabG(µ) ≤ StabG(C(µ)).

153

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

Proof. Let π ∈ StabG(µ) ≤ Aut(G). That is, π extends to an automorphism σ :
tc(µ) −→ tc(µ) of the DAG (tc(µ),∈µ). We define σ′ : VC −→ VC by letting σ′([x]) =
[σ(x)]. This is well-defined because x ∼E x′ if and only if σ(x) ∼E σ(x′) (because σ is an
automorphism of µ). Now we check that σ′ is an automorphism of C(µ) induced by π.
Clearly, σ′ is a bijection on VC , i.e. on the set of ∼E-classes of tc(µ): It is surjective
because σ is, and then it is already a bijection because it maps VC to VC . Let [e0] ∈ VC
be an input gate. Then `([e0]) = e. We have σ(e0) = π(e)0. So σ′([e0]) = [π(e)0]. Hence,
`(σ′([e0])) = π(`([e0])), as desired.
Now let ([x], [y]) ∈ EC . Then there exists a y′ ∈ [y] such that y′ ∈µ x. Then because σ is
an automorphism, it also holds σ(y′) ∈µ σ(x). Therefore, ([σ(x)], [σ(y′)]) ∈ EC . It holds
([σ(x)], [σ(y′)]) = (σ′[x], σ′[y′]) = (σ′[x], σ′[y]), so (σ′[x], σ′[y]) ∈ EC . In total, this means
that π ∈ Aut(G) extends to the automorphism σ′ of the circuit C(µ).

Corollary 8.4.4.

|OrbG(C(µ))| ≤ |OrbG(µ)|.

Proof. Follows from Lemma 8.4.3 together with the Orbit-Stabiliser Theorem, which says
that |OrbG(C(µ))| = |Aut(G)|/|StabG(C(µ))| and |OrbG(µ)| = |Aut(G)|/|StabG(µ)|.

Next, we would like to analyse the fan-in dimension of C(µ), and the connection
between C(µ) and supCFI(µ). The key for this is to establish a connection between the
stabilisers StabE(x), for all x ∈ tc(µ), and the kernels of the corresponding gate matrices.
For the definition of these matrices, we refer back to Section 8.3.2. Once we have this
connection, it is quite clear that the fan-in dimension of the gates essentially captures
the AutCFI(G)-orbit size of the objects in tc(µ).
We start with the following observation that relates the stabilisers of objects in tc(µ)
with the stabilisers of their elements:

Proposition 8.4.5. For each x ∈ tc(µ), it holds

StabE(x) =
⋂
y∈x

StabE([y] ∩ x) =
⋂

γ∈C(x)

StabE(γ).

Proof. Every ρF ∈ AutCFI(G) fixes x if and only if it fixes every connected component
of x setwise (as the connected components are precisely the subsets of AutCFI(G)-orbits
that are contained in x).

Lemma 8.4.6. For every gate [x] ∈ VC , and its gate matrix M [x] ∈ F[x]EC×E
2 , it holds:

Ker(M [x]) = StabE(x) = StabE(x′) for every x′ ∈ [x].

For every row M [x][y]−, for [y] ∈ [x]EC , it holds:

Ker(M [x][y]−) = StabE([y] ∩ x) (?)

154

8.4 Constructing XOR-circuits from hereditarily finite objects

Proof. The fact that StabE(x) = StabE(x′), for every x′ ∈ [x], is stated in Lemma 8.1.1.
Note that (?) does not depend on the choice of a representative: It holds StabE([y]∩x) =
StabE([y] ∩ x′), for every x′ ∈ [x]. This is because ([y] ∩ x) ∼E ([y] ∩ x′), and so with
Lemma 8.1.1, it follows that StabE([y] ∩ x) = StabE([y] ∩ x′).
From (?) it immediately follows that Ker(M [x]) = StabE(x), due to Proposition 8.4.5
and the fact that Ker(M [x]) is the intersection over the kernels of the rows of M [x].

We now prove (?) via induction from the input gates to the root. If [x] = [e0] is an
input gate, then M [x] has just one row, which is χ(e)T . The kernel of χ(e)T is the set of
all vectors in FE2 which are zero at index e. This is precisely StabE(e0) = StabE(e1), as
desired. Now suppose [x] is an internal gate, i.e. x is a non-atomic h.f. set in tc(µ). Each

row of M [x] ∈ F[x]EC×E
2 is the characteristic vector of X [y] ⊆ E, for a [y] ∈ [x]EC . We

have
X [y] =

i

[w]∈[y]EC

X [w].

In matrix-vector notation, we can write this as:

M [x][y]− = χ(X [y])T =
∑

[w]∈[y]EC

(M [y][w]−)T = (1 1 ... 1) ·M [y].

The last equality holds because the row index set of M [y] is precisely [y]EC . Let γ ∈ C(x)
be the connected component such that γ = [y] ∩ x. The equation above means that
Ker(M [x][y]−) = Ey, where Ey denotes the set of all vectors in FE2 whose image under
M [y] has even Hamming weight. Thus we have to show that Ey = StabE(γ).
Each row M [y][w]− corresponds to a connected component γ′ ∈ C(y) with w ∈ γ′.
By the induction hypothesis, we have for each row M [y][w]− and each v ∈ FE2 that
M [y][w]− · v = 1 iff v /∈ StabE([w] ∩ y). So M [y] · v has even Hamming weight iff
ρχ−1(v) ∈ AutCFI(G) flips an even number of connected components of y. This is true iff
ρχ−1(v) flips an even number of components in every y′ ∈ γ (due to Lemma 8.2.3). By
definition of CFI-symmetry (Definition 8.2.2), this is the case iff v ∈ StabE(γ), because
µ is CFI-symmetric, and thus, γ is a CFI-symmetric component. In total, we have shown
that v ∈ Ey iff v ∈ StabE(γ). This proves (?) for every row of M [x].

As a consequence of this correspondence between kernels and stabilisers, we can bound
the fan-in dimension of C(µ). This proves Property 4 from Theorem 8.4.1.

Lemma 8.4.7. The fan-in dimension of C(µ) is log(maxOrbE(µ)).

Proof. Let x ∈ tc(µ). From the Orbit-Stabiliser Theorem and the fact that |AutCFI(G)| =
2|E|, it follows that

OrbE(x) =
2|E|

|StabE(x)|
≤maxOrbE(µ).

This means that
log(maxOrbE(µ)) ≥ |E| − dim StabE(x).

155

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

By Lemma 8.4.6, StabE(x) = Ker(M [x]). With the Rank Theorem we get:

rk(M [x]) = |E| − dim StabE(x) ≤ log(maxOrbE(µ)).

Since there is an object x ∈ tc(µ) where maxOrbE(µ) is attained, rk(M [x]) =
log(maxOrbE(µ)) is indeed the maximum rank of any gate matrix of C(µ).

Lemma 8.4.8. The fan-in dimension of C(µ) with respect to the space AutCFI(G
S) is

log(maxOrbCFI(µ)). That is, for every gate [x] in C(µ), we have

dim(M [x] ·AutCFI(G
S)) ≤ log(maxOrbCFI(µ)).

Proof. Let x ∈ tc(µ). With the Orbit-Stabiliser Theorem we get

OrbCFI(x) =
|AutCFI(G

S)|
|StabCFI(x)|

= 2dimAutCFI(G
S)−dimStabCFI(x) ≤maxOrbCFI(µ).

Thus,

log maxOrbCFI(µ) ≥ dim AutCFI(G
S)− dim StabCFI(x).

Using Lemma 8.4.6, we get StabCFI(x) ⊆ StabE(x) ⊆ Ker(M [x]). Therefore,

dim(M [x] ·AutCFI(G
S)) ≤ dim AutCFI(G

S)− dim StabCFI(x) ≤ log maxOrbCFI(µ).

Let us finally put all these lemmas together to prove that C(µ) has the desired
properties.

Proof of Theorem 8.4.1. First of all, since µ is by assumption CPT-definable in the
structure GS , the size |tc(µ)| and the orbit |OrbGS (µ)| are polynomial in |GS |. Therefore,
Property 1 from Theorem 8.4.1 clearly holds for C(µ), because |VC | ≤ |tc(µ)|. Property
2 follows from the bound on |OrbGS (µ)| together with Corollary 8.4.4, and the fact that
|OrbG(µ)| ≤ |OrbGS (µ)|.
Property 4 is proven in Lemmas 8.4.7 and 8.4.8. Finally, Property 3 can be seen
as follows: Suppose C(µ) is sensitive to an edge e ∈ E. This means that e ∈ X (r), for
the root r = [µ] of C(µ). This is the case iff e ∈ X [y] for an odd number of children
[y] ∈ [µ]EC . This is the same as saying that the column M [µ]−e has odd Hamming
weight. By equation (?) from Lemma 8.4.6, this holds if and only if χ(e) /∈ StabE([y]∩µ)
for an odd number of children [y] ∈ [µ]EC . Since µ is CFI-symmetric, by Definition
8.2.2 this is the case if and only if ρe(µ) 6= µ. And this holds iff e ∈ supCFI(µ) (because
supCFI(µ) is the smallest possible CFI-support of µ).

156

8.5 Applying the XOR-circuit construction to CFI-symmetric algorithms

8.5 Applying the XOR-circuit construction to CFI-symmetric
algorithms

So far, we have a translation of CFI-symmetric h.f. sets in HF(Ê) into XOR-circuits
with the properties mentioned in Theorem 8.4.1. By combining it with the support lower
bound from Theorem 6.2.7, we can prove the formal version of Theorem 8.0.1, which
shows that the definability of the CFI-query by means of a CFI-symmetric algorithm
presupposes the existence of corresponding symmetric circuits. As a reminder, here is
the support lower bound from Dawar, Richerby and Rossman once again.

Theorem 6.2.7. Let (Gn)n∈N be a family of base graphs and let twn denote the treewidth
of Gn. Let G0

n,G
1
n denote the even and odd CFI-structures over Gn. Let f(n) ≤ twn be

a function such that G0
n and G1

n are Ctwn-homogeneous for all tuples of length ≤ 2f(n).
Then any CPT-program that distinguishes G0

n and G1
n for all n ∈ N must activate on

input Gi
n a h.f. set x whose smallest support has size at least Ω(f(n)).

Recall that a structure GS
n is Ctwn-homogeneous if whenever two tuples a and b have

the same Ctwn-type in GS
n , then there is an automorphism of GS

n that maps a to b (see also
Definition 6.2.4). In particular, this condition is satisfied for certain ordered CFI-graphs,
as stated in [40] and formally proven e.g. in [90]. In the next chapter, we show that this
condition also holds for our unordered hypercube CFI-structures.

In the above theorem, the minimum support size of a h.f. set refers to its support
with respect to the group Aut(GS

n). However, in our circuit framework, we are dealing
with supCFI(µ), the minimum CFI-support of an object µ. This is the minimum support
with respect to the group of edge-flips AutCFI(G). Thus, we have to relate these two
different notions of support. The ratio between the minimum support of an object and
its minimum CFI-support will in general depend on the base graph. We call this the
CFI-support gap:

Definition 8.5.1 (CFI-support gap). Let G = (V,E) be a base graph and GS a CFI-graph
over it. Let µ ∈ HF(Ê). Denote by s(µ) the size of the smallest Aut(GS)-support of µ
(while supCFI(µ) still denotes the smallest CFI-support).
Then we call the ratio

α(µ) =
s(µ)

| supCFI(µ)|

the CFI-support gap of µ (with respect to GS).

According to Theorem 5.1.2, two CFI-graphs GS and GR over the same base graph
G are indistinguishable in Ctw, where tw denotes the treewidth of G. Putting this and
the support lower bound together with Theorem 8.4.1, we obtain the following detailed
version of Theorem 8.0.1 that relates the power of CPT with the existence of symmetric
XOR-circuits.

Theorem 8.5.2. Let (Gn = (Vn, En))n∈N be a sequence of base graphs. Let GS
n be a

CFI-graph over Gn, let twn denote the treewidth of Gn. Let f(n) ∈ O(twn) be a function

157

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

such that every GS
n is Ctwn-homogeneous, for all tuples of length ≤ 2f(n). Let g(n) be a

function such that the CFI-support-gap for every µ ∈ HF(Ên) with minimum support
s(µ) ∈ Ω(f(n)) is bounded by g(n).

If there exists a CFI-symmetric CPT-program Π that decides the CFI-query on all
GS
n, then for every Gn = (Vn, En), there exists an XOR-circuit Cn over Gn that satisfies

the following “instantiated properties” from Theorem 8.4.1:

1. The number of gates in Cn is polynomial in |GS
n |.

2. The orbit-size |OrbGn(Cn)| of the circuit is polynomial in |GS
n |.

3. Cn is sensitive to Ω(f(n)/g(n)) many edges in En.

4. The fan-in dimension of Cn, restricted to the space AutCFI(G
S
n), is O(log |GS

n |).

5. If the program Π is super-symmetric in addition to being CFI-symmetric, or if the
base graph Gn decomposes into at most O(

√
log |GS |) many components when any

f(n)/g(n) many edges are removed, then also the (unrestricted) fan-in dimension
of Cn is O(log |GS

n |).

Proof. Assume such a CPT-program Π exists. Let µn ∈ HF(Ên) denote the CFI-
symmetric h.f. set with large support that Π activates on input GS

n . Then by Theorem
6.2.7, the smallest Aut(GS

n)-support of the object µn has size Ω(f(n)). Since the
CFI-support gap of µn in GS

n is at most g(n), the size of the smallest CFI-support of
µn is at least: supCFI(µn) ∈ Ω(f(n)/g(n)). Theorem 8.4.1 applied to µn yields the
XOR-circuit Cn. Property 3 from Theorem 8.4.1 in combination with the bound
supCFI(µn) ∈ Ω(f(n)/g(n)) means that Cn is sensitive to Ω(f(n)/g(n)) many edges in
En. Property 4 from Theorem 8.4.1 bounds the fan-in dimension and the restricted
fan-in dimension in terms of log(maxOrbE(µn)) and log(maxOrbCFI((µn)), respectively.
Lemma 8.1.2 states that maxOrbE(µn) ≤ |OrbE(µn)| · |tc(µn)| and maxOrbCFI(µn) ≤
|OrbCFI(µn)| · |tc(µn)|. Because µn is defined by the CPT-program Π on input GS

n ,
both |tc(µn)| and |OrbCFI(µn)| are polynomially bounded in |GS

n | (the orbit is bounded
because AutCFI(G

S) is a subgroup of Aut(GS
n)). This yields a polynomial bound on

maxOrbCFI(µn). Together with the log(maxOrbCFI((µn))-bound on the restricted
fan-in dimension, this gives us Property 4 from this theorem.
Property 5 follows then with Lemma 8.1.4 if Π is super-symmetric, and with Corollary
8.1.9 in case that the base graph Gn splits into a sufficiently bounded number of
components when the edges in supCFI(µn) are removed from it.

Hence, if we can find a class of base graphs with suitable treewidth, homogeneity,
and CFI-support gap, for which we can prove that no circuit family can satisfy all of
the above properties simultaneously, then we have essentially separated the class of all
CFI-symmetric CPT-programs from Ptime. We suspect that the theorem will be easier
to use if we additionally restrict ourselves to super-symmetric algorithms or if our chosen
family of base graphs is highly connected. In these cases, the logarithmic fan-in restriction

158

8.6 Extending the circuit construction to non-CFI-symmetric sets

on the circuits applies to the fan-in dimension, which is admittedly not a natural circuit
parameter but at least easy to describe in linear algebraic terms – it is just a matrix
rank. By contrast, the fan-in dimension restricted to AutCFI(G

S
n) is the dimension of a

certain linear image of a Boolean vector space that somehow depends on the cycles in
the base graph – a concept that is hard to get a handle on.
In Chapter 9 we will apply the theorem to the class of hypercubes as base graphs and
show that if we sharpen Property 2 by restricting the orbit size |OrbGn(Cn)| down
to one and replace the logarithmic bound on the fan-in dimension (Property 5) by
a logarithmic bound on the “orbit-wise” fan-in and fan-out degrees of the gates, then
indeed, such circuits do not exist. Before we move on to that next chapter, though,
we present a version of Theorem 8.4.1 that is unfortunately much more complicated to
prove. Namely, we would like to get rid of the restriction to CFI-symmetric objects and
understand any h.f. set over a CFI-structure as an XOR-circuit.

8.6 Extending the circuit construction to non-CFI-symmetric
sets

So far, we have shown that CFI-symmetric h.f. sets over CFI-structures GS can be quite
easily transformed into XOR-circuits by factoring out the orbits under the edge-flip-
group AutCFI(G). Importantly, this construction automatically translates the relevant
properties of the h.f. set, such as support size and symmetry, into more or less natural
circuit-properties. As a consequence, we can – in principle – limit the power of CFI-
symmetric algorithms for the CFI-query by proving non-existence results for certain
families of polynomial size symmetric XOR-circuits. Even though all currently known
choiceless algorithms for the CFI-query are CFI-symmetric, and it is not clear that
non-CFI-symmetric algorithms are really more powerful, it would be much nicer if the
circuit-translation were so general that it could be used to separate all of CPT from
P, and not only the CFI-symmetric algorithms. In this subsection we explore to what
extent the circuit construction can be generalised in that direction. We will present a
modification of the circuit construction above, that uses additional gadgets, works without
the restriction to CFI-symmetric sets, and has almost all properties from Theorem 8.4.1.
By “almost all” we mean that the additional gadgets we have to introduce in the circuit
are of unknown size. Hence, we cannot be sure that the constructed circuit is always of
polynomial size. However, we can formulate a condition on the h.f. sets which generalises
that of CFI-symmetry and guarantees polynomial size of the circuit. This condition
concerns Boolean vector spaces with a permutation group acting on the index set. If
certain subspaces of FE2 that occur as stabilisers of the connected components of a set
possess a basis that is (almost) invariant under the permutation group (which will be a
subgroup of Aut(G)), then the circuit we are going to construct from µ has polynomial
size. Here is the result of this section:

Theorem 8.6.1. Fix a family (Gn)n∈N of base graphs. For every n ∈ N, let GS
n be a

CFI-graph over Gn = (Vn, En) and let µn ∈ HF(Ên) be a h.f. set that is CPT-definable

159

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

on input GS
n (by the same CPT-program for the whole family of graphs). Then for every

n ∈ N there exists an XOR-circuit Ĉ(µn) = (VC , EC) over Gn which satisfies:

1. The orbit-size |OrbG(Ĉ(µn))| of the circuit is polynomial in |GS
n |.

2. Ĉ(µn) is sensitive to at least | supCFI(µ)|
log(maxOrbE(µ)) many edges in E.

3. The fan-in dimension of Ĉ(µ) is O(log(maxOrbE(µ))).

4. If for every x, y ∈ tc(µ) such that [y] ∩ x 6= ∅, the space StabE([y] ∩ x) has a
symmetric basis (see Definition 8.6.25), then the size |VC | is polynomial in |GS |.

This theorem differs from Theorem 8.4.1 for CFI-symmetric objects in two aspects.
Firstly, the circuit Ĉ(µ) is not necessarily sensitive to all edges in supCFI(µ) but only
to a logarithmic fraction of them. Secondly, we have no guarantees for the size of the
circuit unless all spaces StabE([y] ∩ x) admit a symmetric basis; we will introduce this
concept formally in Section 8.6.3. It should be noted that this fourth property mentioned
in the theorem is – as far as we know – not an “if and only if”. It may be that Ĉ(µ) has
polynomial size even when the symmetric basis condition is not satisfied for µ.

As a consequence, we have the following version of Theorem 8.5.2 for non-CFI-symmetric
CPT-programs that decide the CFI-query. The condition that the h.f. set with large
support which is used to decide the CFI-query is CFI-symmetric is weakened to the
symmetric basis condition. As we show later, in Lemma 8.6.28, every CFI-symmetric set
also has a symmetric basis, and there are also simple examples of non-CFI-symmetric
sets with a symmetric basis (see Example 8.6.29). Thus, the symmetric basis condition
is indeed a strict generalisation of CFI-symmetry.

Theorem 8.6.2. Let (Gn = (Vn, En))n∈N be a sequence of base graphs. Let GS
n be a

CFI-graph over Gn, let twn denote the treewidth of Gn, and let f(n) ≤ twn be a function
such that GS

n is Ctwn-homogeneous for all tuples of length ≤ 2f(n).
Let g(n) be a function such that the CFI-support-gap for every µ ∈ HF(Ên) with mini-
mum support s(µ) ∈ Ω(f(n)) is bounded by g(n).

Let Π be a CPT-program that decides the CFI-query on all GS
n using a h.f. set µn ∈ GS

n

with sufficient support such that StabE([y] ∩ x) has a symmetric basis according to
Definition 8.6.25, for all x, y ∈ tc(µn) with [y] ∩ x 6= ∅.
Assume additionally that Π is super-symmetric or that the base graph Gn decomposes into
at most O(

√
log |GS |) many components when any f(n)/g(n) many edges are removed.

Then for every n ∈ N there exists an XOR-circuit Cn over the edges En that satisfies the
following “instantiated properties” from Theorem 8.6.1:

1. The number of gates in Cn is polynomial in |GS
n |.

2. The orbit-size |OrbGn(Cn)| of the circuit is polynomial in |GS
n |.

3. Cn is sensitive to Ω(f(n)/(g(n) · log |GS
n |)) many edges in En.

160

8.6 Extending the circuit construction to non-CFI-symmetric sets

4. The fan-in dimension of Cn is O(log |GS
n |).

We omit the proof of this theorem because it follows from Theorem 8.6.1 in the same
way as Theorem 8.5.2 follows from Theorem 8.4.1.

Now let us start with the proof of Theorem 8.6.1, which spans the rest of the section.
It should be noted that Theorem 8.4.1 is actually a special case of this, so we could have
omitted the circuit construction for CFI-symmetric objects; however, the more general
construction that we present now is not as natural as the one for CFI-symmetric objects
and much harder to describe.
Fix again a base graph G = (V,E), a CFI-graph GS over it, and an object µ ∈ HF(Ê).
This time, µ need not be CFI-symmetric. In the previous subsection, we wrote C(µ)
for the circuit obtained by factoring out the ∼E classes in tc(µ). Now, we denote the
constructed circuit by Ĉ(µ). Before we explain the construction, let us look at why
C(µ) is not “the circuit we want” if µ is not CFI-symmetric. The only place where
CFI-symmetry was required in the previous section is in the proof of Lemma 8.4.6, which
relates the kernels of the gate matrices with the vector spaces StabE(x). This relationship
is crucial because it leads to the connection between supCFI(µ) and the sensitivity of
C(µ) to its input bits, and is also necessary to get a bound on the fan-in dimension of
C(µ). Without such a bound, the construction would not be interesting because without
fan-in restrictions, there always exist small symmetric XOR-circuits. Hence, we would
like to ensure that the statement of Lemma 8.4.6 still holds for Ĉ(µ), even if µ is not
CFI-symmetric. Now take a look at the inductive proof of Lemma 8.4.6 again. The
key in this induction is that for any gate matrix M [x] and any child [y] of [x], the row
M [x][y]− can be written as the product of another matrix and the child-gate-matrix M [y]:
M [x][y]− = (1 1 ... 1) ·M [y]. This equation holds because of the CFI-symmetry of µ.
Now in the general case, a similar equation will hold, namely: M [x][y]− = N ·M [y], for
some matrix N that has to be chosen depending on StabE([y] ∩ x). So our plan for this
section is as follows: We will first of all define these N -matrices, that essentially “repair”
the proof of Lemma 8.4.6 in the non-CFI-symmetric case. Based on these matrices and
on C(µ), we will construct Ĉ(µ) by introducing gadgets that simulate the effect of the
chosen N -matrices. Then this circuit will be exactly such that the proof of Lemma 8.4.6
goes through again, even if µ is not CFI-symmetric. In a sense, we can view the gadgets
as corrections for local violations of CFI-symmetry.

8.6.1 Definition of the matrices

Actually, we will not only define the said N -matrices, but also, for every [x] ∈ {[x] | x ∈
tc(µ)}, a Boolean matrix M [x]. We keep the notation M [x] from the previous subsection,
even though, strictly speaking, M [x] will not be the gate matrix of any gate in Ĉ(µ);
rather, it will be a matrix that satisfies Ker(M [x]) = StabE(x), and it will serve as a
kind of construction specification for a gadget in Ĉ(µ). The M [x]-matrices that we are
going to define depend on the M - and N -matrices of the connected components of x in
the object µ. Therefore, the construction of these matrices proceeds inductively from the

161

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

atoms of µ to the more deeply nested sets. At this point, our main objective is to build
the matrices in such a way that their kernels correspond to the stabiliser spaces of the sets
they belong to. Furthermore, the matrices should satisfy certain symmetry requirements
with respect to the action of StabG(µ) ≤ Aut(G). Only after the construction of the
matrices, we will use them to construct the circuit Ĉ(µ) in such a way that the gate
matrices of Ĉ(µ) are as desired. So the procedure in this subsection works the other
way round as in the previous one, where the circuit came first, and we then analysed
its gate matrices. Now we are specifying the matrices first, and then build the circuit
so that the statement of Lemma 8.4.6 holds for Ĉ(µ) by construction. Along with the
matrices, we will provide certain group homomorphisms that ensure symmetry. To speak
about symmetry of matrices, we introduce notation to express the effect of row- and
column-permutations:

Let M ∈ FI×J2 be any Boolean matrix, and σ : I −→ I ′, π : J −→ J ′ be bijections.

Then (σ, π)(M) ∈ FI′×J ′2 is the matrix with (σ, π)(M)σi,πj = Mi,j for each (i, j) ∈ I × J .
In particular, if σ ∈ Sym(I), π ∈ Sym(J), then (σ, π)(M) is the matrix that arises from
M when the respective row- and column-permutations are applied.

Proposition 8.6.3. Let v,w ∈ FI2 be two Boolean vectors and π ∈ Sym(I) a permutation
of its entries. Then

vT ·w = π(vT) · π(w).

Therefore, if M ∈ FI×J2 is a matrix and w ∈ FJ2 is a vector, then

σ(M ·w) = (σ, π)M · π(w),

for every σ ∈ Sym(I), π ∈ Sym(J).

This proposition follows immediately from the definition of the scalar product of vectors
because vT ·w and π(vT) ·π(w) are the same sum of products, just summed in a different
order. The statement about matrix-vector-multiplication then follows because this is just
the scalar product of every row vector with w. The proposition will sometimes be used
without explicit reference in this section.

In the rest of this section, we will often speak about the following orbits and stabilisers.
They differ from the ones from the previous section in so far as they concern the subgroup
StabG(µ) ≤ Aut(G), instead of Aut(G) itself. Thus, we override the notation from the
previous section. Let x ∈ tc(µ).

OrbG([x]) := {π([x]) | π ∈ StabG(µ) ≤ Aut(G)}.
StabG([x]) := {π ∈ StabG(µ) | π([x]) = [x]}.

Similarly, for x, y ∈ tc(µ), StabG([y] ∩ x) refers to the stabiliser of the set [y] ∩ x in the
group StabG(µ).

Any orbit of a ∼-class is a set of ∼-equivalence classes:

162

8.6 Extending the circuit construction to non-CFI-symmetric sets

Lemma 8.6.4. For any ∼E-class [x] ⊆ tc(µ), and any π ∈ StabG(µ), π([x]) is also a
∼E-class of tc(µ).

Proof. By Lemma 5.2.1, for any π ∈ Aut(G), and any ρF ∈ AutCFI(G) it holds
ρπF = π ◦ ρF ◦ π−1. Let x′, x′′ ∈ [x] and let ρF ∈ AutCFI(G) be such that ρF (x′) = x′′.
Then ρπF (πx′) = πx′′ by the above equation. Thus, π(x′) ∼E π(x′′). Similarly one can
show that if x′ 6∼E x′′, then π(x′) 6∼E π(x′′). Therefore, π([x]) is again a ∼E-class. The
fact that π([x]) ⊆ tc(µ) follows because π extends to an automorphism of the h.f. set
µ.

Corollary 8.6.5. Let x, y ∈ tc(µ) such that [y] ∩ x 6= ∅. Then

StabG([y] ∩ x) ≤ StabG([y]).

Proof. The group StabG([y] ∩ x) maps the set [y] ∩ x ⊆ [y] to itself, so it does not move
this subset of the ∼-class [y] into another ∼-class. Then by Lemma 8.6.4, it must map
the whole class [y] to itself because the image of [y] must again be a ∼-class.

Lemma 8.6.6. For any x, x′, y ∈ tc(µ) such that x ∼E x′ and [y] ∩ x 6= ∅, it holds

StabE([y] ∩ x) = StabE([y] ∩ x′).

Proof. The sets [y] ∩ x and [y] ∩ x′ are related via an automorphism in AutCFI(G).
Therefore, Lemma 8.1.1 applied to the set [y] ∩ x yields the desired statement.

Now we come to the inductive definition of the aforementioned M - and N -matrices.
Here is the precise list of objects that we are going to define:

(a) For every [x] ∈ {[x] | x ∈ tc(µ)}:
a) An index-set I[x].

b) A matrix M [x] ∈ FI[x]×E
2 with the property that Ker(M [x]) = StabE(x) (note

that StabE(x) = StabE(x′) for every x′ ∈ [x] by Lemma 8.1.1).

Let C[x] := {[y] | [y] ∩ x 6= ∅} (note that this does not depend on the representative
of [x] – see Lemma 8.4.2) denote the ∼-classes of the connected components of x.

(b) For every [x] ∈ {[x] | x ∈ tc(µ)}, where x is a set, and every [y] ∈ C[x]:

a) An index-set J[x][y].

b) A matrix N [x][y] ∈ FJ[x][y]×I[y]

2 with the property that Ker(N [x][y] ·M [y]) =
StabE([y]∩ x) (by Lemma 8.6.6, StabE([y]∩ x) is independent of the choice of
representative of [x]).

(c) For every orbit Ω[x] := OrbG([x]), let IΩ[x]
:=
⊎

[x′]∈Ω[x]
I[x′]. For every Ω[x], we

provide a group homomorphism g[x] : StabG(µ) −→ Sym(IΩ[x]
) such that for each

[x′] ∈ Ω[x] and each π ∈ StabG(µ), it holds g[x](π)(I[x′]) = Iπ[x′]. Furthermore,
Mπ[x′] = (g[x], π)M [x′] for each [x′] ∈ Ω[x] and π ∈ StabG(µ).

163

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

(d) For every orbit Ω[x], let

JΩ[x]
:=

⊎
[x′]∈Ω[x]

[y′]∈C[x′]

J[x′][y′].

For every Ω[x], we provide a group homomorphism h[x] : StabG(µ) −→ Sym(JΩ[x]
)

such that for each [x′] ∈ Ω[x] and each [y′] ∈ C[x′], it holds h[x](π)(J[x′][y′]) = Jπ[x′]π[y′].
Furthermore, Nπ[x′]π[y′] = (h[x](π), g[x](π))N [x′][y′] for each [x′] ∈ Ω[x], [y′] ∈ C[x′],
and π ∈ StabG(µ).

The role of the group homomorphisms is to ensure – when we build the circuit from
these matrices – that every π ∈ StabG(µ) that acts on the input gates indeed extends
to an automorphism of Ĉ(µ). Before we actually construct anything, we have to verify
that it is indeed possible to satisfy the symmetry conditions witnessed by the group
homomorphisms and the conditions on the kernels of the matrices simultaneously. In
other words, we have to show that the stabiliser spaces, which are supposed to be equal
to the respective kernels, are mapped to each other by the permutations in StabG(µ):

Lemma 8.6.7. Let x ∈ tc(µ) and π ∈ StabG(µ). Then

StabE(πx) = π(StabE(x)) = {πv | v ∈ StabE(x)},

where π ∈ Sym(E) acts on vectors in FE2 by permuting their entries. Furthermore, for
every [y] ∈ C[x], we have

StabE(π[y] ∩ πx) = π(StabE([y] ∩ x)).

Proof. By Lemma 5.2.1, for any π ∈ Aut(G), and any ρF ∈ AutCFI(G), it holds
ρπF = π ◦ ρF ◦π−1. Thus, ρπF ∈ StabE(πx) if and only if (π ◦ ρF ◦π−1)(πx) = πx. This
holds if and only if (π ◦ ρF)(x) = πx, which is the case iff ρF (x) = x. This proves the
first part of the lemma since χ(πF) = π(χ(F)). The second part can be shown in the
same way because π[y] ∩ πx = π([y] ∩ x). This last equation holds since the action of π
on HF(Ê) is a bijection from HF(Ê) to itself, so π[y] ∩ πx ⊆ π([y] ∩ x) (this would not
necessarily be true if π were not injective on HF(Ê)).

Inductive construction

Base case:
Let x = ei, for e ∈ E and i ∈ {0, 1}, be an atom in tc(µ). Then we set

M [x] := χ(e)T .

Formally, we define the row index set as I[x] := {[x]}, but any singleton set that is distinct
from all other index sets will do.
Now for every orbit Ω[x], where x is an atom in tc(µ), we define the homomorphism
g[x] : StabG(µ) −→ Sym(IΩ[x]

) by letting g[x](π)([x′]) := [πx′] for every π ∈ StabG(µ),
[x′] ∈ IΩ[x]

(note that by definition of the index-sets I[x], IΩ[x]
is equal to the orbit Ω[x]).

164

8.6 Extending the circuit construction to non-CFI-symmetric sets

Inductive step:
We deal with the items from the above list in the order (b), (d), (a), (c). Let x ∈ tc(µ) be
a non-atomic object, that is, a set. Assume that for every [y] ∈ C[x] and every [y] ∈ C[x′],
for every [x′] ∈ Ω[x], the respective matrix M [y] with index set I[y] has been constructed.
Thus we also assume that for any such [y], the homomorphism g[y] corresponding to Ω[y]

has been defined. We fix a y such that [y] ∈ C[x]. For this fixed pair ([x], [y]) we will now
construct the matrix N [x][y]. Then we will close it under the action of StabG(µ). That
is, given this matrix N [x][y], we will symmetrically define N [x′][y′] for all [y′] ∈ Ω[y], and
all [x′] ∈ Ω[x] such that [y′] ∈ C[x′].
After this, there may still exist some components [y′] ∈ C[x] for which N [x][y′] has not
been defined. In that case, we fix such a [y′] ∈ C[x], define the corresponding matrix
N [x][y′] explicitly, and define the matrices for all StabG(µ)-images of [x] and [y′] sym-
metrically, and so on. Hence, we first have to describe how to define the respective initial
matrix from which we obtain the other ones by symmetry.

Definition of the N-matrices So let y ∈ tc(µ) be such that [y] ∈ C[x]. We assume that
M [y], I[y] and g[y] have been constructed. The matrix N [x][y] is defined as the smallest
Boolean matrix that satisfies the following two conditions:

(i) Ker(N [x][y])∩Im(M [y]) = M [y]·StabE([y]∩x) = {(M [y]·v) | v ∈ StabE([y]∩x)}.
Recall that for matrix M ∈ FI×J2 , Im(M) denotes the space that is the image of
FJ2 under M .

(ii) There exists a homomorphism h from g[y](StabG([y] ∩ x)) ≤ Sym(I[y]) into
the symmetric group on the row index set of N [x][y] such that for every σ ∈
g[y](StabG([y] ∩ x)), it holds (h(σ), σ)(N [x][y]) = N [x][y].

In the second property, we abused notation and wrote g[y](StabG([y]∩x)) for a subgroup
of Sym(I[y]), even though g[y](StabG([y]∩x)) is formally a subgroup of Sym(IΩ[y]

). How-
ever, we know from Corollary 8.6.5 that StabG([y]∩x) ≤ StabG([y]), so g[y](StabG([y]∩
x)) indeed maps the row index set of M [y], that is, I[y], to itself (see property (c) of g[y]

that holds by the induction hypothesis).

By “smallest” matrix we mean one that satisfies (a) and (b) and has the least number
of rows. If there are multiple such matrices with the same minimal number of rows, we
choose an arbitrary one of them for N [x][y].

Let m be the number of rows of N [x][y]. We define the row index set J[x][y] of N [x][y]
as an m-element set that is disjoint from all other index sets constructed so far. Formally,
this can be achieved by letting J[x][y] := {(i, [x], [y]) | i ∈ [m]}.
We have to show that there always exists a matrix that satisfies (a) and (b). A matrix
satisfying (a) can be found with methods from linear algebra:

165

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

Lemma 8.6.8. Let Γ ≤ ∆ ≤ FI2 be Boolean vector spaces. Let d be the dimension of Γ

and k = dim ∆− d be the codimension of Γ in ∆. There exists a matrix N ∈ F[k]×I
2 such

that Ker(N) ∩∆ = Γ.

Proof. Each of the k rows of N can be obtained as the solution to a linear equation
system. For i ∈ [k], j ∈ I, let nij := Nij denote the sought entry in row i and column j.
Fix a basis BΓ of Γ, and an extension of that basis B ⊇ BΓ such that B = BΓ]{w1, ...,wk}
is a basis of ∆. For each i ∈ [k], we define an equation system Ai · x = bi whose unique
solution vector is the desired row (ni1, ni2, ..., ni|I|) of N . The system has dim ∆ many
equations, where each equation is associated with a basis vector in B. For every basis
vector v ∈ B \ {wi}, we have the equation∑

j∈I
v(j) · x(j) = 0

in the system Ai · x = bi. For the basis vector wi ∈ B, we have the equation∑
j∈I

wi(j) · x(j) = 1

in Ai · x = bi. In this way, we define k equation systems, one for each i ∈ [k]. In
fact, the coefficient matrix Ai is the same for all of them. Its rows are the vectors in B
(transposed). The vector bi has a 1-entry in the row containing wi, and is zero otherwise.
The rank and the number of rows of every Ai is dim ∆ because B is a basis of ∆. Hence,
each of the equation systems has a unique solution. If we define each entry nij of N to
be the j-th entry of the solution vector to Ai · x = bi, then indeed, Ker(N) ∩∆ = Γ, by
definition of the equation systems.

This shows that a matrix satisfying condition (a) always exists. The matrix can be
closed under the action of g[y](StabG([y]∩ x)) so that it also satisfies condition (b). This
requires that the vector space that we want as the kernel of N [x][y] is invariant under
that permutation group:

Lemma 8.6.9. The space M [y] · StabE([y] ∩ x) ≤ FI[y]

2 is invariant under the action
of the permutation group g[y](StabG([y] ∩ x)) ≤ Sym(I[y]) on the entries of its vectors.
That is, for every v ∈ M [y] · StabE([y] ∩ x) and π ∈ g[y](StabG([y] ∩ x)), it holds
π(v) ∈M [y] · StabE([y] ∩ x).

