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Abstract

Semiring provenance originated in database theory and was recently applied to logic
with the goal of answering questions such as “why does a formula hold in a particular
model?”, “how many proofs does it have?” or, if we only have low confidence in certain
facts, “what is the overall confidence in the formula?”. This is achieved by evaluating
formulae in certain semirings instead of using standard truth values.

This thesis defines semiring semantics for least fixed-point logic (LFP) including both
least and greatest fixed points. We show that for certain semirings, these semantics can
be seen as an extension of standard semantics by multiple truth values which we interpret
as provenance information. A particular focus is on the algebraic and order-theoretic
properties of semirings that lead to reasonable semantics, including the interplay with
negation, duality of least and greatest fixed points and homomorphisms.

We survey several candidates of provenance semirings for the analysis of LFP. Our results
show that (generalized) absorptive polynomials S∞[X] provide reasonable information and
have an important universal property in terms of provenance-preserving homomorphisms,
rendering them the most interesting semiring for LFP. We characterize S∞[X]-semantics
by means of winning strategies in the associated model checking game. Intuitively,
this result shows that provenance analysis in S∞[X] (and, due to universality, in many
absorptive semirings) provides useful information about shortest proofs.
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1 Introduction

Provenance analysis is concerned with understanding the information flow through
computations such as the evaluation of logical formulae. The idea to use semirings for
this purpose originated in database theory where, given a relational database and some
query, one wants to understand why a particular tuple satisfies the query, how an answer
was established or from which facts a certain tuple was derived. Put differently, the
goal is to obtain information about the origin of a particular answer – its provenance.
Several approaches for data provenance have been developed, for instance in [BKWC01].
The seminal work of Green, Karvounarakis and Tannen [GKT07] unified many of these
approaches by introducing the framework of semiring provenance for databases.

The central idea is to annotate facts with values from a commutative semiring in order
to track their provenance. Semirings are algebraic structures with two binary operations,
addition and multiplication, that satisfy basic laws of algebra. Compared to the more
widely used algebraic structures of rings and fields, they require neither inverse elements
for multiplication nor for addition. Semirings thus provide a high degree of abstraction
which has already proven useful in formal language theory [DK09] and to generalize
constraint satisfaction problems [BMR97]. Green et al. use them to generalize the
evaluation of queries: Starting with an annotation of database entries with values from
a commutative semiring, these values are then updated using the semiring operations
alongside the evaluation of the query. In the end, each answer tuple is annotated with
a semiring value that provides information about the provenance of this particular
answer. By using different semirings, many provenance applications can be covered.
For instance, computations in the Boolean semiring B are equivalent to set semantics
while natural numbers N count multiplicities and lead to bag semantics. The most
interesting semirings are polynomials, as they allow to track the influence of certain facts
by annotating them with variables. For an overview of semiring provenance for databases
and an extensive list of references, we refer to [GT17b]. A key insight of Green et al. is
that semiring homomorphisms preserve provenance computations for positive relational
algebra. Polynomials N[X] thus provide the most general provenance information due to
their universal property. For datalog queries, Green et al. propose formal power series
N∞JXK as completion of N[X].

Recently, Grädel and Tannen applied semiring provenance to logic [GT17a]. Instead of
a database query, a finite model A and a formula ϕ are given, say in first order-logic.
Semiring provenance for logic is then concerned with the question how the truth
of ϕ in A can be established. An important detail is that database queries are usually
positive formulae whereas first-order logic admits negation. In semiring provenance, we
always view the value 0 as false and all other values as nuances of true, which has the
consequence that it is not possible to interpret negation directly. Instead, Grädel and
Tannen define semiring semantics via the negation normal form. Given a formula ϕ in
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1 Introduction

negation normal form, the idea is, in analogy to database provenance, to replace the
evaluation of ϕ in terms of truth values with computations in a commutative semiring.
Starting from an annotation of literals Ra and ¬Ra with semiring values, addition
is used to interpret alternative use of information such as disjunction and existential
quantification, while multiplication is used for joint use of information in conjunctions
and universal quantification. A common application is to count proofs using the semiring
of natural numbers. As an example, consider the following formula on the given model.
We annotate all literals Exy by 0 or 1 depending on whether the corresponding edge is
present in the graph.

ϕ(u, v) = ∃y(Euy ∧ Eyv)
u

w1

w2

v

The formula Euy∧Eyv then evaluates to 1 ·1 = 1 if we set y to w1 or w2, and it evaluates
to 0 otherwise. Using the sum over all choices to interpret the existential quantification
results in the value 1 + 1 + 0 + 0 = 2 for ϕ(u, v), which indeed is the number of proofs for
ϕ(u, v) in the given graph. Different semirings allow for further applications:

• Computations in the Boolean semiring B are equivalent to standard truth semantics.

• When we annotate literals with confidence scores or access levels (both semirings
are introduced later on), we can compute the overall confidence in the formula ϕ or
the minimal access level required to establish the truth of ϕ in A.

• Polynomial semirings such as N[X] allow us to track certain literals by mapping
them to variables. The resulting polynomial provides information about the different
proofs of ϕ and tells us in which proofs the tracked literals occur.

For reasonable literal annotations, the evaluation in a semiring can be regarded as a
generalization of standard semantics by several truth values similar to the idea of many-
valued logics. For example, the semiring ({0, 1

2
, 1},max,min, 0, 1) can be interpreted as

providing a ternary truth value 1
2
. However, our aim is not merely to extend standard

semantics, but rather to interpret the additional semiring values as provenance information
in order to better understand standard semantics.

In [GT17a], Grädel and Tannen define semiring provenance for first-order logic and
show that it has reasonable properties. They introduce dual-indeterminate polynomials
N[X,X] to represent negative information and observe that provenance computations
are closely related to proof trees. In the more recent work [GT19], they extend semiring
provenance to reachability and safety games as well as positive least fixed-point logic
(posLFP). In particular, they show that one can equivalently define semiring provenance
for posLFP via the evaluation of formulae and via the corresponding model checking
games. Grädel and Tannen further introduce the semiring S∞[X] of generalized absorptive
polynomials which plays a central role in this thesis. This semiring is also used in [Mrk18]
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which discusses provenance analysis of temporal logics such as CTL, using ω-continuous
semirings for the positive fragment and absorptive polynomials for full CTL including
greatest fixed points. Related work considers semiring provenance for guarded logics
[DG19] and logics with team semantics [Huw18].

In this thesis, we are concerned with semiring provenance for least fixed-point logic
including both least and greatest fixed points. Our overall focus is on the algebraic and
order theoretic properties of semirings that lead to useful provenance information. As an
example of the challenges arising from fixed points, consider the following two informally
stated formulae on the given graph.

ϕ1(u, v) := “there is a path from u to v”

ϕ2(u) := “there is an infinite path from u”

u w v

Formula ϕ1 can easily be described by a least fixed point. Interpreting ϕ1(u, v) in the
semiring N by annotating all edges with 1 yields the number of paths from u to v. However,
the graph above contains a cycle, so there are infinitely many such paths (allowing node
repetitions). Indeed, the fixed-point iteration induced by ϕ1(u, v) in N does not terminate
and no fixed-point is reached. We thus have to complete N to N∞ by adding a greatest
element ∞ which is then the fixed-point corresponding to ϕ1(u, v).

In general, we define semiring semantics for LFP similar to [GT19] and show that a
certain form of chain-completeness is sufficient to obtain well-defined semantics. This
results in a more general definition than the one for CTL in [Mrk18] which introduced
the rather restrictive notion of absorptive lattice semirings.