Proof. Let v ∈ M [y] · StabE([y] ∩ x) and π ∈ g[y](StabG([y] ∩ x)). We can write

v = M [y] ·w for some w ∈ StabE([y] ∩ x). Fix a σ ∈ g−1
[y] (π), i.e. σ ∈ StabG([y] ∩ x).

By Proposition 8.6.3 it holds:

(π, σ)(M [y]) · σ(w) = π(v).

From the inductive hypothesis we have that (π, σ)(M [y]) = M [y] since σ ∈ StabG([y] ∩
x) ≤ StabG([y]) (see item (c) in the enumeration above). The fact that StabG([y]∩x) ≤

166

8.6 Extending the circuit construction to non-CFI-symmetric sets

StabG([y]) is shown in Corollary 8.6.5. We conclude: M [y] · σ(w) = π(v). If σ(w) ∈
StabE([y]∩ x), then we are done and have that π(v) ∈M [y] · StabE([y]∩ x), as desired.
To show that σ(w) ∈ StabE([y] ∩ x), we apply Lemma 8.6.7: Since w ∈ StabE([y] ∩ x),
we have σw ∈ σ(StabE([y]∩ x)) = StabE(σ[y]∩ σx). Finally, as mentioned in the proof
of Lemma 8.6.7, we have σ[y]∩ σx = σ([y]∩ x), and it holds σ([y]∩ x) = [y]∩ x, because
σ ∈ StabG([y] ∩ x).

Knowing this, we can see that it is indeed possible to satisfy both conditions (i) and
(ii) at the same time.

Lemma 8.6.10. Let [y] ∈ C[x]. There exists a Boolean matrix N that satisfies conditions
(i) and (ii) mentioned above, i.e.:

(i) Ker(N) ∩ Im(M [y]) = M [y] · StabE([y] ∩ x).

(ii) There exists a homomorphism h from g[y](StabG([y] ∩ x)) ≤ Sym(I[y]) into the
symmetric group on the row index set of N such that for every σ ∈ g[y](StabG([y]∩
x)), it holds (h(σ), σ)(N) = N .

Proof. Lemma 8.6.8 applied to ∆ = Im(M [y]) and Γ = M [y] · StabE([y] ∩ x) gives us a

matrix N ′ ∈ F[k]×I[y]

2 that satisfies condition (i); here, k = dim(Im M [y])− dim(M [y] ·
StabE([y]∩x)). We can close N ′ under the action of g[y](StabG([y]∩x)) ≤ Sym(I[y]) so
that condition (ii) is also satisfied: For each row N ′i− of N ′, let Orb(N ′i−) := {π(N ′i−) |
π ∈ g[y](StabG([y] ∩ x))}. Here, π ∈ Sym(I[y]) permutes the columns, i.e. the entries of
the respective row N ′i−. Now let N be the Boolean matrix whose set of rows is the disjoint
union

⊎
i∈[k] Orb(N ′i−). Clearly, there is a homomorphism h from g[y](StabG([y] ∩ x))

into the symmetric group on the rows of N (more precisely into Πi∈[k]Sym(Orb(N ′i−))).
This homomorphism is just the group action of g[y](StabG([y] ∩ x)) on the rows of N
(separately on the orbits Orb(N ′i−)).
It remains to show that this symmetry-closed matrix N still satisfies condition (i), i.e.
that Ker(N) ∩ Im(M [y]) = M [y] · StabE([y] ∩ x). We have Ker(N) ∩ Im(M [y]) ⊆
M [y]·StabE([y]∩x) because for any vector v /∈M [y]·StabE([y]∩x), either v /∈ Im(M [y]),
or if v ∈ Im(M [y]), then N ′ ·v 6= 0 because Ker(N ′)∩Im(M [y]) = M [y] ·StabE([y]∩x).
Since N ′ is a submatrix of N , we also have N · v 6= 0, so v /∈ Ker(N). Therefore,
Ker(N)∩Im(M [y]) ⊆M [y] ·StabE([y]∩x). It remains to show: M [y] ·StabE([y]∩x) ⊆
Ker(N) ∩ Im(M [y]). So let v ∈ M [y] · StabE([y] ∩ x). Then N ′ · v = 0. We have to
prove that for every row N ′i− and every π ∈ g[y](StabG([y] ∩ x)), we have π(N ′i−) · v = 0.
It holds (see Proposition 8.6.3):

π(N ′i−) · v = π−1(π(N ′i−)) · π−1v = N ′i− · π−1v = 0.

The final equality holds because Ker(N ′) = M [y] · StabE([y] ∩ x), and π−1v ∈ M [y] ·
StabE([y] ∩ x) by Lemma 8.6.9. Since each row of N is of the form π(N ′i−) for some
row i of N ′ and π ∈ g[y](StabG([y] ∩ x)), we have shown that M [y] · StabE([y] ∩ x) ⊆
Ker(N) ∩ Im(M [y]).

167

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

This lemma shows that there exists a Boolean matrix satisfying conditions (i) and
(ii), so it is indeed possible to pick a smallest one for N [x][y]. The trouble is that we
do not know a priori how small it is. Therefore, the construction of Ĉ(µ) that we are
describing does not come with a guaranteed size bound. Later on in Section 8.6.3 we
will get back to the choice of N [x][y] and show how we can bound its size in case that
StabE([y] ∩ x) has a symmetric basis. The idea will be that the size of the closure of N ′

under the action of g[y](StabG([y]∩ x)) can be bounded then, because the symmetries of
the basis of StabE([y] ∩ x) “propagate” through the equation systems Ai · x = bi that
are used to define the rows of N ′.

Since at least one matrix satisfying (i) and (ii) exists, N [x][y] can indeed be de-
fined as the smallest one. Remember that this definition was for a fixed [y] ∈ C[x].
Now let [y′] ∈ Ω[y], and [x′] ∈ Ω[x] such that [y′] ∈ C[x′] and such that there is a
π ∈ StabG(µ) with π([y] ∩ x) = [y′] ∩ x′ (it may be that [x′] = [x]). Set π[x′][y′] := π, so
we can refer back to this particular permutation in the future. We set J[x′][y′] :=
{(i, [x′], [y′]) | i ∈ [m]}. Here, m still denotes the number of rows of the previ-

ously defined N [x][y]. Let N [x′][y′] be the Boolean matrix in F
J[x′][y′]×I[y′]
2 such that

(N [x′][y′])(k,[x′],[y′]),g[y](π[x′][y′])(i)
= (N [x][y])(k,[x],[y]),i for every i ∈ I[y] and k ∈ [m]. We

will usually write N([x′][y′])k,− instead of (N [x′][y′])(k,[x′],[y′]),− to denote the k-th row of
the matrix. In this way, we define the matrices N [x′][y′] for all [y′] ∈ Ω[y], i.e. their rows
are simply permutations of the rows of N [x][y]. We will call the ∼-class [y] ∈ C[x], that
we arbitrarily chose as the first one in its orbit to define N [x][y] with Lemma 8.6.10, the
primer of the orbit Ω[y]. We proceed to pick a new primer [y] ∈ C[x] for which N [x][y]
has not been defined so far, and repeat the construction for [y] and its orbit Ω[y]. This
is done until N [x][y] is defined for every [y] ∈ C[x] and for every [y′] ∈ C[x′], for every
[x′] ∈ Ω[x].

We show that the defined matrices have the desired properties:

Lemma 8.6.11. Let [x′] ∈ Ω[x] and [y′] ∈ C[x′]. Then

Ker(N [x′][y′] ·M [y′]) = StabE([y′] ∩ x′).

Proof. Let [y] ∈ C[x] be the primer of the orbit Ω[y′] that was used in the matrix
construction. Then [y′] = π[x′][y′][y] and [x′] = π[x′][y′][x]. If [y′] = [y], then π[x′][y′] is
the identity permutation in Sym(V). For ease of notation, we write π := π[x′][y′] in the
following. By Lemma 8.6.7, we have

StabE([y′] ∩ x′) = StabE(π[y] ∩ πx) = π(StabE([y] ∩ x)).

By definition of N [x][y], and because Ker(M [y]) = StabE(y) ≤ StabE([y]∩ x), we have
Ker(N [x][y] ·M [y]) = StabE([y] ∩ x). It holds M [y′] = (g[y](π), π)M [y] (item (c) of the

inductive hypothesis). So for any vector v ∈ FE2 , we have M [y′] · π(v) = g[y](π)(M [y] · v).

Here, g[y](π) acts on a vector w ∈ FI[y]

2 by mapping it to a vector w′ ∈ F
I[y′]
2 with

168

8.6 Extending the circuit construction to non-CFI-symmetric sets

w′(g[y](π)(i)) = w(i) for every i ∈ I[y]. By definition, we have for the k-th row of
N [x′][y′]: N([x′][y′])k,− = g[y](π)(N([x][y])k,−). In total, this means that for every

v ∈ FE2 , it holds:

N([x′][y′])k,− ·M [y′] · π(v) = N([x][y])k,− ·M [y] · v.

Therefore, Ker(N [x′][y′] · M [y′]) = π(Ker(N [x][y] · M [y])) = π(StabE([y] ∩ x)) =
StabE([y′] ∩ x′).

Lemma 8.6.12. Let [x′] ∈ Ω[x] and [y′] ∈ C[x′]. There exists a homomorphism h′ from
g[y′](StabG([y′] ∩ x′)) ≤ Sym(I[y′]) into the symmetric group on the row index set of
N [x′][y′] such that for every σ ∈ g[y′](StabG([y′] ∩ x′)), it holds (h′(σ), σ)(N [x′][y′]) =
N [x′][y′].

Proof. Let [y] ∈ C[x] be the primer of Ω[y′]. Let π[x′][y′] ∈ StabG(µ) be the permutation
that was used to define N [x′][y′] from N [x][y]. For the matrix N [x][y], there exists such a
homomorphism h : g[y](StabG([y] ∩ x)) −→ Sym(J[x][y]) by definition of the matrix. We
define the desired homomorphism h′ : g[y′](StabG([y′] ∩ x′)) −→ Sym(J[x′][y′]) as follows.
For every π ∈ StabG([y′] ∩ x′) and every (i, [x′], [y′]) ∈ J[x′][y′], let

h′(g[y′](π))(i, [x′], [y′]) := (j, [x′], [y′]),

where j is the number such that

h(g[y](π
−1
[x′][y′] ◦ π ◦ π[x′][y′]))(i, [x], [y]) = (j, [x], [y]).

For every π ∈ StabG([y′] ∩ x′), h′(g[y′](π)) is indeed a permutation in Sym(J[x′][y′]),
because N [x][y] and N [x′][y′] have the same number of rows (and the index sets J[x][y]

and J[x′][y′] differ only with respect to the second and third entry of the index triples),

and (π−1
[x′][y′] ◦π ◦π[x′][y′]) ∈ StabG([y]∩x), so h(g[y](π

−1
[x′][y′] ◦π ◦π[x′][y′])) is a permutation

on the rows of N [x][y].
The fact that h′ is a group homomorphism follows directly from the fact that h is one,
and because (π−1

[x′][y′] ◦ π1 ◦ π[x′][y′]) ◦ (π−1
[x′][y′] ◦ π2 ◦ π[x′][y′]) = π1 ◦ π2.

Finally, we have to show that for every σ ∈ g[y′](StabG([y′]∩x′)), it holds (h′(σ), σ)(N [x′][y′]) =
N [x′][y′]. To prove this, we show that N [x′][y′]h′(σ)(j,[x′],[y′]),σ(i) = N [x′][y′](j,[x′],[y′]),i for
every (j, [x′], [y′]) ∈ J[x′][y′] and i ∈ I[y′]. In the following, we will use that by definition
of N [x′][y′], we have: N [x′][y′] = (id, g[y](π[x′][y′]))(N [x][y]). Let σ = g[y′](π) = g[y](π) for
a π ∈ StabG([y′] ∩ x′). Then for any (j, [x′], [y′]) ∈ J[x′][y′], i ∈ I[y′], we obtain:

N [x′][y′]h′(σ)(j,[x′],[y′]),σ(i) = (N [x][y])h(g[y](π
−1
[x′][y′]◦π◦π[x′][y′]))(j,[x],[y]),(g[y](π[x′][y′])

−1◦σ)(i)

= (N [x][y])h(g[y](π
−1
[x′][y′]◦π◦π[x′][y′]))(j,[x],[y]),g[y](π

−1
[x′][y′]◦π◦π[x′][y′])(i

′)

= (N [x][y])(j,[x],[y]),i′ .

In the second step, we used that σ(i) = g[y′](π)(i), and we replaced i ∈ I[y′] with
g[y](π[x′][y′])(i

′) for some i′ ∈ I[y] (which can be done because of item (c) of the induction

169

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

hypothesis for I[y] and I[y′] = Iπ[x′][y′][y]). We also used that g[y] is a group homomorphism.

The last step holds because we already know that h satisfies the property that we are
trying to prove for h′, i.e. (h(σ′), σ′)N [x][y] = N [x][y] for any σ′ ∈ g[y](StabG([y] ∩ x))
(this is by construction of N [x][y] and h). We can continue the equation, using the
definition of N [x′][y′] again:

(N [x][y])(j,[x],[y]),i′ = (N [x′][y′])(j,[x′],[y′]),g[y](π[x′][y′])(i
′)

= (N [x′][y′])(j,[x′],[y′]),i.

This proves that (h′(σ), σ)(N [x′][y′]) = N [x′][y′], as desired.

Lemmas 8.6.11 and 8.6.12 assert that all the constructed matrices N [x′][y′] satisfy the
properties (i) and (ii) that N [x][y] has by construction.
Now let

JΩ[x]
:=

⋃
[x′]∈Ω[x]

[y′]∈C[x′]

J[x′][y′].

We provide a group homomorphism h[x] : StabG(µ) −→ Sym(JΩ[x]
) such that for each

[x′] ∈ Ω[x] and each [y′] ∈ C[x′], it holds h[x](π)(J[x′][y′]) = Jπ[x′]π[y′]. Furthermore, we
want that (Nπ[x′]π[y′]) = (h[x](π), g[x](π))N [x′][y′] for each [x′] ∈ Ω[x], [y′] ∈ C[x′], and
π ∈ StabG(µ). For each triple (k, [x′], [y′]) ∈ JΩ[x]

, we set:

h[x](π)(k, [x′], [y′]) := (`, π[x′], π[y′]),

where ` is defined as follows: Let

t := |{i ∈ {1, 2, ..., k − 1} | (N [x′][y′])i,− = (N [x′][y′])k,−}|.

That is, for the k-th row of N [x′][y′], there are t rows identical to it with a smaller index.
Then ` is defined such that

|{i ∈ {1, 2, ..., `− 1} | (Nπ[x′]π[y′])i,− = g[y′](π)((N [x′][y′])k,−)}| = t,

and such that (Nπ[x′]π[y′])`,− = g[y′](π)((N [x′][y′])k,−). In other words, ` is the (t+ 1)st
row of Nπ[x′]π[y′] which is equal to the k-th row of N [x][y], up to a permutation of the
columns given by g[y′](π).
We have to argue that h[x](π)(k, [x′], [y′]) is indeed well-defined:

Lemma 8.6.13. Let [x′] ∈ Ω[x], [y
′] ∈ C[x′]. Let π ∈ StabG(µ). Then for every

(k, [x′], [y′]) ∈ J[x′][y′], the number of rows of N [x′][y′] which are equal to the k-th row is
the same as the number of rows of Nπ[x′]π[y′] that are equal to the k-th row of N [x′][y′],
up to application of g[y′] to the columns. Formally:

|{(i, [x′], [y′]) ∈ J[x′][y′] | (N [x′][y′])(i,[x′],[y′]),− = (N [x′][y′])k,−}|
=|{(i, π[x′], π[y′]) ∈ Jπ[x′]π[y′] | (Nπ[x′]π[y′])(i,π[x′],π[y′]),− = g[y′]((N [x′][y′])k,−)}|

170

8.6 Extending the circuit construction to non-CFI-symmetric sets

Proof. Let [y] ∈ C[x] be the primer of Ω[y′], and write σ := π[x′][y′], σ
′ := ππ[x′]π[y′].

So these are the two permutations in StabG(µ) that were used to construct N [x′][y′]
and Nπ[x′]π[y′] from N [x][y]. By construction of these matrices, it holds N [x′][y′] =
(id, g[y](σ))(N [x][y]) and N [x′][y′] = (id, g[y](σ

′))(N [x][y]). Thus, (Nπ[x′]π[y′])k,− =
(g[y](σ

′) ◦ g[y](σ)−1)((N [x′][y′])k,−). Since g[y] is a group homomorphism, we can also
write this as:

(Nπ[x′]π[y′])k,− = g[y](σ
′ ◦ σ−1)((N [x′][y′])k,−) (?)

If σ′ ◦ σ−1 were equal to π, then this would suffice to prove the lemma. However, we only
know that (σ′ ◦ σ−1)([y′] ∩ x′) = π([y′] ∩ x′). We use this to show the following
Claim: Let m be the number of rows of N [x′][y′] and Nπ[x′]π[y′]. There exists a
permutation ϑ ∈ Symm such that (Nπ[x′]π[y′])ϑ(k),− = g[y](π)((N [x′][y′])k,−), for every
k ∈ [m].
Proof. It holds that (π ◦ σ ◦ (σ′)−1) ∈ StabG(π[y′] ∩ πx′). By Lemma 8.6.12, there
exists a ϑ ∈ Symm such that (ϑ, g[y](π ◦ σ ◦ (σ′)−1)))(Nπ[x′]π[y′]) = Nπ[x′]π[y′].
It holds σ ◦ (σ′)−1 = (σ′ ◦ σ−1)−1. Thus, by (?) we have: (N [x′][y′])k,− = g[y](σ ◦
(σ′)−1)((Nπ[x′]π[y′])k,−). It follows that (Nπ[x′]π[y′])ϑ(k),− = g[y](π)(N [x′][y′])k,− for
every k ∈ [m]. This proves the claim.
The claim entails the lemma because g[y′] = g[y] (as Ω[y] = Ω[y′]), and so we know that
the rows of Nπ[x′]π[y′] are the rows of N [x′][y′], with an application of g[y′](π) to the
columns, and a potential reordering of the rows.

This lemma shows that we can indeed define h[x] as we did. Now we have to verify
that h[x] is a group homomorphism with the desired properties:

Lemma 8.6.14. The mapping h[x] : StabG(µ) −→ Sym(JΩ[x]
) is a group homomorphism.

For every [x′] ∈ Ω[x], [y′] ∈ C[x′] and each π ∈ StabG(µ), it holds h[x](π)(J[x′][y′]) =
Jπ[x′]π[y′]. Furthermore, Nπ[x′]π[y′] = (h[x](π), g[y′](π))N [x′][y′] for each [x′] ∈ Ω[x],
[y′] ∈ C[x′], and π ∈ StabG(µ).

Proof. First, we show that h[x] is a group homomorphism. It can be seen directly from
the definition that the identity permutation in StabG(µ) is mapped to the identity
permutation in Sym(JΩ[x]

). Now let π, π′ ∈ StabG(µ). Let (k, [x′], [y′]) ∈ JΩ[x]
. Then

h[x](π
′ ◦ π)(k, [x′], [y′]) = (`, (π′ ◦ π)[x′], (π′ ◦ π)[y′]), where ` is such that

(N(π′ ◦ π)[x′](π′ ◦ π)[y′])`,− = g[y](π
′ ◦ π)(N [x′][y′]k,−),

and there are exactly t rows identical to it with an index < ` in N(π′ ◦ π)[x′](π′ ◦ π)[y′].
As in the definition, t denotes the number of rows in N [x′][y′] with an index < k that are
identical to (N [x′][y′])k,−. Now we want to argue that (h[x](π

′) ◦ h[x](π))(k, [x′], [y′]) =
(`, (π′ ◦ π)[x′], (π′ ◦ π)[y′]) = h[x](π

′ ◦ π)(k, [x′], [y′]).
We have h[x](π)(k, [x′], [y′]) = (`1, π[x], π[y]), where `1 is the row index in Nπ[x′]π[y′]
such that

(Nπ[x′]π[y′])`1,− = g[y](π)(N [x′][y′]k,−),

and there are again exactly t identical rows with index < `1 in Nπ[x′]π[y′]. Thus we
have h[x](π

′)(`1, π[x′], π[y′]) = (`2, (π
′ ◦ π)[x′], (π′ ◦ π)[y′]), where `2 is the row index in

171

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

N(π′ ◦ π)[x′](π′ ◦ π)[y′] such that

(N(π′ ◦ π)[x′](π′ ◦ π)[y′])`2,− = g[y](π
′ ◦ π)(N [x′][y′]k,−),

and such that there are exactly t identical rows with index < `2 in N(π′ ◦π)[x′](π′ ◦π)[y′].
In the equation above we used that g[y](π

′) ◦ g[y](π) = g[y](π
′ ◦ π), because g[y] is a group

homomorphism. Now we see that `2 = ` because the row (N [x′][y′])k− is always mapped
to the respective (t+ 1)-st row of the same kind in each matrix. This is what we had
to show. Similarly one can see that h−1

[x] (π) = h[x](π
−1). This shows that h[x] is a group

homomorphism.

It remains to prove: For every [x′] ∈ Ω[x] and each [y′] ∈ C[x′], it holds h[x](π)(J[x′][y′]) =
Jπ[x′]π[y′]. This is true by the definition of h[x] and Lemma 8.6.13. The fact that
(Nπ[x′]π[y′])h[x](π)(j),g[x](π)(i) = N [x′][y′]j,i for each [x′] ∈ Ω[x], [y′] ∈ C[x′], π ∈ StabG(µ),
i ∈ I[x′], and j ∈ J[x′][y′] is also true by definition.

This finishes the construction and correctness proof of the matrices N [x′][y′] for all
[x′] ∈ Ω[x] and [y′] ∈ C[x′] and of the associated homomorphism h[x] : StabG(µ) −→ JΩ[x]

.
Items (b) and (d) of the inductive step are thus covered. To complete the inductive step
we still have to define the matrices M [x′] for all [x′] ∈ Ω[x].

Definition of the M-matrices Let [x′] ∈ Ω[x]. Informally, M [x′] is obtained by collecting
all the rows of the matrices (N [x′][y′]·M [y′]), for all [y′] ∈ C[x′], and putting them together
as the rows of M [x′]. Formally, let

I[x′] :=
⊎

[y′]∈C[x′]

J[x′][y′].

Note that by construction, the sets J[x′][y′], J[x′][y′′] are pairwise disjoint if [y′] 6= [y′′].

Then the rows of M [x′] ∈ F
I[x′]×E
2 are defined as follows: For [y′] ∈ C[x′] and (i, [x′], [y′]) ∈

J[x′][y′], we let
M [x′](i,[x′],[y′]),− := (N [x′][y′] ·M [y′])(i,[x′],[y′]),−.

This matrix has the desired kernel:

Lemma 8.6.15. For every [x′] ∈ Ω[x], the matrix M [x′] defined as above satisfies:

Ker(M [x′]) = StabE(x′).

Proof. By definition of M [x′], a vector v ∈ FE2 is in Ker(M [x′]) if and only if v ∈
Ker(N [x′][y′] ·M [y′]) for all [y′] ∈ C[x′]. By Lemma 8.6.11, this is the case iff v ∈
StabE([y′] ∩ x′), for all [y′] ∈ C[x′]. That is to say,

v ∈
⋂

[y′]∈C[x′]

StabE([y′] ∩ x′).

This is equivalent to v ∈ StabE(x′) because x′ =
⋃

[y′]∈C[x′]([y
′] ∩ x′) (see Proposition

8.4.5).

172

8.6 Extending the circuit construction to non-CFI-symmetric sets

Finally, we have to provide the homomorphism g[x] : StabG(µ) −→ Sym(IΩ[x]
), where

IΩ[x]
=
⊎

[x′]∈Ω[x]
I[x′]. Note that IΩ[x]

= JΩ[x]
by definition of the index sets I[x′]. Therefore

we can simply set g[x] := h[x]. This homomorphism indeed satisfies the desired properties:

Lemma 8.6.16. For each [x′] ∈ Ω[x] and each π ∈ StabG(µ), it holds g[x](π)(I[x′]) =
Iπ[x′]. Furthermore, Mπ[x′] = (g[x](π), π)M [x′].

Proof. Let π ∈ StabG(µ) and [x′] ∈ Ω[x]. Due to Lemma 8.6.4, π[x′] is again a ∼-class
in tc(µ). Because π extends to an automorphism of µ, it also holds

π(C[x′]) = {π[y′] | [y′] ∈ C[x′]} = C(π[x′]).

Hence, by Lemma 8.6.14, h[x](π) maps the set I[x′] =
⊎

[y′]∈C[x′] J[x′][y′] to the set Iπ[x′] =⊎
π[y′]∈Cπ[x′] Jπ[x′]π[y′]. It remains to show (Mπ[x′])g[x](π)(i),π(e) = M [x′]i,e for each i =

(j, [x′], [y′]) ∈ I[x′], and e ∈ E. By definition of the M -matrices, we have:

(Mπ[x′])g[x](π)(i),π(e) = (Mπ[x′])(j′,π[x′],π[y′]),π(e) = (Nπ[x′]π[y′] ·Mπ[y′])(j′,π[x′],π[y′]),π(e)

= (N [x′][y′] ·M [y′])(j,[x′],[y′]),e = M [x′]i,e.

Here, j′ is such that (j′, π[x′], π[y′]) = g[x](π)(j, [x′], [y′]) = h[x](π)(j, [x′], [y′]). The final
equality holds for the following reason: (Nπ[x′]π[y′]·Mπ[y′])(j′,π[x′],π[y′]),π(e) is the product
of row j′ of Nπ[x′]π[y′] with column π(e) of Mπ[y′]. The lemma we are currently proving
already holds for M [y′] by induction hypothesis, so (Mπ[y′])−π(e) = g[y′](π)(M [y′]−e).
Also, we have (Nπ[x′]π[y′])j′,− = g[y′](π)((N [x′][y′])j,−) by Lemma 8.6.14. Then Proposi-
tion 8.6.3 tells us that (Nπ[x′]π[y′])j′,− ·(Mπ[y′])−,π(e) = (N [x′][y′])j,− ·(M [y′])−e because
these vector products are really the same sums of products, where the summands are
just reordered by g[y′](π).

8.6.2 Construction of the circuit

We construct the circuit Ĉ(µ) = (VC , EC) from the matrices that we have defined in the
previous section. The set of gates is

VC :=
⊎

x∈tc(µ)

(i,[x],[y])∈I[x]

gi,[x],[y].

So every row of any of the M [x]-matrices with index (i, [x], [y]) will correspond to a gate
gi,[x],[y]. The construction will ensure that

χ(X (gi,[x],[y])) = M [x]T(i,[x],[y]),−.

Thus, the gate will compute the XOR over precisely the input gates labelled with edges
that have a 1-entry in the row M [x](i,[x],[y]),−.

173

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

For every atom x ∈ tc(µ), we have I[x] = {[x]}. We define the corresponding gate g[x]

as an input gate of Ĉ(µ) with `(g[x]) = e, where e ∈ E is the edge such that [x] ⊆ {e0, e1}.

If x ∈ tc(µ) is not an atom, then for every (i, [x], [y]) ∈ I[x], gi,[x],[y] is an internal
gate that has incoming wires from exactly those gates gj,[y],[z] such that the matrix
N [x][y] has a 1-entry in row (i, [x], [y]) and column (j, [y], [z]). Note that (j, [y], [z]) ∈ I[y],
so [z] ∈ C[y]. Formally, the set of children of gi,[x],[y] is:

gi,[x],[y]EC := {gj,[y],[z] | (j, [y], [z]) ∈ I[y], (N [x][y])(i,[x],[y]),(j,[y],[z]) = 1}.

It remains to specify the root of Ĉ(µ). Consider the matrix M [µ]. Let (i, [µ], [y]) be a
row of M [µ] with a maximum number of one-entries. We define the root r to be the gate
gi,[µ],[y].

The figure below shows the matrices and XOR-gates for an object x consisting of two
connected components [y] ∩ x and [y′] ∩ x. The matrices N [x][y] and N [x][y′] have just
one row each in this example, and we are assuming that C[y] = {[z]} and C[y′] = {[z′]},
and that M [y] = N [y][z] ·M [z] has three rows and M [y′] = N [y′][z′] ·M [z′] has two rows.

x = {y1, y2︸ ︷︷ ︸, y′1, y′2︸ ︷︷ ︸}
[y] [y′]

M [x] =

[
(N [x][y] ·M [y])
(N [x][y′] ·M [y′])

]

M [y] M [y′]

N [x][y] =
[

1 1 1
]

N [x][y′] =
[

1 0
]

⊕g1,[x],[y]

⊕g1,[x],[y′]

⊕g1,[y],[z]

⊕g2,[y],[z]

⊕g3,[y],[z]

⊕g1,[y′],[z′]

⊕g2,[y′],[z′]

Figure 8.1: Example showing how the XOR-gates are connected according to the N -
matrices.

174

8.6 Extending the circuit construction to non-CFI-symmetric sets

Now we prove that Ĉ(µ) has the desired properties.

Lemma 8.6.17. Every π ∈ StabG(µ) extends to an automorphism of the circuit Ĉ(µ),
that is:

StabG(µ) ≤ StabG(Ĉ(µ)).

Proof. Let π ∈ StabG(µ). We claim that the following mapping σ : VC −→ VC is an
automorphism of Ĉ(µ) that π extends to. We let

σ(gi,[x],[y]) := gg[x](π)(i,[x],[y]),

where g[x] : StabG(µ) −→ Sym(IΩ[x]
) is the group homomorphism for Ω[x] from the

construction of the matrices in the previous subsection. We have to show three things
about σ. Firstly, that σ ∈ Sym(VC). Secondly, that σ maps wires to wires and non-wires
to non-wires of Ĉ(µ). Finally, that for every input gate g[x] it holds: `(σ(g[x])) = π(`(g[x])).
This last statement actually follows directly from the definition of g[x] for atoms x ∈ tc(µ):
If [x] ⊆ {e0, e1}, then π(`(g[x])) = π(e), and g[x](π)([x]) = π[x] ⊆ {π(e0), π(e1)}, so
`(σ(g[x])) = π(e).
The fact that σ ∈ Sym(VC) follows because for each orbit Ω[x], we have that g[x](π) ∈
Sym(IΩ[x]

), and the set of gates VC can be partitioned into these orbits so that each part
has the form {gi,[x′],[y] | (i, [x′], [y]) ∈ IΩ[x]

}, for some orbit Ω[x].
It remains to prove that σ preserves the wire structure of the circuit. For any two gates
gi,[x],[y],gj,[x′],[y′], we have

(gi,[x],[y],gj,[x′],[y′]) ∈ EC if and only if [y] = [x′] and (N [x][y])(i,[x],[y]),(j,[y],[y′]) = 1.

The latter equation holds if and only if

(Nπ[x]π[y])h[x](π)(i,[x],[y]),g[y](π)(j,[y],[y′]) = 1.

This is true by Lemma 8.6.14. If [x′] = [y], then we have σ(gj,[x′],[y′]) = gg[y](π)(j,[y],[y′]).

Furthermore, it holds σ(gi,[x],[y]) = gg[x](π)(i,[x],[y]). By the definition in the previous

section, g[x] = h[x], and it holds that g[x](π)(i, [x], [y]) is of the form (`, π[x], π[y]), and
g[y](π)(j, [y], [y′]) is of the form (`′, π[y], π[y′]), so these are indeed row- and column-indices
of the matrix Nπ[x]π[y]. So altogether, the above equation is equivalent to

(σgi,[x],[y], σgj,[x′],[y′]) ∈ EC .

As in the case of the circuit C(µ), this lemma implies that the orbit-size of Ĉ(µ) cannot
be greater than the orbit-size of µ (here, OrbG(µ) again refers to the Aut(G)-orbit and
not to the StabG(µ)-orbit, which would be pointless).

Corollary 8.6.18.

|OrbG(Ĉ(µ))| ≤ |OrbG(µ)|.

175

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

Proof. Analogous to the proof of Corollary 8.4.4.

Lemma 8.6.19. For every internal gate g := gi,[x],[y] ∈ VC it holds:

X (g) = χ−1(M [x]T(i,[x],[y]),−).

Proof. By induction. For each input gate g[x] with [x] ⊆ {e0, e1} we have X (g[x]) = {e}.
Now let g = gi,[x],[y] be an internal gate. By definition of Ĉ(µ), it holds

gEC = {gj,[y],[z] | (j, [y], [z]) ∈ I[y], (N [x][y])(i,[x],[y]),(j,[y],[z]) = 1}.

Thus,

X (g) =
i

(j,[y],[z])∈I[y],

(N [x][y])(i,[x],[y]),(j,[y],[z])=1

X (gj,[y],[z])

= χ−1
(∑

(j,[y],[z])∈I[y],

(N [x][y])(i,[x],[y]),(j,[y],[z])=1

χ(X (gj,[y],[z])) mod 2
)

= χ−1(((N [x][y])(i,[x],[y]),− ·M [y])T).

The last step uses the induction hypothesis and the fact that I[y] is the row-index-set
of M [y]. By the definition of the matrix M [x] in the previous subsection, we have
(N [x][y])(i,[x],[y]),− ·M [y] = M [x](i,[x],[y]),−. This finishes the proof.

Lemma 8.6.20. The fan-in dimension of Ĉ(µ) is at most log(maxOrbE(µ)).

Proof. Consider any gate g := gi,[x],[y] ∈ VC . By definition of Ĉ(µ), the children of g are

gEC = {gj,[y],[z] | (j, [y], [z]) ∈ I[y], (N [x][y])(i,[x],[y]),(j,[y],[z]) = 1}.

By Lemma 8.6.19, we have for each of these children:

X (gj,[y],[z]) = χ−1(M [y](j,[y],[z]),−).

Thus, the gate matrix Mg ∈ FgEC×E2 is a submatrix of M [y]: It consists precisely of
those rows (j, [y], [z]) of M [y] such that (N [x][y])(i,[x],[y]),(j,[y],[z]) = 1. Therefore,

rk(Mg) ≤ rk(M [y]).

Now we can argue as in the proof of Lemma 8.4.7 in order to bound rk(M [y]). Using
the Orbit-Stabiliser Theorem, we obtain again:

log(maxOrbE(µ)) ≥ |E| − dim StabE(y).

By Lemma 8.6.15, we have Ker(M [y]) = StabE(y). Therefore, with the Rank Theorem
we get:

rk(M [y]) = |E| − dim StabE(y) ≤ log(maxOrbE(µ)).

In total, we have rk(Mg) ≤ log(maxOrbE(µ)). Since g ∈ VC was arbitrary, this is a
bound on the fan-in dimension of Ĉ(µ).

176

8.6 Extending the circuit construction to non-CFI-symmetric sets

Lemma 8.6.21. For the root r of Ĉ(µ), it holds

|X (r)| ≥ | supCFI(µ)|
log(maxOrbE(µ))

.

Proof. By definition of Ĉ(µ), we have r = gi,[µ],[y] for some (i, [µ], [y]) ∈ I[µ] such that
M [µ](i,[µ],[y]),− is a row with a maximum number of 1-entries. We have

X (r) = χ−1(M [µ]T(i,[µ],[y]),−)

according to Lemma 8.6.19. Therefore, we have to show that M [µ] has a row with at

least | supCFI(µ)|
log(maxOrbE(µ)) many 1-entries.

Claim: For every e ∈ supCFI(µ) there is a row of M [µ] which is non-zero in col-
umn e.
Proof of claim: Since supCFI(µ) is the minimal CFI-support of µ, χ(e) /∈ StabE(µ).
Otherwise there is a smaller support not containing e. Suppose for a contradiction that
all rows of M [µ] are zero in column e. Then χ(e) ∈ Ker(M [µ]). But this contradicts the
fact that Ker(M [µ]) = StabE(µ) (Lemma 8.6.15). This proves the claim.
Now take a subset B of the rows of M [µ] that forms a basis of the row space of M [µ].
By Lemma 8.6.20, we have |B| ≤ log(maxOrbE(µ)). For every e ∈ E such that some
row of M [µ] is non-zero in column e, there must also be a row in B that is non-zero in
column e (else B does not generate the whole row space). So by the claim and by the

size bound on B, there is a row in B with at least | supCFI(µ)|
log(maxOrbE(µ)) many 1-entries.

So far we have shown Properties 1, 2 and 3 from Theorem 8.6.1. Property 1 is
proved by Corollary 8.6.18, Property 2 by Lemma 8.6.21, and Property 3 by Lemma
8.6.20. It remains to estimate the size of the circuit under the assumption that every
space StabE([y] ∩ x) has a symmetric basis.

8.6.3 Bounding the size of the circuit

Lemma 8.6.22. Let Atoms(µ) ⊆ tc(µ) denote the set of atoms in tc(µ), and Sets(µ) :=
tc(µ) \Atoms(µ). The size of Ĉ(µ) is

|VC | = |{e ∈ E | e0 or e1 ∈ Atoms(µ)}|+
∑

([x],[y]),x∈Sets(µ),

[y]∈C[x]

|J[x][y]|.

In other words: The size of Ĉ(µ) is determined by the total number of rows of all
N [x][y]-matrices.

Proof. By definition of Ĉ(µ), |VC | =
∑

[x],x∈tc(µ) |I[x]|. For each x ∈ tc(µ) ∩ Sets(µ), we
have |I[x]| =

∑
[y]∈C[x] |J[x][y]|. Every set J[x][y] is exclusively associated with the pair

([x], [y]), so ∑
[x],x∈tc(µ)

|I[x]| =
∑

([x],[y]),x∈Sets(µ),

[y]∈C[x]

|J[x][y]|.

177

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

For each atomic x ∈ tc(µ), |I[x]| = 1.

Hence, in order to bound |VC |, we have to bound the number of rows of each of the
N [x][y]-matrices. To do so, we revisit the proofs of Lemmas 8.6.8 and 8.6.10. We will see
that the matrix that is constructed in these lemmas can be chosen to have polynomial
size if a symmetric basis for StabE([y] ∩ x) exists. The first step in the construction of
N [x][y] in Lemma 8.6.8 is to solve a family of linear equation systems. We now show
that the symmetries of such systems correspond to symmetries of their solutions.

Lemma 8.6.23. Let I, J be abstract index sets and A,A′ ∈ FI×J2 ,b,b′ ∈ FI2 such that
the linear equation systems A · x = b and A′ · x = b′ each have a unique solution s, s′,
respectively. Let G ≤ Sym(J) be a permutation group acting on the columns of A. Let
π ∈ G a permutation that maps the row-set of the extended coefficient matrix (A|b)

R = {(Ai−,bi) | i ∈ I}

to the row-set R′ of (A′|b′). Here, the action of π on R is π(Ai−,bi) := (π(Ai−),bi).
Then π(s) = s′.