In the above example, the value ∞ is reasonable for ϕ1(u, v) due to the infinite number
of paths. If we also allow greatest fixed points, we often obtain unexpected results. For
example, ϕ2(u) can be expressed by a greatest fixed point and it is clear that there is only
one infinite path from u. However, evaluating ϕ2(u) in N∞ yields the value∞ which does
not correspond to the number of infinite paths. Even worse, using formal power series
N∞JXK (which work well for datalog [GKT07] and posLFP [GT19]) and annotating all
edges by variables results in the overall value of 0 (which we usually interpret as false),
although ϕ2(u) clearly holds in the given graph.

To prevent such inconsistencies with standard semantics, we impose additional require-
ments on the semirings and then discuss how the results of [GT17a] for FO can be lifted
to LFP, including the compatibility with models and the interplay with homomorphisms
and negation. The latter is especially interesting for LFP, as it comprises the duality of
least and greatest fixed points. As seen for ϕ2(u) above, greatest fixed points lead to
a number of questions. Which polynomial semirings can we use in place of N∞JXK to
obtain useful provenance information? Going further, can we characterize provenance
in these semirings in the same way that N[X]-provenance for FO corresponds to proof
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1 Introduction

trees? While we can easily provide finite witnesses for the truth of ϕ1(u), how can we
describe proofs of formulae like ϕ2(u) involving greatest fixed points? We show that these
questions have positive answers for absorptive semirings when we consider strategies in
model checking games as proofs or witnesses of formulae.

The organization of this thesis is as follows. In chapter 2, we recapitulate semiring
provenance for FO as a reference point. Chapter 3 then introduces LFP and poses
challenges and questions arising from the interpretation of fixed-point formulae. The
following chapter 4 addresses these questions by introducing the required concepts for
semirings, most importantly chain-completeness and fixed-point theorems, including
many examples. The semantics in these semirings are then studied in chapter 5 in terms
of their relation to standard semantics, homomorphisms and duality. Chapter 6 discusses
provenance semirings based on polynomials with a focus on absorptive polynomials S∞[X]

and their universal property. Computations in S∞[X] are then characterized in chapter 7
by means of strategies in model checking games, before we conclude in chapter 8 and
outline topics for future work.
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2 Semiring Semantics for First-Order Logic

This chapter introduces semiring interpretations for formulae which lay the foundation
for provenance analysis. The idea is to map the logical connectives ∨ and ∧ to the
semiring operations + and ·, thereby replacing evaluation in terms of truth values with
computations in semirings. The choice of the semiring then determines which information
the evaluation yields – from truth values to confidence scores or counting proofs.

2.1 Semirings

Semirings are algebraic structures with two operations, usually denoted by + and ·, that
satisfy common laws of algebra. We follow the terminology of [GT17a], more background
on semirings can be found in [DK09, Gol99]. For the definition, we use the notion of
monoids which are algebraic structures with an associative binary operation and a neutral
element. A monoid is commutative if the operation is commutative.

Definition 2.1. A commutative semiring is an algebraic structure (S,+, ·, 0, 1) with
0 6= 1 such that (S,+, 0) and (S, ·, 1) are commutative monoids and additionally,

(1) distrubutivity: a · (b+ c) = ab+ ac, for all a, b, c ∈ S,

(2) 0 is annihilating: 0 · a = 0, for all a ∈ S.

In the following, semiring always refers to a commutative semiring. The reason to require
commutativity is that we want to interpret the formulae ϕ ∧ ϑ and ϑ ∧ ϕ in the same
way. In addition, commutativity simplifies provenance computation and allows us to use
polynomial semirings. We write S instead of (S,+, ·, 0, 1) if the context is clear. In many
cases, we consider semirings with additional properties:

Definition 2.2. A semiring S is said to be:

• idempotent, if a+ a = a for all a ∈ S,

• absorptive, if a+ ab = a for all a, b ∈ S,

• multiplicative idempotent, if a · a = a for all a ∈ S.

These subclasses of semirings are especially important later on for the analysis of fixed-
point logics. For now, we only note that every absorptive semiring is also idempotent and
that both properties correspond to logical equalities, i.e., ϕ∨ ϕ ≡ ϕ and ϕ∨ (ϕ∧ ϑ) ≡ ϕ.
More interesting for first-order logic is the notion of positive semirings which ensures that
computations with positive values remain positive.
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2 Semiring Semantics for First-Order Logic

Definition 2.3. Let S be a semiring. Then

• S is +-positive if a+ b = 0 implies a = 0 and b = 0, for all a, b ∈ S;

• S has divisors of 0 if there are a, b ∈ S with a, b 6= 0 and ab 6= 0;

• S is positive if it is +-positive and has no divisors of 0.

Two examples of semirings are the Boolean semiring (B,∨,∧,⊥,>) with B = {⊥,>}
which represents truth values and the semiring of natural numbers (N,+, ·, 0, 1) for
counting. Both are positive, but only B is absorptive and has idempotent operations. An
extensive list of examples is presented in section 4.3.

An important aspect of using semirings is that we can compute provenance information
in a general way with polynomial semirings, thereby covering different applications with
a single computation. To achieve this, we use homomorphisms to switch from universal
semirings to application-specific ones.

Definition 2.4. A semiring homomorphism is a function h : S → T on semirings S, T
such that:

(1) h preserves neutral elements: h(0) = 0 and h(1) = 1,

(2) h is additive: h(a+ b) = h(a) + h(b) for all a, b ∈ S,

(3) h is multiplicative: h(ab) = h(a) · h(b) for all a, b ∈ S.

To close the introduction of semirings, let us give an example of an important canonical
homomorphism which connects semiring elements and truth values.

Example 2.5. Let S be a semiring and consider the function †S : S → B defined by

†S(a) =

{
>, if a 6= 0

⊥, if a = 0

which we call truth projection. Then †S is a semiring homomorphism if, and only if, S is
positive [GT17a].
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2.2 First-Order Logic

2.2 First-Order Logic

Following the notion of K-interpretations1 from [GT17a], we show how one can use
semirings to interpret first-order logic. We give an overview of the main results in
[GT17a] concerning the properties of the resulting semantics, which serves as a reference
point when discussing semiring interpretations for fixed-point logic.

Notation

For the remainder of this work, fix a finite relational signature τ = {R,P, . . . }, a set
of variables V and a finite non-empty universe A. We usually denote elements of A
by a, b, . . . and tuples from Ak (for some k) by bold symbols a,b. Similarly, we use
x, y, z for variables and x,y, z for variable tuples. Semiring semantics are based on the
interpretation of literals, so given A and τ , we define

LitA,τ = {Ra,¬Ra | R a k-ary relation symbol from τ , a ∈ Ak}

Note that Ra ∈ LitA is an evaluated literal, as a is an element of Ak and not a variable
tuple. To ease notation, we always identify Ra and ¬¬Ra and often write L to refer to
either Ra or ¬Ra. We usually assume τ to be fixed and thus write LitA for LitA,τ .

A (variable) valuation is a mapping α : V → A. The valuation α[x/a] is like α except
that it maps x to a (for some x ∈ V , a ∈ A). We use the notation α[x/a] to replace each
variable in the tuple x with the corresponding value in a. We use standard syntax (and
semantics) for FO and denote the negation normal form of a formula ϕ (where negations
only appear in literals) by nnf(ϕ).

S-Interpretations

We are now ready to define semiring interpretations. In standard semantics, a k-ary
relation symbol is interpreted by a subset of Ak which one can also view as a mapping
Ak → B (where elements of the subset are mapped to >). Semiring interpretations
provide a mapping Ak → S for an arbitrary semiring S and extend the classic view
in two ways. We treat 0 as false and all other semiring values as true, so we have
different nuances of truth available which can carry additional information. The second
generalization is that we allow inconsistent interpretations of literals. That is, opposing
literals are interpreted independent of each other, so we may assign both to positive
values (or both to 0). However, we often want to exclude such interpretations in the
context of provenance analysis, as they do not correspond to actual models.

1We call them S-interpretations (for semiring) and usually denote them by ` (for literal mapping).
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2 Semiring Semantics for First-Order Logic

Definition 2.6. Given a commutative semiring S, an S-interpretation is a literal mapping

` : LitA → S

We lift ` to FO formulae together with a variable valuation α : V → A:

JRxKα` = `(Rα(x)) J¬RxKα` = `(¬Rα(x))

Jϕ ∨ ϑKα` = JϕKα` + JϑKα` Jϕ ∧ ϑKα` = JϕKα` · JϑKα`

J∃xϕKα` =
∑
a∈A

JϕKα[x/a]` J∀xϕKα` =
∏
a∈A

JϕKα[x/a]`

where we handle negation via negation normal form and interpret equality atoms by 0 or
1 according to their truth value in standard semantics:

Jx ∼ yKα` =

{
1, if α(x) ∼ α(y)

0, otherwise
where ∼ ∈ {=, 6=}

J¬ϕKα` = Jnnf(¬ϕ)Kα`

We omit α and write JϕK` if α is irrelevant, for instance if ϕ is a sentence. For a formula
ϕ(x) with a free variable x, we further write Jϕ(a)Kα` for JϕKα[x/a]` to simplify notation.

Remark: From the point of view of semiring semantics, there is no need to treat equality
atoms in a special way – we could as well include them in LitA (and assign semiring
values via `). We therefore do not explicitly consider equality atoms from now on to
simplify proofs. The reason to define them as above is that we usually do not want to
track equalities in provenance analysis.

To establish a correspondence between S-interpretations and standard semantics, Grädel
and Tannen [GT17a] consider the canonical truth interpretation `A and the canon-
ical counting interpretation `#A for a given τ -structure A, defined by

`A : LitA → B, `A(L) =

{
>, if A |= L

⊥, otherwise

`#A : LitA → N, `#A(L) =

{
1, if A |= L

0, otherwise

and they indeed show that `A corresponds to standard semantics while `#A counts the
number of proofs using the additional values in N.

8



2.2 First-Order Logic

Proposition 2.7. Let A be a τ -structure with universe A and ϕ an FO sentence. Then

(1) JϕK`A = > ⇐⇒ A |= ϕ,

(2) JϕK`#A
equals the number of different proof trees witnessing A |= ϕ.

The other direction, from S-interpretations to models, does not hold in general, as
S-interpretations may assign literals in an inconsistent way.

Definition 2.8. Let ` be an S-interpretation. Then S is said to be

• consistent, if `(L) = 0 or `(¬L) = 0 for every literal L ∈ LitA,

• complete, if `(L) 6= 0 or `(¬L) 6= 0 for every literal L ∈ LitA,

• model-defining, if ` is both consistent and complete.

In a positive semiring, we can equivalently say that ` is model-defining if `(L) · `(¬L) = 0

and `(L) + `(¬L) 6= 0 for all literals. A model-defining S-interpretation uniquely defines
the induced model A` by means of

A` |= L ⇐⇒ `(L) 6= 0

for all literals L ∈ LitA. If S is positive, this property lifts to FO sentences.

Proposition 2.9. Let ` be a model-defining S-interpretation for a positive semiring S.
Then A` |= ϕ if, and only if, JϕK` 6= 0 for any FO sentence ϕ.

Another way to think about this result is by means of homomorphisms. If S is positive,
the truth projection †S : S → B is a homomorphism. Following the above definitions,
one can see that

†S ◦ ` = `A` and hence JϕK†S◦` = > ⇐⇒ A` |= ϕ

where `A` is the canonical truth interpretation for the model induced by `. The composition
into †S ◦ ` has the convenient property that it lifts to formulae:

JϕK†S◦` = †S
(
JϕK`

)
In other words, we can first compute the interpretation of ϕ in the semiring S and later
switch to B via the homomorphism †S. As †S is the truth projection, this means that
computations in S preserve truth. In [GT17a], Grädel and Tannen state the following
general formulation of this composition that allows us to compute provenance in a general
way and later switch to specific semirings via homomorphisms. We prove an adaption for
fixed-point logic in chapter 5.

9



2 Semiring Semantics for First-Order Logic

Theorem 2.10 (fundamental property). Let h : S → T be a semiring homomorphism
and ` : LitA → S be an S-interpretation. Then h ◦ ` : LitA → T is a T -interpretation and
we have h(JϕK`) = JϕKh◦` for all FO sentences ϕ.

LitA

S T

FO

S T

=⇒` h ◦ `

h

` h ◦ `

h

To close the overview, let us formulate the following consistency and completeness results
from [GT17a]. These simple observations show that (reasonable) semiring interpretations
continue to make sense in the presence of negation which justifies the definition based on
the negation normal form.

Proposition 2.11. Let ` : LitA → S be an S-interpretation. Then the following holds:

(1) If ` is consistent, then JϕK` = 0 or J¬ϕK` = 0 for all FO sentences ϕ.

(2) If `(L) · `(¬L) = 0 for all L ∈ LitA, then JϕK` · J¬ϕK` = 0 for all FO sentences ϕ.

If S is positive, the above statements are equivalent and we additionally have the following
completeness property:

(3) If S is positive and ` is complete, then JϕK` + J¬ϕK` 6= 0 for all FO sentences ϕ.

As a conclusion, we can say that semiring semantics in terms of model-defining interpreta-
tions have similar properties as standard semantics, but generalize the latter by providing
several truth values. We thus obtain additional information which can give insights into
why or how a formula is satisfied. The fundamental property is a very important result
as it allows to unify provenance computations by working with universal semirings such
as polynomials N[X]. From a theoretical point of view, it is also a strong indication that
semiring semantics yield a generalization with desirable properties.
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3 Towards Fixed-Point Logic

In this chapter, we extend FO by a fixed-point operator which leads to least fixed-point
logic (LFP). After providing a definition of semiring interpretations in analogy to standard
semantics, we pose several questions and requirements on the semirings that need to be
fulfilled to obtain well-defined semantics with reasonable properties. These questions are
addressed in the subsequent chapters.

3.1 Least Fixed-Point Logic

Least fixed-point logic extends FO by a least fixed-point operator lfp. As FO is closed
under negation, LFP can also express greatest fixed points due to the well-known duality
between the two notions of fixed points. As for FO, we work with formulae in negation
normal form and therefore express greatest fixed-points explicitly using the gfp operator
to avoid negations. We define the syntax and standard semantics below, more background
on LFP can, for instance, be found in [GKL+07, chapter 3].

Recall that we always assume a relational signature τ and a finite universe A. Formulae
with fixed-point operators are written as

ϕ(y) = [lfpRx. ϑ](y) or ϕ(y) = [gfpRx. ϑ](y)

where x is a k-tuple of pairwise different variables, y is a k-tuple of variables2, R is a
k-ary relation symbol and ϑ is a formula over the signature τ ∪ {R}. Both x and R

may occur in ϑ (we sometimes write ϑ(R,x) to emphasize this), but R must only occur
positively (i.e., not behind negations). For ease of presentation, we assume that all lfp-
and gfp-subformulae of an LFP formula use different names for the relation symbol R.
We write [fpRx. ϑ](y) when we want to refer to both kinds of fixed-point formulae.