Proof. We only have to show that π(s) is a solution of A′ ·x = b′. Then we have π(s) = s′

by uniqueness of the solution. If π ∈ G maps R to R′, then there is a permutation
σ ∈ Sym(I) that is induced by the action of π, i.e. π(Ai−,bi) = (A′σi,−,b

′
σi) for all i ∈ I.

For every i ∈ I, it holds Ai− · s = bi, because s is a solution to the equation system.
Since (by Proposition 8.6.3) Ai− · s = π(Ai−) · π(s) = A′σi− · π(s), and bi = b′σi, π(s) is a
solution to the equation A′σi− · x = b′σi. Since every row of (A′|b′) has such a preimage
under π, it follows that π(s) is a solution for every equation in A′ ·x = b′. By assumption,
the equation system has a unique solution. Therefore, π(s) = s′.

The next lemma will become interesting once we are dealing with symmetric bases of
vector spaces. It shows that the permutation invariance of a set of vectors (for example a
symmetric basis) is preserved under linear maps and appropriate group homomorphisms.

Lemma 8.6.24. Let M ∈ FI×J2 and let G ≤ Sym(J) be a permutation group acting
on the columns of M . Let B ⊆ FJ2 be a set of vectors and S := StabG(B). Let
g : G −→ Sym(I) be a group homomorphism such that for all π ∈ G, (g(π), π)M = M .
Then g(S) stabilises the set M ·B = {M · v | v ∈ B}.

Proof. Let π ∈ S and v ∈ B. Let w = M · v. We show that (g(π))−1(w) = M · π(v).
For each i ∈ I, we have

Mi,− · π(v) = π(M(g(π))(i),−) · π(v) = M(g(π))(i),− · v.

The first equality holds because (g(π), π)M = M by assumption and the second one is
due to Proposition 8.6.3. It follows that g(π)(M · π(v)) = M · v = w. So (g(π))−1(w) =
M · π(v). We have π(v) ∈ B because π ∈ S. Therefore, (g(π))−1(w) ∈M ·B. Because
w = M ·v was arbitrary, we know that (g(π))−1 = g(π−1) ∈ g(S) stabilises the set M ·B.
Since π ∈ S was also arbitrary, g(S) stabilises M ·B.

178

8.6 Extending the circuit construction to non-CFI-symmetric sets

Finally, we provide the exact definition of what we mean by a symmetric basis. This
definition is tailored to the spaces StabE([y] ∩ x) that occur for the objects in tc(µ).
When we say “symmetric basis”, we actually mean two bases: We require that both
the basis of StabE([y] ∩ x) as well as its extension to a basis of the ambient space be
symmetric. Symmetry is meant in the sense that the orbit must have polynomial size.

Definition 8.6.25. Let x ∈ tc(µ) and [y] ∈ C[x]. We say that the vector space Γ :=
StabE([y] ∩ x) ≤ FE2 has a symmetric basis if there exist two bases

BΓ ⊆ B

such that BΓ is a basis of Γ = StabE([y]∩ x) and B is a basis of FE2 , and such that: The
group

StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B) =

{π ∈ StabG([y] ∩ x) | π(BΓ) = BΓ and π(B) = B} ≤ StabG([y] ∩ x)

has index ≤ poly(|GS |) in StabG([y] ∩ x).

In the above definition, the polynomial poly(·) is of course meant to be fixed for the
whole family of CFI-instances that we are considering in Theorem 8.6.1. Now let us
continue with the main lemma that bounds the size of N [x][y] assuming the existence of
a symmetric basis.

Lemma 8.6.26. Let x ∈ tc(µ) and [y] ∈ C[x]. If StabE([y] ∩ x) has a symmetric basis,
then the number of rows of N [x][y] is polynomial in |GS |.

Proof. We show that there is a Boolean matrix N with a polynomial number of rows
which satisfies conditions (i) and (ii) from Lemma 8.6.10. This proves the lemma because
N [x][y] is defined as the smallest such matrix.
Consider the proof of Lemma 8.6.8. When applied to Γ = M [y] · StabE([y] ∩ x) and

∆ = M [y] · FE2 = Im(M [y]), the proof shows that there is a matrix N ∈ F[k]×I[y]

2 , for
k = dim(Im M [y]) − dim(M [y] · StabE([y] ∩ x)), such that Ker(N) ∩ Im(M [y]) =
M [y] · StabE([y] ∩ x). In the proof, k linear equation systems Ai · x = bi are defined,
each one with a unique solution. Then, for i ∈ [k], the i-th row of N is defined as the
unique solution to the equation system Ai · x = bi. The matrix Ai is the same for every
i ∈ [k]. It depends on the choice of a basis for M [y] · StabE([y] ∩ x) and an extension to
a basis of Im(M [y]). More precisely, let {w1, ...,wk} be the vectors that extend the basis
of M [y] · StabE([y] ∩ x) to a basis of Im(M [y]). The rows of Ai are the basis vectors of
Im(M [y]), and the vector bi has exactly one 1-entry in the row corresponding to wi. In
this way, bi is defined for every i ∈ [k].
One can check that this proof of Lemma 8.6.8 still goes through if one uses a generating
set for the space M [y] · StabE([y] ∩ x) instead of a basis for the rows of Ai – as long as
the extension {w1, ...,wk} to a basis of the full space Im(M [y]) is a linearly independent
set of vectors. This changes nothing and in particular, each equation system Ai · x = bi

179

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

will still have a unique solution because we have just added some redundant equations.

We choose appropriate bases now. Since StabE([y] ∩ x) has a symmetric basis by
assumption, there are bases BΓ ⊆ B of StabE([y] ∩ x) and FE2 , respectively, such
that StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B) has small index in StabG([y] ∩ x). Let
B′Γ := M [y] · BΓ \ {0} and B′ := M [y] · B \ {0}. Then B′Γ is a generating set for
M [y]·StabE([y]∩x), and B′\B′Γ extends this generating set to a basis of Im(M [y]). Impor-
tantly, B′\B′Γ is a linearly independent set of vectors (while B′Γ may be linearly dependent).
This is because Ker(M [y]) = StabE(y) (Lemma 8.6.15), and StabE(y) ≤ StabE([y]∩x).
Thus, if there were a subset K ⊆ B′ \ B′Γ such that

∑
K = 0, then the sum of the M [y]-

preimages of the vectors in K would be in Ker(M [y]) = StabE(y). This cannot be the
case because BΓ is a basis for StabE([y] ∩ x) ≥ StabE(y), so no linear combination of
vectors in B \ BΓ can be in StabE(y).

Now apply Lemma 8.6.24 to the matrix M = M [y] ∈ FI[y]×E
2 , G = StabG([y]∩x), B = BΓ

and the homomorphism g defined like this: g : StabG([y] ∩ x) −→ Sym(I[y]) maps any
π ∈ StabG([y] ∩ x) to the I[y]-restriction of the permutation g[y](π) ∈ Sym(IΩ[y]

). This
is well-defined and g(π) ∈ Sym(I[y]) because StabG([y] ∩ x) ≤ StabG([y]) by Corollary
8.6.5, and g[y](StabG([y])) maps I[y] to itself by Lemma 8.6.16.
Now it follows with Lemma 8.6.24 that g(StabStabG([y]∩x)(BΓ)) ≤ Sym(I[y]) stabilises

the set M [y] · BΓ ⊆ F
I[y]

2 . It holds B′Γ = M [y] · BΓ \ {0}, and the zero-vector forms a
singleton orbit with respect to permutations of the entries, so also B′Γ is stabilised by
g(StabStabG([y]∩x)(BΓ)). Similarly, by applying Lemma 8.6.24 to B = B, we get that
g(StabStabG([y]∩x)(B)) stabilises B′.
Every permutation π ∈ Sym(I[y]) that stabilises the sets B′Γ and B′ induces a permutation
σ ∈ Sym(B′), whose restriction to B′Γ is a permutation in Sym(B′Γ). Since the rows
of each coefficient matrix Ai are the vectors in B′, every π ∈ Sym(I[y]) that fixes B′
setwise reorders the rows of Ai. The right hand side bi has only one 1-entry in the row
corresponding to wi ∈ B′ \B′Γ. So if π also stabilises B′Γ, the action of π on (Ai|bi) moves
the row vector π−1(wi) ∈ B′ \ B′Γ to the row where bi has its 1-entry. Up to a reordering
of rows, this yields one of the other linear equation systems {(Ai|bi) | i ∈ [k]}, because in
some linear equation system, the equation with coefficient vector π−1(wi) has a 1 on the
right hand side. So any π that stabilises both B′Γ and B′ induces a permutation on the
set of linear equation systems {(Ai|bi) | i ∈ [k]} in the sense of Lemma 8.6.23 (with the
action of column permutations on the row set of an equation system as defined there).
Let

S := g(StabStabG([y]∩x)(BΓ)) ∩ g(StabStabG([y]∩x)(B)).

As we argued above, this group fixes both B′ and B′Γ. Therefore, it induces a permutation
on the equation systems and so Lemma 8.6.23 tells us that S also induces a corresponding
permutation on the set

{si ∈ F
I[y]

2 | si is the unique solution to Ai · x = bi}

(where S acts on these vectors by permuting the entries). These solution vectors form

180

8.6 Extending the circuit construction to non-CFI-symmetric sets

exactly the rows of the matrix N ∈ F[k]×I[y]

2 that is being constructed in the proof of
Lemma 8.6.8. Therefore, the group S acting on the columns of N induces corresponding
permutations on the rows of N . In other words, for every π ∈ S there is a σ ∈ Symk such
that (σ, π)N = N . Now we close the rows of N under the action of g(StabG([y] ∩ x)),
exactly like in the proof of Lemma 8.6.10. This yields a matrix satisfying the desired
conditions (a) and (b). We now argue that for each row of N , only poly(k + |GS |) many
rows are added to form the closure under g[y](StabG([y] ∩ x)).

To show this, we have to bound the size of Orb(Ni−) = {π(Ni−) | π ∈ g(StabG([y] ∩
x))}. Let Orb(N) denote the g(StabG([y] ∩ x))-orbit of the set of rows of N , and
Stab(N) ≤ g(StabG([y] ∩ x)) the setwise stabiliser of the set of rows. It holds
|Orb(Ni−)| ≤ k · |Orb(N)| because any image of the row Ni− is an element of at
least one of the k-element row sets in Orb(N). Together with the Orbit-Stabiliser
Theorem, we get

|Orb(Ni−)| ≤ k · |Orb(N)| = k · |g(StabG([y] ∩ x))|
|Stab(N)|

.

By what we argued above, we have S ≤ Stab(N) and thus

|g(StabG([y] ∩ x))|
|Stab(N)|

≤ |g(StabG([y] ∩ x))|
|S|

≤ |g(StabG([y] ∩ x))|
|g(StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B))|

.

The last inequality holds because g(StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B)) ≤ S. It
is known (see Lemma 4.1.1) that the application of a group homomorphism can only
decrease the index of H in G, i.e. [h(G) : h(H)] ≤ [G : H]. According to Definition 8.6.25,
the index of StabStabG([y]∩x)(BΓ)∩StabStabG([y]∩x)(B) in StabG([y]∩x) is polynomially

bounded in|GS |. As g is a group homomorphism, this is also a bound for the index of
the image under g, which is equal to the fraction above. In total, we have shown:

|Orb(Ni−)| ≤ k · poly(|GS |) ≤ poly(k + |GS |).
Now this orbit bound applies to each of the k rows of N , so when closing the rows of N
under the action of g(StabG([y]∩x)), we add at most poly(k+|GS |) many new rows to the
matrix. Because k = dim(Im M [y])−dim(M [y] ·StabE([y]∩x)) ≤ dim(Im M [y]) ≤ |E|
(this holds because M [y] is a linear map defined on the |E|-dimensional space FE2),
poly(k + |GS |) = poly(|GS |). The resulting matrix is a candidate for N [x][y], so this
shows that N [x][y] has at most poly(|GS |) many rows.

Lemma 8.6.27. If for all x ∈ tc(µ) and all [y] ∈ C[x], StabE([y] ∩ x) has a symmetric
basis, then |VC | has size polynomial in |GS |.
Proof. This follows directly from Lemma 8.6.22 and Lemma 8.6.26 (remember that
|J[x][y]| is the number of rows of N [x][y]), and from the fact that |tc(µ)| is polynomial in

|GS | because µ is CPT-definable in GS .

This proves Property 4 from Theorem 8.6.1.

181

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

8.6.4 Which vector spaces have symmetric bases?

We have shown that the size of Ĉ(µ) can be polynomially bounded if for all x ∈ tc(µ)
and all [y] ∈ C[x], the stabiliser space StabE([y] ∩ x) has a symmetric basis. If this is
not the case, then we do not know anything about the size of Ĉ(µ). There may be other
ways to bound it but a priori we have to assume that it is super-polynomial then. This
makes these symmetric XOR-circuits less useful for deriving lower bounds against CPT.
We would have to show that for a certain family of base graphs, all families of symmetric
circuits with the properties mentioned in Theorem 8.6.1 are necessarily larger than Ĉ(µ),
which is difficult if we do not even know precisely how large Ĉ(µ) is. Also, if Ĉ(µ) is
very large, then it is less likely that the size contradicts the symmetry requirement of the
circuit. Therefore, Theorem 8.6.1 is most interesting when the size of Ĉ(µ) is polynomially
bounded in the size of the respective CFI-instance because then, super-polynomial lower
bounds on the size of the required symmetric circuit families would imply that CPT
cannot decide the CFI-query using the object µ. The question is: Which objects µ
satisfy the symmetric basis condition for all StabE([y] ∩ x)? As we remarked earlier, the
CFI-symmetric objects from the previous section are a special case where the symmet-
ric basis condition holds. We prove this now to justify that our Definition 8.6.25 is “right”.

In the following, whenever we have a Boolean vector space FI2 over some index-set

I, then F̃I2 denotes the even subspace of FI2, i.e. the subspace consisting of all vectors
with even Hamming weight. Moreover, FI2 ⊕ FJ2 denotes the direct sum of the two vector
spaces. If I and J are disjoint, then FI2 ⊕ FJ2 is simply equal to FI∪J2 .

Lemma 8.6.28. Let µ ∈ HF(Ê) be CFI-symmetric. Then µ satisfies the symmetric
basis condition from Definition 8.6.25.

Proof. Let x ∈ tc(µ) and [y] ∈ C[x]. Let Γ := StabE([y] ∩ x) ≤ FE2 . We have to define
two bases BΓ ⊆ B of Γ and of FE2 , respectively, such that the group StabStabG([y]∩x)(BΓ)∩
StabStabG([y]∩x)(B) has polynomial index in StabG([y] ∩ x). Since µ is CFI-symmetric,
by Definition 8.2.2, the AutCFI(G)-orbit of [y] ∩ x has size exactly two. We have
AutCFI(G) ∼= FE2 , so by the Orbit-Stabiliser Theorem, StabE([y]∩x) is a subspace of FE2
with co-dimension one. We use this to analyse the structure of the space StabE([y] ∩ x).
The group StabG([y] ∩ x) is a subgroup of Aut(G) ≤ Sym(V) and therefore also
acts on the edge set E. Thus, we can partition E into its StabG([y] ∩ x)-orbits. Let
P = {P1, ..., Pm} denote this orbit partition of E.

Claim: There is a partition E = A] B such that StabE([y] ∩ x) = FA2 ⊕ F̃B2 and
B 6= ∅. Moreover, A and B are unions of StabG([y] ∩ x)-orbits.
Proof of claim. Let P ′ ⊆ P denote the set of orbits Pi such that for any e ∈ Pi, the
unit vector χ(e) is in StabE([y] ∩ x). Note that whenever χ(e) ∈ StabE([y] ∩ x), then
χ(e′) ∈ StabE([y] ∩ x) for every e′ in the orbit of E because StabG([y] ∩ x) is transitive
on each orbit and the space StabE([y]∩x) is invariant under the action of StabG([y]∩x)
on the coordinates (Lemma 8.6.7). We let A :=

⋃
P ′ and B := E \A. It remains to show

that F̃B2 is a subspace of StabE([y] ∩ x). Assume for a contradiction that there is some

182

8.6 Extending the circuit construction to non-CFI-symmetric sets

vector v ∈ FE2 with even Hamming weight on B and zero on A which is not contained
in StabE([y] ∩ x). Since StabE([y] ∩ x) has co-dimension exactly one in FE2 , and since
moreover, by definition of P ′, no unit vector χ(e) with e ∈ B is in StabE([y]∩x), we know
that for any such unit vector χ(e) with e ∈ B, there exists some we ∈ StabE([y]∩x) such
that v = we + χ(e). But then, every vector with Hamming-weight exactly two on B is in
StabE([y]∩x). Namely, for any two e, e′ ∈ B, it then holds that we + we′ = χ(e) +χ(e′),
and we have we,we′ ∈ StabE([y]∩x). So then, StabE([y]∩x) does contain F̃B2 . In total,
this proves the claim (it holds B 6= ∅ because otherwise, the co-dimension would be zero).

Now it is not hard to define a symmetric basis for StabE([y] ∩ x). Fix an arbitrary
edge f ∈ B. We define

BΓ := {χ(e) | e ∈ A} ∪ {χ({e, f}) | e ∈ B \ {f}}.

One can check that this is indeed a basis of FA2 ⊕ F̃B2 . The basis B of FE2 is then simply
defined as B := BΓ ∪ {χ(f)}.
Now the group StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B) contains all permutations in
StabG([y] ∩ x) that fix the edge f and fix the sets A and B (setwise). By the Claim,
A and B are unions of StabG([y] ∩ x)-orbits, so the latter condition is fulfilled by all
permutations in StabG([y] ∩ x). Therefore, StabStabG([y]∩x)(BΓ) ∩ StabStabG([y]∩x)(B)
is simply the pointwise stabiliser of f in StabG([y] ∩ x) ≤ Sym(E), and this has index
at most |E|. This is polynomial in |GS |.

Thus, we have shown that all CFI-symmetric h.f. sets satisfy the symmetric basis
property from Definition 8.6.25. But are there any other objects that have symmetric
bases? The answer is affirmative. To keep things simple, we do not give a fully specified
example but only sketch how a family of non-CFI-symmetric h.f. sets with symmetric
bases may look like.

Example 8.6.29. For n ∈ N, let En denote an n-element set of base edges. We do not fix
a specific family (Gn = (Vn, En))n∈N of base graphs. Let An]Bn]{e} = En be an arbitrary
partition of the edge set such that one part is a singleton. Consider again Example 8.2.1.
There, we defined the CFI-symmetric object µ{e,f,g} = {{µ{f,g}, e0}, {µ̃{f,g}, e1}}. In this
construction, µ{f,g} and its automorphic image µ̃{f,g} are sets that are stabilised by every
ρ ∈ AutCFI(G) that flips an even number of edges in {f, g}. Such an object can indeed
be defined, for example as described in Section 6.1. So let more generally µBn , µ̃Bn
denote two sets that form an AutCFI(Gn)-orbit and are stabilised by any ρ ∈ AutCFI(Gn)

flipping an even number of edges in Bn. In other words, StabE(µBn) = FAn∪{e}2 ⊕ F̃Bn2 .
Now for every n ∈ N, let

µn := {{µBn , e0}} ∈ HF(Ên).

This object is similar to the one from Example 8.2.1, with the difference that the connected
component of {µBn , e0} contains just this set itself, and therefore, the AutCFI(Gn)-orbit
of this component has size four instead of two. Thus, µn is not CFI-symmetric. However,

183

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

it does satisfy the symmetric basis property (assuming that µBn does – which is possible
since µBn could e.g. be CFI-symmetric). Let y = {µBn , e0} and x = µn. Then [y]∩x = y,
and hence StabE([y]∩ x) = StabE(y) = StabE({µBn , e0}). It is not hard to construct a
symmetric basis for this space. By the properties of µBn, we have

StabE(y) ∼= FAn2 ⊕ F̃Bn2 .

In other words, this space contains every vector that has even Hamming weight on Bn and
a zero entry at coordinate e. A basis for this can be defined as in the proof of Lemma 8.6.28:
Fix some f ∈ Bn. Then include in the basis BΓ every unit vector χ(g) for g ∈ An and the
vector χ({f, g}) for each g ∈ Bn \ {f}. Let B := BΓ∪{χ(e), χ(f)}. We have not specified
the base graphs exactly, so we have not made any assumptions on Aut(G). Suppose
now that An and Bn are not part of the same orbit of StabG([y] ∩ x). This makes sense
because otherwise, µBn would not necessarily be stabilised. Then StabStabG([y]∩x)(BΓ) ∩
StabStabG([y]∩x)(B) is the pointwise stabiliser of {e, f} in StabG([y]∩x). This has index
≤ n2, which is polynomial.

Objects with symmetric bases are therefore indeed a strict generalisation of CFI-
symmetric objects. Nonetheless, there currently exists no choiceless algorithm for the
CFI-query that requires the construction of objects which go beyond the CFI-symmetric
ones, and it is not clear whether such non-CFI-symmetric objects are actually algorith-
mically more useful than CFI-symmetric ones.

Finally, the most important question is whether there also exist objects that are
neither CFI-symmetric nor have symmetric bases. Ideally, we would like the answer to
be that every CPT-definable object µ satisfies the symmetric basis condition. Then,
super-polynomial size lower bounds against suitable circuits would actually separate CPT
from Ptime because they would rule out any CPT-algorithm for the CFI-query, not just
special algorithms like the CFI-symmetric ones. We do not know if this ideal situation is
in fact reality. However, we have an example that suggests it is not.

The line of thought is this: An obvious way to show that every CPT-definable object
µ has the “symmetric basis property” would be to try and exploit the fact that for
every x ∈ tc(µ) and every [y] ∈ C[x], StabE([y] ∩ x) must have a polynomial index in
AutCFI(G

S) ≤ FE2 (otherwise, the orbit of [y] ∩ x ⊆ tc(µ) would be super-polynomial,
so µ would not be CPT-definable). This is perhaps the most obvious consequence that
follows from the CPT-definability of µ. To simplify things a bit, let us assume that
AutCFI(G

S) = FE2 . Then in terms of vector spaces, [FE2 : StabE([y]∩x)] being polynomial
means that the codimension of StabE([y] ∩ x) in FE2 , i.e. |E| − dim StabE([y] ∩ x), is
logarithmic. What we also know by Lemma 8.6.7 is that the space StabE([y] ∩ x)
is invariant under the action of the permutation group StabG([y] ∩ x). This leads
to the question if these two restrictions on StabE([y] ∩ x) are sufficient to show that
StabE([y] ∩ x) necessarily has a symmetric basis in the sense of Definition 8.6.25?
Unfortunately, the answer is no. There is a family of Boolean vector spaces together
with permutation groups on their index sets such that the spaces are invariant under

184

8.6 Extending the circuit construction to non-CFI-symmetric sets

the permutations, have at most logarithmic codimension in the ambient space, and do
not admit a symmetric basis. We construct such an example in Lemma 8.6.30 below.
From this it does not follow directly that there are actually families of CFI-graphs and
CPT-definable h.f. sets over them which do not have the symmetric basis property. It
just means that we cannot show the symmetric basis property for general CPT-definable
sets with arguments that are only based on the obvious properties of vector spaces which
can occur as StabE([y] ∩ x) in CPT-definable objects.

Lemma 8.6.30. There exists a family of Boolean vector spaces (Γn)n∈N, a function

t(n) ∈ Θ(n) with Γn ≤ Ft(n)
2 , and a family of permutation groups (Gn)n∈N with Gn ≤

Symt(n) such that

1. Γn is Gn-invariant.

2. The codimension of Γn in Ft(n)
2 is O(log n).

3. For any pair of bases BΓ ⊆ B such that BΓ is a basis of Γn and B is a basis of Ft(n)
2 ,

[Gn : StabGn(B)] ≥
(

n
(logn)2

)logn
, which is super-polynomial in n.

Proof. Define t(n) as the next even natural number ≥ n. We now construct Γn and Gn.
Let Pn be a partition of [t(n)] into ≈ log n many parts such that each part is roughly
of the same size, namely ≈ n

logn . Importantly, every part must be of even size; such

a partition exists because t(n) is even. For a part P ∈ Pn, let F̃P2 ≤ F
t(n)
2 denote the

Boolean vector space that contains all vectors whose projection to P has even Hamming
weight and which are zero outside of P . Then we define

Γn :=
⊕
P∈Pn

F̃P2 .

In other words, Γn contains exactly those vectors that have even Hamming weight on

each of the parts in Pn (but not all vectors with even Hamming weight in Ft(n)
2 , namely

not the vectors which are odd on an even number of parts). The permutation group
Gn ≤ Symt(n) is defined as the largest group that setwise stabilises the partition Pn. So
Gn contains the direct product Hn :=

∏
P∈Pn Sym(P) and all permutations that map

each part of Pn to another part.

It is clear that Γn is invariant under Gn. Furthermore, the codimension of Γn is
logarithmic in t(n) ≈ n: Suppose BΓ is any basis of Γn. Then it can be extended to a

basis of Ft(n)
2 by adding one unit vector eP for each part P ∈ Pn, such that eP has a

1-entry in P and is zero otherwise. The number of parts is logarithmic, so the same holds
for the codimension. Finally, we have to prove the third condition.

Let BΓ ⊆ B be arbitrary bases for Γ and Ft(n)
2 , respectively. Observe that StabGn(B) ≤

StabGn(B\BΓ) because Γn is Gn-invariant and so, the vectors in B\BΓ cannot be moved
into Γ. Therefore: [Gn : Stab(B \ BΓ)] ≤ [Gn : Stab(B)]. Thus, it suffices to show the
desired lower bound for [Gn : Stab(B \ BΓ)]. Let w1, ...,wlogn be an enumeration of

185

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

B \ BΓ. For each i ≤ log n, let Qi ⊆ Pn denote the set of parts P ∈ Pn such that wi

has odd Hamming weight on P . We know that for each i, Qi 6= ∅ because otherwise, wi

would be in Γ. Moreover, each P ∈ Pn is in at least one of the Qi because otherwise, B
would not generate the whole space Ft(n)

2 .
Now in order to estimate |Stab(B \ BΓ)|, we first estimate the size of the pointwise
stabiliser of B \ BΓ in Hn, Stab•Hn

(B \ BΓ). This is the subgroup of Hn that stabilises
each wi ∈ B \ BΓ, so it consists of all permutations that fix each part P ∈ Pn and each
wi. We can bound this stabiliser as follows:

|Stab•Hn
(B \ BΓ)| ≤

∏
P∈Pn

(|P | − 1)!

This holds because for each part P ∈ Pn, there is a vector wi ∈ B \ BΓ which has odd
weight on P . Since each part P has even size, wi is not the all-1-vector on P (nor
the all-zero vector, of course); therefore, the vector wi is not fixed by all permutations
in Sym(P) but at most by (|P | − 1)! many of them (more precisely by k! · (|P | − k)!
many, if k is the number of 1-entries in P – but this is at most (|P | − 1)!). Now because
[Gn : Hn] = (log n)!, we have

|Stab•Gn
(B \ BΓ)| ≤ (log n)! · |Stab•Hn

(B \ BΓ)|.

Furthermore, [StabGn(B \ BΓ) : Stab•Gn
(B \ BΓ)] ≤ (log n)!. So in total, we get:

StabGn(B \ BΓ) ≤ (log n)!2 ·
∏
P∈Pn

(|P | − 1)!

Since |Gn| = (log n)! ·
∏
P∈Pn |P |!, we get for the index:

[Gn : StabGn(B)] ≥ [Gn : StabGn(B \ BΓ)] ≥ 1/(log n)! ·
∏
P∈Pn

|P | ≥
(n

(log n)2

)logn
.

The last inequality follows because Pn consists of log n many parts of size n
logn each, and

because (log n)! ≤ (log n)logn.

We do not know if there actually exist CFI-graphs (GS
n)n∈N and h.f. sets (µn)n∈N over

them in which Γn ∼= StabE([y] ∩ x) for some x, y ∈ tc(µn), and Gn
∼= StabG([y] ∩ x).

This could a priori be the case. Anyway, we can conclude that the question whether
a CPT-definable object µ over some CFI-instance GS admits symmetric bases for all
relevant spaces StabE([y] ∩ x) cannot be answered without using further information
about GS and µ: It seems that CPT-definability of the objects is not sufficient to infer the
existence of the required symmetric bases (or this requires more sophisticated techniques
than just using the logarithmic bound on the codimension). Because we are already very
“far down the tree” at this point, we will not study these questions further and just note
that in general, our construction of Ĉ(µ) may have super-polynomial size if we cannot
prove that the object µ satisfies the symmetric basis condition.

186

8.7 Conclusion and future research

8.7 Conclusion and future research

In this chapter, we have established a connection between the CPT-definability of the
CFI-query on a given family of base graphs and the existence of certain families of
symmetric XOR-circuits. The CFI-query can only be CPT-definable by CFI-symmetric
algorithms – in particular by all the known ones – if the corresponding symmetric circuits
with the properties mentioned in Theorem 8.5.2 exist. In short, these circuits must
have polynomial size and orbit size, with respect to the automorphism group of the
base graphs, be sensitive to a large number of input bits and satisfy a certain fan-in
restriction on the gates. This fan-in dimension is a generalisation of the more stan-
dard fan-in degree. Property 5 in Theorem 8.5.2 makes a stronger statement about
this than Property 4, but Property 5 only takes effect when we additionally restrict
our attention to super-symmetric CFI-symmetric algorithms (which still includes all
the known ones) or if we choose a family of base graphs with sufficiently high connectivity.

Lower bound results for other kinds of symmetric circuits [41, 43, 96, 70] suggest that
often, symmetry requirements for circuits necessarily entail large size. Therefore, we
believe that showing the non-existence of the required circuit families may be a viable
approach to rule out the existence of CFI-symmetric CPT-algorithms for the CFI-query
on suitable unordered base graphs. It is quite clear that we really need all the circuit
properties from Theorem 8.5.2 for this approach to have any chance of success. If any
of these restrictions on the circuits were missing, then without any doubt, the required
circuit families would always exist, so no non-definability result for CPT could be inferred
from this. For example, without any fan-in restriction, a circuit that connects every input
bit to a single output gate would fulfil all requirements. Only with all properties taken
together, it is a priori not clear that such circuit families exist for all choices of base
graphs. In the next chapter, we will look at CFI-graphs over hypercubes (once again)
and show an almost good enough lower bound against them. This is perhaps a first step
towards a non-definability result based on Theorem 8.5.2.

Before we move on to that next chapter, we should not forget to recapitulate also the
generalisation of Theorem 8.5.2 that allows us to drop the restriction to CFI-symmetric
sets. This result is summarised in Theorem 8.6.2. It turned out that the connection
between these h.f. objects and XOR-circuits is not just a consequence of the somewhat
arbitrary-seeming notion of CFI-symmetry, but in fact hinges on the interplay between
the “local stabiliser spaces” occurring in the h.f. set and the automorphism group of
the base graph. This led to the notion of symmetric bases (Definition 8.6.25) that the
relevant vector spaces must admit if they are to be encoded as gadgets of a symmetric
XOR-circuit. Theorem 8.6.2 allows us to argue in principle against all CPT-algorithms
for the CFI-query by disproving the existence of the respective families of XOR-families.
The caveat is of course that it is unclear which h.f. sets satisfy the symmetric basis con-
dition. If it were satisfied by all CPT-definable objects, then Theorem 8.6.2 could indeed
be used against all CPT-programs. Unfortunately, Lemma 8.6.30 makes this seem unlikely.

187

8 Lower bounds for Choiceless Polynomial Time via Symmetric Circuits

To sum up, here is a plan how the results from this chapter could be used concretely
in order to generate non-definability results for the CFI-query in CPT.

1. Choose a family (Gn)n∈N of base graphs with super-constant treewidth twn such
that every CFI-instance GS

n is Ctwn-homogeneous and where the CFI-support
gap (see Definition 8.5.1) is small compared to twn. Moreover, Gn should be as
symmetric possible to make the next step easier:

2. Try to prove that there exists no family of symmetric XOR-circuits (Cn)n∈N over the
graphs (Gn)n∈N that satisfies all properties from Theorem 8.5.2 together. The more
symmetric the graphs Gn are, the more likely it is that such a non-existence proof
for the circuits can indeed be found (because intuitively, symmetric XOR-circuits
with bounded “degree” that are sensitive to a large proportion of the input bits
should be big).

3. Once the non-existence of the relevant circuits is established, it follows that no
CFI-symmetric CPT-algorithm decides the CFI-query on the base graphs (Gn)n∈N
(Theorem 8.5.2). The next goal would be to lift this statement to all CPT-algorithms,
which would separate P from CPT. Here, we see three options how to proceed:

(i) Try to prove that for every CPT-algorithm that decides the CFI-query on the
base graphs (Gn)n∈N, there is an equivalent CFI-symmetric algorithm or one
that activates only objects with symmetric bases.

(ii) Try to prove that on this particular family of base graphs, every CPT-definable
object admits symmetric bases.

(iii) Try to find another proof to show that the circuit Ĉ(µ) constructed in Theorem
8.6.1 has polynomial size without using the symmetric basis property but
perhaps instead using certain specific properties of the chosen base graphs
(Gn)n∈N.

Another alternative could of course also be to try and lift potential future lower bound
results for the relevant families of symmetric XOR-circuits directly to the h.f. objects.
This way, the detour via circuits could potentially be avoided. This should then yield
lower bounds against all possible choiceless algorithms for the CFI-query, irrespective
of whether they are CFI-symmetric or not, because restrictions such as CFI-symmetry
or the symmetric basis condition are only needed when the h.f. sets are translated into
circuits.

188

9 Lower bounds for families of symmetric
XOR-circuits over hypercubes

In the last chapter, we developed a circuit-approach towards CPT lower bounds, that
works at least against the class of algorithms we called CFI-symmetric, with the potential
for generalisation. As a next step, we put this approach to the test. We choose a family of
CFI-graphs and try to prove that the corresponding families of XOR-circuits mentioned
in Theorem 8.5.2 cannot exist. The results from Chapter 7 suggest that CFI-graphs over
hypercubes may be suitably hard for CPT, due to their high symmetry. This is reflected
in the symmetry group that will act on the input gates of the XOR-circuits. The “closer
to the full symmetric group” it is, the less likely it is – intuitively – that the symmetric
circuits with the required properties are sufficiently small. Therefore, we study in this
chapter again the CFI-query over hypercubes.
If we could successfully show the non-existence of the circuits from Theorem 8.5.2, then
this would imply that no CFI-symmetric choiceless algorithm can solve the hypercube
CFI-problem. Unfortunately, we only manage this to a certain extent. We impose
stronger constraints on the circuits than the ones mentioned in Theorem 8.5.2 and then
show that such circuit families over hypercubes indeed cannot exist. Concretely, we
strengthen the symmetry condition on the circuits and assume that they are stabilised by
all automorphisms of the base graphs (i.e. n-dimensional hypercubes), so their orbit-size
is one. Theorem 8.5.2 states only that the orbit-size of the circuits has to be polynomial.
Moreover, we impose the condition that the (orbit-wise) number of children and parents
of every gate has to be logarithmically bounded. This may be related to the logarithmic
bound on the fan-in dimension that we get from Theorem 8.5.2, but it is probably a
stronger restriction. For circuits with these properties over the n-dimensional hypercubes,
we show that they are not sensitive to enough input gates and hence violate Property
3 from Theorem 8.5.2. The precise formulation of our negative result is Theorem 9.2.1.
But before we come to that, we have to verify that hypercubes are indeed suitable base
graphs and satisfy the prerequisites of Theorem 8.5.2.

9.1 Properties of hypercubes

Before we begin with our analysis of symmetric XOR-circuits over hypercubes, we would
like to take a look at the relevant properties of hypercubes, that are mentioned in Theorem
8.5.2. For convenience, here is the theorem once more:

Theorem 8.5.2. Let (Gn = (Vn, En))n∈N be a sequence of base graphs. Let GS
n be a

CFI-graph over Gn, let twn denote the treewidth of Gn. Let f(n) ∈ O(twn) be a function

189

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

such that every GS
n is Ctwn-homogeneous, for all tuples of length ≤ 2f(n). Let g(n) be a

function such that the CFI-support-gap for every µ ∈ HF(Ên) with minimum support
s(µ) ∈ Ω(f(n)) is bounded by g(n).

If there exists a CFI-symmetric CPT-program Π that decides the CFI-query on all
GS
n, then for every Gn = (Vn, En), there exists an XOR-circuit Cn over Gn that satisfies

the following “instantiated properties” from Theorem 8.4.1:

1. The number of gates in Cn is polynomial in |GS
n |.

2. The orbit-size |OrbGn(Cn)| of the circuit is polynomial in |GS
n |.

3. Cn is sensitive to Ω(f(n)/g(n)) many edges in En.

4. The fan-in dimension of Cn, restricted to the space AutCFI(G
S
n), is O(log |GS

n |).

5. If the program Π is super-symmetric in addition to being CFI-symmetric, or if the
base graph Gn decomposes into at most O(

√
log |GS |) many components when any

f(n)/g(n) many edges are removed, then also the (unrestricted) fan-in dimension
of Cn is O(log |GS

n |).

The theorem mainly depends on three parameters of the base graphs: The treewidth
of the graph, the CFI-support gap of the h.f. sets, and the fact that the CFI-graphs over
the base graphs are Ctwn-homogeneous.
Recall that the n-dimensional hypercube Hn is the undirected graph with universe {0, 1}n
in which there is an edge between any two words with Hamming distance exactly one.
Its automorphism group is the semi-direct product Fn2 oSymn, where Symn acts on the
positions of the binary words (see Section 5.3) but as in Chapter 7, we pretend it is just
Symn. This makes life easier and besides, if Symn-symmetric XOR-circuits with the
necessary properties do not exist, then this is “even more true” for the larger symmetry
group Fn2 o Symn.
In the following, when we speak about CFI-structures over hypercubes, we do not
distinguish between isomorphic ones, so we only consider the even and the odd CFI-
structure over Hn and denote them H0

n and H1
n, respectively. The size |Hin| of these

CFI-structures is polynomial in 2n = |Hn|, because the CFI-construction increases the
size of the graph exponentially in the maximum degree. This maximum degree in Hn is
n, so the size increase by a factor of 2n is still polynomial in |Hn|. Now let us check the
relevant properties of the hypercubes and their CFI-structures.