Given a structure A, Each formula ϑ(R,x) induces an update operator

F ϑ : P(Ak)→ P(Ak), R 7→ {a | A |= ϑ(R, a)}

where k is the arity of the relation symbol R. If R only occurs positively in ϑ, then F ϑ is
monotone and thus has a least (and greatest) fixed point on the complete lattice P(Ak),
which we denote by lfpF ϑ (and gfpF ϑ). We then define

A |= [lfpRx. ϑ](a) ⇐⇒ a ∈ lfpF ϑ

The fixed-point can also be described iteratively. Starting with R0 = ∅, we set Rβ+1 =

F ϑ(Rβ) and Rλ =
⋃
β<λRβ for ordinals β ∈ On and limit ordinals λ ∈ On (where On

2When allowing non-relational signatures, y may be a tuple of arbitrary terms.
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3 Towards Fixed-Point Logic

denotes the class of ordinals). Due to monotonicity of F ϑ, this defines an ascending
sequence. As Ak is a set, this fixed-point iteration always terminates for some ordinal
α which is called the closure ordinal of F ϑ or ϑ (if Ak is finite as in our case, then α is
finite as well). It follows by monotonicity of F ϑ that lfpF ϑ = Rα. An analogous iteration
is possible for gfpF ϑ, starting with R0 = Ak and obtaining a decreasing sequence.

Example 3.1. A simple property that is expressible in LFP but not in FO is graph
reachability in a directed graph with edge relation E. The following formula asserts that
there is a (possibly empty) path from u to v:

ϕpath(u, v) = [lfpRx. x = v ∨ ∃y(Exy ∧Ry)](u)

The easiest way to reason about LFP formulae is by the fixed-point iteration:

• R0 = ∅,

• R1 = {v},

• R2 = {v} ∪ {u | u→ v} = {u | u <2−−→ v}

• Rn = {u | u <n−−→ v}

• Rω = {u | there is a path from u to v}

where u <n−→ v means that there is a (possibly empty) path from u to v with less than n
edges. We reconsider this example with semiring semantics below.

3.2 Lifting Semiring Semantics

In order to lift S-interpretations from FO to LFP, let us first take a different view on
the semantics defined above. F ϑ operates on subsets of Ak which we can alternatively
describe by mappings Ak → B. We now generalize this to mappings A → S into an
arbitrary semiring S.

Definition 3.2. A k-ary S-valuation is a function π : Ak → S mapping k-tuples from
the universe to values in a semiring S. We denote their set as ValS,k or just Valk (if S is
clear from the context).

In analogy to standard semantics, we define the update operator F ϑ
` of a formula ϑ(R,x)

under an S-interpretation `. Instead of sets, F ϑ
` now operates on valuations, but is

otherwise define in the same way.

12



3.2 Lifting Semiring Semantics

Definition 3.3. Let ϑ(R,x) be a formula over the signature τ ∪{R} where R and x have
arity k and R only occurs positively. Given a variable valuation α and an S-interpretation
`, this induces the following update operator F ϑ,R,x,α

` or simply F ϑ
` (as R,x, α are usually

clear from the context):
F ϑ
` : Valk → Valk, π 7→ π′

where π′ is the S-valuation defined by

π′ : Ak → S, a 7→
q
ϑ
yα[x/a]
`[R/π]

Here, `[R/π] denotes the S-interpretation that maps literals Ra to π(a) (for all a ∈ Ak)
and otherwise behaves like `. Note that the value of ¬Ra is not affected; it is irrelevant,
as we require that R only occurs positively in ϑ.

To simplify notation in proofs when referring to π′, we write JϑK•` for the mapping
a 7→ JϑKα[x/a]` if α and x are clear from the context.

With this notation, we can lift S-interpretations to LFP formulae as follows. For the
definition to be well-defined, we have to ensure that the required fixed points always
exist. This imposes several requirements on the semiring which we make precise in the
following. For now, assume that we have a suitable semiring S together with some order
(which induces a pointwise order on valuations) in which the required fixed points exist.

Definition 3.4. Let ` be an S-interpretation for a suitable semiring S and α a valuation.
We define JϕKα` inductively as in definition 2.6 and additionally set

q
[lfpRx. ϑ](y)

yα
`

=
(
lfpF ϑ

`

)
(α(y))

q
[gfpRx. ϑ](y)

yα
`

=
(
gfpF ϑ

`

)
(α(y))

where lfpF ϑ
` , gfpF ϑ

` denote the least and greatest fixed points of the update operator.

Recall that definition 2.6 defined the interpretation of negation in terms of negation normal
form, i.e., J¬ϕK` = Jnnf(ϕ)K`. In standard semantics, we use the following observation to
obtain nnf(ϕ) which is based on the duality of least and greatest fixed points:

[lfpRx. ϑ](y) ≡ ¬[gfpRx. ϑ](y) where ϑ is the formula3 ¬ϑ[R/¬R]

In order to justify the interpretation of negation, we have to consider how this duality
translates to (suitable) semirings, similar to our justification for FO in proposition 2.11.

3We write ϑ[R/¬R] to replace every positive literal of the form Rx in ϑ by its negation ¬Rx.
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3 Towards Fixed-Point Logic

For a first idea of the requirements on a suitable semiring, let us reconsider the reachability
example, this time over the semiring N and two different graphs. As in the previous
example, we use the fixed-point iteration, now defined in terms of valuations: ⊥, F ϑ(⊥),
F ϑ(F ϑ(⊥)), . . . where ⊥ is the valuation a 7→ ⊥ that maps every element to the least
semiring element (which is 0 in N). We again rely on the semiring for this iteration to be
well-defined and to yield the least fixed point.

Example 3.5. Recall example 3.1 where we defined

ϕpath(u, v) = [lfpRx. x = v ∨ ∃y(Exy ∧Ry)](u)

Let us first consider an N-interpretation corresponding to the graph shown on the right,
so we set `(Exy) = 1 if (x, y) ∈ E and `(Exy) = 0 otherwise. We want to compute
Jϕpath(u, v)K`. This leads to the following fixed-point iteration, where we write a valuation
π as tuple (π(u), π(w1), π(w2), π(v), π(z)).

• π0 = (0, 0, 0, 0, 0)

• π1 = (0, 0, 0, 1, 0)

• π2 = (0, 1, 1, 1, 0)

• π3 = (2, 1, 2, 1, 0)

• π4 = (3, 1, 2, 1, 0)

• π5 = π4

u

w1

w2

v z

As with standard semantics, the iteration forms an ascending chain (we compare valuations
pointwise) and we reach the least fixed point after four steps. The overall result is
Jϕpath(u, v)K` = π4(u) = 3. We observe that π4 maps a node to a positive value if, and
only if, there is a path from the node to v. Moreover, the value equals the number of
different paths to v. From u, we indeed have three paths uw1v, uw2v and uw2w1v. So in
this case, the evaluation in N is possible and provides useful information.

However, N is not a suitable semiring. To see this, consider a graph with cycles as shown
on the right. Writing valuations π as (π(u), π(w), π(v)), we get the following iteration:

• π0 = (0, 0, 0)

• π1 = (0, 0, 1)

• π2 = (0, 1, 1)

• π3 = (1, 2, 1)

• π4 = (2, 3, 1)

• πn = (n− 2, n− 1, 1)

u w v

The iteration is again an ascending chain but, unlike the first example, it does not
terminate after finitely many steps. Note that this is in line with our intuition, as the
cycle admits an infinite number of paths from u to v.