Treewidth of hypercubes As mentioned earlier in Lemma 5.3.1, the treewidth of n-
dimensional hypercubes is a function in Θ(2n/

√
n), which can be looked up in [102].

This is close to being linear in 2n = |Hn|, so it is sufficiently large to translate into a
meaningful lower bound on the input sensitivity of the resulting circuits.

190

9.1 Properties of hypercubes

Homogeneity of hypercubes
As in [40], the Ck-type of a tuple a in a given structure A is the collection of all Ck-formulas
that are true in (A, a). Recall that a structure A is Ck-homogeneous for tuples of length `,
for some ` ≤ k, if for any two tuples α, α′ in A of length ≤ ` that have the same Ck-type,
there is an automorphism of A that moves α to α′.

We say that a tuple α in V (Hin) contains a star if there is a centre c ∈ V (Hn) such
that for each incident edge e ∈ En(c), there is an entry of α in the edge gadget e∗.

The next lemma is a technical ingredient that we need for the homogeneity result for
hypercube CFI-structures. It shows the homogeneity condition for specific tuples.

Lemma 9.1.1. Let twn ∈ Θ(2n/
√
n) denote the treewidth of Hn. Let α be a tuple in

V (Hin) that contains a star and has length at most (twn/n)− 2. Let γ, γ′ ∈ V (Hin) and
let tp(αγ) denote the Ctwn-type of this extended tuple. If tp(αγ) = tp(αγ′), then there is
an automorphism ρ ∈ Aut(Hin) such that ρ(γ) = γ′ and ρ(α) = α.

Proof. We assume that tp(αγ) = tp(αγ′). The first half of the proof consists in establish-
ing that then, γ, γ′ are in the same edge or vertex gadget. Assume first that γ, γ′ ∈ Ê.
Now suppose for a contradiction that the edge gadget of γ and γ′ is not the same. Let
{u, v} ∈ En be the edge in whose gadget γ is, and let {u′, v′} ∈ En be the corresponding
edge for γ′. W.l.o.g. we may assume u 6= u′ and u 6= v′. Now let s1, ..., sn ∈ En be the
edges that form the star which is covered by α according to the assumption. We may
assume that the centre of the star is the string 0n, because the automorphism group of
the hypercube is transitive and so we can always move the centre of the star to 0n. Let
si denote the edge {0n, 0i−110n−i}, i.e. the edge along which the position i is flipped.
Let U ⊆ [n] be the positions at which the string u is 1. We construct a C5-formula ϕu(x)
that defines the gadget u∗ in Hin using the star s1, ..., sn as parameters. More precisely,
let s′1, ..., s

′
n be the respective vertices in the edge gadgets that occur in α.

Our formula uses some auxiliary formulas: ψdist=`(x, y) ∈ C3 which asserts that there
is a path of length ` from x to y. This can be expressed with only three variables by
requantifying variables in an alternating way (see e.g. Proposition 3.2 in [76]). Also, we
use a formula ψ≈(x, y) which asserts that x and y are in the same vertex-gadget. This
can be expressed by saying that both of them have exactly n neighbours, and: For every
neighbour z of x, z is either also a neighbour of y or adjacent to a neighbour of y (in
the same edge-gadget). The same must hold for every neighbour z of y. Expressing this
requires not more than five variables in total. Now we define:

ϕu(x) :=
∧
i∈U
∃z(ψdist=1+2(|U |−1)(s

′
i, z) ∧ ψ≈(z, x))∧∧

i∈[n]\U

¬∃z(ψdist=1+2(|U |−1)(s
′
i, z) ∧ ψ≈(z, x)).

Claim: Hin |= ϕu(a) iff a ∈ u∗.
Proof of claim: We are assuming that si is the edge between 0n and the string with a 1

191

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

at position i. Now we show that Hin |= ϕu(a) if a ∈ u∗: We have to check that for every
i ∈ [n], the respective conjunct of the formula is satisfied. If i ∈ U , then for any s′i ∈ s∗i ,
there exists z ∈ u∗ such that there is a path from s′i to a of length exactly 1 + 2(|U | − 1)
in Hin: The path goes one step from s′i into the vertex gadget for 0i−110n−i, and from
there, the path follows a shortest path of length |U | − 1 in Hn that goes from 0i−110n−i

to the vertex u and flips the remaining |U | − 1 zeros on the way. That path in the
CFI-structure Hin is twice as long because every edge is subdivided by a gadget. The
path will end in some node in the vertex-gadget u∗. If i /∈ U , then there is no path from
s′i of length 1 + 2(|U | − 1) that ends in a node in u∗: The shortest path from s′i into the
gadget u∗ requires 1 + 2|U | steps. Hence, Hin |= ϕu(a).
If a /∈ u∗, then Hin 6|= ϕu(a), because ϕu(a) can only be satisfied if the required paths
exist (do not exist, respectively) in Hn, and the above arguments also show that these
conditions are only satisfiable if a is in the gadget of u. This proves the claim.

Therefore, we have

Hin |= ∃x(Exγ ∧ ϕu(x)),

but

Hin 6|= ∃x(Exγ′ ∧ ϕu(x)).

This is a contradiction to the assumption that αγ and αγ′ have the same Ctwn-type,
because ϕu uses only O(n) many variables. Thus we have shown that there is one edge
g ∈ En such that γ, γ′ ∈ g∗.
In case that γ and γ′ are both in vertex gadgets, then the same argument shows that
they must be in the same gadget u∗ because we can define this gadget with the above
formula. Similarly, we can argue if γ is in a vertex gadget and γ′ is in an edge gadget:
Then we define the vertex gadget of γ with the above formula, and γ′ will not satisfy it.
So the types of the tuples being equal entails that γ and γ′ must be in the same gadget,
be it of an edge or vertex.

In the second half of the proof we show that there is an automorphism ρ ∈ Aut(Hin)
that maps αγ to αγ′, again under the assumption that tp(αγ) = tp(αγ′). We first deal
with the case that γ, γ′ ∈ g∗ for some edge gadget g∗. It is not necessary to permute the
hypercube, so it suffices to find an edge-flip automorphism, i.e. ρ ∈ AutCFI(H

i
n).

In case that γ = γ′, there is nothing to show. So let us assume that w.l.o.g. γ = g0 and
γ′ = g1. We need to find ρ ∈ Aut(Hin) such that ρ(g0) = g1, and such that ρ fixes α.
Now we call an edge e = {u, v} ∈ En fixed if e0 or e1 occurs in α. We call a vertex v ∈ Vn
fixed if some node inv∗ occurs in α. We know that g is not fixed because if it is, then
αg0 and αg1 have different types. A cycle in Hn is called fixed if at least one edge or one
vertex on it is fixed. Else, the cycle is free. If there exists a free cycle in Hn on which g
lies, then the desired automorphism is ρF ∈ AutCFI(H

i
n), where F is the edge-set of the

free cycle.
Otherwise, every cycle on which g lies is fixed. We want to show that in this case, αγ
and αγ′ do not have the same Ctwn-type and so, this situation cannot occur.

192

9.1 Properties of hypercubes

Let u, v ∈ {0, 1}n be the endpoints of g. Let Xu ⊆ {0, 1}n be the set of vertices in Hn
that are reachable from u via paths using only free vertices and free edges in En\{g}. The
set Xu is meant to include the fixed vertices which are reachable in this way. Similarly,
we define Xv as the set of reachable vertices from v via such free paths (also including
fixed vertices). Because no free cycle exists, the sets Xu and Xv must be disjoint (except
for potential shared fixed vertices). We restrict the graph to the smaller of these two
sets, w.l.o.g. this is Xu. So let X := Xu. We now consider the graphs G and G′, which
are induced subgraphs of Hin on the universe

X := {vY | vY ∈ v∗, v ∈ X} ∪ {ej | j ∈ {0, 1}, e ∈ E(Hn[X])}
∪ {a ∈ V (Hin) | a an entry in αγ} ∪ {γ′}.

Now G := (Hin[X], αγ) and G′ := (Hin[X], αγ′), that is, they are both the same induced
subgraph of the CFI-graph, expanded with the respective tuples of constants (strictly
speaking, the constant symbol for γ and γ′ should be the same, but with the interpretation
γ and γ′, respectively).
As for the size of X ⊆ V (Hn), we have: |X| < |αγ| · n = twn − n. To see this, let
δX ⊆ En be the cut of X in Hn, i.e. the set of edges between X and its complement.
The Cheeger number of Hn, which denotes the minimum of |δA||A| over all A ⊆ V (Hn)

with |A| ≤ |V (Hn)|/2, is between 1 and 2
√
n. This can be seen from the Cheeger

inequalities (see e.g. in [46]) together with the fact that the smallest non-zero Eigenvalue
of the Laplacian of any Hypercube is 2 [50] (the fastest way to look this up is actually
Wikipedia). This means that |δX| ≥ |X|. From this it follows that |αγ| · n ≥ |X|
because the edges in the cut δX are exactly the fixed edges, and each entry of αγ
fixes at most n edges. Moreover, we can say that the inequality must actually be
strict, so |αγ| · n > |X|. This is because not all entries in α are used to fix the edges in
δX; some entries of α must also be in δXv \δXu. Hence, we have |X| < |αγ| ·n = twn−n.

Claim: Spoiler wins the bijective twn-pebble game on G and G′.
Proof of claim: Trivially, the treewidth of Hn[X] is strictly less than twn − n because
|X| < twn−n. Hence, the Cops win the Cops and Robber game on Hn[X] with twn−n
many cops. Spoiler’s goal is to pebble in both structures G and G′ the vertex e1 in every
edge in En(u) \ {g}, i.e. every edge incident to u, except g. If he achieves that, then he
wins in the next round: Assume w.l.o.g. that the gadget u∗ is even. Then in G′, an even
number of neighbours of every vertex in u∗ is pebbled or equal to the constant γ′ = g1. In
G, this number is odd for every vertex in u∗, because γ = g0. Therefore, Spoiler can then
place an additional pebble on an arbitrary vertex in u∗ and wins because Duplicator’s
bijection must map the gadget u∗ in G to u∗ in G′.
Now Spoiler can achieve this goal by a standard argument, as for example given in [10]:
Initially, the “target vertex” for Spoiler is u. This means that he has to pebble the
e1-vertices in all its incident edges in both graphs. Duplicator’s bijections can flip edges,
which changes the set of target vertices for Spoiler. Suppose F ⊆ E(Hn[X]) is the set of
edges flipped by Duplicator in a given round. This has the effect that every vertex in
Hn[X] whose F -degree is odd changes its role from target- to non-target vertex and vice

193

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

versa. However, Duplicator cannot flip edges which are pebbled by Spoiler. If Spoiler
places his pebbles on edges (or their endpoints) according to the Cops’ winning strategy
(while Duplicator “moves the robber” by flipping paths), then he can eventually pin
down a target vertex that Duplicator cannot move anywhere else. From such a position,
he can enforce a situation as described above and wins the game. This argument is
well-known; the only additional difficulty in our setting is that the base graph is not
ordered, so we have to argue that Duplicator cannot win by playing bijections other
than edge-flips. This can be enforced by Spoiler, using at most n extra pebbles: The
important observation is that Duplicator’s bijection must respect distances to all pebbles
on the board and to the parameters αγ. So Duplicator can only map a gadget w∗ to
some other gadget π(w∗) if the vertices w and π(w) have the same distance in Hn[X]
to every pebbled vertex and parameter. This holds because if Duplicator disrespects
distances between such marked elements, then Spoiler can easily win using three pebbles,
that he moves along the shortest paths.
Now Spoiler can simply start by pebbling some star in Hn[X] with n pebbles (this is
possible because we are playing with twn pebbles, but only twn − n many are needed
to simulate the Cops’ winning strategy). Once a star is pebbled in G and G′, it follows
with the argument used earlier in the proof of this lemma that any w ∈ V (Hn[X]) has a
unique set of distances to the edges of the star, and therefore, Duplicator is then forced
to map every w∗ to a unique vertex gadget π(w∗). This entails that there is also a unique
edge gadget π(e∗) that she has to map each e∗ to. So, from that moment on, Duplicator
is indeed limited to playing only edge-flips, and then, Spoiler wins in the aforementioned
way using the Cops’ strategy. This proves the claim.

The claim directly entails that αγ and αγ′ do not have the same Ctwn-type if g does
not lie on a free cycle. This finishes the case where γ and γ′ are in an edge gadget. The
other case is that γ = u∗Y and γ′ = u∗Y ′ are both in some vertex gadget u∗. Then there is
an even-sized set of edges F = Y4Y ′ incident with u in Hn such that we have to flip
the edges in F (and no other edges in E(u)) in order to map γ to γ′. This is possible if
we can pair up the edges in F in such a way that each pair {f1, f2} ⊆ F lies on a free
cycle (that avoids all other edges in E(u)). Suppose for a contradiction that there is
some pair {f1, f2} ⊆ F which is not on a free cycle. Then let g := f1, and make the same
argument as above in the case where we wanted to flip the edge g (with the difference
that we now remove both f1 and f2 in order to get the two sets Xu and Xv that are
not connected by any free path). Then the above proof shows that the two nodes in the
gadget f∗1 are distinguishable in Ctwn using the parameters α. But then also γ and γ′ in
u∗ are distinguishable because one of them is adjacent to the 0-node in f∗1 , and the other
is adjacent to the 1-node in f∗1 . So again, the required free cycles must exist because
otherwise, αγ and αγ′ have distinct Ctwn-types.

Lemma 9.1.2. The structures H0
n and H1

n are homogeneous in the following sense:
Let twn denote the treewidth of Hn. For any tuples α, α′ in V (Hin) of length |α| = |α′| ≤
twn/n − n − 1 it holds: If α and α′ have the same Ctwn-type in Hin, then there is an
automorphism of Hin that maps α to α′.

194

9.1 Properties of hypercubes

Proof. First of all, we show the following statement via induction on |α|.
Claim 1: Let s be a tuple of length n that contains a star. If tp(sα) = tp(sα′), then
there is an automorphism of Hin that maps the tuple sα to sα′.
Proof of claim: In the base case, |α| = 0, there is nothing to show because the identity
permutation is the desired automorphism then.
For the inductive step, let α = βγ where |β| = |α|−1, and similarly, write α′ = β

′
γ′. Since

tp(sα) = tp(sα′), we also have tp(sβ) = tp(sβ
′
). Therefore, the induction hypothesis

gives us an automorphism π ∈ Aut(Hin) such that π(sβ) = sβ
′
. Since automorphisms

preserve types, we have tp(sβγ) = tp(π(sβγ)) = tp(sβ
′
π(γ)) = tp(sβ

′
γ′). The length

of the tuples sβ
′
π(γ) and sβ

′
γ′ is at most twn/n− 1, so we can apply Lemma 9.1.1 to

them. This gives us another automorphism σ such that σ(sβ
′
π(γ)) = sβ

′
γ′. In total,

σ ◦ π ∈ Aut(Hin) is the desired automorphism that maps sα to sα′.

Now we will use Claim 1 to prove the lemma. Let α and α′ be as in the lemma. Let s
be a tuple of length n that contains a star (and only a star). By Lemma 34 in [40], there
exists a tuple s′ such that tp(sα) = tp(s′α′). This holds because (Hin, α) ≡Ctwn (Hin, α

′)
(Theorem 5.1.3), and so for any extension of the tuple α (which has length at most
twn − n) by only n elements, there is an extension of α′ that preserves the type.

Claim 2: There exists an automorphism σ ∈ Aut(Hin) such that σ(s) = s′.
Proof of claim: Let s1, ..., sn ∈ En be the edges of the star that is covered by s and
s′1, ..., s

′
n ∈ En be the edges of the star of s′. There is an automorphism σ′ ∈ Aut(Hn)

such that s′i = σ′(si), for every i. This is easy to see because we can map the centre c of
one star to the centre c′ of the other, and apply the right permutation to its incident
edges. In Hin, the gadgets c∗ and c′∗ are either both even or both odd, in relation to the
tuple s. That is, if we pretend that the vertices si are the 1-vertices in their respective
edge-gadgets, then the vertex-gadgets c∗ and c′∗ have the same parity: This is because
we can express in, say, C5 that every vertex in c∗ is connected with an even number of
vertices in s (and s′, respectively).
We say that there is a mismatch between σ′(s) and s′ at position i if σ′(s)i is the 0-vertex
in its edge gadget, and s′i the 1-vertex, or vice versa. By what we just argued, the number
of mismatches between σ′(s) and s′ is even. This can be corrected with an automorphism
ρF ∈ AutCFI(H

i
n) that flips edges along ` disjoint cycles originating in c′, where ` is half

the number of mismatches. Then σ = ρF ◦σ′ is an automorphism that takes s to s′. This
proves the claim.

With Claim 2, we get that tp(s′σ(α)) = tp(s′α′) because automorphisms preserve
types. The fact that s contains a star is easily definable in counting logic, so s′ also
contains a star. Therefore, the lemma now follows from Claim 1, which gives us an
automorphism π that maps σ(α) to α′. Then π ◦ σ is the automorphism whose existence
is claimed in the lemma.

195

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

In total, the hypercube CFI-structures satisfy the homogeneity condition required
by Theorem 8.5.2 if we take f(n) (the tuple-length) to be a function in Θ(twn/n) =
Θ(2n/n1.5). This will be the lower bound for the sensitivity of the circuits.

CFI-support gap of hypercube CFI-structures
Recall from Definition 8.5.1 that the CFI-support gap of a h.f. set µ is α(µ) = s(µ)

| supCFI(µ)|
where s(µ) denotes the size of the smallest support; this depends on the structure. Let
again Hin denote the odd/even CFI-structure over the n-dimensional hypercube, and let
En be the edge set of that hypercube. Let Hn denote the full CFI-graph over Hn (see
Chapter 5). We would like to prove an upper bound on the ratio α(µ) over all h.f. sets
µ ∈ HF(Ên). Here, s(µ) denotes the size of the smallest Aut(Hin)-support of µ, and
supCFI(µ) the size of the smallest CFI-support of µ. Recall from Definition 8.1.5 that
a CFI-support of µ is a set of edges S ⊆ E such that any edge-flip ρF ∈ AutCFI(Hn)
that fixes all edges in S also fixes µ. The edge-flips considered here are not necessarily
automorphisms of Hin, so they include all combinations of flipped edges and not only
cycles.

Lemma 9.1.3. Let n ∈ N and µ ∈ HF(Ên). Let S ⊆ E be a smallest CFI-support of µ.
Then there exists an Aut(Hin)-support of µ of size at most |S|+ n.

Proof. Every ρF ∈ AutCFI(Hn) such that F ∩ S = ∅ fixes µ. This holds in particular
for every such ρF ∈ AutCFI(H

i
n) ≤ AutCFI(Hn). Thus, let α be an arbitrary tuple in

Ên that contains exactly one vertex ei from every edge e ∈ S. So |a| = |S|. Then any
automorphism of the form (ρF , id) ∈ Aut(Hin) that fixes α also fixes µ. Now extend α to
a tuple β that contains a star. This is always possible such that |β| ≤ |α|+ n. Now any
automorphism in Aut(Hin) that fixes β must have id as its second component, because
any (ρF , π) ∈ Aut(Hin) with π 6= id moves every star in the hypercube. So in total, every
automorphism that fixes β fixes µ, and the length of β is at most |S|+ n.

Let twn ∈ Θ(2n/
√
n) denote the treewidth of the n-dimensional hypercube. Let

α(n) := max
µ∈HF(Ên),

s(µ)∈Ω(twn/n)

α(µ) be the maximum CFI-support gap that can occur for any

object in HF(Ên) with minimum support size at least Ω(twn/n).

Corollary 9.1.4. There is a function g(n) ∈ O(1) which is an upper bound for α(n).

Proof. Let µ ∈ HF(Ên) be an object whose minimum Aut(Hin)-support size s(µ) is at
least Ω(twn/n). By Lemma 9.1.3, its smallest CFI-support supCFI(µ) must have size

at least s(µ)− n. Thus, the CFI-support gap s(µ)
| supCFI(µ)| is at most s(µ)

s(µ)−n = 1 + n
s(µ)−n .

Since s(µ) ∈ Θ(2n/n1.5), this expression is asymptotically equal to 1.

Consequently, in the setting of Theorem 8.5.2, we can take a constant function g(n)
for the upper bound of the CFI support gap. This is convenient because it means that
Theorem 8.5.2 yields XOR-circuits that are sensitive to as many edges as possible, namely
Ω(twn/n) many. We are aiming to prove that the symmetric circuits given by the
theorem cannot exist, so it is good that the support gap does not loosen the constraints
on the circuits here.

196

9.2 Symmetric XOR-circuits over hypercubes

Connectivity of hypercubes
Property 5 from Theorem 8.5.2 requires either a restriction to super-symmetric objects
or that the hypercube splits into at most O(

√
log |Hin|) = O(

√
n) many components

when Θ(2n/n1.5) many edges are removed. This connectivity condition is unfortunately
not satisfied by hypercubes: Since every vertex in Hn has degree n, it is easily possible
to isolate Θ(2n/n2.5) many vertices by removing Θ(2n/n1.5) many edges. This yields a
much higher number of connected components than O(

√
n). Therefore, if we want to use

the fan-in dimension bound from Property 5 in the context of hypercube CFI-structures,
we have to restrict ourselves to super-symmetric algorithms.

In total, we can summarise the instantiated version of Theorem 8.5.2 for hypercube
CFI structures as follows:

Theorem 9.1.5. If there exists a super-symmetric and CFI-symmetric CPT-program Π
that decides the CFI-query on the family of all hypercube CFI-structures (Hin)n∈N, then
for every Hn = (Vn, En), there exists an XOR-circuit Cn over Hn that satisfies:

1. The number of gates in Cn is polynomial in 2n.

2. The orbit-size |OrbHn(Cn)| of the circuit is polynomial in 2n.

3. Cn is sensitive to Ω(2n/n1.5) many edges in En.

4. The (unrestricted) fan-in dimension of Cn is O(n).

9.2 Symmetric XOR-circuits over hypercubes

Now we come to the non-existence result for certain symmetric circuit families over
hypercubes. The circuits that we show to be non-existent have slightly stricter con-
straints than the ones in the theorem above, namely with respect to Property 2 and 4.
Our investigation is inspired by an “almost right” construction of circuits satisfying the
properties from Theorem 9.1.5. The most difficult part about constructing such circuits
seems to be the condition that they should have polynomial orbit size with respect to the
action of Symn on {0, 1}n. A first idea would be to use some tree with logarithmic degree
whose leafs are labelled with the elements of {0, 1}n. This would satisfy all properties
except (maybe) the orbit size. Actually, we do not have a proof that tree-like circuits
with the required orbit size do not exist, but we suspect that trees are not symmetric
enough: Namely, with tree-like circuits, it would suffice to show that they must contain
one path of super-polynomial orbit size. Then already the orbit of the whole tree would
be super-polynomial because a polynomial-size tree can only contain polynomially many
paths. Intuitively, paths in trees seem to be structurally not so much different from
preorders. Hence, it may well be that the results from Chapter 7 can be generalised to
such paths, which would rule out tree-like circuits.

However, we do not have any formal results in that direction and therefore leave the
tree-like circuits aside for now. Instead we try a different construction idea, that could

197

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

be considered the opposite of trees: In order to build a circuit that is guaranteed to be
symmetric under the hypercube automorphisms, we can simply use the hypercube itself:
Cut the hypercube in the middle, and use one half of the hypercube as the circuit. The
output gate will then be, for example, the string 0n, and the input gates are labelled
with the strings of Hamming weight (n/2), which are located in the “middle slice” of the
hypercube. This construction is visualised below.

1100 1010 1001 0110 0101 0011

1000 0100 0010 0001

0000

Figure 9.1: The 4-dimensional hypercube cut in half. Red nodes are XOR-gates, blue
nodes input gates.

The circuit satisfies the correct size and orbit size bounds (namely, the orbit size of
the circuit is one by construction), and also, it has degree n, which is logarithmic in |Hin|.
Since the degree is an upper-bound for the fan-in dimension, the logarithmic fan-in bound
is satisfied as well. However, we can observe that the circuit is actually not sensitive
to any input bit at all. Already in the second layer, counted from the input layer, all
inputs cancel out: Each input bit arrives in the root an even number of times. So we
learn from this example that it is possible to build highly symmetric circuits by making
them very DAG-like, but the high number of distinct paths that any given input bit can
take through the circuit can easily lead to the input bit cancelling itself at some point in
the circuit. This happens whenever this number of paths is even. So roughly speaking,
tree-like circuits and these “halved-hypercube circuits” are two extremes: With trees, the
sensitivity condition (Property 3 in Theorem 9.1.5) is clearly satisfied, but the symmetry
condition is not obvious. Conversely, in the halved hypercubes, the symmetry is satisfied
by construction but the circuits are not sensitive to any input bit. The question is: What
is in between these two extremes? We will now show that the input-cancellation effect
from the halved-hypercube circuits actually occurs in a larger class of symmetric circuits.
In some sense, this rules out all circuits that are too similar to the halved hypercube.
Roughly speaking, these include all circuits over the n-dimensional hypercube that are sta-
bilised by all permutations in Symn and have “orbit-wise” logarithmic in- and out-degree.

Fix a family (Cn)n∈N of XOR-circuits such that the input gates of Cn are labelled with
edges of the n-dimensional hypercube Hn. As in the previous chapter, the circuits are

198

9.2 Symmetric XOR-circuits over hypercubes

connected DAGs with a designated unique output gate, the root. We define

Aut(Cn) :={σ ∈ Sym(VCn) | σ is an automorphism of the rooted DAG (VC , EC , r)

and there exists a π ∈ Symn s.t. `(σ(g)) = π(`(g)) for every input gate g}.

Note that in particular, every automorphism must fix the root of the circuit and must
permute the leafs in a way that complies with a permutation in Symn acting on the
labels of leafs. We say that a permutation π ∈ Symn extends to an automorphism
σ ∈ Aut(Cn) if σ maps the input gates g such that `(σ(g)) = π(`(g)) is satisfied. It may
be that the identity permutation in Symn extends to non-trivial circuit automorphisms
in Cn. In this case, the circuit is not rigid and every permutation in Symn has multiple
circuit automorphisms that it extends to.

For a gate g in Cn and a parent h of g, we let

Orbit(g)(h) := {σ(h) | σ ∈ Aut(Cn), σ(g) = g}.

Similarly,

Orbit(h)(g) := {σ(g) | σ ∈ Aut(Cn), σ(h) = h}.

So these are the orbits of g, h, respectively, with respect to those circuit automorphisms
that fix the child g, or the parent h, respectively. Note that Orbit(g)(h) ⊆ ECg, and
Orbit(h)(g) ⊆ hEC because circuit automorphisms preserve the wires and if one endpoint
of a wire is fixed, then the image of the other endpoint must still be connected with the
fixed gate. In the rest of this chapter, we prove:

Theorem 9.2.1. Let (Cn)n∈N be a family of XOR-circuits over the n-dimensional
hypercubes such that for all n ∈ N it holds:

1. The size |VCn | is polynomial in 2n (and thus polynomial in |Hin|).

2. Every permutation π ∈ Symn acting on {0, 1}n extends to a circuit-automorphism
of Cn. Thus, the Symn-orbit of Cn has size one.

3. There exists a function f(n) ∈ O(n) such that for all large enough n, for every gate
g and every parent h of g in Cn, both |Orbit(g)(h)| and |Orbit(h)(g)| are at most
f(n).

Then for any constant ε > 0, it holds for all large enough n: The circuit Cn can only be
sensitive to an input gate g if `(g) = {u, v} is an edge such that the zero-one-split in the
binary strings u, v ∈ {0, 1}n is more imbalanced than εn vs. (1 − ε)n. In other words,
the number of 1s or the number of 0s in u and v must be < εn, and otherwise, this input
gate does not contribute to the output of Cn.

In particular, these circuits do not satisfy Property 3 from Theorem 9.1.5 and are
therefore ruled out:

199

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

Corollary 9.2.2. Let (Cn)n∈N be a circuit family as in Theorem 9.2.1. Then for all
large enough n, the circuit Cn is sensitive to strictly less than o(2n/n1.5) many inputs.

Proof. According to Exercise 9.42 in [57], it holds for any α ≤ 1
2 :

∑
k≤αn

(
n

k

)
= 2nH(α)− 1

2
logn+O(1),

where H(α) = α log(1
α) + (1− α) log(1

1−α). According to Theorem 9.2.1, the only edges
of Hn that Cn can be sensitive to are between binary strings with less than εn many one-
or zero-entries, for any ε > 0. The number of potential endpoints of such edges is twice
the above sum, for α = ε. The degree of Hn is n, so in total, Cn is sensitive to at most
2n ·

∑
k≤εn

(
n
k

)
many edges of Hn. We can calculate that this is in o(2n/n1.5), for any

0 < ε < 1
2 :

lim
n→∞

2n

n1.5 · 2n · 2nH(ε)− 1
2

logn+O(1)
=

lim
n→∞

2(1−H(ε))n− 1
2

logn+O(1)

2n · n1.5
=∞

In the last step, we used that H(ε) < 1, which holds as long as ε is chosen to be strictly
less than 1

2 .

This result does not yet completely rule out the existence of a symmetric circuit family
as required by Theorem 9.1.5: Firstly, we assume the circuits here to be fully symmetric,
i.e. they are stabilised by every permutation in Symn; in Theorem 9.1.5, the circuits
need only have a polynomial orbit with respect to the automorphisms of the base graph,
so they are stabilised by many, but not necessarily by all these automorphisms. Secondly,
in Theorem 9.1.5, we only have a logarithmic bound on the fan-in dimension, but it is
not clear that this also entails a bound on the orbit-wise number of children and parents
of each gate as in Property 4 above. Nevertheless, we hope that this negative result
for the existence of fully symmetric bounded-degree XOR-circuits is a useful starting
point to rule out further circuit classes over hypercubes, and eventually defeat all circuits
from Theorem 9.1.5. This would then show that the CFI-query over hypercubes is not
definable by any super- and CFI-symmetric algorithm.

For the proof of the theorem, we again make use of supporting partitions, that already
served us well in Chapter 7. However, this time, we employ alternating supporting
partitions. Recall Definition 4.2.7 from Section 4: An alternating supporting partition
of a group G ≤ Symn is essentially a partition of [n] such that the alternating group
within each part is a subgroup of G. Every group G has a unique coarsest alternating
supporting partition (Lemma 4.2.8), denoted SPA(G). For a gate g ∈ VCn , we denote by
SPA(g) the coarsest alternating supporting partition of the group

Stabn(g) := {π ∈ Symn | π extends to an automorphism of Cn that fixes g}.

200

9.2 Symmetric XOR-circuits over hypercubes

Here, we mean that at least one of the automorphisms that π extends to fixes g. It can
be seen that Stabn(g) is indeed a subgroup of Symn because it contains the identity
permutation, and: If π, π′ ∈ Stabn(g), then there exist circuit automorphisms σ, σ′

that π, π′ extend to such that σ(g) = σ′(g) = g. Thus, σ ◦ σ′ fixes g and is a circuit
automorphism that π ◦ π′ extends to. Thus, Stabn(g) ≤ Symn.

Importantly, Stabn(g) ≤ Stab(SPA(g)) (Lemma 4.2.10), so every permutation in
Stabn(g) acts as a permutation on the parts of SPA(g). The supporting partition of an
automorphic image of a gate can be obtained by applying a corresponding permutation
in Symn to the supporting partition:

Lemma 9.2.3. Let g, σg be two gates in Cn, for a σ ∈ Aut(Cn). Let π ∈ Symn be a
permutation that extends to the circuit automorphism σ. Then

SPA(σg) = π(SPA(g)).

Proof. By Lemma 4.2.9, the partition πSPA(g) is the coarsest alternating supporting
partition of the group πStabn(g)π−1. It holds πStabn(g)π−1 = Stabn(σg).

Moreover, our group-theoretic Theorem 4.3.1 tells us that the supporting partitions
SPA(gn), for every gate gn in Cn, have at most o(n) many singleton parts. This will
become important later, when we analyse the supporting partitions of the gates. First of
all, we would like to formalise what it means that a given input gate g cancels itself out
in the circuit:

Lemma 9.2.4. Let g be an input gate of an XOR-circuit C. The circuit C is sensitive
to the input gate g if and only if the number of distinct paths from the root to g is odd.

Proof. Via induction on the number of gates in C. In a circuit where g is the root, there
is only one path and the input determines the output. The smallest possible case where
the number of paths from the root to g is even is if C consists of a root with two children
h1, h2, and one input gate g that is the child of both h1 and h2. Clearly, the input bit is
canceled in the root.
For the inductive step, let h1, ..., hm be the children of the root r. Let pi be the number
of distinct paths from hi to the input g. By the induction hypothesis, the output of hi
depends on g iff pi is odd (use the statement for the smaller subcircuit rooted at hi). The
number of distinct paths from r to g is

∑
pi. That number is even iff an even number of

the pi is odd. Then the input g has no influence on the value computed at r because
only the hi with pi odd are sensitive to g, and these effects cancel at r because it is an
even number. If an odd number of the pi is odd, then r is sensitive to g.

Thus, our goal is to prove that the number of paths between the root and each input
gate labelled with a “too balanced edge” of Hn is even. Now the technical theorem that
we want to prove in the next step reads as follows. From it, Theorem 9.2.1 follows with
Lemma 9.2.4.

201

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

Theorem 9.2.5. Let (Cn)n∈N be a family of XOR-circuits with the properties mentioned
in Theorem 9.2.1. Let a gate gn in every Cn and a constant ε > 0 be fixed such that
SPA(gn) contains at least two parts of size ≥ ε · n.
Then for all large enough n, the number of distinct paths from the root of Cn to gn is
even.

The proof idea is vaguely similar to a technique known as “bottleneck counting”, that
has been used in proof complexity to establish lower bounds for resolution. Roughly
speaking, we associate with every gate in a circuit a certain quantity of which we know
that it must be high in the root and much lower in the input gates. Furthermore, we will
prove that this quantity can only change by a small amount as we move from a gate to
its parents. In other words: The quantity cannot “jump” from the low value at the leafs
to the high value at the root, but it has to pass through many intermediate values in the
middle of the circuit. We will then show that certain intermediate values, which must
necessarily occur at some gates, entail that the number of paths from the root to the
gate is even.

First, here is an observation about supporting partitions (or partitions in general).
In most cases, their orbit has at least quadratic size, unless the partition has a very
particular shape.

Lemma 9.2.6. Let P be some partition of [n], for some n ≥ 4, and let Stabn(P) ≤ Altn
denote the setwise stabiliser of the partition in the alternating group. Then the orbit size
of P, that is, (1/2)n!/|Stabn(P)|, is at least Ω(n2) unless P has one of the following
forms:

• P = {[n]}.

• P = {{s}, [n] \ {s}}, for some s ∈ [n].

• P = {{s} | s ∈ [n]}.

Proof. It is easy to see that in each of the three cases above, the Altn-orbit of P has size
one or n (since we are assuming n to be large enough such that Altn acts transitively on
[n]). It remains to show that the orbit size is at least quadratic if P has any other form.
In that case, P must contain some part P of size |P | ≥ 2, whose complement in [n] is
also of size ≥ 2. Since Altn is transitive on the subsets of [n] (for each fixed subset-size),
the part P has

(
n
|P |
)

many Altn-images, which is in Ω(n2). If |P | > n/2, then we are

done because any permutation that does not map P to itself is not in Stabn(P) then,
and so the Altn-orbit of Pn is as large as claimed.
Otherwise, if |P | ≤ n/2, we estimate |Stabn(P)| as follows: Let k be the number of parts
in P of size |P |. Then

|Stabn(P)| ≤ (1/2) · k! · (|P |!)k · (n− k|P |)!

This is maximised for k = n/|P | or k = 1 because if k < n
|P | , it can be calculated that

decreasing k by one makes the expression larger, so if k is not largest possible, then the

202

9.2 Symmetric XOR-circuits over hypercubes

bound for Stabn(P) is maximised by making k as small as possible.
We have already dealt with the case that k = 1 above (where we assumed |P | to be so
large that no other part of this size can exist). Therefore, assume now that k = n/|P |.
Then we get for the orbit size of P:

n!

(n/|P |)! · (|P |!)n/|P |
≈ (n/e)n ·

√
2πn

(n/|P |)! · (|P |/e)n ·
√

2π|P |(n/|P |)

≈
(n

|P |

)n
·

√
2πn(

n
√

2π|P |
|P |·e

)n/|P |
≥
(n

|P |

)n
·
(√|P | · e
n
√

2π

)n/|P |
=
(n1−1/|P | · e1/|P |

|P |1−1/(2|P |) ·
√

2π
1/|P |

)n
We have 2 ≤ |P | ≤ n/2, so the fraction is at least 2, which makes the whole term certainly
greater than n.

In combination with our assumption that orbits of parents and children have size O(n),
this lemma will help us to get a handle on the interplay of the supporting partitions of
parent and child gates. We now define the quantity that we associate with each gate, as
described above. This quantity is actually rather a vector, that we call the size profile
(of the supporting partition). It is invariant under symmetries, so we define this measure
not for individual gates but for their entire orbits. For a gate g ∈ VCn , we denote by [g]
its Aut(Cn)-orbit in VCn . A size profile is a mapping ζ : N −→ N. For an orbit [g], we
define ζ[g] : N −→ N as follows:

ζ[g](i) := |{P ∈ SPA(g) | |P | = i}|.

Note that only for finitely many i, ζ(i) 6= 0. Due to Lemma 9.2.3, this definition is indeed
independent of the choice of the representative g of the orbit. Note that, as we promised
earlier, the measure ζ differs considerably between the root and the input gates of a circuit.
For the root r, ζ[r](n) = 1, and ζ[r](i) = 0 for all i < n. This is because our circuits
are invariant under all permutations in Symn by assumption, so the root is stabilised
by all permutations, and hence its coarsest alternating supporting partition contains
just one large part. For the input gates, by contrast, we know that their supporting
partition always has two parts: If an input gate is labelled with a hypercube edge, say,
{0a1n−a, 0a−11n−a+1}, then its supporting partition is {{1, ..., a− 1}, {a}, {a+ 1, ..., n}}.
Unless either a or b are very small, this partition has two large parts. We will prove that,
with each layer in the circuit, the size profile of the gates cannot change very much, so
for example, the largest part will grow by one, and another part will shrink by one, as
we go one layer up in the circuit. As a consequence, in the middle of the circuit, we must
encounter several different part sizes in the supporting partitions until we can reach the
supporting partition {[n]} at the root. In particular, we will encounter even part sizes in

203

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

some gates, and when that happens, this more or less leads to an even number of paths.
The next lemma is the key in our proof. It tells us precisely how the size-profiles of the
gates can differ between children and parents. Essentially, the size of large parts can only
change by at most one.

Lemma 9.2.7. Let 0 < ε < 1 be any constant. Let g a gate in Cn, h a parent of g. Assume
that |Orbit(g)(h)| ∈ O(n) and |Orbit(h)(g)| ∈ O(n). Let ∆ : {m ∈ N | m ≥ ε · n} −→ N
be the function defined as ∆(s) := ζ[h](s)− ζ[g](s). For all large enough n ∈ N and every
s ≥ ε · n it holds:

• |∆(s)| ≤ 2.

• If ∆(s) = 2, then ∆(s + 1) = −1,∆(s − 1) = −1. If additionally s is odd, then
|Orbit(g)(h)| is even.

• If ∆(s) = −2, then ∆(s + 1) = 1,∆(s − 1) = 1. If additionally s is even, then
|Orbit(g)(h)| is even.

• If no value of ∆ is 2 or −2, then one of the following is possible:

– If ∆(s) = 1, then ∆(s− 1) = −1 or ∆(s+ 1) = −1. In case that s is odd and
∆(s+ 1) = −1, then |Orbit(g)(h)| is even.

– If ∆(s) = −1, then ∆(s− 1) = 1 or ∆(s+ 1) = 1. In case that s is even and
∆(s− 1) = 1, then |Orbit(g)(h)| is even.

• If ∆(s) 6= 0, then for all other s′ except the ones mentioned in the cases above, it
holds ∆(s′) = 0.

Proof. Let SP∗A(g) ⊆ SPA(g) be the set of parts of size ≥ ε · n and SP∗A(h) ⊆ SPA(h)
the parts of size ≥ ε · n− 1 in SPA(h).
Claim: There is a bijection γ : SP∗A(g) −→ SP∗A(h) such that:

(a) For every Q ∈ SP∗A(g), it holds |γ(Q) ∩Q| ≥ |Q| − 1.

(b) For every Q ∈ SP∗A(g), it holds |γ(Q) \Q| ≤ 1.

(c) There is at most one part Q ∈ SP∗A(g) such that |γ(Q) ∩Q| = |Q| − 1.

(d) There is at most one part Q ∈ SP∗A(g) such that |γ(Q) \Q| = 1.

γ(Q)

Q

Figure 9.2: This is the most extreme way how Q and γ(Q) may differ: Each has at most
one element that is not shared with the other part.

204

9.2 Symmetric XOR-circuits over hypercubes

Proof of claim: Construct γ by defining γ(Q) ∈ SP∗A(h) as the part whose intersec-
tion with Q is largest possible. This is well-defined because there are only two cases
how SPA(h)|Q can look like: It either consists of one part or we have SPA(h)|Q =
{{s}, Q\{s}}, for some s ∈ Q. Everything else is ruled out by Lemma 9.2.6 and Theorem
4.3.1. This is because by assumption, only O(n) many parents of g are in Orbit(g)(h).
Therefore, the restriction of SPA(h) to Q, denoted SPA(h)|Q, can have at most O(n)
many images under Alt(Q): Namely, every permutation in Alt(Q) extends to a circuit
automorphism that fixes g because Q is a part in SPA(g). Moreover, by Lemma 9.2.3,
any two distinct Alt(Q)-images of SPA(h)|Q must be the Q-restrictions of supporting
partitions of distinct parents of g. So indeed, Orbit(g)(h) contains at least as many gates
as the size of the Alt(Q)-orbit of SPA(h)|Q. This size can only be in O(n) if SPA(h)|Q
consists of singletons only or has just one big part or if it as a one-vs-rest split (because of
Lemma 9.2.6, where we also use that |Q| ∈ Θ(n)). The case that SPA(h)|Q consists only
of singletons cannot happen because Q has linear size and by Theorem 4.3.1, SPA(h)
has at most o(n) many singletons. Therefore, SPA(h)|Q indeed either consists of one
part or we have SPA(h)|Q = {{s}, Q \ {s}}, for some s ∈ Q. Thus, γ(Q) is well-defined
(and indeed, every part γ(Q) ∈ SPA(h) has size ≥ ε · n− 1).

The above reasoning also directly proves statement (a). Statement (b) follows in a
similar way because if it were not true, then SPA(g)|γ(Q) would have Ω(n2) many images
under Alt(γ(Q)) (again by combining Theorem 4.3.1 and Lemma 9.2.6), resulting in
Orbit(h)(g) being too large.

We show that γ is injective: If it were not, then there would be some P ∈ SP∗A(h)
and Q1, Q2 ∈ SP∗A(g) such that |Q1 ∩ P | ≥ |Q1| − 1 and |Q2 ∩ P | ≥ |Q2| − 1. This
is impossible because then, by Lemma 9.2.6, SPA(g)|P has Ω(n2) many automorphic
images under Alt(P), but Alt(P) fixes h, so h has more than O(n) many children in
Orbit(h)(g), which is a contradiction.
Also, γ is surjective: Suppose there were a part P ∈ SPA(h) of size ≥ g(n) − 1 that
has no preimage. Then SPA(g)|P must consist of parts smaller than ε · n. Then again,
SPA(g)|P has Ω(n2) many images under Alt(P) by Lemma 9.2.6 (using also that the
number of singleton parts in SPA(g) is sublinear and hence less than |P | by Theorem
4.3.1).

If statement (c) were not true, then there would be two parts Q1, Q2 ∈ SP∗A(g) such
that |γ(Qi)∩Qi| = |Qi| − 1. Then Alt(Q1)×Alt(Q2) fixes g but generates Ω(n2) many
distinct automorphic images of SPA(h). Then again, |Orbit(g)(h)| is greater than O(n),
which contradicts the assumptions of the lemma.
Similarly, statement (d) is shown: If it were not true, then h would have too many
children in Orbit(h)(g). This proves the claim.

Now with the claim we see that there are five possible cases:

1. γ(Q) = Q for all Q ∈ SP∗A(g).

205

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

2. There is one part Q ∈ SP∗A(g) such that |γ(Q) ∩Q| = |Q| − 1 and γ(Q) ⊆ Q, and
for all other parts Q′, γ(Q′) = Q′.

3. There is one part Q with |γ(Q) \Q| = 1 and γ(Q) ⊇ Q, and for all other parts Q′,
γ(Q′) = Q′.

4. There is one part Q that satisfies |γ(Q) ∩Q| = |Q| − 1 and |γ(Q) \Q| = 1. For all
other parts Q′, γ(Q′) = Q′.

5. There is one part Q1 that satisfies |γ(Q1) ∩Q1| = |Q1| − 1 (and γ(Q1) ⊆ Q1), and
another part Q2 that satisfies |γ(Q2) \Q2| = 1 (and Q2 ⊆ γ(Q2)), and for all other
parts Q′, γ(Q′) = Q′.

In Case 1, the ∆-vector is zero.
In Case 2, we have ∆(|Q|) = −1 and ∆(|Q| − 1) = 1, and all other entries of ∆ are zero.
In Case 3, we have ∆(|Q|) = −1 and ∆(|Q|+ 1) = 1, and all other entries of ∆ are zero.
In Case 4, the ∆-vector is zero.
In Case 5, we have to distinguish several cases. If |Q1| = |Q2|, then ∆(|Q1|) = −2
and ∆(|Q1| − 1) = 1,∆(|Q1| + 1) = 1. If |Q1| 6= |Q2| and |Q1| − 1 6= |Q2| + 1 , then
∆(|Q1|) = −1,∆(|Q2|) = −1,∆(|Q1| − 1) = 1,∆(|Q2|+ 1) = 1. If |Q1| = |Q2|+ 2, then
∆(|Q1|) = −1,∆(|Q2|) = −1,∆(|Q1| − 1) = 2.

In Case 2, assume that |Q| is even. Then SPA(h)|Q has an even number of images
under Alt(Q) (because SPA(h)|Q has one singleton part and the rest, and this singleton
can be mapped to all |Q| positions by Alt(Q)). We now want to argue that therefore,
|Orbit(g)(h)| must be even. Let H(Q) ⊆ Orbit(g)(h) be the set of parents h′ such that
SPA(h′)|Q consists of one singleton part and the rest. It holds that |H(Q)| is even:
Every π ∈ Alt(Q) extends to a σ ∈ Aut(Cn) that fixes g. By Lemma 9.2.3, this σ
maps the parent h of g to another parent of g with SPA(σh)|Q = π(SPA(h))|Q. So
the Alt(Q)-orbit of every element of H(Q) is even; hence, H can be partitioned into
Alt(Q)-orbits, each of which is even, and so |H(Q)| is even.

Now if H(Q) is equal to the whole set Orbit(g)(h), then we are done. Otherwise,
Orbit(g)(h) contains gates whose supporting partition on Q does not split into a singleton
and the rest. Let h′ ∈ Orbit(g)(h) be such a gate. There must exist a permutation
π ∈ Symn that extends to a circuit automorphism σ which maps h to h′ and fixes g.
So the corresponding π must stabilise the partition SPA(g) setwise, and it will map
SPA(h) to SPA(h′). Therefore, π(Q) ∈ SPA(g) is a part for which we will again have
Case 2 when we apply the above reasoning to g and h′ = σ(h). Then we can define
H(πQ) ⊆ Orbit(g)(h) as the set of all parents whose supporting partition splits into
singleton and rest on πQ, and we get that |H(πQ)| is even. In total, with this reasoning
we see that Orbit(g)(h) is partitioned into even-size sets H(πQ), for all π ∈ Symn

which extend to circuit automorphisms that fix g and permute its parents. So in total,
|Orbit(g)(h)| is even.

206

9.2 Symmetric XOR-circuits over hypercubes

Similarly, assume in Case 5 that |Q1| is even. Then the same argument shows that
|Orbit(g)(h)| is even. The lemma follows directly from these considerations.

Corollary 9.2.8. Let 0 < ε < 1 be any constant. Let g be a gate in Cn (for large enough
n), h a parent of g. Assume that |Orbit(g)(h)| ∈ O(n) and |Orbit(h)(g)| ∈ O(n), and
that |Orbit(g)(h)| is odd.
Let s with ε · n ≤ s < n be an even natural number. Then∑

i≥s
ζ[h](i) ≥

∑
i≥s

ζ[g](i)

Proof. According to Lemma 9.2.7, for any i > s, whenever ζ[h](i) < ζ[g](i), then this is
compensated by other values of ζ[h](j) in the sum

∑
i≥s ζ[h](i).

It only remains to consider the case ζ[h](s) < ζ[g](s). Since we are assuming that
|Orbit(g)(h)| is odd, and s is even, Lemma 9.2.7 implies that ζ[h](s) = ζ[g](s)− 1, and
ζ[h](s+ 1) = ζ[g](s+ 1) + 1. Therefore, the sum

∑
i≥s ζ[h](i) cannot be strictly less than∑

i≥s ζ[g](i).

Intuitively speaking, this means that if along some path from the root to a gate g, the
orbit size of the next parent gate in the stabiliser group of its child is always odd, then
the number of large parts in the supporting partitions can only increase along the path
towards the root. This will allow us to show that an even orbit must occur along each
path. And this means that the path together with its automorphic images cancels itself
out in the XOR computation.

When we look at a path P = (r, h1, h2, ..., g) from the root r of a circuit to a certain
gate g, then we can associate with P its orbit-profile Ω(P). This orbit profile says for
every gate hi on the path, which orbit its predecessor hi−1 belongs to. By orbit, we mean
again Orbit(hi)(hi−1), so we refer to the partition of the parents of hi into the orbits
with respect to the subgroup of Symn that fixes hi. The orbit profile of a path is not
supposed to describe that path uniquely but we rather want that several paths share the
same orbit profile – in a sense, we want the orbit profile to describe the “path” that we
get when we factor out the respective orbits Orbit(hi)(hi−1). We have to show that this
indeed makes sense:

Lemma 9.2.9. Let g be a gate and h a parent of g. Let g′ be another gate such that
there is a σ ∈ Aut(C) with g′ = σ(g). In the partition of ECg

′ into orbits Orbit(g′)(h
′),

for h′ ∈ ECg′, there is a unique orbit Orbit(g′)(h
′) to which Orbit(g)(h) can be mapped

by Aut(C).

Proof. Firstly, it is clear that every σ ∈ Aut(C) that takes g to g′ must map Orbit(g)(h)
to some orbit Orbit(g′)(h

′), for a h′ ∈ ECg
′. We now show that there cannot be

two distinct Orbit(g′)(h
′),Orbit(g′)(h

′′) that Orbit(g)(h) can be mapped to. Sup-
pose for a contradiction that there were σ, σ′ ∈ Aut(C) with σ(g) = σ′(g) = g′ and
σ(Orbit(g)(h)) = Orbit(g′)(h

′) and σ′(Orbit(g)(h)) = Orbit(g′)(h
′′). Then σ′ ◦ σ−1

maps Orbit(g′)(h
′) to Orbit(g′)(h

′′) while fixing g′. Thus, Orbit(g′)(h
′) = Orbit(g′)(h

′′),
which is a contradiction because these orbits are distinct.

207

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

Thus, for any gate g in C, and h a parent of g, we can define

Orbit(Orbit(g)(h)) := {σ(Orbit(g)(h)) | σ ∈ Aut(C)},

and this orbit of orbits contains exactly one Orbit(g′)(h
′) for every g′ ∈ Orbit(g) =

{σ(g) | σ ∈ Aut(C)}. The orbit profile Ω(P) of a path P = (r = h1, h2, ..., h` = g) is
defined as

Ω(P) := (Orbit(Orbit(h`)(h`−1)),Orbit(Orbit(h`−1)(h`−2)), ...,Orbit(Orbit(h2)(h1))).

h1 = r

h2

h3

h4

h5

h′2

h′3

h′4

h′5

Figure 9.3: The colours indicate the partition of each set of parents into orbits. Orbits
with the same colour belong to the same orbit of orbits. The orbit profile of
the two paths in the picture is thus “red, brown, green, yellow”. Both paths
are related by a circuit automorphism.

Lemma 9.2.10. Let P = (r = h1, ..., h` = g) be a path from r to g in Cn. The number
of paths in Cn from r to g with orbit-profile Ω(P) is exactly∏

2≤i≤`
|Orbit(hi)(hi−1)|

Proof. We go backwards from g = h` to r and count how many ways there are to
construct a path with orbit-profile Ω(P). In the beginning, there are |Orbit(h`)(h`−1)|
many options to choose a predecessor of g that is in the orbit required by Ω(P). Let h be
the predecessor of g that we choose. From there, we have |Orbit(h`−1)(h`−2)| predecessors

208

9.2 Symmetric XOR-circuits over hypercubes

that we could continue with in a way that respects Ω(P). To see this, we use Lemma
9.2.9: No matter which gate we chose for h, it is in Orbit(h`−1). Therefore, by Lemma
9.2.9, there exists a unique Orbit(h)(h

′) in {Orbit(h)(h
′) | h′ ∈ ECh} that is also a

member of Orbit(Orbit(h`−1)(h`−2)). From this Orbit(h)(h
′), we can choose the next

gate on our path, and this orbit has the same size as Orbit(h`−1)(h`−2). Hence, we have
so far |Orbit(h`)(h`−1)| · |Orbit(h`−1)(h`−2)| possibilities to go two steps from g towards
r in a way that complies with the orbit-profile Ω(P). In the same fashion, we continue
counting until we reach the root, and obtain the number of paths that is stated in the
lemma.

Lemma 9.2.11. Let 0 < ε ≤ 1. For each n, fix a gate gn in Cn such that SPA(gn) has
at least two parts of size ≥ εn. For every possible orbit-profile Ω(P) that any path P from
the root of Cn to gn can have, there exists an even number of distinct paths from the root
to gn with exactly that orbit-profile.

Proof. Fix a path P from the root to gn in Cn and the corresponding orbit-profile Ω(P).
We are going to show that there exists an even number of distinct paths from the root to
gn with orbit-profile Ω(P).
By the assumption on gn, it holds ζ[gn](s1) ≥ 1 and ζ[gn](s2) ≥ 1 for s1, s2 ≥ ε·n. For the
root rn it holds ζ[rn](n) = 1 and ζ[rn](s) = 0 for every s 6= n (because the root is fixed by
all permutations in Symn). Therefore, the size profiles ζ must change along the path P
from g to r. Let s be an even natural number such that ε·n ≤ s ≤ min{s1, s2}. This always
exists because otherwise we can just make ε a bit smaller such that min{s1, s2}−1 ≥ ε ·n.
Assume for a contradiction that for every gate h ∈ P , for its predecessor h′ on the path P
it holds: |Orbit(h)(h

′)| is odd. Then applying Corollary 9.2.8 inductively along the path
P shows that

∑
i≥s ζ[h](i) ≥

∑
i≥s ζ[gn](i) ≥ 2, for every h ∈ P . This is a contradiction

to the fact that
∑

i≥s ζ[rn](i) = 1.
This shows that there must be some h on the path P such that the predecessor h′ of
h satisfies: |Orbit(h)(h

′)| is even. Then the total number of paths from rn to gn with
profile Ω(P) is even because by Lemma 9.2.10, this number is a product containing the
even number |Orbit(h)(h

′)|.

From this, our main technical theorem follows, which states that not only the number
of paths with a given orbit profile, but the total number of paths from r to g is even:

Proof of Theorem 9.2.5: Every path from rn to gn has exactly one orbit-profile. Hence,
the number of paths from rn to gn is just∑

Ω an orbit profile of a path from rn to gn

#(Ω),

where #(Ω) denotes the number of paths with orbit-profile Ω that end in gn. By Lemma
9.2.11, all summands in this sum are even.

Finally, let us summarise why Theorem 9.2.1 (“fully symmetric XOR-circuits are
insensitive to all inputs except those labelled with very imbalanced binary strings”)

209

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

follows from Theorem 9.2.5.

Proof of Theorem 9.2.1:
Fix any ε > 0. Let gn be an input gate of Cn labelled with a hypercube-edge
`(gn) = {0a1n−a, 0a−11n−a+1} such that a ≥ εn and n − a ≥ εn. It is easy to see
that SPA(gn) = {{1, ..., a− 1}, {a}, {a+ 1, ..., n}}. This contains two parts of size ≥ εn,
so Theorem 9.2.5 applies and the number of paths from the root to gn is even. By Lemma
9.2.4, the circuit Cn is not sensitive to the input gate gn.

9.3 Conclusion and future research

We have made progress towards showing that no CFI-symmetric (and super-symmetric)
CPT-algorithm defines the CFI-query over unordered hypercubes: According to the
results from Chapter 8, the existence of such an algorithm would entail the existence of a
family of symmetric XOR-circuits whose sizes and orbit sizes are polynomial in the size
of the n-dimensional hypercube (namely 2n), which compute the XOR over Ω(2n/n1.5)
many input bits, and whose fan-in dimension is bounded by O(n) (i.e. logarithmic in the
hypercube size). Our aim was to show that such circuit families do not exist. We have
not fully accomplished this but at least we have identified interesting further restrictions
on the circuits which altogether are unsatisfiable: If the orbit size of each circuit is
assumed to be exactly 1 instead just polynomial, and instead of the fan-in dimension
bound of O(n), we impose an O(n)-bound on the number of children and parents of
each gate (per orbit in the stabiliser of the gate), then these circuits cannot compute the
XOR over Ω(2n/n1.5) many input bits. It follows that if nonetheless there does exist a
CFI-symmetric algorithm for the hypercube CFI-query, then the corresponding circuit
families either have orbit size > 1 or must violate the orbit-wise bound on the number
of child or parent gates. Thus, the next step should be to try and lift our techniques
developed in this chapter to a more general setting. It seems plausible that this can be
done but there are technical challenges involved:

The first problem is how to argue for circuits whose orbit size is not exactly 1, but
bounded by some polynomial in 2n. Then the supporting partition of the root does
not necessarily consist of only one part, but it can be many more (although if it is too
many, then the orbit size will be greater than 2nk, which is forbidden). Our argument
exploited the fact that the number of linear-size parts in the supporting partition can
never decrease along a path from an input gate to the root unless the number of parents
is even at some point. But if the supporting partition of the root can now have multiple
linear-size parts, then this no longer leads to a contradiction. It might be that with a
much more careful analysis of the circuits, our argument could still be recovered in this
case, though. Our key technical lemma (Lemma 9.2.7) is actually stronger than what we
needed in our proof because it gives us several cases in which the number of parents of a
gate must be even. Thus, if even parent numbers are forbidden, then the ways in which
the size profiles of the supporting partitions can change along a path are very limited.

210

9.3 Conclusion and future research

But surely we can expect that not all gates have the same size profile, so changes will
occur somewhere, and then again, this will lead to even parent numbers. It is just not
clear at this moment how to turn this into a formal argument.

The second problem concerns the relationship between the logarithmic bound on the
fan-in dimension, that we get from Theorem 9.1.5, and on the logarithmic orbit-wise
fan-in and fan-out bounds that we imposed in this chapter. Currently, we do not know
if one of these bounds implies the other. Probably, the bound on the parent number
is not directly related to fan-in dimension but the bound on the children might be. It
would be nice if logarithmic fan-in dimension implied a logarithmic number of children
per orbit. Then we would have this covered with the result of this chapter. In case that
the gates in Orbit(h)(g) ⊆ hEC all have distinct sensitivity sets X (g′), which are also

linearly independent as vectors in FE2 , then |Orbit(h)(g)| is indeed at most the fan-in
dimension. But it is unclear how to reason about the properties of these sets X (g′), for
all g′ ∈ Orbit(h)(g).
For removing the O(n)-bound on the orbit-wise parent number of the gates, we have
a rough idea. Namely, because our circuits are single-rooted, their levels should get
narrower closer to the root. Therefore, it seems plausible that close enough to the root,
each gate indeed only has a bounded number of parents because otherwise, the circuit
would get wider. The good thing about our even-paths theorem (Theorem 9.2.5) is that
it can be applied to any gate in the circuit, not only input gates. So we could potentially
focus on the top-most part of the circuit, where its levels only get narrower, and could
show that in this top part, all paths cancel each other out. This would suffice to show
that the circuit is not sensitive to enough input bits.

All in all, it feels like our even-paths technique has more potential and might also
work for less restricted circuit classes, perhaps even for all circuits satisfying the nec-
essary properties for the existence of a CFI-symmetric algorithm for the hypercube
CFI-problem. In particular, it might also be possible to improve our Theorem 4.3.1
from the group-theory chapter, which says that the alternating supporting partitions can
not have linearly many singleton parts. This was what we needed in our proof in this
chapter but actually, the lemmas we used in the proof of Theorem 4.3.1 can probably
lead to stronger statements. For example, the key group-theoretic Lemma 4.3.8 says
that every alternating supporting partition has a part of linear size. Perhaps, an iterated
application of that lemma could lead to a good upper bound on the number of parts
in the alternating supporting partitions here. This would give us more information
about the relevant stabiliser groups, which could potentially be helpful. So we seem
to be in the situation where we probably have not yet reached the limitations of our
technique, but nonetheless, making further progress might be technically very challenging.

Finally, let us briefly return to the question about tree-like circuits, that we mentioned
earlier in this chapter. Are tree-like circuits with logarithmic fan-in dimension (or perhaps,
simply logarithmic fan-in degree) a sufficiently symmetric candidate or is there a way to

211

9 Lower bounds for families of symmetric XOR-circuits over hypercubes

rule them out? The results from this chapter indicate that tree-like circuits with logarith-
mic fan-in degree cannot have orbit size one: Then they would satisfy the preconditions of
Theorem 9.2.1 because in a tree, every gate has just one parent. Hence, such trees would
not be sensitive to enough input bits, even though a treelike XOR-circuit is of course
sensitive to all its inputs because none cancel out. Therefore, we can conclude that trees
with Θ(2n/n1.5) many input gates can simply not be symmetric with respect to the action
of Symn on {0, 1}n; at least, not in the sense that all permutations in Symn extend to
circuit automorphisms. We can take this as a hint that perhaps, the orbit size of such
trees is generally not even polynomial in 2n, which would rule them out as candidates. We
currently have no proof for this but it seems like a question that can realistically be solved.

Another direction that may be interesting to investigate is in how far the new lower
bound technique against symmetric XOR-circuits that we developed here can be applied
to other scenarios as well. For example, studying lower bounds for symmetric circuits
also seems to be a promising approach towards separating the algebraic complexity
classes VNP and VP. There exist lower bounds against symmetric arithmetic circuits
for computing the determinant and permanent polynomials by Dawar and Wilsenach
[43, 41]. They raise the question in how far these lower bounds can be improved to
weaker symmetry groups, and perhaps our technique can be adapted to that end. Of
course, the even-paths theorem is probably only useful for circuits which purely consist
of XOR-gates; but the statement that the alternating supporting partitions of the gates
cannot change much between the layers could lead to new insights. A novelty of our
technique in comparison with [6, 42, 43, 41] is that it does not use any “support theorem”.
Support theorems are a key ingredient in all these previous works, and they usually
state that any gate in a highly symmetric circuit is supported by a constant number of
elements of the permutation domain. For poly-size circuits with hypercube-symmetries –
which is a weaker kind of symmetry than what is studied in the aforementioned articles –
we believe that a support theorem in that strong form does not hold. Thus, our approach
via alternating supporting partitions might perhaps open up a perspective to study such
weaker symmetry groups as well.

212

10 Choiceless Polynomial Time and
Propositional Proof Complexity

In this chapter, we take a different perspective on Choiceless Polynomial Time and relate
its power to that of a propositional/algebraic proof system. The main consequence is that
super-polynomial lower bounds for deciding graph non-isomorphism of CFI-graphs or
multipedes in this proof system, the degree-3 extended polynomial calculus, would separate
CPT from Ptime. We show this by simulating the runs of CPT-programs that distinguish
non-isomorphic graphs in the extended polynomial calculus. This approach extends prior
research on the connections between finite model theory and proof complexity ([90] and
[17]). Because proof complexity has not appeared elsewhere in this thesis, we start with
a brief introduction to the subject. For a more thorough survey, see for example [100] or
[16] or the textbook [79].

Propositional proof complexity A propositional proof system can be informally under-
stood as a collection of syntactical inference rules that are used to derive new “proof
lines” from already derived ones or from the input. The format of these lines depends
on the proof system. For example, in the well-known resolution calculus, the lines
are propositional clauses. In the polynomial calculus (PC), that we consider here, the
lines are polynomials over Q, that are understood as polynomial equations of the form
p(X1, ..., Xn) = 0. Typically, the instances that one wishes to solve with a proof system
are propositional formulas, potentially converted into, say, CNF or a set of polynomial
equations over {0, 1}-variables. The question is whether the given instance is unsatisfiable.
A proof of unsatisfiability, also called a refutation, is usually a derivation of a certain
obviously unsatisfiable proof line from the input. In the case of resolution, this is the
empty clause, whereas in the polynomial calculus, it is the equation 1 = 0. There are also
proof systems that work the other way round, i.e. they can be used to prove that a given
formula is a tautology by deriving it from a fixed set of axioms, that are tautological.
More abstractly, Cook and Rechow defined the notion of a propositional proof system as
a polynomial time computable function that takes as input a propositional formula and
a certificate of it being a tautology (or unsatisfiable) and correctly checks the certificate.
Proof systems are usually sound and complete, so a certificate that is accepted by this
verifier exists if and only if the input formula is a tautology/unsatisfiable. The complexity
of such a proof system is then the smallest upper bound that can be put on the length
of the certificates in terms of the length of the instance. Thus, the existence of a proof
system with polynomial complexity is equivalent to SAT being in NP. So if a proof system
that admits short proofs for all tautologies is found, this would prove that coNP = NP.
This – and the fact that proof systems such as resolution or the polynomial calculus

213

10 Choiceless Polynomial Time and Propositional Proof Complexity

form the basis for many real-world SAT-solvers – explains why so much effort is put into
proving lower bounds in proof complexity. Potentially, one day, super-polynomial lower
bounds for all propositional proof systems can be shown, which would separate coNP
from NP, or this line of research might lead to the discovery of a proof system with
polynomial complexity, which would mean that coNP = NP.

For resolution and also for the polynomial calculus, super-polynomial lower bounds
are known (e.g. [68] and [77]). An important family of proof systems, for which such
bounds have still not been found, are so-called Frege systems. This is a general term
for all “classical ” propositional proof systems in the style of, for example, Gentzen’s
sequent calculus. Such systems all polynomially simulate each other, so the precise set of
inference rules does not matter too much. The main difference between Frege and, for
instance, resolution, is that the lines of a Frege proof are not limited to clauses, but may
consist of arbitrary propositional formulas. There also exists extended Frege, which refers
to the standard Frege proof systems with the additional power to introduce new variables
as abbreviations for complex formulas in a proof. The power and limitations of this
proof system are even less clear than for Frege itself. In fact, not even the relationship
between Frege and extended Frege is known. It is conjectured that extended Frege is
super-quasipolynomially stronger than Frege but a separating example has not been
found yet [28].

What we consider in this chapter is the polynomial calculus with extension axioms, where
– analogously to extended Frege – the standard polynomial calculus is augmented with
axioms for the introduction of new variables. Formally, these axioms read Xf−f , where

f is any polynomial that does not contain the variable Xf . The axiom is understood
as the equation Xf − f = 0, so it simply says that the new variable Xf must have
the same value as the polynomial f . This proof system is still relatively unexplored,
compared to the polynomial calculus itself but there does exist a fairly recent super-
polynomial lower bound by Yaroslav Alekseev [5] for the so-called bit-value principle
1 + x1 + 2x2 + ...+ 2n−1xn = 0. Unfortunately, this seems to be unrelated to the graph
isomorphism problem that we consider here, and so, Alekseev’s techniques are probably
not applicable to separate CPT from P in combination with our Theorem 10.0.3. In
particular, his proof uses a coefficient blow-up argument, and it seems unlikely that such
a thing could happen in refutations of the graph isomorphism polynomials. We provide
more details on the extended polynomial calculus in Section 10.1.

Connections to finite model theory Many lower bounds in the history of proof complex-
ity were obtained using specific combinatorial arguments tailored to the proof systems
and instances at hand, but in fact, some of them can alternatively be proven with more
general finite-model-theoretic tools such as the bijective k-pebble game. Conversely, lower
bounds for typical logics from finite model theory, such as fixed-point logic or fixed-point
logic with counting, can in principle also be deduced from proof-theoretic lower bounds.
This connection between finite model theory and proof complexity is explored in detail

214

in [90]. In that article, restricted variants of resolution and the polynomial calculus
are studied: If one restricts the width (that is, the number of literals) of the clauses
that may be used in a resolution refutation to some constant k, then the existence of
a width-k refutation of a given input CNF can be checked in polynomial time. This
holds simply because the number of possible width-k clauses is polynomially bounded
in the number of input variables. Similarly, if the polynomials in a polynomial calculus
refutation are restricted to a constant degree k, then proofs can be efficiently computed
with the Gröbner basis algorithm [32]. Thus, these restrictions form natural fragments
of the proof systems that enable efficient deterministic proof search, while sacrificing
completeness. As shown in [90], the existence of width-k resolution refutations or degree-k
polynomial calculus refutations can even be defined in fixed-point logic, or fixed-point
logic with counting, respectively (using O(k) variables). A similar statement holds for
the definability of sums-of-squares (SOS) proofs in FPC [13].
Therefore, if the structural representations of two given input CNF-formulas or polynomial
equation systems are indistinguishable in k-variable FO/k-variable counting logic, then
also width-k resolution/degree-k polynomial calculus cannot distinguish them: Either,
both are refutable or none of them are. Hence, these proof systems fail on families of
unsatisfiable formulas which possess a respective Ck-equivalent (with respect to the struc-
tural representation) counterpart that is satisfiable. In this way, finite-model-theoretic
methods can be used to show that, for example, graph non-isomorphism for CFI-graphs,
or the pigeonhole principle, are not refutable in width-k resolution/degree-k PC. The
other direction holds as well: The evaluation of fixed-point formulas on finite structures
can be simulated in width-k resolution/degree-k polynomial calculus (the latter is needed
for fixed-point logic with counting). More precisely, for any fixed FPC-sentence ψ,
there exists an FO-interpretation that maps any structure A (with a number sort) of
matching signature to the structural representation of a polynomial equation system
that is refutable in degree-k PC if and only if A |= ψ. That means, up to a rather weak
FO-definable precomputation, the polynomial calculus can simulate fixed-point iterations
of FO-formulas with counting [90].

Results of this chapter A similar result was obtained before in [17], where Berkholz
and Grohe focused on the graph isomorphism problem. A proof system, such as the
polynomial calculus, is said to distinguish two graphs G and H, if it can refute the
statement “the graphs G and H are isomorphic”, formally encoded as a polynomial
equation system Piso(G,H) – see Definition 10.2.1. The main result of Berkholz and
Grohe is that the degree-k polynomial calculus (or actually a certain restriction thereof)
can distinguish G and H if and only if G and H can be distinguished by the (k − 1)-
dimensional Weisfeiler Leman algorithm. Since the power of the (k − 1)-dimensional
Weisfeiler Leman method is characterized by that of Ck, this means that the degree-k PC
cannot distinguish more graphs than the logic Ck. In this chapter, we lift one direction of
this result to CPT and the extended degree-3 polynomial calculus over Q (denoted EPC3):
If CPT distinguishes all graphs in a given class K, then so does EPC3. Moreover, the

215

10 Choiceless Polynomial Time and Propositional Proof Complexity

corresponding EPC3-refutations have polynomial size and use extension axioms only for
expressions of a certain limited form. The main consequence is that super-polynomial
EPC3 lower bounds for graph isomorphism on some graph class K would imply that CPT
cannot distinguish these graphs, either. If K is some class of CFI-graphs or multipedes
[67], for which isomorphism is in polynomial time, then this would separate CPT from P.
This is the main result of this chapter:

Theorem 10.0.1. Let K be a class of binary structures such that CPT distinguishes all
graphs in K. Then the degree-3 extended polynomial calculus over Q (denoted EPC3)
distinguishes all graphs in K with refutations of polynomial size.
Moreover, the EPC3-refutation uses only extension axioms Xf−f for polynomials of the

form f = X · Y or f = 1
n ·
(∑n2

i=1Xi

)
. That is, only monomials and certain “averaged

sums” are replaced with new variables.

When we say that CPT distinguishes all structures in a class K, we mean that for any
two non-isomorphic graphs in that class, there exists a distinguishing CPT-sentence:

Definition 10.0.2 (Distinguishing relational structures in CPT). Let K be a class
of τ -structures. We say that CPT distinguishes all structures in K if there exists a
polynomial p(n) and a constant k ∈ N such that for any two structures G,H ∈ K which
are non-isomorphic, there exists a sentence Π ∈ CPT(p(n)) with ≤ k variables such that
G |= Π and H 6|= Π.

This definition is perhaps a bit unexpected because the distinguishing sentence does
not have to be the same one for all pairs of graphs in K. This is so because when we refute
graph isomorphism in the polynomial calculus, then the refutation is also a different one
for each pair of non-isomorphic graphs; the distinguishing CPT-sentences will play the
role of the refutations. We have to require that all these distinguishing sentences must
obey the same polynomial resource bound and use only a constant number of variables.
Otherwise, we could distinguish any pair of non-isomorphic finite graphs already in FO,
by explicitly defining the graphs up to isomorphism.

So by this definition, if CPT distinguishes all graphs in K, it does not necessarily mean
that there also exists a single CPT-program that decides the graph isomorphism problem
on that class (because it might have to guess the right distinguishing sentence). But if
CPT does not distinguish the graphs in K, then it cannot possibly decide isomorphism
for K with a single program. Therefore, we directly get the desired consequence:

Theorem 10.0.3. If there is a class K of graphs on which the isomorphism problem is in
Ptime, but which cannot be distinguished in EPC3 with polynomial-size refutations using
only extension axioms of the form mentioned in Theorem 10.0.1, then CPT 6= Ptime.

A second, though perhaps less interesting, consequence of Theorem 10.0.1 can be
obtained by applying the theorem the other way round, from finite model theory to
proof complexity: Our restricted version of EPC3 that we consider here is strictly more
powerful than the degree-k PC without extension axioms, for every constant k:

216

Theorem 10.0.4. There exists a sequence of pairs of non-isomorphic graphs (Gn, Hn)n∈N
such that Piso(Gn, Hn) has a polynomial-size refutation in the degree-3 extended polynomial
calculus (using only extension axioms of the aforementioned form) but there is no k ∈ N
such that the degree-k polynomial calculus can refute Piso(Gn, Hn) for all n.

We show in Section 10.3 how this theorem follows from Theorem 10.0.1 together with
the definability of the CFI-query over ordered base graphs (see Theorem 6.1.1 in Chapter
6) and a polynomial calculus lower bound stated in [17].
To our knowledge, the separation of these two bounded-degree proof systems has not
explicitly been stated before – specifically for the graph isomorphism problem. In the
unbounded-degree setting, an exponential separation between PC and EPC is known,
even if one only allows extension axioms of the form X = 1−X, as in polynomial calculus
resolution [44]. Nevertheless, this is another nice example of how results from finite model
theory can lead to new insights in proof complexity. Similar examples are the alternative
finite-model-theoretic proofs for previously known proof complexity lower bounds in [90].

It should be noted that the connection between CPT and EPC3 that we have discovered
here is weaker than the results in [17] or [90]. While in [17], the correspondence goes in
both ways – graph distinguishability in the degree-k PC also implies distinguishability in
Ck – we believe that this is not true for EPC3 and CPT. This has two reasons: Firstly,
EPC3 is a priori not symmetry-invariant, whereas CPT is, and secondly, we do not
know of any efficient deterministic procedure for computing EPC3-refutations. For the
bounded-degree polynomial calculus without extension axioms, this is possible, but for
EPC3, we would probably have to guess the right set of extension axioms to be used
and then apply the Gröbner basis algorithm to deterministically compute the refutation.
Hence, the existence of EPC3 proofs for graph non-isomorphism does not seem to be
CPT-definable, unless CPT were extended with some kind of non-determinism and
EPC3 were restricted to a symmetric fragment. Potentially, a suitable non-deterministic
extension for this could be NPIL, which we sketched in Section 3.3. This logic allows
to guess which symmetry-invariant operation is to be executed in each step. As a side
remark, we also suspect that Definition 10.0.2 could be phrased quite naturally in terms
of NPIL: While we now allow to choose a different CPT-program for every pair of graphs
in K that is to be distinguished, we could probably use a single NPIL-sentence that
distinguishes every pair of graphs: This sentence would simply guess and execute the
suitable distinguishing deterministic program for the two input graphs.