As in standard semantics, we continue the iteration with πω, which is the supremum of
the previous steps. In our case, πω(u) would be the supremum

⊔
{n − 2 | 2 ≤ n < ω}

which does not exist in N, so we cannot interpret ϕpath in this case.
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3.2 Lifting Semiring Semantics

So what does it mean for a semiring to be suitable? First, it must be equipped with an
order such that we can talk about least and greatest fixed points. We further want the
update operator F ϑ

` to be monotone as in standard semantics. For an FO formula ϑ, F ϑ
`

is defined by means of the semiring operations + and ·, so we want these operations to
be monotone. Most importantly, we require the existence of (least and greatest) fixed
points of monotone operators. As we see in the example, this is related to the existence
of suprema of ascending chains and, for greatest fixed points, infima of descending chains.

The reachability example only uses least fixed points and is therefore contained in the
positive fragment of LFP (which we consider in section 5.5). There have already been
discussions of semiring provenance for similar logics such as datalog [GKT07] and positive
fragments of CTL [Mrk18] or LFP [GT17a] which propose ω-continuous semirings. We
introduce this notion in the following chapter; for now, think of an ordered semiring in
which suprema of ω-chains x0 ≤ x1 ≤ x2 ≤ . . . always exist and satisfy some additional
properties. The ω-completion of N is the semiring N∞ which adds an element ∞ with
the usual semantics. The example then yields πω(u) =∞ as intended.

In this work, the focus is on full LFP including greatest fixed points. While we will
see that N∞ is also suitable for this task, we cannot work with ω-continuous semirings
in general. Let us formulate the following central questions to better understand the
requirements of and desired properties induced by suitable semirings.

(Q1) How to define an order on semirings such that F ϑ
` is always monotone?

(Q2) Which semirings guarantee the existence of least and greatest fixed points?

(Q3) Are semiring semantics for LFP compatible with standard semantics, as for FO?

(Q4) Does the fundamental property apply to LFP, as for FO?

(Q5) Are certain logical fragments easier to interpret (e.g., no alternation of fixed points)?

(Q6) Do semirings preserve the duality of least and greatest fixed points?

Question (Q5) is already partially answered above, as ω-continuous semirings suffice if we
omit gfp-formulae. The common solution to (Q1), which we adopt, is to consider naturally
ordered semirings in which the order is induced by addition (e.g. [GKT07]). For (Q2), note
that the domain of standard semantics is the powerset lattice P(Ak). This is a complete
lattice, which guarantees the existence of both kinds of fixed points. We may therefore
consider semirings with an order that is a complete lattice. Indeed, [Mrk18] defines a
notion of absorptive lattice semirings for provenance analysis of CTL. In these semirings,
the order must be a complete lattice and several additional assumptions must hold. We
present a more general definition of suitable semirings based on chain-completeness and
discuss the properties of the resulting semantics for LFP in the following chapters to
answer the questions stated above.
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4 Semirings and Fixed Points

This chapter augments the algebraic structure of semirings with order-theoretic concepts
to find semirings suitable for the interpretation of fixed-point logic. We focus on naturally
ordered semirings whose order is chain-complete or a complete lattice in order to guarantee
the existence of fixed points. Following a comprehensive list of examples, we discuss
how these concepts and the algebraic properties of semirings relate to each other and to
similar notions in the literature.

4.1 Order Theory

Let us start with some background on order theory and fixed points. For more details,
we refer to [DP02]. Given a partially ordered set (poset) (P,≤), a chain is a (possibly
empty) totally ordered subset of P . An ascending (or descending) ω-chain is a sequence
(xn)n<ω with xn ≤ xn+1 (or xn ≥ xn+1) for all n < ω, where ω is the smallest infinite
ordinal. Unless stated otherwise, ω-chain usually refers to ascending ω-chains. Regarding
further notation, we use

⊔
S and

d
S to denote the supremum and infimum of a set S

and ⊥, > always refer to the least and greatest elements. Let us start by introducing the
notion of chain-completeness which is crucial for the existence of fixed points.

Definition 4.1. A poset (P,≤) is chain-sup-complete (chain-inf-complete) if every chain
C ⊆ P has a supremum

⊔
C ∈ P (an infimum

d
C ∈ P ). In particular, P must have a

least element ⊥ (greatest element >) as supremum (infimum) of the empty chain.

If it is both chain-sup- and chain-inf-complete, we say that (P,≤) is fully chain-complete.
We abbreviate fully chain-complete partial orders by cpo (and sup-cpo, inf-cpo).

Remark: In the literature, chain-completeness usually only requires suprema of chains
(e.g., [DP02]) and thus coincides with what we call chain-sup-completeness. For the
interpretation of logic, we need the existence of both suprema and infima to guarantee
the existence of both least and greatest fixed points. Contrary to the literature, we thus
use the abbreviation cpo to mean fully chain-complete partial orders (instead of requiring
only suprema of chains). This deviation continues for continuous functions which, in our
definition, must preserve both suprema and infima.

In some cases, considering ω-chains is sufficient for our applications and we use the
following notion. Note that ω-completeness is weaker in two aspects: It limits the
cardinality of chains and it does not consider infima.
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Definition 4.2. A poset (P,≤) is ω-complete if it has a least element ⊥ and each
ascending ω-chain has a supremum in P .

If P additionally has a greatest element > and each descending ω-chain has an infimum
in P , we say that P is fully ω-complete (we rarely consider such orders).

An alternative to complete partial orders are complete lattices which contain suprema
and infima not only for chains, but for arbitrary sets.

Definition 4.3. A poset (P,≤) is a lattice if every two elements a, b ∈ P have a supremum
a t b and an infimum a u b in P . A lattice (P,≤) is complete if every subset A ⊆ P has
a supremum

⊔
A and an infimum

d
A in P .

We now turn our attention to fixed points and consider functions f : P → P on a poset
P . A fixed point of f is an element x ∈ P with f(x) = x and we denote the least and
greatest fixed point of f (if they exist) by lfp(f) and gfp(f), respectively. The central
properties related to fixed points are monotonicity and continuity.

Definition 4.4. Let f : P → Q be a function on posets (P,≤) and (Q,�). Then f is
monotone if a ≤ b implies f(a) � f(b) for all a, b ∈ P .

Definition 4.5. If P is a cpo, then f is continuous if it respects suprema and infima
of nonempty chains in the following way (note that this implies the existence of the
suprema/infima in Q):

(1) f(
⊔
C) =

⊔
f(C) for every nonempty chain C ⊆ P

(2) f(
d
C) =

d
f(C) for every nonempty chain C ⊆ P

If f only respects suprema (infima), we say that f is sup-continuous (inf-continuous).

If P is ω-complete, then f is ω-continuous if it respects suprema of ω-chains, i.e.,
f(
⊔
n<ω xn) =

⊔
n<ω f(xn) for ascending ω-chains (xn)n<ω. If P is fully ω-complete, then

f is fully ω-continuous if it additionally respects infima of descending ω-chains.

In the above definition, we use the notation f(C) = {f(c) | c ∈ C} to express continuity
in a convenient way. As a first observation, note that every continuous or ω-continuous
function f is also monotone (by considering the chain {a, b} of two elements a ≤ b). If P
is a cpo and f is continuous, the following observation attributed to Kleene implies the
existence of lfp(f) and gfp(f) (cf. [DP02, CPO Fixpoint Theorem I]).
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Theorem 4.6 (Kleene). If (P,≤) is ω-complete and f : P → P is ω-continuous, then

lfp(f) =
⊔
{fn(⊥) | n < ω}

Proof sketch. Consider the Kleene iteration

⊥, f(⊥), f(f(⊥)), . . . fn(⊥), . . .