Another difference between the results here and those in [90] is that the mutual
simulation of degree-k PC and FPC from [90] is not limited to the graph isomorphism
problem. It works for every FPC-sentence and every polynomial equation system. We
do not see a way how Theorem 10.0.1 could be lifted to this effect. That is, we do
not know if all CPT-definable properties of finite structures can also be decided by
EPC3 on some definable polynomial axiom system. If this were possible, then we would
obtain more candidate polynomial axiom systems, for which EPC3 lower bounds imply
CPT 6= Ptime. However, the most promising candidate problems for separating CPT

217

10 Choiceless Polynomial Time and Propositional Proof Complexity

from P seem to be instances of graph isomorphism anyway (e.g. the CFI query). Also,
the aforementioned bit-value principle, for which an EPC lower bound is known, does
not seem like it can be used to express any meaningful CPT-computations in EPC. So
in any case, there is not much hope to use that particular lower bound by Alekseev [5]
against CPT, even if Theorem 10.0.1 could be extended to other problems than graph
isomorphism.

Actually, a realistic chance to make Theorem 10.0.1 more powerful would be to state
that the resulting EPC3-refutations for graph isomorphism are symmetry-invariant in
a certain sense. This can be seen by inspection of our proof. Basically, it then follows
that already a super-polynomial lower bound for graph isomorphism in some symmetric
fragment of EPC3 would suffice to separate CPT from P; the problem is that our results
do not lead to a clear and general definition of what symmetric EPC3 should be. We
discuss this topic in more detail in the last section of this chapter and explain one
potential notion of symmetric refutations that fits to our setting here, but seems hard to
generalise to other problems than graph isomorphism.

For the proof of Theorem 10.0.1, we have to take a detour via the relatively new
computation model Deep Weisfeiler Leman (DWL). It has recently been introduced by
Grohe, Schweitzer and Wiebking [63] and was shown to have the same expressive power
as CPT. Roughly speaking, a DWL algorithm is a polynomial time Turing machine that
operates on a given finite input structure. It has read and write access to that structure,
but only in an isomorphism-invariant way. Essentially, the Turing machine only “sees”
the 2-dimensional Weisfeiler Leman colouring of the structure. For our purposes, this
connection to the Weisfeiler Leman algorithm is extremely useful because it allows us to
apply the machinery from [17] that relates Weisfeiler Leman with the polynomial calculus.
Furthermore, in the DWL computation model, it becomes much more apparent what it
really means to distinguish graphs in CPT. Since DWL is technically quite involved, a
large part of this chapter (Section 10.4) consists in its presentation and proofs of several
of its properties. Only after that, we show how to actually construct an EPC3-refutation
for graph isomorphism, given a CPT- and thus a DWL-program that distinguishes the
given graphs. In short, the key idea behind the EPC3-refutation is to represent the
higher-order objects constructed by the distinguishing CPT sentence with extension vari-
ables that stand for suitable polynomials. Ordered tuples of elements will be represented
by degree-2 monomials, i.e. products of the elements. Unordered sets correspond to
averaged sums of their elements. This is also the reason why only extension axioms as
mentioned in Theorem 10.0.1 are needed. Using this encoding of higher-order objects, we
can derive from a given polynomial equation system Piso(G,H) (see Definition 10.2.1) the
equation system Piso(G′, H ′), where G′ and H ′ are the input graphs augmented with new
CPT-definable h.f. sets. Thus, refuting isomorphism of G and H reduces in EPC3 to the
isomorphism problem on any CPT-definable higher-order objects over these graphs. This
problem can then be solved in the degree-3 polynomial calculus using the results from [17].

218

10.1 The (extended) polynomial calculus

In this chapter, relations are always binary. Whenever unary relations are needed, for
example to encode vertex-colours, we represent them with self-loops of binary relations.
For the Deep Weisfeiler Leman computation model, we closely follow the presentation in
[63] and also adopt the notation, even though it sometimes deviates from the conventions
in the rest of the thesis. For example, in this section we denote structures as A rather than
A. For a relation symbol R, R(A) denotes the corresponding relation in the structure
A. The universe of A is denoted V (A). The induced substructure of A with universe
W ⊆ V (A) is denoted A[W].

We now begin by formally defining the extended polynomial calculus and reviewing
the relevant material from [17] about its application to the graph isomorphism problem.

10.1 The (extended) polynomial calculus

The polynomial calculus was introduced in [32]. It is applicable to the following problem:
Given a set P of multivariate polynomials over a fixed field (in our case, Q), decide
if the polynomials in P have a common zero with respect to {0, 1}-assignments. The
polynomial 1 is derivable from P if and only if the polynomials in P have no common
zero over {0, 1}. A derivation of the 1-polynomial is formally a sequence p1, p2, ..., pn = 1
of polynomials such that each pi is either in P or an axiom of the polynomial calculus or
is obtained from one or multiple pj , for j < i, with the application of a derivation rule.
A derivation of the 1-polynomial from P is called a refutation of P (or a proof that P is
not satisfiable).
A restricted variant of the polynomial calculus, the monomial calculus, has been introduced
in [17]. The derivation rules of the polynomial/monomial calculus are the following:

Definition 10.1.1 (Inference rules of the (extended) polynomial calculus). Let P be
the set of input polynomials/axioms, a, b ∈ Q, X a variable, and f, g polynomials with
rational coefficients.

p ∈ P
p

(Axioms)
X2 −X

(Boolean axioms)

f

Xf
(Multiplication rule)

g f

ag + bf
(Linear combination rule)

In the extended polynomial calculus (EPC), extension axioms of the form Xf−f may

be used, subject to the following condition: For any EPC-refutation, there must exist a
linear order < on the occurring extension variables such that for every extension axiom

Xf−f used in the refutation, f contains only extension variables Xg < Xf . The Boolean

axioms do not apply to extension variables.

The monomial calculus (MC) is a restriction of PC that permits the use of the multipli-
cation rule only in the cases where f is either a monomial or the product of a monomial
and an axiom. The Boolean axioms are part of the polynomial calculus because the
domain of the variables is always assumed to be {0, 1}.

219

10 Choiceless Polynomial Time and Propositional Proof Complexity

The size of a refutation p1, p2, ..., pn = 1 is the total number of occurrences of monomials
in all its polynomials. Its bit-complexity is the maximum number of bits required to
represent any of the occurring coefficients, where values in Q are stored as a fraction of
two binary numbers.

In general, derivations of the 1-polynomial may have super-polynomial size. This is
for example the case in refutations of the pigeonhole principle [77]. Hence, one often
considers the degree-k versions of the proof systems, which we denote by MCk,PCk and
EPCk. In these proof systems, only polynomials of degree ≤ k may occur in a refutation.
As already said, proofs in MCk,PCk can be efficiently found using the Gröbner basis
algorithm, provided that the representations of the occurring coefficients do not require
a super-polynomial number of bits. Of course, when we bound the degree by a constant,
we lose completeness, because e.g. the pigeonhole principle does not admit proofs of
sublinear degree [92]. For the extended polynomial calculus, however, it is – to the best
of our knowledge – not known whether the bounded-degree fragment is strictly weaker.
It may be the case that for some fixed k, EPCk simulates EPC (perhaps even with only
a polynomial increase in the refutation size).
Intuitively, the effect of the extension axioms in the bounded-degree proof system EPC3

is that the degree-bound of 3 may be “locally” violated: Monomials like A · B · C ·D
can be written as XAB ·XCD, where XAB and XCD are fresh extension variables such
that XAB = A · B, and XCD = C · D. Thus, with the help of extension axioms, we
can implicitly use monomials of larger degree than allowed. If we restrict ourselves to
refutations of polynomial size, then we can think of this proof system as a variant of the
degree-3 polynomial calculus where the degree bound can be violated a limited number
of times.

10.2 Expressing graph isomorphism as a polynomial equation
system

Let G and H be fixed graphs, potentially with a colouring of the vertices or with multiple
edge relations. We consider the following polynomial axiom system Piso(G,H) that
expresses the existence of a (colour-preserving) isomorphism between G and H. A
refutation of Piso(G,H) in any variant of the polynomial calculus then witnesses that
G and H are non-isomorphic. The system Piso(G,H) is similar as in [17]. As shown
there, the particular definition of Piso(G,H) is not decisive: Certain alternative natural
formulations of graph isomorphism as polynomial equation systems can be derived from
Piso(G,H) in the polynomial calculus.

220

10.2 Expressing graph isomorphism as a polynomial equation system

Definition 10.2.1 (Piso(G,H), [17]). Let G and H be two graphs (potentially vertex-
coloured). Let ∼⊆ V (G)× V (H) be the relation ”vertex v ∈ V (G) and w ∈ V (H) have
the same colour”.
The system Piso(G,H) consists of the following polynomials in the variables
{Xvw | v ∈ V (G), w ∈ V (H), v ∼ w}.∑

v∈V (G)
v∼w

Xvw − 1 for all w ∈ V (H) (10.1)

∑
w∈V (H)
v∼w

Xvw − 1 for all v ∈ V (G) (10.2)

XvwXv′w′ for all v, v′ ∈ V (G), w, w′ ∈ V (H) (10.3)

with v ∼ w and v′ ∼ w′

such that {(v, w), (v′, w′)} is not

a local isomorphism.

The intended meaning of the variable Xvw being set to one is “v is mapped to w”.
When we say that a certain variant of the polynomial calculus distinguishes two graphs
G,H, we mean that the polynomial equation system Piso(G,H) has a refutation in that
proof system. The main result from [17] links graph distinguishability in this sense to
graph distinguishability by the k-dimensional Weisfeiler Leman algorithm.

Theorem 10.2.2 (Theorem 4.4 in [17]). Let k ∈ N and let G and H be graphs. The
axiom system Piso(G,H) has a refutation in the degree-k monomial calculus iff the
(k − 1)-dimensional Weisfeiler Leman algorithm distinguishes G and H.

In [17], this is not stated for vertex- or edge-coloured graphs, but it can be checked
that the proof still goes through in these cases. For our result, we need some of the
technical ingredients from the proof of Theorem 10.2.2: What is shown in [17] is that
Spoiler’s winning positions in the bijective k-pebble game on G and H are derivable in
MCk from Piso(G,H).
A position in the game is a set of pebble pairs π ⊆ V (G)× V (H) of size |π| ≤ k. The
position π corresponds to a monomial in the variables from Piso(G,H). We denote this
monomial as Xπ :=

∏
(v,w)∈πXvw (so the Xvw are the variables, whereas Xπ is shorthand

for a product of variables). We will use the following central technical result as a blackbox:

Lemma 10.2.3 (Lemma 4.2 in [17]). Let k ≥ 2 and G,H be graphs (such that for every
vertex-colour Q, there are exactly as many vertices of colour Q in G as in H). If Spoiler
has a winning strategy for the bijective k-pebble game on G,H with initial position π,
then there is an MCk-derivation of the monomial Xπ from Piso(G,H).

This lemma accounts for one direction of Theorem 10.2.2 because if G 6≡Ck H, then
Spoiler wins the bijective k-pebble game from the initial position ∅, and we have X∅ = 1.

221

10 Choiceless Polynomial Time and Propositional Proof Complexity

10.3 Separating the extended polynomial calculus from its
non-extended version

Intuitively speaking, adding extension axioms to a proof system should increase the power
of the formalism since proofs can often be represented more concisely with extension
variables. For Frege proof systems, it is conjectured that their respective extended versions
cannot be polynomially simulated by non-extended Frege [28]. For the bounded-degree
polyomial calculus (which is not a Frege system, though), we can confirm this conjecture
using our newly established connection to finite model theory: Theorem 10.0.4 says that
EPC3, even with the limited types of extension axioms that we use here, is stronger than
PCk, for every k because there are families of graphs that cannot be distinguished in
PCk, but in EPC3.

Proof of Theorem 10.0.4: According to Theorem 6.2 in [17], for every n ∈ N, there exist
pairs Gn, G̃n of non-isomorphic CFI-graphs of size O(n) such that Piso(Gn, G̃n) has no
degree-n polynomial calculus refutation (over Q). A closer examination of the construction
in [17] reveals that the axioms (10.1) and (10.2) in Piso(Gn, G̃n) are for coloured versions
of the respective CFI-graphs, i.e. each vertex-gadget and each edge-gadget of Gn and G̃n,
respectively, forms a distinct colour class and the axioms restrict possible isomorphisms to
colour-preserving ones. Therefore, we have Piso(Gn, G̃n) = Piso((Gn,�), (G̃n,�)) for any
preorder � on V (Gn) that is obtained from a linear order on the respective base graph.
Note that our definition of Piso also works for graphs with multiple edge relations, and we
can simply view the binary relation � as another type of edge relation. Now the system
Piso((Gn,�), (G̃n,�)) does have a polynomial-size refutation in EPC3, for any choice of
the ordering, because CFI-graphs over linearly ordered base graphs can be distinguished
in CPT (see Theorem 6.1.1) and thus, a refutation exists by our Theorem 10.0.1.

10.4 Deep Weisfeiler Leman

Deep Weisfeiler Leman (DWL) is a model of choiceless computation equivalent to CPT.
It separates the algorithmic aspects of a computation from the choiceless access to the
input structure. A DWL-algorithm is a deterministic Turing machine operating on what
is called the algebraic sketch of the input structure. This algebraic sketch contains –
roughly speaking – the kind of information that can be computed with the 2-dimensional
Weisfeiler Leman algorithm. In other words: Information about the C3-types of pairs
that are realised in the structure, and how they “intersect”. Importantly, the algebraic
sketch of a structure is isomorphism-invariant, which ensures that the DWL-algorithm is
choiceless. In addition to reading the algebraic sketch of the input structure, the machine
may also add new elements to the input structure in a way that respects C3-types. This
corresponds to the creation of higher-order objects in Choiceless Polynomial Time.
Before we can introduce the Deep Weisfeiler Leman framework in detail, we have to say
precisely what the algebraic sketch of a structure is. It is a representation of its coarsest
coherent configuration (or “coherent colouring”), that is defined below. The coarsest

222

10.4 Deep Weisfeiler Leman

coherent configuration of a structure is also known as its stable 2-dimensional Weisfeiler
Leman colouring (equivalent to the partition of all pairs into their C3-types). This is
where the name “Deep Weisfeiler Leman” comes from; in this thesis, however, we will
not deal with the Weisfeiler Leman algorithm itself. It suffices to know that this method
computes in polynomial time a canonical coarsest coherent configuration of any given
graph structure. For details on the Weisfeiler Leman graph isomorphism test and its
power, see e.g. [78].
The idea of Weisfeiler Leman is inspired by a similar computation model capturing the
logic FPC, which has been outlined by Martin Otto [86]. In his framework, there is also
a Turing machine that “communicates” with the input structure in an isomorphism-
invariant way.

10.4.1 Coherent configurations and algebraic sketches

Definition 10.4.1 (Notions concerning binary relations, [63]).

• The domain of a relation R is the set dom(R) := {u | ∃v : (u, v) ∈ R}.

• The codomain of a relation R is the set codom(R) := {v | ∃u : (u, v) ∈ R}.

• The converse of a relation R is the relation R−1 := {(v, u) | (u, v) ∈ R}.

• For a set V , the diagonal of V is the relation diag(V) := {(v, v) | v ∈ V }. For a
relation R we let Rdiag := R ∩ diag(dom(R)) be the diagonal elements in R. We
call R a diagonal relation if R = Rdiag = diag(dom(R)).

• The strongly connected components of a relation R are defined in the usual way
as inclusionwise maximal sets S ⊆ dom(R) ∩ codom(R) such that for all u, v ∈ S
there is an R-path of length at least 1 from u to v. (In particular, a singleton
set {u} can be a strongly connected component only if (u, u) ∈ R.) We write
scc(R) to denote the set of strongly connected components of R. Moreover, we let
Rscc :=

⋃
S∈scc(R) S

2 be the relation describing whether two elements are in the
same strongly connected component.

Definition 10.4.2 (Coherent configurations, [63]). Let σ be a vocabulary. A coherent
σ-configuration C is a σ-structure C with the following properties.

• {R(C) | R ∈ σ} is a partition of V (C)2.

• For each R ∈ σ the relation R(C) is either a subset of or disjoint from the diagonal
diag(V (C)).

• For each R ∈ σ there is an R−1 ∈ σ such that R−1(C) = (R(C))−1.

• For all R1, R2, R3 ∈ σ there is a number q = q(R1, R2, R3) ∈ N such that for all
(u, v) ∈ R1(C) there are exactly q elements w ∈ V (C) such that (u,w) ∈ R2(C)
and (w, v) ∈ R3(C).

223

10 Choiceless Polynomial Time and Propositional Proof Complexity

The numbers q(R1, R2, R3) are called the intersection numbers of C and the function
q : σ3 → N is called the intersection function.

A coherent σ-configuration C is at least as fine as, or refines, a τ -structure A (we write
C v A) if V (A) = V (C), and for each R ∈ σ and each E ∈ τ it holds that R(C) ⊆ E(A)
or that R(C) ⊆ A2 \E(A). We say that a coherent configuration C is a coarsest coherent
configuration refining a structure A if C v A and C ′ v C for every coherent configuration
C ′ satisfying C ′ v A. If for two configurations C,C ′ it holds C v C ′ and C ′ v C, we
write C ≡ C ′. In this case, C and C ′ are equal up to a renaming of relation symbols.
In the following, we will usually write τ for the vocabulary of a given structure and σ for
the vocabulary of the corresponding coherent configuration, without further specifying σ.

Every binary structure A has a coarsest coherent configuration, which can be computed
in time O(n3 log n) with the 2-dimensional Weisfeiler Leman algorithm (Theorem 2.1 in
[63]). This configuration is unique up to the renaming of relation symbols. We write C(A)
for the coarsest coherent configuration of A with canonical names of the relation symbols,
as for example produced by a fixed implementation of 2-WL. We call the relation symbols
in σ colours to distinguish them from the relation symbols in τ . In the following, we
often identify the symbols in τ and σ with binary strings, because this is how they are
represented in a Turing machine.
The algebraic sketch of a structure contains information about the colours appearing in
its coarsest coherent configuration, which relations of the structure they refine, and the
intersection function q. Formally, the algebraic sketch of a structure A is the tuple

D(A) = (τ, σ,⊆σ,τ , q).

The relation ⊆σ,τ relates the colours in σ with the relations in τ they refine: ⊆σ,τ :=
{(R,E) ∈ σ × τ | R(C(A)) ⊆ E(A)}.
In order to feed D(A) to a Turing machine, we have to agree on some encoding in binary.
If the binary string encodings of the relation symbols are fixed, then there is a canonical
encoding of D(A), based on the lexicographic ordering of the relation names and ordering
of the intersection numbers q(R1, R2, R3). The string that encodes D(A) is the initial
tape content in a DWL-computation on the structure A.

10.4.2 The Deep Weisfeiler Leman computation model

A DWL-algorithm is a two-tape Turing machine M with an additional storage device that
the authors of [63] have named “the cloud”. It contains a coherently coloured structure
(A,C(A)) to which the machine only has limited access. The storage that the machine
itself can use is a work tape and an interaction tape, which allows for interaction with
the cloud.

The input of a DWL-program M is a binary τ -structure A. Initially, the cloud contains
the coherently coloured structure (A,C(A)), and on the interaction tape the algebraic

224

10.4 Deep Weisfeiler Leman

sketch D(A) is written (canonically encoded as a binary string). The work tape is empty.
The Turing machine works as a standard Turing machine with three special transitions
that can modify the structure in the cloud. To execute these, the machine writes a binary
string s ∈ {0, 1}∗ on the interaction tape and enters one of the four distinguished states
qaddPair, qcontract, qcreate, qforget. The string s must be the name of some relation symbol
X ∈ τ ∪ σ or encode a set of colours π ⊆ σ.

For example, if X = R for some colour R ∈ σ, then the operation addPair(R) adds a
new vertex for every pair (u, v) of vertices with colour R, and connects the new pair-vertex
with the elements u and v. This can be thought of as the creation of ordered pairs
(u, v) = {u, {v}} in CPT. The point of executing this operation is to gain more refined
information about the structure in the cloud: The algebraic sketch D(A) that the Turing
machine knows initially is based on the 2-dimensional Weisfeiler Leman colouring of A.
Now suppose we add a new vertex (u, v) for every pair (u, v) ∈ V (A)2. It can be shown
that the 2-WL-colouring of the new structure A′ is equivalent to the 4-WL-colouring
of the original structure A: For any four vertices u, v, u′, v′ ∈ V (A), the 2-WL-colour
of the pair ((u, v), (u′, v′)) ∈ V (A′)2 carries as much information as the 4-WL-colour of
the tuple (u, v, u′, v′) ∈ V (A)4 (see also [86]). So in a sense, DWL allows to “locally”
simulate higher-dimensional Weisfeiler Leman by introducing new pair-vertices for some
of the colours in σ.

The second important operation is contract(R). It contracts all SCCs of the colour
R (see Definition 10.4.1) into single vertices. In CPT, this corresponds to the creation
of an unordered set for each SCC. This contraction does not lead to a finer and more
informative coherent configuration but it can be useful in order to keep the structure
in the cloud small. According to personal communication with Daniel Wiebking, DWL
without the contraction operation is equivalent to the tuple-based fragment of CPT,
which is ≈-free PIL; this is strictly weaker than CPT itself (see Section 3.3).

The operations create and forget add or remove relations from the structure in the
cloud. They are convenient for programming in DWL but as we explain in the next
section, they can be dispensed with without loss of expressive power. Formally, the effects
of the four DWL-operations are as follows:

• addPair(X): If X = E ∈ τ is a relation symbol, let P := E(A); else, if X = R ∈ σ
is a colour, then let P := R(C(A)). The machine adds a fresh vertex for each pair
in P to A, i.e. it updates V (A) to V (A)] P . These pairs are then connected with
their elements in A. Therefore, τ is updated to τ ∪ {Eleft, Eright}] {DX}. The
new relation DX identifies the newly added vertices, i.e. DX(A) := diag(P). The
symbol DX is chosen as the lexicographically smallest binary string that is not yet
used as a relation symbol.
Furthermore, Eleft(A) is updated to Eleft(A) ∪ {(u, (u, v)) ∈ V (A)2 | (u, v) ∈ P},
and Eright(A) is set to Eright(A)∪ {(v, (u, v)) ∈ V (A)2 | (u, v) ∈ P} (where initially,
Eleft(A) = Eright(A) = ∅).

225

10 Choiceless Polynomial Time and Propositional Proof Complexity

• contract(X): If X = E ∈ τ , then let S := scc(E(A)); if X = R ∈ σ, let
S = scc(R(C(A))), i.e. S is the set of strongly connected components of the relation
named X. Let U := V (A) \

⋃
S be the set of vertices that are not in one of the

strongly connected components. The components in S are contracted. That means
we update V (A) to U]S, and τ to τ]{DX}. Again, DX(A) := diag(S). For each
relation E ∈ τ , we update E(A) to (E(A) ∩ U2) ∪ {(u, S) | ∃v ∈ S ∈ S : (u, v) ∈
E(A)} ∪ {(S, v) | ∃u ∈ S ∈ S : (u, v) ∈ E(A)} ∪ {(S1, S2) | ∃u ∈ S1 ∈ S,∃v ∈ S2 ∈
S : (u, v) ∈ E(A)}.

• create(π): In this case, the string on the interaction tape must be the encoding of
a subset π ⊆ σ of colours. Let Eπ be the lexicographically first string that is not
already in τ , and update τ to τ] {Eπ} where Eπ(A) :=

⋃
R∈π R(C(A)).

• forget(X): In this case, X must be some relation E ∈ τ . The machine updates τ
to τ \ {E}.

Each of these special transitions modifies the structure A in the cloud in an isomorphism-
invariant way. After that, the cloud storage device computes C(A) (for example, with the
2-WL algorithm) and stores the coherently coloured structure (A,C(A)). The algebraic
sketch D(A) of the new structure is written on the interaction tape.
A DWL-algorithm decides a class K of τ -structures in the usual sense, i.e. the program
halts with output 1 on input A if A ∈ K, and else, it halts with output 0. We say that
a DWL-algorithm runs in polynomial time if the number of computation steps of the
Turing machine and the size of the structure in the cloud is bounded by a polynomial in
the size of the input structure.

10.4.3 Simplifications of DWL

The “full” DWL computation model described above is inconvenient for the translation
into the extended polynomial calculus. Therefore, we define a simplified version, which
has the same expressive power as DWL. A first simplification that is also introduced
in [63] is called pure DWL. A DWL-algorithm is pure if it executes addPair(R) and
contract(R) only for colours R ∈ σ and not for relation symbols E ∈ τ . Theorem 7 in
[63] states that any polynomial time DWL-algorithm can be simulated by a pure one in
polynomial time. We need a further restriction here. The following definition is new and
not from [63].

Definition 10.4.3 (DWL with reduced instruction set). A DWL-algorithm has reduced
instruction set if it is pure and never executes create or forget on any input.

For the purposes of distinguishing binary structures (see next section), we may always
assume that DWL-algorithms have a reduced instruction set, as the next lemma shows.
Namely, for a fixed input structure, any DWL-algorithm can be polynomially simulated
by one with reduced instruction set, in the sense that the coarsest coherent configuration
of the produced structure in the cloud can only get finer in the simulation. In other words,
the graph distinguishing power of our reduced DWL is not less than that of original
DWL.

226

10.4 Deep Weisfeiler Leman

Lemma 10.4.4. Let A be a τ -structure and let M be a DWL-algorithm that terminates
on input A with the structure B in the cloud. There exists a DWL-algorithm M ′ with
reduced instruction set which terminates on input A with a structure B′ in the cloud
such that C(B′) v C(B). Moreover, the time and space consumption of M ′ on input A
is polynomially bounded in the time and space consumption of M on A.

Proof sketch. Let t be the number of cloud-interaction-operations that M performs on
input A and let (opi(si))1≤i≤t be this sequence of operations, with
opi ∈ {addPair, contract, create, forget}. Since Lemma 10.4.4 only claims the exis-
tence of a simulation for the fixed input A, we can design M ′ such that it executes a
predefined hardcoded sequence of cloud-interaction-operations. We now explain what
this instruction sequence looks like. As a first step, we remove all occurrences of forget
from (opi(si))1≤i≤t. When the resulting operation-sequence is applied to A, then after
the first removed forget-operation, the structure in the cloud may have a finer coarsest
coherent configuration than in the original run of M on A at that point. This is simply
because when the forget-operation is no longer executed, then the structure in the cloud
has more relations, so its 2-dimensional Weisfeiler Leman colouring may be finer. Hence,
whenever addPair(R) is executed after a removed forget-operation, then we may have
to replace addPair(R) with some sequence addPair(R1), ..., addPair(Rm), where the
Ri are the colours whose union is the relation R in the original run of M on A. To
simulate the effect of contract(R) for a colour R that is refined in our new run, we use
create to introduce a new relation ER that is interpreted as the union over all colours
appearing between vertices that are in the same R-SCC (such a set of colours exists
by Lemma 10.4.15). After that, we call contract(ER) to get the same effect as with
the call of contract(R) in the original run. In this way, we can remove all occurrences
of forget-operations and repair subsequent calls of addPair and contract such that
they are applied to exactly the same pairs and SCCs as in the original run. This whole
procedure is very similar to the one described in the proof of Theorem 7 in [63], so
we refer there for the technical details. Let (op′i(si))1≤i≤t′ be the operation-sequence
that we have constructed now. As in the proof of Theorem 7 in [63], its length t′ can
be polynomially bounded in terms of |A| and the original length t because whenever a
addPair(R) is replaced by addPair(R1), ..., addPair(Rm), then the number m of colours
is polynomially bounded in |A|.

Now the sequence (op′i(si))1≤i≤t′ contains no more forget-operations. Before we also
remove the create-operations, we invoke Theorem 7 from [63] to turn (op′i(si))1≤i≤t′

into a sequence of pure operations, which again increases the length and the required
cloud space only polynomially. One can check that this Theorem 7 does not re-introduce
forget-operations (more precisely, its proof can be implemented in such a way).
After we have turned the instruction-sequence into a pure one, we can simply remove all
occurrences of create. This is not harmful because it can be shown that the coarsest
coherent configurations are equally fine as before after all create-operations are removed.
This is because the relations that are created by create are always unions of colours of
the 2-WL colouring, and adding such relations to a structure can never lead to a finer

227

10 Choiceless Polynomial Time and Propositional Proof Complexity

2-WL colouring. Moreover, since our instruction sequence was pure, the relations created
by create never appear as arguments in any call of addPair or contract. Thus, we
have to repair nothing after removing all create-operations.
In total, we have constructed a sequence of pure instructions in {addPair, contract} that
is at most polynomially longer than the run of M on A, and uses at most polynomially
more space in the cloud. We let M ′ be the DWL-algorithm that simply executes this
instruction sequence (it is hard-coded and the behaviour of M ′ does not actually depend
on the input). The final structure B′ in the run of M ′ on A is such that C(B′) v C(B).
The coarsest coherent configuration may be finer than C(B) because in the run of M on
A, relations may have been deleted with forget, which are now present in B′.

10.4.4 Distinguishing graphs in Deep Weisfeiler Leman

In [63], the authors say that a DWL-algorithm decides isomorphism on a structure class
K if it gets as input the disjoint union A := G]H of two connected binary structures
and correctly decides whether G ∼= H. A crucial technical result in [63] shows that one
can always assume that at any stage of the computation, the structure in the cloud is
the disjoint union of two connected structures: It is never necessary for the algorithm
to produce connections between the two components, i.e. addPair and contract are
only executed for colours R with R(C(A)) ⊆ V (G)2 ∪ V (H)2. A DWL-algorithm that
maintains this invariant is called normalised in [63].

Definition 10.4.5 (Distinguishing structures in DWL). The computation model DWL
distinguishes all structures in a class K (of connected τ -structures) in polynomial time
if: There is a polynomial p(n) such that for any two non-isomorphic structures G,H ∈ K,
there exists a normalised DWL-algorithm M which, given G]H as input, terminates
with a structure G′]H ′ in the cloud such that D(G′) 6= D(H ′), and takes time and space
at most p(|G|+ |H|).

This is simply the DWL-version of Definition 10.0.2 for distinguishing structures in
CPT. The main difference to the CPT-setting is that here, the constant bound on the
number of variables is already implicit in the definition of DWL (because DWL only
accesses a structure via its coherent configuration, and two structures with the same
configuration are C3-equivalent).

Let us elaborate on what is meant precisely by D(G′) 6= D(H ′). Whenever A =
A1]A2 is a τ -structure consisting of two separate connected components, then we write
D(A)[A1] and D(A)[A2] for the restrictions of the algebraic sketch D(A) to the respective
substructures. Formally: For i ∈ {1, 2}, let

D(A)[Ai] := (τ, σi,⊆σi,τ , qi),

where σi := {R ∈ σ | R(C(A)) ∩ V (Ai)
2 6= ∅} and qi is the restriction of q to domain σ3

i .
The function qi is indeed a well-defined intersection function:

228

10.4 Deep Weisfeiler Leman

Lemma 10.4.6. Let A = A1]A2 be the disjoint union of two connected τ -structures.
For i ∈ {1, 2}, D(A)[Ai] is an algebraic sketch and equal to D(Ai), up to a renaming of
the colours in σi.

Proof. By Lemma 8 in [63], the colours of the coarsest coherent σ-configuration C(A)
can be partitioned into σ1, σ2, σcross, where σi = {R ∈ σ | R(C(A)) ∩ V (Ai)

2 6= ∅}, and
for every R ∈ σcross, R(C(A)) ⊆ (V (A1) × V (A2)) ∪ (V (A2) × V (A1)). Furthermore,
also by Lemma 8 in [63], C(A)[V (A1)], i.e. the substructure of the configuration with
universe V (A1), is equivalent to the coarsest coherent configuration C(A1), and similarly,
C(A)[V (A2)] ≡ C(A2). We can conclude that for i ∈ {1, 2}, qi as defined above is indeed
equivalent to the intersection function of C(Ai) (up to a renaming of the colours) because
for any R1, R2, R3 ∈ σi we know that in C(A), only pairs in V (A1)2 ∪ V (A2)2 can have
these colours. Let q be the intersection function of C(A). Then q(R1, R2, R3) is the same
value as that of the intersection function of C(Ai) for the corresponding three colours in
C(Ai).

Thus, when we write D(G′) 6= D(H ′), we are formally referring to the respective
restrictions of D(G′]H ′), but these are equivalent to D(G′) and D(H ′), respectively.
The algebraic sketches being distinct means that Spoiler has a winning strategy in the
bijective 3-pebble game on the two structures. This is true because Spoiler can win from
any position {(v, w), (v′, w′)} where (v, v′) and (w,w′) receive distinct colours in the stable
2-WL-colouring. This connection between the 2-WL-colouring and the bijective pebble
game is a standard result (see for example Theorem 2.2 in [78]). However, the setting
in the literature always concerns the execution of the 2-dimensional Weisfeiler Leman
algorithm separately on the two graphs G and H. Here, we consider the colouring of the
disjoint union G]H. It is perhaps not surprising that in this setting, the correspondence
between Weisfeiler-Leman colourings and pebble games also exists, but we are not aware
of a formal proof for this statement for G]H in the literature. Therefore, we explicitly
prove the next lemma here, even though it is just a variation of a standard result and the
proof is unfortunately quite long. Essentially it works as expected, with Spoiler’s strategy
being determined by the refinements made in the iterations of the 2-WL-algorithm.
Additionally, we have to combine this with a technical insight from [63] for handling
disjoint unions of connected binary structures.

Lemma 10.4.7. Let G,H be two connected τ -structures and A := G]H with its coarsest
coherent σ-configuration C(A). Let (v, v′) ∈ V (G)2, (w,w′) ∈ V (H)2 such that there is
no R ∈ σ with (v, v′) ∈ R(C(A)) and (w,w′) ∈ R(C(A)).
Then Spoiler has a winning strategy for the bijective 3-pebble game on G and H with
initial position {(v, w), (v′, w′)}.

Proof. We show the statement by induction on the number of iterations that 2-dimensional
Weisfeiler Leman needs to distinguish (v, v′) and (w,w′) in the structure A. Let us
make precise how the 2-WL algorithm computes C(A) by iteratively refining colour-
ings of V (A)2. In the initial colouring C0, there is only one diagonal colour Rdiag

with Rdiag(C0) := V (A)2. One colour Rcross is reserved for all crossing pairs, i.e.

229

10 Choiceless Polynomial Time and Propositional Proof Complexity

Rcross(C0) = (V (G) × V (H)) ∪ (V (H) × V (G)). The remaining pairs are coloured
according to their atomic types, so there is one colour for each atomic type of pairs
in V (G)2 ∪ V (H)2 that is realised in A. The atomic type of a pair (v, w) is the set of
relations R ∈ τ such that (v, w) ∈ R(A). Note that this initial colouring is not necessarily
a coherent configuration: It satisfies all properties from Definition 10.4.2 except the
last one about intersection numbers. In fact, this is the case for all colourings that
are computed throughout the iteration, except for the final one, which is stable and
a coarsest coherent configuration of A. To argue why this resulting configuration is
indeed equivalent to C(A), it is important that A is the disjoint union of two connected
structures, and therefore, by Lemma 8 in [63], its crossing colours are distinct from its
non-crossing colours. Therefore, the choice of our initial colouring C0 will not lead to a
stable colouring that is different from C(A).

The colouring Ci+1 is defined from the σi-colouring Ci as follows: Each colour class
R(C) is split along the intersection numbers of its pairs with other colour classes. That
means R(C) is split into the coarsest possible partition {P1, ..., Pm} such that for each
Pi it holds: For all pairs (u, v) ∈ Pi, and all S1, S2 ∈ σi, the number of all x ∈ V (A) such
that (u, x) ∈ S1(Ci) and (x, v) ∈ S2(Ci) is the same (i.e. independent of the chosen pair
in Pi).
Refining every colour in σi in this way yields the colouring Ci+1. We simply enumerate
the colours in σi+1 and call them R1, R2, ... and so on, because we do not care about their
actual names. This refinement process stops when the colouring is stable and cannot
be refined further – the resulting colouring is equivalent to C(A), the canonical coarsest
coherent configuration, as it is the coarsest possible colouring that also satisfies the last
condition of Definition 10.4.2.

We show the following four statements via induction on the number i of iterations of
the refinement procedure:

(a) For every colour R ∈ σi, either R(Ci) ⊆ (V (G)× V (H)) ∪ (V (H)× V (G)) or R(Ci)
is disjoint from (V (G)× V (H)) ∪ (V (H)× V (G)). In the former case we say that R
is crossing.

(b) For every colour R ∈ σi, there exist diagonal colours D1, D2 ∈ σi such that for every
pair (u, v) ∈ R(Ci), it holds (u, u) ∈ D1(Ci) and (v, v) ∈ D2(Ci).

(c) Let v, v′ ∈ V (G), w, w′ ∈ V (H) and let D1, D2 ∈ σi be diagonal colours such that
(v, v), (w,w) ∈ D1(Ci) and (v′, v′), (w′, w′) ∈ D2(Ci). Then (v, w) and (v′, w′) have
the same (crossing) colour.

(d) Let (v, v′) ∈ V (G)2, (w,w′) ∈ V (H)2 such that (v, v′) and (w,w′) do not have the
same colour in Ci. Then Spoiler has a winning strategy for the bijective 3-pebble
game on G and H with initial position {(v, w), (v′, w′)}.

Proof: For i = 0, (a), (b) and (c) are clear by definition of C0, and (d) is also clear
since in the initial colouring, distinct colours mean distinct atomic types. In that case,

230

10.4 Deep Weisfeiler Leman

{(v, w), (v′, w′)} is not a local isomorphism and Spoiler wins immediately.

Now consider iteration i + 1. Statement (a) follows from the inductive hypothesis
because the colouring is refined in every step and thus, each crossing colour is always
partitioned into crossing colours again, and the same holds for non-crossing colours.

Next, we show statement (b). Fix a colour R ∈ σi and diagonal colours D1, D2 ∈ σi
such that for every pair (u, v) ∈ R(Ci), it holds (u, u) ∈ D1(Ci) and (v, v) ∈ D2(Ci). We
have to show: If any of the diagonal colours D1(Ci), D2(Ci) are split, then the colour
R is split in such a way that statement (b) still holds after iteration i + 1. Assume
w.l.o.g. that D1(Ci) is split: Let (u, u), (u′, u′) ∈ D1(Ci) and let v, v′ be such that
(u, v), (u′, v′) ∈ R(Ci). Further, let S1, S2 ∈ σi such that

|X| := |{x ∈ V (A) | (u, x) ∈ S1(Ci) and (x, u) ∈ S2(Ci)}|
6= |{x ∈ V (A) | (u′, x) ∈ S1(Ci) and (x, u′) ∈ S2(Ci)}| =: |X ′|.