As f is monotone, this iteration defines an ascending ω-chain which has a supremum in
P . This supremum is a fixed point by ω-continuity of f :

f
(⊔
{fn(⊥) | n < ω}

)
=
⊔

f({fn(⊥) | n < ω}) =
⊔
{fn(⊥) | n < ω}

To see that this is the least fixed point, one can show inductively using the monotonicity
of f that fn(⊥) ≤ x for every fixed point x and thus

⊔
{fn(⊥) | n < ω} ≤ x.

Corollary 4.7. If (P,≤) is a cpo and f : P → P is continuous, then

lfp(f) =
⊔
{fn(⊥) | n < ω} and gfp(f) =

l
{fn(>) | n < ω}

Proof. Every cpo is also ω-complete and every continuous function is also ω-continuous,
so this follows from theorem 4.6 (for gfp(f), we apply the theorem to the dual order).

Theorem 4.6 also shows that suprema and infima of ω-chains suffice to express least
and greatest fixed points of continuous functions (despite the cardinality of P ). If f is
not continuous but only monotone, this no longer holds in general, but the existence of
fixed points is still guaranteed. A proof for least fixed points in sup-cpos (which can be
dualized for greatest fixed points) can be found in [DP02, CPO Fixpoint Theorem II].
We present an alternative proof that extends Kleene iteration using ordinals.

Theorem 4.8. Let (P,≤) be a cpo and f : P → P be monotone. Then lfp(f) and gfp(f)

exist.

Proof. We show the existence of lfp(f), the proof for gfp(f) is analogous (using > and
infima). We extend Kleene iteration by transfinite recursion as follows:

• x0 := ⊥

• xβ+1 := f(xβ) for all ordinals β ∈ On

• xγ :=
⊔
{f(xβ) | β < γ} for limit ordinals γ ∈ On
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Using monotonicity, one can show by induction that this defines an ascending chain and
hence the suprema exist due to chain-completeness of P . As P is a set, the chain must
stagnate, so there must be an ordinal α ∈ On with xα+1 = xα and hence f(xα) = xα.

To prove that xα is indeed the least fixed point, one shows by induction on β ∈ On that
xβ ≤ y for any fixed point y, again by using that f is monotone.

This theorem also applies to complete lattices. In addition, complete lattices admit a
characterization of these fixed points as a consequence of the well-known Knaster-Tarski
theorem (cf. [DP02, chapter 2]).

Theorem 4.9 (Knaster-Tarski). Let (P,≤) be a complete lattice and f : P → P be
monotone. Then lfp(f) and gfp(f) exist and can be described as follows:

lfp(f) =
l
{x ∈ P | x ≥ f(x)}

gfp(f) =
⊔
{x ∈ P | x ≤ f(x)}

These results motivate a notion of suitable semirings whose order forms a cpo or a
complete lattice. To justify this requirement, we state the following converse from [DP02]
which is based on results of [Mar76] (which we adapt from sup-cpos to cpos).

Theorem 4.10. If P is a poset (lattice) in which every monotone function f : P → P

has a least and greatest fixed point, then P is a cpo (complete lattice).

4.2 Suitable Semirings

To define an order on a given semiring S, we use the natural order induced by addition.
That is, a ≤ a+ b for all elements a, b ∈ S. This relation is always reflexive and transitive,
but not always antisymmetric. One example are rings in which a+ (b− a) = b for any
elements a, b. We want the semiring to form a poset, so we cannot use rings such as Z
or R. Instead, we use the semirings N and R+ (the nonnegative real numbers) without
negative values. To justify our choice, we note that the natural order coincides with the
standard order on N and R+.

Definition 4.11. A semiring (S,+, ·, 0, 1) is naturally ordered if the relation

a ≤ b ⇐⇒ there is c ∈ S with a+ c = b

is a partial order on S. We call ≤ the natural order on S.
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The reason to define the order in terms of addition is that the semiring operations are
then always monotone. This monotonicity lifts to update operators F ϑ, addressing one
of our requirements on suitable semirings.

Proposition 4.12. Let S be a naturally ordered semiring. Then addition and multipli-
cation are monotone in each argument.

Proof. Let a1, a2, b ∈ S with a1 ≤ a2. By definition of the natural order, we have
a1 + a′ = a2 for some a′ ∈ S. Using the semiring axioms, we obtain

a1 + b ≤ (a1 + b) + a′ = (a1 + a′) + b = a2 + b

a1 · b ≤ a1b+ a′b = (a1 + a′) · b = a2 · b

We have seen above that we need chain-completeness or a complete lattice to guarantee
the existence of fixed points. The following definition is therefore essential for a suitable
semiring. The most important notion for the interpretation of full LFP is the one of
cpo semirings which, as we show in the next chapter, is already sufficient to obtain
well-defined semiring semantics.

Definition 4.13. Let S be a naturally ordered commutative semiring. We say that S is
a cpo semiring, lattice semiring or (fully) ω-complete semiring if the natural order is a
cpo, complete lattice or (fully) ω-complete, respectively.

Many natural examples of semirings have the additional property that both operations
preserve suprema and infima of chains. Following the common notion of ω-continuous
semirings (e.g., [DK09, GKT07]), we propose an analogous definition for cpo semirings.

Definition 4.14. A (fully) ω-continuous semiring is a (fully) ω-complete semiring in
which addition and multiplication are (fully) ω-continuous in each argument. A continous
semiring is a cpo semiring in which both operations are continuous in each argument.

That is, a cpo semiring S is continuous if for all a ∈ S, chains ∅ 6= C ⊆ S and ◦ ∈ {+, ·},

a ◦
⊔

C =
⊔

(a ◦ C), a ◦
l

C =
l

(a ◦ C)

where we write a ◦ C for the set {a ◦ c | c ∈ C} to simplify notation.

The last step towards suitable semirings is to transfer the idea of positive semirings into
the context of cpo semirings. We again want to ensure that computations with positive
values remain positive, which leads to the following definition. As with positive semirings,
this is not a hard requirement for a suitable semiring, but is needed for compatibility
with standard semantics (if we interpret positive values as truth).
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Definition 4.15. Let S be a cpo semiring. Then S is chain-positive if for all chains
C ⊆ S with 0 /∈ C, we have

d
C 6= 0.

We discuss how continuous semirings, cpo semirings and lattice semirings relate to each
other in the remainder of this chapter. It is also interesting how the properties of the
order relate to properties of the semiring such as idempotence or absorption. Before
going into details, we consider some examples of suitable semirings.

4.3 Examples

Let us give a few examples which are useful for provenance analysis. Most of the semirings
and their applications are taken from [GKT07, GT17a] and not all are suitable for fixed-
point logics, but will serve as a starting point. All of the semirings presented below
are commutative, positive and naturally ordered. We start with a list of semirings for
different applications in provenance analysis.

• The Boolean semiring B = (B,∨,∧,⊥,>) where B = {⊥,>} is the simplest
semiring we consider. It represents truth values and interpretations using this
semiring correspond to standard semantics of logics. B is absorptive and both
operations are idempotent, so it is a distributive lattice with join ∨ and meet ∧.
Due to being finite, it is also continuous and chain-positive.

• The natural numbers form the semiring N = (N,+, ·, 0, 1) which can be used for
counting proofs or for bag semantics in databases. N is not idempotent and lacks a
greatest element. If we consider N∞ = N ∪ {∞} with the usual semantics4 of ∞
instead, we have a greatest element and thus obtain a continuous lattice semiring.
It is also chain-positive, as the infimum of a set is simply its minimum.