Note that we have S2 = S−1
1 . Now consider any two pairs (u, v), (u′, v′) ∈ R(Ci). Partition

X according to the colours of its elements paired with v, i.e. for any colour T ∈ σi, let
XT := {x ∈ X | (x, v) ∈ T}. Then the non-empty XT form a partition of X. Similarly,
define X ′T := {x ∈ X ′ | (x, v′) ∈ T}. Since |X| 6= |X ′|, there must exist a colour T ∈ σ
such that |XT | 6= |X ′T |. Then for this colour, we have

|{x ∈ V (A) | (u, x) ∈ S1(Ci) and (x, v) ∈ T (Ci)}| = |XT |
6= |X ′T | =|{x ∈ V (A) | (u′, x) ∈ S1(Ci) and (x, v′) ∈ T (Ci)}|.

Thus, the pairs (u, v), (u′, v′) are in distinct colours after iteration i + 1, as witnessed
by the intersection numbers with the colours S and T . Hence, the invariant (b) still holds.

We know that statement (c) holds after iteration i. In order to show that it still holds
after iteration i+ 1, we need to prove that whenever a crossing colour is refined, then
at least one of its endpoint-colours is also refined: Fix a crossing colour R ∈ σi and
two pairs (u1, u2), (u′1, u

′
2) ∈ R(Ci). By statement (b), we know that there are diagonal

colours D1, D2 such that (u1, u1), (u′1, u
′
1) ∈ D1(Ci) and (u2, u2), (u′2, u

′
2) ∈ D2(Ci). Now

suppose that in iteration i+ 1, the pairs (u1, u2) and (u′1, u
′
2) are separated. Our goal

is to show that also u1 and u′1 or u2 and u′2 get distinct diagonal colours because the
only way how (c) can fail to be true is if (u1, u2) and (u′1, u

′
2) get distinct colours but

their respective first and second entries keep the same diagonal colour as before. So let
S1, S2 ∈ σi be colours that witness the separation of (u1, u2) and (u′1, u

′
2):

|X| := |{x ∈ V (A) | (u1, x) ∈ S1(Ci) and (x, u2) ∈ S2(Ci)}|
6= |{x ∈ V (A) | (u′1, x) ∈ S1(Ci) and (x, u′2) ∈ S2(Ci)}| =: |X ′|.

Assume w.l.o.g. that |X| > 0. Exactly one of the colours S1, S2 is crossing, and the
other is non-crossing. Assume w.l.o.g. that S1 is non-crossing and S2 is crossing. Then
X,X ′ ⊆ V (G).

231

10 Choiceless Polynomial Time and Propositional Proof Complexity

Claim: X = {x ∈ V (A) | (u1, x) ∈ S1(Ci) and (u1, x) ∈ S−1
1 (Ci)}.

Proof of claim: The inclusion ⊆ is clear. For the inclusion ⊇, we have to show that for
every x ∈ V (A) with (u1, x) ∈ S1(Ci) it holds (x, u2) ∈ S2(Ci). This is true because: The
diagonal colour of (x, x) is the same as that of every vertex in X, according to statement
(b) with respect to S1. Then statement (c) from the induction hypothesis implies that
(x, u2) ∈ S2(Ci). This proves the claim.

Similarly, we can prove X ′ = {x ∈ V (A) | (u′1, x) ∈ S1(Ci) and (u′1, x) ∈ S−1
1 (Ci)}.

Hence we have

|{x ∈ V (A) | (u1, x) ∈ S1(Ci) and (x, u1) ∈ S−1
1 (Ci)}|

6=|{x ∈ V (A) | (u′1, x) ∈ S1(Ci) and (x, u′1) ∈ S−1
1 (Ci)}|.

Therefore, (u1, u1), (u′1, u
′
1) ∈ D1(Ci) will get distinct diagonal colours after iteration

i+ 1, as witnessed by the intersection numbers with S1 and S−1
1 . If S2 is non-crossing

and S1 is crossing, then it is the colour D2 that is refined. This is what we wanted to
show, so statement (c) is still true after iteration i+ 1.

Finally, we can use this to prove statement (d). Assume that (v, v′) ∈ V (G)2 and
(w,w′) ∈ V (H)2 have the same colour in Ci and get distinct colours in Ci+1. Then there
exist colours R1, R2 ∈ σi such that

|Xvv′ | := |{x ∈ V (A) | (v, x) ∈ R1(Ci) and (x, v′) ∈ R2(Ci)}|
6= |{x ∈ V (A) | (w, x) ∈ R1(Ci)) and (x,w′) ∈ R2(Ci)}| =: |Xww′ |.

We distinguish two cases:

Case 1: |Xvv′ ∩ V (G)| 6= |Xww′ ∩ V (H)|. In this case, Spoiler can play as follows
from position {(v, w), (v′, w′)}: Let f : V (G) −→ V (H) be the bijection chosen by
Duplicator. If |Xvv′ ∩V (G)| > |Xww′ ∩V (H)|, then Spoiler chooses some x ∈ Xvv′ ∩V (G)
such that f(x) ∈ V (H) \Xww′ , and if |Xvv′ ∩ V (G)| < |Xww′ ∩ V (H)|, then he chooses
x ∈ V (G) \Xvv′ such that f(x) ∈ Xww′ ∩ V (H). In both cases, the resulting position
{(v, w), (v′, w′), (x, f(x)))} is a winning position for Spoiler by the inductive hypothesis
because either in {(v, w), (x, f(x))} or in {(v′, w′), (x, f(x))}, the pebble pairs have dis-
tinct colours in Ci.

Case 2: |Xvv′ ∩ V (G)| = |Xww′ ∩ V (H)|. In this case, we have |Xvv′ ∩ V (H)| 6=
|Xww′∩V (G)|. W.l.o.g. assume that |Xvv′∩V (H)| > 0. It can be seen that R1 and R2 are
crossing colours. By statement (b), there is a diagonal colour D ∈ σi such that all vertices
in (Xvv′∩V (H))∪(Xww′∩V (G)) have the diagonal colour D, because these are the second
entries of pairs in R1(Ci). Statement (c) says even more: For every vertex x ∈ V (H)
with (x, x) ∈ D, we have (v, x) ∈ R1(Ci) and (x, v′) ∈ R2(Ci), and for every x ∈ V (G)
with (x, x) ∈ D, we have (w, x) ∈ R1(Ci) and (x,w) ∈ R2(Ci). Summarising these con-
siderations, we get Xvv′ ∩ V (H) = dom(D)∩ V (H) and Xww′ ∩ V (G) = dom(D)∩ V (G).

232

10.4 Deep Weisfeiler Leman

Thus, we have |dom(D)∩ V (H)| 6= |dom(D)∩ V (G)|. Then Spoiler wins the game on G
and H from any starting position: He can enforce a position {(y, z)} with (y, y) ∈ D(Ci)
and (z, z) /∈ D(Ci) (or vice versa). From there, he wins by the induction hypothesis.
This finishes the inductive proof of (a) – (d). Lemma 10.4.7 now follows from statement
(d).

Corollary 10.4.8. Let G,H be connected τ -structures. It holds D(G) 6= D(H) if and
only if Spoiler has a winning strategy for the bijective 3-pebble game on G and H.

Proof. To start with, we observe that if D(G) = D(H), then Duplicator can always
maintain the invariant that the pebbles induce a local isomorphism between C(G) and
C(H), i.e. the colours are preserved. This is possible because the intersection functions
of C(G) and C(H) are equal then.
Now assumeD(G) 6= D(H). LetA := G]H. By Lemma 10.4.6, D(G) = D(A)[G], D(H) =
D(A)[H] (up to a renaming of the colours). Let σ1, σ2 be as in the proof of Lemma
10.4.6, i.e. these are the sets of colours of C(A) that appear for pairs inside G and H,
respectively. We now show: If D(G) 6= D(H), then σ1 6= σ2. Suppose for a contradiction
that σ1 = σ2. Then it must also hold q1 = q2 for the intersection functions of D(A)[G]
and D(A)[H], because q1 and q2 are the restrictions of the intersection function of D(A)
to the colours in σ1, σ2, respectively. But then, we have D(A)[G] = D(A)[H], so by
Lemma 10.4.6, it also holds D(G) = D(H). Therefore, D(G) 6= D(H) entails σ1 6= σ2.
Now let R ∈ σ14σ2. Spoiler can pebble a pair that has colour R, and Duplicator cannot
respond in a colour-preserving way. Spoiler wins from that position by Lemma 10.4.7.

Remark. The above corollary also follows directly from the fact that if D(G) 6= D(H),
then the 2-dimensional Weisfeiler Leman algorithm distinguishes G and H. It is well-
known (see e.g. [78]) that this is equivalent to the existence of a winning strategy for
Spoiler in the bijective 3-pebble game on G and H.

Next, we show that if CPT distinguishes all structures in a class K, then also DWL
distinguishes all structures in K in polynomial time. This result is based on the simulation
of CPT by DWL given in [63]. Hence, in our proof of Theorem 10.0.1, we can indeed
start with the assumption that DWL polynomially distinguishes all graphs in K.

Lemma 10.4.9. Let K be a class of connected structures that are distinguished by
CPT in the sense of Definition 10.0.2. Then DWL distinguishes all structures in K in
polynomial time in the sense of Definition 10.4.5.

Proof. Let p(n) be the resource bound for the distinguishing CPT-programs for the class
K that exists by Definition 10.0.2. Fix two τ -structures G,H ∈ K such that G 6∼= H.
Let Π ∈ CPT(p(n)) be a distinguishing sentence. By Theorem 21 in [63], there exists
a polynomial time DWL-algorithm M which simulates Π (and the polynomial resource
bound of M depends only on p(n), not on G and H). That means M w.l.o.g. accepts G
and rejects H. Let ρ1 := (G = G0, G1, G2, ..., Gt1) be the sequence of structures in the
cloud that corresponds to the run of M on G, and let ρ2 := (H = H0, H1, H2, ...,Ht2) be

233

10 Choiceless Polynomial Time and Propositional Proof Complexity

the corresponding sequence for the run on H. Let j ∈ N be the smallest index such that
D(Gj) 6= D(Hj). This must exist because otherwise, the two runs would be identical, as
the behaviour of M is only determined by the algebraic sketch of the structure in the
cloud.
Our goal is to construct a normalised DWL-algorithm M ′ that produces on input
A := G] H a structure G′] H ′ with D(G′) 6= D(H ′). This algorithm will simply
consist in a hard-coded sequence of cloud-interaction-operations. These operations will
be equivalent to the operations executed by M on G and H, respectively. We will
make use of the fact that for any disjoint union of connected structures A = A1] A2,
C(A)[V (Ai)] ≡ C(Ai), for i ∈ {1, 2} (Lemma 8 in [63]). In other words, the coarsest
coherent configuration of the disjoint union, restricted to one of the substructures Ai,
is equal to the coarsest coherent configuration of Ai by itself (up to a renaming of
the colours). Therefore, M ′ can simulate the runs of M on G and H, respectively,
simultaneously on G]H: Let opi(si) be the cloud-interaction-operation that M executes
to get from Gi to Gi+1 in the run ρ1. We know that in ρ2, the operation executed in this
step is exactly the same (if i < j) because M is deterministic, and for i < j, we have
D(Gi) = D(Hi). We may assume that opi ∈ {addPair, contract}, and that si encodes
a colour (and not a relation symbol in τ): If this does not hold, simply apply the proof
of Lemma 10.4.4 to ρ1 and ρ2 (up to the point where they differ); this yields a reduced
instruction sequence that still produces distinct algebraic sketches on the inputs G and
H because the coarsest coherent configurations can only get finer than with the original
instruction sequence.
We now wish to simulate the effect of opi(si) on Gi and Hi in the run of M ′ on A. By
induction, we can assume that the current structure in the cloud is Ai := Gi]Hi. Let R
be the colour that is encoded by si. Now there are two cases:
The first case is that there exists a colour R′ such that R′(C(Ai)) = R(C(Gi))∪R(C(Hi)).
Then we simulate opi(si) by executing opi(R

′).
The second case is that there are two distinct colours R′1, R

′
2 such that R′1(C(Ai)) =

R(C(Gi) and R′2(C(Ai)) = R(C(Hi)). Then we simulate opi(si) by executing opi(R
′
1)

and then opi(R
′
2).

There can be no more cases because the colourings C(Gi) and C(Hi) are equally fine as
the respective substructures of C(Gi]Hi). Furthermore, it is important to note that
in C(Ai), every colour R(C(Ai)) either consists only of pairs inside the same connected
component or of “crossing pairs” only (see Lemma 8 in [63]). Therefore, it cannot happen
that the colour R above corresponds to some colour R′ in C(Ai) which contains undesired
crossing pairs.
In both cases above, the new structure in the cloud after execution of the simulating
operations is Gi+1]Hi+1.
In this way, M ′ can simulate every step of the runs ρ1 and ρ2, such that M ′ on input A
halts with the structure Gj]Hj in the cloud, and we have D(Gj) 6= D(Hj). It is easy to
see that M ′ is normalised (we never call a cloud-operation for a crossing colour) and runs
in polynomial time and space (the latter holds because M is polynomially bounded).

234

10.4 Deep Weisfeiler Leman

10.4.5 Properties of coherent configurations

Here is a small collection of lemmas concerning coherent configurations. We will need
them in our construction of the EPC3-refutation in the next section. I would like to
thank Daniel Wiebking for his extensive answers to all my questions regarding these
properties and an anonymous referee of [88] for some simplifications of the proofs.

Lemma 10.4.10. Let A be a τ -structure and C(A) its coarsest coherent σ-colouring. Let
R ∈ σ. There are diagonal colours D1, D2 ∈ σ such that for all pairs (u, v) ∈ R(C(A))
we have (u, u) ∈ D1(C(A)), and (v, v) ∈ D2(C(A)).

Proof. This is Corollary 2.1.7 in [31] (the term “fibers” there means the same as our
“diagonal colours”).

Corollary 10.4.11. Let A be a τ -structure and C(A) its coarsest coherent σ-colouring.
Let R ∈ σ. If for any (u, v) ∈ R(C(A)), (u, u) or (v, v) is in some relation E(A),
for E ∈ τ , then for all other (u′, v′) ∈ R(C(A)), it also holds (u′, u′) ∈ E(A), or
(v′, v′) ∈ E(A), respectively.

Proof. Follows from the previous lemma and the fact that the coarsest coherent configu-
ration of A is a refinement of the relations of A.

Lemma 10.4.12. Let A be a τ -structure and let C(A) be its coarsest coherent
σ-configuration. Let R ∈ σ and let S = SCC(R) be the set of R-SCCs in C(A). There is
a diagonal relation P ∈ σ such that diag(

⋃
S) = P (C(A)).

Proof. First, we show that diag(
⋃
S) ⊆ P (C(A)). Any vertex v ∈

⋃
S has some

outgoing R-neighbour w that is in the same SCC (possibly, w = v). That is, we have
(v, w) ∈ R(C(A)). By Lemma 10.4.10, there are specific diagonal relations D1, D2 such
that (v, v) ∈ D1(C(A)), (w,w) ∈ D2(C(A)), and all endpoints of R-edges have these
diagonal colours. But since w is itself the left entry in some other R-edge (w,w′), we
must have D1 = D2 =: P .
It remains to prove P (C(A)) ⊆ diag(

⋃
S). For any v ∈ diag(

⋃
S), there exists an R-path

of length ≥ 1 from v to itself. We have already argued that (v, v) ∈ P (C(A)). It follows
that any other vertex w with (w,w) ∈ P (C(A)) also has an R-path to itself and is thus
in
⋃
S. To see this, recall that C(A) corresponds to the stable 2-WL-colouring [63],

which in turn partitions A2 into C3-types [78]. Hence, all vertices with the same diagonal
colour satisfy exactly the same C3-formulas. The existence of an R-path from a vertex to
itself (in the fixed structure A) is expressible in C3 using standard techniques: Namely,
for every fixed number d ≤ |A|, we can write a C3 formula ϕd(x, y) that asserts the
existence of a path of length d from x to y. Only 3 variables are needed because one can
alternately requantify used variables (see e.g. Proposition 3.2 in [76]). In the formula, we
have access to the relation R because it is itself C3-definable: Essentially, R is a C3-type
of vertex-pairs in A, and it is known that on finite structures, such a type is definable
with a single formula.

235

10 Choiceless Polynomial Time and Propositional Proof Complexity

Corollary 10.4.13. Let A be a τ -structure such that for every v ∈ V (A), (v, v) is in
exactly one diagonal relation P (A), for P ∈ τ (i.e. A is a graph with vertex colours).
Let C(A) be the coarsest coherent σ-configuration of A. Let R ∈ σ and let S = SCC(R).
There is a colour (i.e. a diagonal relation) P ∈ τ such that for every SCC S ∈ S,
diag(S) ⊆ P (A).

Proof. The coarsest coherent configuration C(A) is a refinement of A. Therefore, the
diagonal relations in C(A) are subsets of the diagonal relations in A. Now the statement
follows directly from Lemma 10.4.12.

Lemma 10.4.14. Let A,C(A), R ∈ σ, and S be as above. All R-SCCs in S are of equal
size.

Proof. For any number k ∈ N, we can write a C3-formula ϕk(x) asserting that the size
of the R-SCC of x is exactly k. To do this, we can just use a counting quantifier and
the fact that the existence of an R-path between two vertices (and back) is C3-definable
(see proof of Lemma 10.4.12). Now since all vertices in R-SCCs have the same diagonal
colour (Lemma 10.4.12), and colours coincide with C3-types, they all satisfy the same ϕk
and thus, all SCCs have equal size.

Lemma 10.4.15. Let A,C(A), R ∈ σ and S be as above. There is a collection of colours
R1, ..., Rt ∈ σ such that Rscc =

⋃
S∈S S

2 =
⋃t
i=1Ri(C(A)).

Proof. We let R1, ..., Rt be the smallest collection of colours such that every (u, v) ∈⋃
S∈S S

2 occurs in one of them. To see that this has the desired property, let (u, v) ∈
V (A)2 be such that u and v are not in the same SCC. Let T ∈ σ be the colour such that
(u, v) ∈ T (C(A))). There is no R-path from u to v and back. As already argued in the
proof of Lemma 10.4.12, this fact is expressible in C3. Since there does exist an R-path
in both directions between any two vertices inside each SCC, and colours coincide with
C3-types, T cannot be among the Ri.

The next lemma tells us that the colour of a pair (v′, z) between some vertex v′ and any
other vertex z inside a given SCC contains the information whether or not there exists
an edge from v′ into the SCC. In particular, the colour “between v′ and the SCC” is
independent of the choice of the vertex z in the SCC. This also explains why contracting
SCCs is possible without loss of information.

Lemma 10.4.16. Let A,C(A), R ∈ σ and S be as above. Fix any relation symbol E ∈ τ .
Let V,W ∈ S and v′, w′ ∈ V (A) be such that:
There is a v ∈ V such that (v′, v) ∈ E(A), and for all w ∈W it holds (w′, w) /∈ E(A).
Let z ∈ V be arbitrary and T ∈ σ such that (v′, z) ∈ T (C(A)). Then T (C(A)) ∩ ({w′} ×
W) = ∅.

Proof. There is a C3-formula ϕ(x, y) that asserts: There exists some vertex y′ in the same
R-SCC as y such that (x, y′) ∈ E(A). This formula can be constructed as described in
the proof of Lemma 10.4.12. Since ϕ(x, y) is satisfied in A for x 7→ v′ and y 7→ z, for any
z ∈ V , but not for x 7→ w′ and y 7→ w, for any w ∈W , the lemma follows again from the
fact that pairs with distinct C3-types receive distinct colours in C(A).

236

10.5 Refuting graph isomorphism in the extended polynomial calculus

The next lemma is of a similar kind. It states that the colours of pairs between different
SCCs contain the information whether or not there exist edges between the two SCCs.

Lemma 10.4.17. Let (A,C(A)), R ∈ σ and S be as above. Fix any relation symbol
E ∈ τ . Let V,W, V ′,W ′ ∈ S be such that: There exists v′ ∈ V ′, v ∈ V such that
(v′, v) ∈ E(A), and for all w′ ∈W ′, all w ∈W , (w′, w) /∈ E(A).
Let z ∈ V, z′ ∈ V ′ be arbitrary, and let T ∈ σ such that (z′, z) ∈ T (C(A)). Then
T (C(A)) ∩ (W ′ ×W) = ∅.

Proof. Analogous to the proof of Lemma 10.4.16. Here, we use a C3-formula ϕ(x, y) that
asserts: There exists x′ in the same SCC as x, and y′ in the same SCC as y such that
(x′, y′) ∈ E(A).

10.5 Refuting graph isomorphism in the extended polynomial
calculus

Let K be a class of connected binary structures such that CPT distinguishes all structures
in K. By Lemma 10.4.9, then also DWL distinguishes all structures in K in polynomial
time. Now Theorem 10.0.1 follows from Lemma 10.5.2 below that establishes the link
between DWL-distinguishability and the extended polynomial calculus. Before we can
prove Lemma 10.5.2, we have to state the key technical result that it depends on:

Lemma 10.5.1. Let G,H be two connected binary τ -structures, which are potentially
vertex-coloured in such a way that for every vertex-colour Q, there are as many vertices
with colour Q in G as in H. Let op ∈ {addPair, contract} and let R ∈ σ, where σ
is the vocabulary of the coarsest coherent configuration C := C(G]H). Assume that
R(C) ⊆ V (G)2 ∪ V (H)2.
Let G′]H ′ be the result of executing op(R) on G]H.

Then the polynomial axiom system Piso(G′, H ′) is derivable from Piso(G,H) in EPC3,
up to a renaming of variables. The number of extension variables used in the derivation
is at most |V (G′)|2, and the derivation has polynomial size and uses only coefficients
with polynomial bit-complexity. Moreover, for every extension axiom Xf−f used in the

derivation, f is of the form f = X · Y or f = 1
n ·
(∑n2

i=1Xi

)
.

The proof is quite lengthy and would interrupt the proof of Theorem 10.0.1 at this
point; therefore, we first present the lemma and proof that explains how Theorem 10.0.1
follows from Lemma 10.5.1. Afterwards, we provide the actual polynomial calculus
derivations whose existence is claimed in Lemma 10.5.1.

Lemma 10.5.2. Let G,H be two connected binary τ -structures. Let p(n) be a polynomial
and M be a normalised DWL-algorithm which produces on input G] H a structure
G′]H ′ with D(G′) 6= D(H ′), such that the length of the run and the size of the structure
in the cloud is bounded by p(|G|+ |H|) at any time.

237

10 Choiceless Polynomial Time and Propositional Proof Complexity

Then the system Piso(G,H) has an EPC3-refutation that uses at most p(|G| + |H|)3

many extension variables, has polynomial size and polynomial bit-complexity. Moreover,
for every extension axiom Xf−f used in the derivation, f is of the form f = X · Y or

f = 1
n ·
(∑n2

i=1Xi

)
.

Proof. Follows from Lemma 10.5.1 together with Corollary 10.4.8 and Lemma 10.2.3.
In detail: Let (opi(Ri))i≤t with opi ∈ {addPair, contract} be the sequence of cloud-
interaction-operations in the run of M on G]H. This sequence of operations produces a
sequence of structures (G]H,G1]H1, G2]H2, ..., Gt]Ht) such that D(Gt) 6= D(Ht).
For each i, Ri is a colour in the coarsest coherent configuration of the current structure
Ai := Gi]Hi in the cloud. Since M is normalised, R(C(Ai)) ⊆ V (Gi)

2 ∪ V (Hi)
2. Thus,

we can inductively apply Lemma 10.5.1 to derive in EPC3 polynomial axiom systems
Piso(Gi, Hi) for every i ∈ [t]. The induction requires that for every vertex-colour (i.e.
diagonal relation), the colour classes always have the same size in Gi and Hi (this is
a prerequisite of Lemma 10.5.1). This is satisfied because D(Gi) = D(Hi), for i < t.
Since D(Gt) 6= D(Ht), it follows from Corollary 10.4.8 and Lemma 10.2.3 that the
1-polynomial is derivable from Piso(Gt, Ht) in the degree-3 monomial calculus, so in
total, it is derivable from Piso(G,H) in EPC3. In order to apply Lemma 10.2.3 to
Gt and Ht, we need to argue that the vertex-colour-classes are of equal size in both
graphs, even though D(Gt) 6= D(Ht). If step t is addPair(R), then we introduce equally
many new pair-vertices in both graphs because D(Gt−1) = D(Ht−1), so the numbers of
R-pairs are equal. If step t is contract(R), we also produce the same number of new
vertices. Namely, the number of R-SCCs in C(Gt−1) and C(Ht−1) is equal, because by
Lemma 10.4.14, all R-SCCs have equal size, and by Lemma 10.4.12, vertices in R-SCCs
receive the same diagonal colour P distinct from all diagonal colours outside SCCs (and
|P (C(Gt−1))| = |P (C(Ht−1))|).

Finally, we bound the number of extension variables used in the derivation of Piso(Gt, Ht):
As stated in Lemma 10.5.1, for every i, the derivation of Piso(Gi, Hi) from Piso(Gi−1, Hi−1)
uses at most |V (Gi)|2 many new extension variables. Therefore, the total number of ex-
tension variables that are used in the derivation of Piso(Gt, Ht) is at most

∑
i∈[t] |V (Gi)|2.

Since t ≤ p(|G|+ |H|) and |V (Gi)| ≤ p(|G|+ |H|), for every i ∈ [t], this sum is at most
p(|G|+ |H|)3. Similarly we can bound the size and bit-complexity of the derivation: Each
time we invoke Lemma 10.5.1, we only incur a polynomial cost in size, and this happens
polynomially many times. The occurring coefficients can be encoded with polynomially
many bits as the lemma asserts. Also, Lemma 10.5.1 uses only extension axioms of the
required form. Finally, we bound the number of extension variables used in the derivation
of Piso(Gt, Ht): As stated in Lemma 10.5.1, for every i, the derivation of Piso(Gi, Hi)
from Piso(Gi−1, Hi−1) uses at most |V (Gi)|2 many new extension variables. Therefore,
the total number of extension variables that are used in the derivation of Piso(Gt, Ht) is at
most

∑
i∈[t] |V (Gi)|2. Since t ≤ p(|G|+ |H|) and |V (Gi)| ≤ p(|G|+ |H|), for every i ∈ [t],

this sum is at most p(|G|+ |H|)3. Similarly we can bound the size and bit-complexity
of the derivation: Each time we invoke Lemma 10.5.1, we only incur a polynomial cost

238

10.5 Refuting graph isomorphism in the extended polynomial calculus

in size, and this happens polynomially many times. The occurring coefficients can be
encoded with polynomially many bits as the lemma asserts. Also, Lemma 10.5.1 uses
only extension axioms of the required form.

Proof of Lemma 10.5.1: First, we have to explain how the variables of the new system
Piso(G′, H ′) are encoded as polynomials in the old variables. Recall that the variable set
of Piso(G,H) is

V(G,H) := {Xvw | v ∈ V (G), w ∈ V (H), v and w have the same vertex-colour}.

The intended meaning of Xvw is “v is mapped to w”. The graphs G′, H ′ contain new
vertices, which either represent contracted R-SCCs or pairs of colour R. The set of
vertex-pairs (v, w) for which we need new variables is NewPairs := (V (G′) \ V (G))×
(V (H ′) \ V (H)).
We would like to map each (v, w) ∈ NewPairs to a polynomial f(vw) such that we
can represent variables Xvw for (v, w) ∈ NewPairs as extension variables Xf(vw), which
we can introduce with the extension axiom Xf(vw) = f(vw). If op = addPair and v
is a new pair-vertex, then we let pair(v) be the vertex-pair that v corresponds to. If
op = contract and v is a new SCC-vertex, then we let scc(v) denote the set of vertices
in the SCC that is contracted into v. We define f as the following injective mapping
f : NewPairs→ Q[V(G,H)].

f(vw) :=

Xv1w1Xv2w2 , if op = addPair and

(v1, v2) = pair(v), (w1, w2) = pair(w).
1

|scc(v)| ·
∑

(v′,w′)∈scc(v)×scc(w)

Xv′w′ , if op = contract.

Note that f(vw) is indeed always a polynomial in variables V(G,H): To see this, we
have to check that in the pair-case, the vertex-colours of v1, w1 and of v2, w2, respectively,
are equal, and in the SCC-case, the vertex-colours of all elements of scc(v) and scc(w)
are equal. In the pair-case, this follows from Corollary 10.4.11, and in the SCC-case from
Corollary 10.4.13.

If v and w are newly introduced pair-vertices with pair(v) = (v1, v2) and pair(w) =
(w1, w2), then the variableXvw will be the extension variable for the monomialXv1w1Xv2w2 .
This makes sense because if Xvw is set to 1, then the bijection encoded by the assignment
maps v to w; but then it also has to map v1 to w1 and v2 to w2. Similarly, if v and w are
new SCC-vertices, then any bijection that takes v to w must also map the elements of
scc(v) to the elements of scc(w) in any possible way. This is reflected in our representation
of Xvw as the “average” over all possible mappings from scc(v) to scc(w).

Here are the new polynomial axioms that we have to derive in order to go from
Piso(G,H) to Piso(G′, H ′):

239

10 Choiceless Polynomial Time and Propositional Proof Complexity

∑
v∈V (G′)\V (G)

Xf(vw) − 1 for all w ∈ V (H ′) \ V (H). (10.4)

∑
w∈V (H′)\V (H)

Xf(vw) − 1 for all v ∈ V (G′) \ V (G). (10.5)

Xf(vw)Xv′w′ for all v, v′ ∈ V (G′), w, w′ ∈ V (H ′) (10.6)

such that (v, w) ∈ NewPairs

and v′, w′ ∈ V (G) ∪ V (H), v′ ∼ w′

and {(v, w), (v′, w′)} is not

a local isomorphism.

Xf(vw)Xf(v′w′) for all v, v′ ∈ V (G′), w, w′ ∈ V (H ′) (10.7)

such that (v, w) ∈ NewPairs

and (v′, w′) ∈ NewPairs

and {(v, w), (v′, w′)} is not

a local isomorphism.

The relation ∼ is the same-colour-relation, as in Definition 10.2.1. Note that Axioms
(10.4) and (10.5) only sum over vertices of the same colour as w and v, respectively (as
Axioms (10.1) and (10.2) do), because V (G′) \ V (G) and V (H ′) \ V (H) are the sets of
newly added vertices. These vertices receive a new colour distinct from all other vertex
colours in G and H (see definition of the DWL-operations in Section 10.4.2). The next
step is to verify that Piso(G′, H ′) is indeed derivable from Piso(G,H).

Derivation of Axioms (10.4) and (10.5):
Fix w ∈ V (H ′) \ V (H). We show how to derive Axiom (10.4) for w. Two cases have to
be distinguished, namely whether op = addPair or op = contract.

Case 1: op = addPair: Let (w1, w2) = pair(w). Using the multiplication rule and linear
combinations, we derive from Axiom (10.1) for w2 in Piso(G,H): ∑

v1∈V (G),
v1∼w1

Xv1w1

 ·
 ∑
v2∈V (G),
v2∼w2

Xv2w2 − 1

=
∑

v1,v2∈V (G)
v1∼w1,
v2∼w2

Xv1w1Xv2w2 −
∑

v1∈V (G),
v1∼w1

Xv1w1

240

10.5 Refuting graph isomorphism in the extended polynomial calculus

Recall from the statement of Lemma 10.5.1 that R ∈ σ is the colour such that
op(R) is executed to obtain G′]H ′ from G]H. Further, let C = C(G]H).
Since (w1, w2) ∈ R(C), we can use Lemma 10.4.7 and Lemma 10.2.3 to derive from
Piso(G,H) all monomials Xv1w1Xv2w2 where (v1, v2) /∈ R(C). Hence, we may cancel
these monomials from the above sum with the linear combination rule. This yields:∑

v1,v2∈V (G)

(v1,v2)∈R(C)

Xv1w1Xv2w2 −
∑

v1∈V (G)
v1∼w1

Xv1w1 .

Here, we used that for all pairs (v1, v2) ∈ V (G)2 ∩R(C(A)), it holds that v1 ∼ w1

and v2 ∼ w2. This follows from Corollary 10.4.11 and the fact that vertex-colours are
represented by diagonal relations. Now we are almost done: We add Axiom (10.1)
for w1 to the above expression and replace each remaining monomial Xv1w1Xv2w2

with the new extension variable Xf(vw), where v ∈ V (G′) is the respective new
pair-vertex with pair(v) = (v1, v2). One can see that

V (G′) \ V (G) = {v ∈ V (G′) | pair(v) ∈ R(C) ∩ V (G)2}.

Thus, we have indeed derived Axiom (10.4) for w.
Similarly, we get Axiom (10.5) for a vertex v ∈ V (G′) \ V (G) if we perform the
same derivations from the Axioms (10.2) instead of (10.1).

Case 2: op = contract: We derive Axiom (10.4) for a fixed vertex w ∈ V (H ′) \ V (H).
Now w is a vertex that represents a contracted R-SCC scc(w) ⊆ V (H).

For every vertex w′ ∈ scc(w), we have Axiom (10.1) for w′ in Piso(G,H):∑
v′∈V (G),

v′∼w′

Xv′w′ − 1.

Now from this, we may cancel all Xv′w′ where (v′, v′) and (w′, w′) are in distinct
diagonal relations in C. This is done again by deriving the respective variables
Xv′w′ with Lemma 10.4.7 and Lemma 10.2.3. After that step, we have for each
w′ ∈ scc(w): ∑

v′∈V (G),

there is v∈V (G′)\V (G) with v′∈scc(v)

Xv′w′ − 1. (?)

This holds because the vertex v′ ∈ V (G) has the same diagonal colour as w′ ∈ scc(w)
in the coherent configuration C if and only if it is also contained in some R-SCC
(Lemma 10.4.12).

Next, we use the variable introduction rule and introduce the variables Xf(vw) for
every v ∈ V (G′) \ V (G). That means, we obtain the following polynomials:

1

|scc(v)|
∑

(v′,w′)∈scc(v)×scc(w)

Xv′w′ −Xf(vw) for each v ∈ V (G′) \ V (G).

241

10 Choiceless Polynomial Time and Propositional Proof Complexity

Now take the sum of all polynomials (?) for all w′ ∈ scc(w), multiplied by 1
|scc(w)| .

From this, subtract the above polynomials for all v ∈ V (G′)\V (G). This yields Ax-
iom (10.4) for the vertex w because we have 1

|scc(v)| = 1
|scc(w)| for all v ∈ V (G′)\V (G),

since all R-SCCs have equal size (Lemma 10.4.14). In a similar way we can derive
Axiom (10.5) for an SCC-vertex v ∈ V (G′) \ V (G).

Derivation of Axioms (10.6):
Let v, v′ ∈ V (G′), w, w′ ∈ V (H ′) such that (v, w) ∈ NewPairs and v′, w′ ∈ V (G)∪V (H),
and v′ ∼ w′. Furthermore, assume that {(v, w), (v′, w′)} is not a local isomorphism. Since
v and w are newly introduced vertices and v′, w′ are old ones, it holds v′ 6= v and
w′ 6= w. Thus, if {(v, w), (v′, w′)} is not a local isomorphism, there must be a relation
symbol E ∈ τ such that (v′, v) ∈ E(G) and (w′, w) /∈ E(H), or (v, v′) ∈ E(G) and
(w,w′) /∈ E(H), or vice versa. Again, we have to distinguish two cases:

Case 1: op = addPair: In this case, v and w are new pair-vertices representing pairs
(v1, v2) and (w1, w2), respectively. Therefore, the only non-diagonal relations in
which they occur are Eleft and Eright. Suppose (v′, v) ∈ Eleft(G

′) and (w′, w) /∈
Eleft(H

′). That means v′ = v1 and w′ 6= w1. We take the extension axiom for
Xf(vw) and multiply it by Xv′w′ to obtain Xv′w′(Xv1w1Xv2w2 − Xf(vw)). Since
v′ = v1 and w′ 6= w1, the monomial Xv′w′Xv1w1 represents a pebble position that is
not a local isomorphism and is therefore an axiom in Piso(G,H). We can thus derive
Xv′w′Xv1w1Xv2w2 and cancel it from the polynomial above. Then we multiply by
(−1) and are left with Axiom (10.6), as desired. Similarly, we can derive the axiom
in the case that (v, v′) ∈ Eright(G

′) and (w,w′) /∈ Eright(H
′). The symmetric cases

in which (w,w′) or (w′, w) is in the respective relation, and (v, v′) or (v′, v) is not,
are analogous.

Case 2: op = contract: In this case, v and w are contracted R-SCCs of G and H. Let
E ∈ τ be a relation symbol such that (v′, v) ∈ E(G′) and (w′, w) /∈ E(H ′). Then
by definition of E(G′]H ′) (see Section 10.4.2), there exists a v1 ∈ scc(v) such that
(v′, v1) ∈ E(G), and there is no w1 ∈ scc(w) such that (w′, w1) ∈ E(H). In order
to derive Xf(vw)Xv′w′ , we multiply the extension axiom

1

|scc(v)|
∑

(v′′,w′′)∈scc(v)×scc(w)

Xv′′w′′ −Xf(vw)

with Xv′w′ . From the resulting sum, we can cancel all monomials of the form
Xv′w′Xv′′w′′ , for all v′′ ∈ scc(v), w′′ ∈ scc(w), because (v′, v′′) and (w′, w′′) have
distinct colours (using again Lemma 10.4.7 and Lemma 10.2.3). The colours are
distinct because there exists an E-edge from v′ into scc(v), but none from w′ into
scc(w) (see Lemma 10.4.16). After cancelling these monomials, we are left with
Xf(vw)Xv′w′ . Again, the symmetric cases work analogously.

242

10.5 Refuting graph isomorphism in the extended polynomial calculus

Derivation of Axioms (10.7):
Let v, v′ ∈ V (G′), w, w′ ∈ V (H ′) such that (v, w) ∈ NewPairs and (v′, w′) ∈ NewPairs.
Furthermore, assume that {(v, w), (v′, w′)} is not a local isomorphism. Again, we distin-
guish between the two operation types:

Case 1: op = addPair: If all four vertices v, v′, w, w′ are newly created pair-vertices,
then (v, v′) and (w,w′) are not in any relation. Therefore, the only way how
{(v, w), (v′, w′)} can fail to be a local isomorphism is if v = v′ and w 6= w′ (or vice
versa).
So let v = v′ and pair(v) = pair(v′) = (v1, v2). Further, let pair(w) = (w1, w2) and
pair(w′) = (w′1, w

′
2), where pair(w) 6= pair(w′). Suppose that w1 6= w′1 (if w2 6= w′2,

the derivation is analogous). We multiply the extension axiom for Xf(vw) with
Xv1w′1

and obtain:
Xv1w′1

(Xv1w1Xv2w2 −Xf(vw)).

Since w′1 6= w1, the monomial Xv1w′1
Xv1w1 encodes a pebble position which is

not a local isomorphism and therefore, it is in Piso(G,H). Thus, we can derive
Xv1w′1

Xv1w1Xv2w2 and cancel it from the above polynomial, yielding −Xv1w′1
Xf(vw).

Now multiply this by Xv2w′2
and add the result to the lifted extension axiom

Xf(vw)(Xv1w′1
Xv2w′2

−Xf(v′w′)) (recall that pair(v′) = (v1, v2)). The result, multi-
plied by (−1), is Axiom (10.7), namely Xf(vw)Xf(v′w′).
Again, the symmetric cases are analogous.

Case 2: op = contract: In this case, two subcases must be considered because there
are two ways in which {(v, w), (v′, w′)} can fail to be a local isomorphism.

Case 2.1: Mismatch of equality types. Like in the previous case, let v = v′ and w 6= w′.
We multiply the extension axiom for Xf(vw) with a weighted sum of variables (using
the multiplication and the linear combination rule) to obtain: 1

|scc(v′)|
∑

v′1∈scc(v′)

∑
w2∈scc(w′)

Xv′1w2

·
 1

|scc(v)|
∑

(v1,w1)∈scc(v)×scc(w)

Xv1w1 −Xf(vw)

 .

Because scc(w) ∩ scc(w′) = ∅, and scc(v′) = scc(v), w1 and w2 in the above sum
are always in distinct SCCs, while v1 and v′1 are in the same SCC. Lemma 10.4.15
states that the colours of pairs in the same SCC are distinct from colours of pairs
which do not lie in the same SCC. Hence, all monomials of the form Xv′1w2

Xv1w1

are derivable from Piso(G,H) using Lemma 10.4.7 and Lemma 10.2.3. Cancelling
these monomials from the above sum yields: 1

|scc(v′)|
∑

v′1∈scc(v′)

∑
w2∈scc(w′)

Xv′1w2

 · (−Xf(vw)

)
.

With the help of the extension axiom for Xf(v′w′), we can replace the sum in this
expression by Xf(v′w′) and are done. Again, symmetric cases work analogously.

243

10 Choiceless Polynomial Time and Propositional Proof Complexity

Case 2.2: Mismatch of relations. In this case, the reason why {(v, w), (v′, w′)} is not
a local isomorphism is that there is a relation E ∈ τ such that (v′, v) ∈ E(G′)
and (w′, w) /∈ E(H ′) (again, we skip the symmetric cases because they are analo-
gous). Then by definition of E(G′]H ′), there exist v′1 ∈ scc(v′) and v1 ∈ scc(v)
such that (v′1, v1) ∈ E(G), but for every pair (w′1, w1) ∈ scc(w′)× scc(w), it holds
(w′1, w1) /∈ E(H).

We take the extension axiom for Xf(vw) and multiply it with Xv2w2 , for all
v2 ∈ scc(v′), w2 ∈ scc(w′). This yields polynomials of the form (where we now write
v′′ for the vertices in scc(v) to avoid confusion with the vertex v′):

1

|scc(v)|
∑

(v′′,w′′)∈scc(v)×scc(w)

Xv′′w′′Xv2w2 −Xf(vw)Xv2w2 .

We obtain such a polynomial for every v2 ∈ scc(v′), w2 ∈ scc(w′).
By Lemma 10.4.17, the pairs (v′′, v2) and (w′′, w2) have distinct colours in the
coarsest coherent configuration C, for every v′′ ∈ scc(v), w′′ ∈ scc(w), because there
is an E-edge between scc(v′) and scc(v), but none between scc(w′) and scc(w).
Therefore, each monomial Xv′′w′′Xv2w2 is derivable from Piso(G,H) and can be
cancelled from the above sums.
So in total, we can derive:

−Xf(vw)Xv2w2 , for all v2 ∈ scc(v′), w2 ∈ scc(w′).

We use these monomials to cancel all the summands in the product of the extension
axiom for Xf(v′w′) with the variable Xf(vw), which is the following expression:

1

|scc(v′)|
∑

(v2,w2)∈scc(v′)×scc(w′)

Xf(vw)Xf(v2w2) −Xf(vw)Xf(v′w′).

Cancelling out the summands as described yields the desired Axiom (10.7):
Xf(vw)Xf(v′w′).

In total, we can derive Piso(G′, H ′) from Piso(G,H). The number of new variables
is clearly bounded by |V (G′)|2. It is also not difficult to see that only polynomially
many monomials occur in the derivation, and the binary encoding of the coefficients
occurring in them has complexity at most O(log |V (G)|). The used extension axioms
are all for polynomials that are averaged sums or degree-2 monomials, as mentioned
in Lemma 10.5.1. The derivations obtained with Lemma 10.2.3 also have polynomial
complexity because they can be carried out in MC3.

10.6 Conclusion and future research

We have shown that the degree-3 extended polynomial calculus can simulate the pair-
and contract-operations of Deep Weisfeiler Leman in the sense that the axiom system

244

10.6 Conclusion and future research

Piso(G′, H ′) is derivable from Piso(G,H) if there is a sequence of DWL-operations that
transforms G]H into G′]H ′. Together with the simulation of k-dimensional Weisfeiler
Leman in the degree-k monomial calculus given in [17], this shows that EPC3 can
distinguish two graphs G and H if they can be distinguished in DWL, and the EPC3-
refutation has the same complexity as the DWL-algorithm. Since DWL-algorithms
and CPT-programs mutually simulate each other, this result upper-bounds the graph
distinguishing power of CPT by that of EPC3.

This raises the question whether a super-polynomial lower bound for graph isomorphism
can be established for EPC3, preferably for graph classes such as unordered CFI-graphs
or multipedes, whose isomorphism problem reduces to a linear equation system and is
thus in Ptime. If such a lower bound is found, then by Theorem 10.0.3, we would also
have that CPT 6= Ptime.

Unfortunately, we do not know how strong the system EPC3 is, and in particular, if the
degree-restriction is a true limitation. It may even be the case that EPC3 polynomially
simulates the unbounded-degree extended polynomial calculus. Then it would be as
strong as extended Frege because in EPC, the extension variables can encode arbitrary
polynomials and thereby arbitrary Boolean circuits. This would make it less useful for
proving lower bounds against CPT, as extended Frege lower bounds seem to be out of
reach at the moment.
However, Theorem 10.0.1 also asserts that the simulation of CPT is possible using only
extension axioms of a limited form, namely for degree-2 monomials and averaged sums.
In this restricted version of EPC3, the obvious representation of Boolean circuits as
polynomials is no longer possible: The Boolean functions X ∧ Y,X ∨ Y , and ¬X can
naturally be represented as the polynomials X · Y,X + Y −X · Y , and 1 −X. When
we represent Boolean circuits using extension variables, then each extension variable
corresponds to a gate in the circuit. If the only allowed extension axioms are Xf−f for

f = X · Y or f = 1
n

∑n2

i=1Xi, then the only gates that we can naturally express are
AND-gates (with extension axioms of the first type). Neither NOT-gates nor OR-gates
can be simulated (directly) by such extension axioms because this requires sums which
are not of the form 1

n

∑
Xi. In particular, these extension axioms cannot be applied to

polynomials where variables occur with a negative coefficient. Hence, the corresponding
circuits are in some sense monotone. This is of course no formal proof that EPC3 with
restricted extension axioms is strictly weaker than extended Frege but at least it rules out
the natural simulation of Boolean circuits in EPC3. In total, the success chances of our
suggested approach for CPT lower bounds via proof complexity depend highly on the
true power of EPC3 (with restricted extension axioms), and its relation to unrestricted
EPC. Investigating this remains a problem for future work.

Symmetry-invariance of the refutations Actually, our Theorem 10.0.1 could be strength-
ened more: A simulation of CPT in EPC3 is even possible in a certain symmetry-invariant

245

10 Choiceless Polynomial Time and Propositional Proof Complexity

fragment of EPC3. However, it seems tricky to give a precise definition of “symmetric
EPC3” that is both natural and fits the kind of symmetry we encounter in our CPT-
simulation. A neat way to put it would be to say that the set of extension axioms
used in a derivation has to be closed under symmetries. With the right definition of
“symmetries”, this is indeed true for the refutation constructed in Lemma 10.5.1. Namely,
whenever an extension variable Xf(vw) is introduced, where v and w are new pair- or
SCC-vertices, then we introduce it for all (v, w) ∈ V (G′) × V (H ′) that are new. The
corresponding polynomials f(vw) consist of variables that refer to the vertices in the
respective pairs or SCCs of v and w. The automorphisms of the graphs G and H preserve
the colours of all vertex-pairs in the coarsest coherent configuration. Therefore, the set
of extension axioms that we introduce in each step of the refutation is closed under the
automorphisms of G and H. Actually, it is even closed under C3-types in some sense and
can thus even be meaningfully symmetric when the graphs are rigid. However, it is quite
awkward to formalise this symmetry condition in the EPC3-context. Therefore, let us
look at the easier symmetry notion with respect to automorphisms: The action of the
automorphism groups Aut(G) and Aut(H) on the set of variables of Piso(G,H) is the
natural one, i.e. if π is an automorphism of G and σ an automorphism of H, then they
take Xvw to Xπ(v)σ(w). This extends naturally to the extension axioms, so for example, if
v and w are pair-vertices with pair(v) = (v1, v2),pair(w) = (w1, w2), then the extension
axiom Xf(vw) −Xv1w1Xv2w2 is mapped to Xf(v′w′) −Xπ(v1)σ(w1)Xπ(v2)σ(w2), where v′, w′

are the newly introduced pair-vertices for (π(v1), π(v2)) and (σ(w1), σ(w2)) (such v′, w′

must exist because DWL is isomorphism-invariant and introduces new vertices for all
pairs with the same colour). So in this sense, the extension axioms used in Lemma 10.5.1
are closed under all automorphism-pairs (π, σ) ∈ Aut(G)×Aut(H).
Unfortunately, this does not lead to a general definition of symmetric EPC3 because it
depends on the automorphisms of G and H, the graphs which are implicitly encoded in
Piso(G,H). When EPC3 is applied to other polynomial axiom systems, then there might
be no graphs “in the background”. So for a general set of input polynomials P , it would
be natural to require that the set of extension axioms in a refutation be closed under
the automorphisms of P – these are the permutations of the variables that extend to
permutations of the polynomials in P . However, this would no longer fit to our derivation
from Lemma 10.5.1: The system Piso(G,H) in general has more automorphisms than
Aut(G)×Aut(H). Namely, Piso(G,H) contains no information about where the edges
and non-edges in G and H actually are; it just relates pairs (v, v′) ∈ V (G)2 with pairs
(w,w′) ∈ V (H)2 where (v, v′) is an edge and (w,w′) is not, or vice versa (Axiom (10.3)).
Therefore, an automorphism of Piso(G,H) may swap all edges with non-edges, as long as
it does so in both G and H (such examples can be constructed). But the automorphisms
of the graphs must preserve edges and non-edges, so such an automorphism of Piso(G,H)
does not correspond to one from Aut(G)×Aut(H). Our constructed refutation is only
symmetric with respect to the latter. Thus, our simulation of CPT in EPC3 is possible
in a way that respects specific symmetries of Piso(G,H), but we do not know if this
kind of symmetry-invariance can be formulated independently of the graph isomorphism
problem as a general restriction to the proof system EPC3.

246

10.6 Conclusion and future research

It is an intriguing direction for future research to formulate a generic way of sym-
metrising known proof systems such as the extended polynomial calculus or variants of
resolution and Frege. This would not only yield the right framework for expressing our
symmetric graph isomorphism refutations that we have obtained from CPT but it would
also open the field of proof complexity to symmetry-based lower bound methods: It is
conceivable that lower bounds for proof systems such as Frege or even extended Frege,
which have been notoriously difficult in the asymmetric setting, may be provable for
suitable symmetric versions of these proof systems. An approach towards symmetric
proof systems that seems particularly promising to us is to consider the so-called Ideal
Proof System (IPS) by Grochow and Pitassi [58]. Proofs in this system are algebraic
circuits – these are predestined for putting a symmetry restriction on them. Moreover,
IPS allows to naturally simulate all standard proof systems such as (extended) Frege
or the (extended) polynomial calculus, so making IPS symmetric should symmetrise all
other proof systems, too. Lower bounds for symmetric IPS could then, hopefully, be
obtained with known techniques from the study of symmetric circuits. Coincidentally,
this would also be the ideal way to unify the two major directions we have explored in
this thesis, namely symmetric circuits and proof complexity.

247

Bibliography

[1] Serge Abiteboul and Victor Vianu. Datalog extensions for database queries and
updates. Journal of Computer and System Sciences, 43(1):62–124, 1991.

[2] Serge Abiteboul and Victor Vianu. Computing with first-order logic. Journal of
Computer and System Sciences, 50(2):309–335, 1995.

[3] Faried Abu Zaid, Anuj Dawar, Erich Grädel, and Wied Pakusa. Definability of
Summation Problems for Abelian Groups and Semigroups. In Proceedings of 32th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 2017. URL:
http://www.logic.rwth-aachen.de/pub/graedel/AbuzaidDawGraPak17.pdf.

[4] Faried Abu Zaid, Erich Grädel, Martin Grohe, and Wied Pakusa. Choiceless
Polynomial Time on structures with small Abelian colour classes. In Mathematical
Foundations of Computer Science 2014, volume 8634 of Lecture Notes in Computer
Science, pages 50–62. Springer, 2014. URL: http://logic.rwth-aachen.de/pub/
pakusa/cptcan.pdf.

[5] Yaroslav Alekseev. A Lower Bound for Polynomial Calculus with Extension
Rule. In 36th Computational Complexity Conference (CCC 2021), volume
200 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–
21:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14295, doi:
10.4230/LIPIcs.CCC.2021.21.

[6] Matthew Anderson and Anuj Dawar. On symmetric circuits and fixed-point logics.
Theory of Computing Systems, 60(3):521–551, 2017.

[7] Matthew Anderson, Anuj Dawar, and Bjarki Holm. Maximum matching and linear
programming in fixed-point logic with counting. In 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, pages 173–182. IEEE, 2013.

[8] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[9] Albert Atserias. On sufficient conditions for unsatisfiability of random formulas.
Journal of the ACM (JACM), 51(2):281–311, 2004.

[10] Albert Atserias, Andrei Bulatov, and Anuj Dawar. Affine systems of equations and
counting infinitary logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

249

http://www.logic.rwth-aachen.de/pub/graedel/AbuzaidDawGraPak17.pdf
http://logic.rwth-aachen.de/pub/pakusa/cptcan.pdf
http://logic.rwth-aachen.de/pub/pakusa/cptcan.pdf
https://drops.dagstuhl.de/opus/volltexte/2021/14295
https://doi.org/10.4230/LIPIcs.CCC.2021.21
https://doi.org/10.4230/LIPIcs.CCC.2021.21

Bibliography

[11] Albert Atserias and V́ıctor Dalmau. A combinatorial characterization of resolution
width. Journal of Computer and System Sciences, 74(3):323–334, 2008.

[12] Albert Atserias and Anuj Dawar. Definable inapproximability: new challenges for
duplicator. Journal of Logic and Computation, 29(8):1185–1210, 2019.

[13] Albert Atserias and Joanna Ochremiak. Definable ellipsoid method, sums-of-
squares proofs, and the isomorphism problem. In Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 66–75, 2018.

[14] László Babai, Peter Cameron, and Péter Pálfy. On the orders of primitive groups
with restricted nonabelian composition factors. Journal of Algebra, 79(1):161–168,
1982.

[15] László Babai. Graph isomorphism in quasipolynomial time. 2015. URL: https:
//arxiv.org/abs/1512.03547, doi:10.48550/ARXIV.1512.03547.

[16] Paul Beame and Toniann Pitassi. Propositional proof complexity: Past, present,
and future. Current Trends in Theoretical Computer Science Entering the 21st
Century, pages 42–70, 2001.

[17] Christoph Berkholz and Martin Grohe. Limitations of algebraic approaches to
graph isomorphism testing. In International Colloquium on Automata, Languages,
and Programming, pages 155–166. Springer, 2015.

[18] Andreas Blass and Yuri Gurevich. Strong extension axioms and Shelah’s zero-one
law for choiceless polynomial time. The Journal of Symbolic Logic, 68(1):65–131,
2003.

[19] Andreas Blass and Yuri Gurevich. A new zero-one law and strong extension axioms.
In Current Trends in Theoretical Computer Science: The Challenge of the New
Century Vol 1: Algorithms and Complexity Vol 2: Formal Models and Semantics,
pages 99–118. World Scientific, 2004.

[20] Andreas Blass and Yuri Gurevich. A quick update on the open problems in Blass-
Gurevich-Shelah’s article “On polynomial time computations over unordered struc-
tures”. 2005. URL: https://www.microsoft.com/en-us/research/wp-content/
uploads/2017/01/150a.pdf.

[21] Andreas Blass, Yuri Gurevich, and Saharon Shelah. Choiceless polynomial time.
Annals of Pure and Applied Logic, 100(1-3):141–187, 1999.

[22] Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time computa-
tion over unordered structures. The Journal of Symbolic Logic, 67(3):1093–1125,
2002.

[23] Andreas Blass, Yuri Gurevich, and Jan Van den Bussche. Abstract state machines
and computationally complete query languages. Information and Computation,
174(1):20–36, 2002.

250

https://arxiv.org/abs/1512.03547
https://arxiv.org/abs/1512.03547
https://doi.org/10.48550/ARXIV.1512.03547
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/150a.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2017/01/150a.pdf

Bibliography

[24] Hans Bodlaender. Treewidth: Structure and algorithms. In International Collo-
quium on Structural Information and Communication Complexity, pages 11–25.
Springer, 2007.

[25] Miko laj Bojańczyk. Slightly infinite sets. 2019. URL: https://www.mimuw.edu.
pl/~bojan/upload/main-10.pdf.

[26] Miko laj Bojańczyk and Szymon Toruńczyk. On computability and tractability for
infinite sets. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science, pages 145–154, 2018.

[27] Andrei Bulatov. A dichotomy theorem for nonuniform CSPs. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), pages 319–330.
IEEE, 2017.

[28] Sam Buss. Propositional proofs in Frege and Extended Frege systems. In Interna-
tional Computer Science Symposium in Russia, pages 1–6. Springer, 2015.

[29] J. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of
variables for graph identification. Combinatorica, 12:389–410, 1992.

[30] Ashok Chandra and David Harel. Structure and complexity of relational queries.
In 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), pages
333–347. IEEE, 1980. doi:10.1109/SFCS.1980.41.

[31] Gang Chen and Ilia Ponomarenko. Lectures on coherent configurations. Lecture
notes, 2019. URL: http://www.pdmi.ras.ru/~inp/ccNOTES.pdf.

[32] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner
basis algorithm to find proofs of unsatisfiability. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 174–183, 1996.

[33] Laszlo Csanky. Fast parallel matrix inversion algorithms. In 16th Annual Symposium
on Foundations of Computer Science (sfcs 1975), pages 11–12. IEEE, 1975.

[34] Anuj Dawar. The nature and power of fixed-point logic with counting. ACM
SIGLOG News, 2(1):8–21, 2015.

[35] Anuj Dawar, Erich Grädel, and Wied Pakusa. Approximations of Isomor-
phism and Logics with Linear-Algebraic Operators. In 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019), volume
132 of Leibniz International Proceedings in Informatics (LIPIcs), pages 112:1–
112:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10688, doi:

10.4230/LIPIcs.ICALP.2019.112.

[36] Anuj Dawar, Martin Grohe, Bjarki Holm, and Bastian Laubner. Logics with rank
operators. In 2009 24th Annual IEEE Symposium on Logic In Computer Science,
pages 113–122. IEEE, 2009.

251

https://www.mimuw.edu.pl/~bojan/upload/main-10.pdf
https://www.mimuw.edu.pl/~bojan/upload/main-10.pdf
https://doi.org/10.1109/SFCS.1980.41
http://www.pdmi.ras.ru/~inp/ccNOTES.pdf
http://drops.dagstuhl.de/opus/volltexte/2019/10688
https://doi.org/10.4230/LIPIcs.ICALP.2019.112
https://doi.org/10.4230/LIPIcs.ICALP.2019.112

Bibliography

[37] Anuj Dawar, Erich Grädel, and Moritz Lichter. Limitations of the invertible-
map equivalences. Journal of Logic and Computation, 09 2022. URL:
https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/

exac058/6687793?guestAccessKey=7349c158-be02-4116-815a-840ac7880a03,
doi:10.1093/logcom/exac058.

[38] Anuj Dawar and Bjarki Holm. Pebble games with algebraic rules. In International
Colloquium on Automata, Languages, and Programming, pages 251–262. Springer,
2012.

[39] Anuj Dawar and David Richerby. A fixed-point logic with symmetric choice. In
International Workshop on Computer Science Logic, pages 169–182. Springer, 2003.

[40] Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless Polynomial Time,
Counting and the Cai–Fürer–Immerman graphs. Annals of Pure and Applied Logic,
152(1-3):31–50, 2008.

[41] Anuj Dawar and Gregory Wilsenach. Symmetric Arithmetic Circuits. In 47th
International Colloquium on Automata, Languages, and Programming (ICALP
2020), volume 168 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 36:1–36:18, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/12443,
doi:10.4230/LIPIcs.ICALP.2020.36.

[42] Anuj Dawar and Gregory Wilsenach. Symmetric circuits for rank logic. ACM
Transactions on Computational Logic (TOCL), 23(1):1–35, 2021.

[43] Anuj Dawar and Gregory Wilsenach. Lower Bounds for Symmetric Circuits for
the Determinant. In 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 52:1–52:22, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/
2022/15648, doi:10.4230/LIPIcs.ITCS.2022.52.

[44] Susanna de Rezende, Massimo Lauria, Jakob Nordström, and Dmitry Sokolov. The
power of negative reasoning. In 36th Computational Complexity Conference (CCC
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[45] John Dixon and Brian Mortimer. Permutation Groups. Springer, New York, 1996.

[46] Luca Donetti, Franco Neri, and Miguel Muñoz. Optimal network topologies:
expanders, cages, Ramanujan graphs, entangled networks and all that. Journal
of Statistical Mechanics: Theory and Experiment, 2006(08):P08007–P08007, aug
2006. URL: https://doi.org/10.1088%2F1742-5468%2F2006%2F08%2Fp08007,
doi:10.1088/1742-5468/2006/08/p08007.

[47] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer, 1999.

252

https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exac058/6687793?guestAccessKey=7349c158-be02-4116-815a-840ac7880a03
https://academic.oup.com/logcom/advance-article/doi/10.1093/logcom/exac058/6687793?guestAccessKey=7349c158-be02-4116-815a-840ac7880a03
https://doi.org/10.1093/logcom/exac058
https://drops.dagstuhl.de/opus/volltexte/2020/12443
https://doi.org/10.4230/LIPIcs.ICALP.2020.36
https://drops.dagstuhl.de/opus/volltexte/2022/15648
https://drops.dagstuhl.de/opus/volltexte/2022/15648
https://doi.org/10.4230/LIPIcs.ITCS.2022.52
https://doi.org/10.1088%2F1742-5468%2F2006%2F08%2Fp08007
https://doi.org/10.1088/1742-5468/2006/08/p08007

Bibliography

[48] Kousha Etessami and Neil Immerman. Tree canonization and transitive closure.
In Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science,
pages 331–341. IEEE, 1995.

[49] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable
sets. Complexity of computation, 7:43–73, 1974.

[50] Stanley Florkowski III. Spectral graph theory of the hypercube. Technical report,
NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2008.

[51] F. Gire and H.K. Hoang. An extension of fixpoint logic with a symmetry-based
choice construct. Information and Computation, 144(1):40–65, 1998. doi:https:
//doi.org/10.1006/inco.1998.2712.

[52] E. Grädel, W. Pakusa, S. Schalthöfer, and L. Kaiser. Characterising Choiceless
Polynomial Time with First-Order Interpretations. In Proceedings of the 30th
Annual ACM/IEEE Symposium on Logic in Computer Science, pages 677–688,
2015.

[53] Erich Grädel and Martin Grohe. Is Polynomial Time Choiceless? In Fields of Logic
and Computation II, pages 193–209. Springer, 2015.

[54] Erich Grädel and Martin Otto. Inductive definability with counting on finite
structures. In Computer Science Logic: 6th Workshop, CSL’92 San Miniato, Italy,
September 28–October 2, 1992 Selected Papers 6, pages 231–247. Springer, 1993.

[55] Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank
logic! The Journal of Symbolic Logic, 84(1), March 2019. URL:
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/

article/rank-logic-is-dead-long-live-rank-logic/

F161E336281F2B67E8B3E4CDA5614933.

[56] Erich Grädel and Svenja Schalthöfer. Choiceless Logarithmic Space. In 44th Inter-
national Symposium on Mathematical Foundations of Computer Science (MFCS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[57] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics.
Addison-Wesley, 2 edition, 1994.

[58] Joshua Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and
polynomial identity testing: The ideal proof system. Journal of the ACM (JACM),
65(6):1–59, 2018.

[59] Martin Grohe. The quest for a logic capturing PTIME. In 2008 23rd Annual
IEEE Symposium on Logic in Computer Science, pages 267–271. IEEE, 2008.
doi:10.1109/LICS.2008.11.

[60] Martin Grohe. Fixed-point definability and polynomial time on graphs with
excluded minors. Journal of the ACM (JACM), 59(5):1–64, 2012.

253

https://doi.org/https://doi.org/10.1006/inco.1998.2712
https://doi.org/https://doi.org/10.1006/inco.1998.2712
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/rank-logic-is-dead-long-live-rank-logic/F161E336281F2B67E8B3E4CDA5614933
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/rank-logic-is-dead-long-live-rank-logic/F161E336281F2B67E8B3E4CDA5614933
https://www.cambridge.org/core/journals/journal-of-symbolic-logic/article/rank-logic-is-dead-long-live-rank-logic/F161E336281F2B67E8B3E4CDA5614933
https://doi.org/10.1109/LICS.2008.11

Bibliography

[61] Martin Grohe. Descriptive complexity, canonisation, and definable graph structure
theory. Cambridge University Press, 2017.

[62] Martin Grohe, Berit Grußien, André Hernich, and Bastian Laubner. L-Recursion
and a new Logic for Logarithmic Space. In Computer Science Logic (CSL’11) -
25th International Workshop/20th Annual Conference of the EACSL, volume 12
of Leibniz International Proceedings in Informatics (LIPIcs), pages 277–291,
Dagstuhl, Germany, 2011. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
URL: http://drops.dagstuhl.de/opus/volltexte/2011/3237, doi:10.4230/

LIPIcs.CSL.2011.277.

[63] Martin Grohe, Pascal Schweitzer, and Daniel Wiebking. Deep Weisfeiler Leman,
2020. arXiv:2003.10935.

[64] Berit Grußien. Capturing Polynomial Time and Logarithmic Space using Modular
Decompositions and Limited Recursion. PhD thesis, Humboldt-Universität zu
Berlin, 2016.

[65] Erich Grädel et al. Finite Model Theory and its Applications. Springer, 2007.

[66] Yuri Gurevich. Logic and the Challenge of Computer Science. In Current Trends
in Theoretical Computer Science. Computer Science Press, 1988.

[67] Yuri Gurevich and Saharon Shelah. On finite rigid structures. The Journal of
Symbolic Logic, 61(2):549–562, 1996.

[68] Armin Haken. The intractability of resolution. Theoretical computer science,
39:297–308, 1985.

[69] Frank Harary. The automorphism group of a hypercube. J. Univers. Comput. Sci.,
6(1):136–138, 2000.

[70] William He and Benjamin Rossman. Symmetric formulas for products of permuta-
tions, 2022. URL: https://arxiv.org/abs/2211.15520.

[71] Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–
19, 1996.

[72] Lauri Hella, Phokion Kolaitis, and Kerkko Luosto. Almost everywhere equivalence
of logics in finite model theory. Bulletin of Symbolic Logic, 2(4):422–443, 1996.

[73] Bjarki Holm. Descriptive Complexity of Linear Algebra. PhD thesis, University of
Cambridge, 2010.

[74] Neil Immerman. Relational queries computable in polynomial time. In Proceedings
of the fourteenth annual ACM symposium on Theory of computing, pages 147–152,
1982.

[75] Neil Immerman. Descriptive Complexity. Springer Science, 2012.

254

http://drops.dagstuhl.de/opus/volltexte/2011/3237
https://doi.org/10.4230/LIPIcs.CSL.2011.277
https://doi.org/10.4230/LIPIcs.CSL.2011.277
http://arxiv.org/abs/2003.10935
https://arxiv.org/abs/2211.15520

Bibliography

[76] Neil Immerman and Eric Lander. Describing graphs: A first-order approach to
graph canonization. In Complexity theory retrospective, pages 59–81. Springer,
1990.

[77] Russell Impagliazzo, Pavel Pudlák, and Jiri Sgall. Lower bounds for the polynomial
calculus and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144,
1999.

[78] Sandra Kiefer. The Weisfeiler-Leman algorithm: an exploration of its power. ACM
SIGLOG News, 7(3):5–27, 2020.

[79] Jan Kraj́ıček. Proof Complexity, volume 170. Cambridge University Press, 2019.

[80] Bastian Laubner. The Structure of Graphs and New Logics for the Characterization
of Polynomial Time. PhD thesis, Humboldt-Universität zu Berlin, 2011.

[81] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[82] Moritz Lichter. Separating Rank Logic from Polynomial Time. J. ACM, nov 2022.
URL: https://doi.org/10.1145/3572918.

[83] Moritz Lichter. Witnessed Symmetric Choice and Interpretations in Fixed-Point
Logic with Counting, 2022. URL: https://arxiv.org/abs/2210.07869.

[84] Moritz Lichter and Pascal Schweitzer. Canonization for Bounded and Dihedral
Color Classes in Choiceless Polynomial Time. In 29th EACSL Annual Conference on
Computer Science Logic (CSL 2021), volume 183 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 31:1–31:18, Dagstuhl, Germany, 2021. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/
opus/volltexte/2021/13465, doi:10.4230/LIPIcs.CSL.2021.31.

[85] Moritz Lichter and Pascal Schweitzer. Choiceless Polynomial Time with Witnessed
Symmetric Choice. LICS ’22. Association for Computing Machinery, 2022. URL:
https://doi.org/10.1145/3531130.3533348.

[86] Martin Otto. Bounded Variable Logics and Counting, volume 9 of Lecture Notes in
Logic. Springer, 1997.

[87] Benedikt Pago. Choiceless Computation and Symmetry: Limitations of Defin-
ability. In 29th EACSL Annual Conference on Computer Science Logic (CSL
2021), volume 183 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 33:1–33:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/13467,
doi:10.4230/LIPIcs.CSL.2021.33.

[88] Benedikt Pago. Finite Model Theory and Proof Complexity Revisited: Distin-
guishing Graphs in Choiceless Polynomial Time and the Extended Polynomial
Calculus. In 31st EACSL Annual Conference on Computer Science Logic (CSL

255

https://doi.org/10.1145/3572918
https://arxiv.org/abs/2210.07869
https://drops.dagstuhl.de/opus/volltexte/2021/13465
https://drops.dagstuhl.de/opus/volltexte/2021/13465
https://doi.org/10.4230/LIPIcs.CSL.2021.31
https://doi.org/10.1145/3531130.3533348
https://drops.dagstuhl.de/opus/volltexte/2021/13467
https://doi.org/10.4230/LIPIcs.CSL.2021.33

Bibliography

2023), volume 252 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 31:1–31:19, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2023/17492,
doi:10.4230/LIPIcs.CSL.2023.31.

[89] Wied Pakusa. Linear Equation Systems and the Search for a Logical Characterisa-
tion of Polynomial Time. PhD thesis, RWTH Aachen, 2015.

[90] Wied Pakusa, Benedikt Pago, Martin Grohe, and Erich Grädel. A Finite-Model-
Theoretic View on Propositional Proof Complexity. Logical Methods in Computer
Science, 15, 2019.

[91] Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-
Immerman problems in Choiceless Polynomial Time. ACM Transactions on Com-
putational Logic (TOCL), 19(2):1–27, 2018. doi:10.1145/3154456.

[92] Alexander Razborov. Lower bounds for the polynomial calculus. Computational
Complexity, 7(4):291–324, 1998.

[93] David Richerby. Fixed-point logics with choice. PhD thesis, University of Cambridge,
2004.

[94] Harvey Rose. Series, Jordan–Hölder Theorem and the Extension Problem. In
A Course on Finite Groups, pages 187–207. Springer London, London, 2009.
doi:10.1007/978-1-84882-889-6_9.

[95] Benjamin Rossman. Choiceless Computation and Symmetry. In Fields of Logic
and Computation, pages 565–580. Springer, 2010.

[96] Benjamin Rossman. Subspace-Invariant AC0 Formulas. Logical Methods in Com-
puter Science, 15, 2019.

[97] Svenja Schalthöfer. Choiceless Computation and Logic. PhD thesis, RWTH Aachen,
2020.

[98] Svenja Schalthöfer. Computing on Abstract Structures with Logical Interpretations.
Master’s thesis, RWTH Aachen University, 2013.

[99] Uwe Schöning. Graph Isomorphism is in the Low Hierarchy. Journal of Computer
and System Sciences, 37(3):312–323, 1988.

[100] Nathan Segerlind. The Complexity of Propositional Proofs. Bulletin of symbolic
Logic, 13(4):417–481, 2007.

[101] Saharon Shelah. Choiceless Polynomial Time Logic: Inability to Express. In
International Workshop on Computer Science Logic, pages 72–125. Springer, 2000.

256

https://drops.dagstuhl.de/opus/volltexte/2023/17492
https://doi.org/10.4230/LIPIcs.CSL.2023.31
https://doi.org/10.1145/3154456
https://doi.org/10.1007/978-1-84882-889-6_9

Bibliography

[102] L. Sunil Chandran and T. Kavitha. The treewidth and pathwidth of hy-
percubes. Discrete Mathematics, 306(3):359–365, 2006. URL: https://www.

sciencedirect.com/science/article/pii/S0012365X05006102, doi:https://
doi.org/10.1016/j.disc.2005.12.011.

[103] Moshe Vardi. The complexity of relational query languages. In Proceedings of the
fourteenth annual ACM symposium on Theory of computing, pages 137–146, 1982.

[104] Daniel Wiebking. A Decomposition-Compatible Canonization Framework for the
Graph Isomorphism Problem. PhD thesis, RWTH Aachen University, 2021.

[105] Dmitriy Zhuk. A Proof of the CSP Dichotomy Conjecture. Journal of the ACM
(JACM), 67(5):1–78, 2020.

257

https://www.sciencedirect.com/science/article/pii/S0012365X05006102
https://www.sciencedirect.com/science/article/pii/S0012365X05006102
https://doi.org/https://doi.org/10.1016/j.disc.2005.12.011
https://doi.org/https://doi.org/10.1016/j.disc.2005.12.011

	Introduction
	A hierarchy of logics in polynomial time
	Contributions
	Acknowledgements

	Preliminaries
	Sets and linear orders
	Descriptive complexity theory
	Interpretations
	Fixed-point logic with counting, pebble games, and the Weisfeiler-Leman algorithm
	Treewidth
	Permutation groups
	Linear algebra

	Choiceless Polynomial Time
	Comparing CPT with other logics
	The power and limitations of CPT
	Expressivity results
	Non-definability results

	Alternative presentations and variants of CPT
	Polynomial-time Interpretation Logic
	Choiceless Logarithmic Space
	Deep Weisfeiler Leman
	Choiceless Polynomial Time with Witnessed Symmetric Choice
	Choiceless Polynomial Time as a fragment of an infinite-set based computation model

	Questions that are not addressed in this thesis
	Separating CPT from NP
	A circuit characterisation of CPT

	Symmetries and Permutation Groups
	Basic notions from group theory
	Supports and supporting partitions
	Every large permutation group contains a product of large alternating groups
	Orbits, supports and Choiceless Polynomial Time
	Groups with the (k,r)-support property

	Outlook: Symmetries beyond automorphisms

	The Cai-Fürer-Immerman graphs and their symmetries
	The CFI-construction
	Automorphisms of unordered CFI-graphs
	CFI-structures over hypercubes

	Prior research on the choiceless (non-)definability of Cai-Fürer-Immerman problems
	Positive results: The super-symmetric object technique
	Defining the CFI query on linearly ordered base graphs
	Defining the CFI query on preordered base graphs
	Defining the CFI query on base graphs of large degree

	Negative results: Lower bounds on the support size

	The non-definability of preorders with small colour classes in hypercubes
	Using supporting partitions to estimate the stabiliser sizes
	Proof of the Superpolynomial-Orbit Theorem
	The case of sublinearly bounded supports
	The case of linearly-sized supports

	Conclusion and future research

	Lower bounds for Choiceless Polynomial Time via Symmetric Circuits
	Symmetries and supports of hereditarily finite sets over CFI graphs
	CFI-symmetric hereditarily finite sets
	Symmetric XOR-circuits
	Symmetries of circuits
	The parameter fan-in dimension

	Constructing XOR-circuits from hereditarily finite objects
	Applying the XOR-circuit construction to CFI-symmetric algorithms
	Extending the circuit construction to non-CFI-symmetric sets
	Definition of the matrices
	Construction of the circuit
	Bounding the size of the circuit
	Which vector spaces have symmetric bases?

	Conclusion and future research

	Lower bounds for families of symmetric XOR-circuits over hypercubes
	Properties of hypercubes
	Symmetric XOR-circuits over hypercubes
	Conclusion and future research

	Choiceless Polynomial Time and Propositional Proof Complexity
	The (extended) polynomial calculus
	Expressing graph isomorphism as a polynomial equation system
	Separating the extended polynomial calculus from its non-extended version
	Deep Weisfeiler Leman
	Coherent configurations and algebraic sketches
	The Deep Weisfeiler Leman computation model
	Simplifications of DWL
	Distinguishing graphs in Deep Weisfeiler Leman
	Properties of coherent configurations

	Refuting graph isomorphism in the extended polynomial calculus
	Conclusion and future research