• T = (R∞+ ,min,+,∞, 0) and (N∞,min,+,∞, 0) are the tropical semirings which
appear in min-cost computations and tropical geometry. Both are absorptive and
the natural order is the inverse of the standard order on R or N, so ∞ is the least
element. Due to the underlying domains, both are continuous lattice semirings, but
not chain-positive as we have descending chains in R and N with infimum ∞.

• The Viterbi semiring V = ([0, 1],max, ·, 0, 1) is isomorphic to T by means of
x 7→ e−x and thus shares its properties. For interpretations of logic, we think of V
as confidence scores (which are different from probabilities).

• The fuzzy semiring ([0, 1],max,min, 0, 1) and, for any nonempty set A, the powerset
semiring (P(A),∪,∩, ∅, A) are two examples of continuous lattice semirings where
addition and multiplication correspond to the lattice operations, since both semirings

4That is, n+∞ = n · ∞ =∞ for n ∈ N∞ \ {0} and 0 · ∞ = 0.
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are absorptive with idempotent operations. Only the powerset semiring is chain-
positive, as the fuzzy semiring has descending chains approaching 0.

• A finite example is the semiring A = ({P < C < S < T < 0},min,max, 0,P)

representing the access levels public, confidential, secret, top-secret and inaccessible.
This is an absorptive, chain-positive and continuous lattice semiring (note that the
natural order is the opposite of the order used in the definition).

• The Łukasiewicz semiring L = ([0, 1],max, ◦, 0, 1) with a ◦ b = max(0, a + b − 1)

which occurs in many-valued logic (cf. [DK09]) is absorptive and a continuous
lattice semiring. Its multiplication differs from the other examples (which only use
min, max or standard operations) which makes it interesting for examples.

In many cases, it is desirable to perform a general provenance analysis which one can
then specialize to different application semirings via homomorphisms. The semirings we
use are mostly based on polynomials and should be universal for (that is, specialize to) a
large class of semirings. We refer to them as provenance semirings and consider the most
relevant ones in detail in chapter 6. For now, we note the following examples.

• The most general example is the polynomial semiring N[X] which we understand
as multivariate polynomials with natural coefficients over a finite set X of variables
(and standard polynomial addition and multiplication). N[X] is the (commutative)
semiring freely generated by the set X. An idempotent alternative is the semiring
B[X] with boolean coefficients (which we interpret as coefficients 0 and 1). Neither
of these is a cpo semiring, as the chain x, x+ x2, x+ x2 + x3, . . . has no supremum.
For LFP, we instead need formal power series which we present in section 6.2.

• Another universal semiring is (PosBool(X),∨,∧,⊥,>) which consists of all positive
boolean formulae in finitely many variables X (these are combinations of variables,
∨ and ∧), where we identify logically equivalent expressions. This is an absorptive
and continuous lattice semiring, so it is suitable for LFP. Its operations ∨ and ∧
correspond to the lattice operations t and u of its natural order and PosBool(X) is
the distributive lattice freely generated by the set X. We later present an alternative
definition in terms of polynomials.

• Several semirings based on polynomials have been proposed in database theory
to capture different forms of provenance analyses, for example Trio(X), Why(X),
Sorp(X) and Lin(X) as defined in [Gre11, DMRT14]. We consider Why(X) and
a generalized version S∞[X] of Sorp(X) that has also been applied to fixed-point
logics [GT19, Mrk18] in sections 6.3 and 6.4.

A first observation is that all of the examples which are cpo semirings are also continuous.
Although this is not always the case, as witnessed by examples 4.22 and 4.28 below,
we can thus focus primarily on continuous semirings for applications. We also want to
emphasize that most of the examples are absorptive semirings.
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idempotent

multipl.
idempotent

absorptive

naturally ordered

cpo

chain-positive

B
PosBool

V
S[X]

L

N[X]

N

N∞

B[X]

T fuzzyN∞JXK BJXK

S∞[X]W[X]

Figure 1: Interesting semirings and their properties. All cpo semirings in the diagram are also
continuous. The semirings not introduced so far are defined in chapter 6.

4.4 Semiring Properties

For a better classification, we present few general observations about semirings that are
useful later on and show how some of the notions relate to each other. An important
motivation to study subclasses such as absorptive semirings is symmetry : Order theory
often allows to dualize statements and is thus very symmetric, whereas semirings are
algebraic structures and therefore asymmetric. For example, 0 is the least element and
annihilating, but the dual property for 1 does not hold in general. Additionally, multipli-
cation distributes over addition but not the other way around. Requiring idempotence or
absorption increases symmetry and makes the respective semirings easier to handle for
provenance analysis involving fixed points.

Proposition 4.16. Let (S,+, ·, 0, 1) be a naturally ordered semiring. Then

(1) S has the least element ⊥ = 0,

(2) a, b ≤ a+ b (for all a, b ∈ S).

(3) S is +-positive,

Proof. For (1), note that 0 + a = a and hence 0 ≤ a for all a ∈ S. Regarding (2), we have
a ≤ a+ b and b ≤ a+ b by natural order, so a+ b is an upper bound for {a, b}. Then (3)

follows from (1) and (2): If a+ b = 0, then a, b ≤ 0 and hence a = 0 and b = 0.
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4.4 Semiring Properties

Proposition 4.17. A semiring S is idempotent if, and only if, a t b = a + b for all
a, b ∈ S. This implies that every idempotent semiring is naturally ordered.

Proof. We have shown above that a+b is an upper bound for {a, b}. Let S be idempotent
and let c be any upper bound for {a, b}, so a ≤ c and b ≤ c. Using the monotonicity of
addition, we obtain a+ b ≤ c+ b ≤ c+ c = c. Thus, a+ b is the least upper bound and
a t b = a+ b. For the converse, note that a+ a = a t a = a for all a ∈ S.

To see that every idempotent semiring is naturally ordered, observe that a ≤ b implies
a t b = b, while b ≤ a implies a t b = a, so together a = b (for all a, b ∈ S).

This observation has an interesting consequence for idempotent cpo semirings. As a t b
always exists, we have suprema of arbitrary finite sets. This allows us to apply a result
of [Mar76] that every sup-cpo in which suprema of finite sets exist is a complete lattice.

Corollary 4.18. Every idempotent cpo semiring is a lattice semiring.

The following (artificial) example shows that this result does not hold for arbitrary cpo
semirings and thus clarifies the relation between cpo semirings and lattice semirings. The
situation in the example is in some sense the only possibility for such a counterexample.
If the order of a cpo semiring is a lattice, then theorem 4.10 implies that it is a complete
lattice. As ⊥ and > always provide lower and upper bounds, a counterexample must
contain elements a, b without least upper bound a t b (or greatest lower bound a u b).
This also explains why all of the previous examples are in fact complete lattices.

Example 4.19. The diagram below depicts a canonical example of a cpo which is not
a complete lattice (the set {1, 2} has the incomparable upper bounds 3, 4 and thus no
supremum). A semiring with this order would then be a non-lattice cpo semiring.

+ 1 2 3 4 5
1 4 3 5 5 5
2 4 5 5 5
3 5 5 5
4 5 5
5 5

· 1 2 3 4 5
1 1 2 3 4 5
2 1 3 4 5
3 5 5 5
4 5 5
5 5

0

1 2

3 4

5

com
m
utative

com
m
utative

It is not immediately obvious that this example indeed occurs as natural order of a
semiring. While addition can easily be defined to yield this order, we must further define
a compatible (that is, distributive) multiplication. The tables above show one possible
solution for both operations (which was found by smt-solving).
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4 Semirings and Fixed Points

Another question concerns the relation to continuous semirings. A partial answer is given
in [Mrk18] which shows that addition is continuous in certain idempotent semirings (the
proof given there assumes absorptivity but also works in idempotent semirings).

Definition 4.20. A complete lattice (P,≤) is completely distributive [Ran52] if for every
family (Pi)i∈I of subsets Pi ⊆ P indexed by a set I,

l{⊔
Pi
∣∣ i ∈ I} =

⊔{l
{f(i) | i ∈ I}

∣∣ f ∈ F}
where F is the set of choice functions, i.e., f : I → P with f(i) ∈ Pi for all i ∈ I.

Proposition 4.21. In a completely distributive and idempotent lattice semiring, addition
is continuous.

While most of the semirings of interest to us are continuous, one can also construct
non-continuous cpo semirings, as the following example illustrates.

Example 4.22. Let S = N ∪ {ω,∞} with the order n < ω <∞ (for all n ∈ N). Then
(S,max, ·, 0, 1) is a semiring if we extend standard multiplication in N by

n · ω = ω, ω · ω =∞, a · ∞ =∞, for n ∈ N \ {0} and a ∈ S \ {0}

One can check by case distinction (for the additional elements ω, ∞) that S is indeed a
semiring. By using maximum as addition, S is further idempotent and the natural order
coincides with the order n < ω <∞ used for the definition. This order is well-founded
and all subsets without maximal element have the supremum ω, so S is a lattice semiring.

Multiplication in S is not continuous, as witnessed by the chain N:

ω ·
⊔

N = ω · ω =∞ 6= ω =
⊔
{0, ω} =

⊔
ω · N

Note that S is a chain itself and it is thus easy to see that S is completely distributive.
Hence S provides a negative analogue of proposition 4.21 regarding multiplication.

A similar example shows that proposition 4.21 requires idempotence. Consider (S,+, ·, 0, 1)

with n + ω = ω, ω + ω = ∞, a +∞ = ∞ for n ∈ N, a ∈ S and, for multiplication,
a · ω = a · ∞ = ∞ for a ∈ S with a ≥ 2. Following the argument above, we obtain
a completely distributive semiring (with the natural order n < ω < ∞) which is not
idempotent and in which addition is not continuous (ω +

⊔
N =∞ while

⊔
ω + N = ω).

Based on ideas of the proof in [Mar76] we used for corollary 4.18, we can further show
that in idempotent semirings, sup-continuity (which is defined on chains) is equivalent to
sup-continuity on arbitrary sets.
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4.4 Semiring Properties

Theorem 4.23. Let S and T be idempotent semirings. Let further f : S → T be a
sup-continuous function that preserves addition. Then f preserves suprema of arbitrary
sets, so for every A ⊆ S:

f(
⊔

A) =
⊔

f(A)

Proof. First note that S and T are lattice semirings by corollary 4.18, so both suprema
exist. we first consider finite sets A = {a1, . . . , an} for which the statement follows from
the additivity of f and the idempotence of both semirings:

f(
⊔

A) = f(a1 + · · ·+ an) = f(a1) + · · ·+ f(an) =
⊔

f(A)

The interesting case are infinite sets A. The intuition is that we can express the supremum
of a family (ai)i<ω by the chain a0, a0 + a1, a0 + a1 + a2, . . . of partial sums. We apply
the same idea to sets of arbitrary cardinality.

Towards a contradiction, let A ⊆ S be an infinite set with minimal cardinality such that
f(
⊔
A) 6=

⊔
f(A). Let α be the cardinality of A (that is, the smallest ordinal in bijection

with A). Using the bijection between A and α, we can write A = {aβ | β < α}.

Consider the chain C = (cβ)β<α with cβ =
⊔
{aδ | δ ≤ β} (in analogy to partial sums).

Then C is clearly a chain with cβ ≤
⊔
A for all β < α, hence

⊔
C ≤

⊔
A. The other

direction holds as well, so C has the same supremum as A:⊔
C =

⊔{⊔
{aδ | δ ≤ β}

∣∣ β < α
}
≥
⊔
{aβ | β < α} =

⊔
A

The same holds for the suprema of f(C) and f(A). The crucial step is:⊔
f(C) =

⊔{
f
(⊔
{aδ | δ ≤ β}

) ∣∣ β < α
}

=
⊔{⊔

{f(aδ) | δ ≤ β}
∣∣ β < α

}
(∗)

We claim that the set A′ = {aδ | δ ≤ β} has a smaller cardinality than A. Thus A′ is
either finite (which we have already considered above) or we can exploit the minimality
assumption on A to conclude that f(

⊔
A′) =

⊔
f(A′). To see that the cardinality is

smaller, note that A′ is indexed (and thus in bijection) with the ordinal β + 1. As α is
infinite, it must be a limit ordinal and hence β < α implies β + 1 < α, so β + 1 (and thus
A′) cannot have cardinality α.

It is then easy to show that (∗) equals
⊔
f(A) by considering both directions:⊔

f(A) =
⊔{⊔

f(A)
∣∣ β < α

}
≥ (∗) ≥

⊔{
f(aβ)

∣∣ β < α
}

=
⊔

f(A)

Together with the sup-continuity of f (applied to the chain C), we obtain

f
(⊔

A
)

= f
(⊔

C
)

=
⊔

f(C) =
⊔

f(A)

which contradicts our assumption on A and thus closes the proof.
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4 Semirings and Fixed Points

By considering addition and multiplication as functions f , we obtain the following
corollary. The reason for the more general formulation of the theorem is that we can
later apply it also to homomorphisms.

Corollary 4.24. Let S be an idempotent sup-continuous semiring. Then S is sup-
continuous on arbitrary sets, so for all b ∈ S, ◦ ∈ {+, ·} and all sets A ⊆ S,

b ◦
⊔

A =
⊔

(b ◦ A)

An important subclass of idempotent semirings are the absorptive ones in which a+ab = a

for all elements a, b. The main motivation to study absorption is that it leads to
more symmetry. This simplifies reasoning about fixed points and establishes a stronger
connection between the algebraic and order theoretic properties of semirings. The reason
is that absorption relates addition and multiplication such that multiplication decreases
elements (thus becoming somewhat dual to addition) and such that the neutral element 1

becomes the greatest element (dually to the least element 0). This further means that 1 is
absorbing (dually to 0 being annihilating). In fact, all of these properties are equivalent:

Proposition 4.25. In a naturally ordered semiring S, the following are equivalent:

(1) S is absorptive,

(2) S has the greatest element > = 1,

(3) 1 is the absorbing element of addition, i.e., 1 + a = 1 for all a ∈ S,

(4) multiplication is decreasing, i.e., a · b ≤ a, b for all a, b ∈ S.

Proof. We first prove the equivalence of (1)-(3). If S is absorptive, then 1 + 1 · a = 1 for
all a ∈ S and thus > = 1. If > = 1, then 1 ≤ 1 + a ≤ 1 and thus 1 + a = 1 for all a ∈ S.
Multiplication with b ∈ S gives absorption.

For (4), we first note that absorption a + ab = a implies ab ≤ a for all a ∈ S. For the
converse, we consider the elements a and 1 + b. We have a ≤ a+ ab by natural order. If
multiplication is decreasing, then also a ≥ a · (1 + b) = a+ab and together a = a+ab.

The only asymmetric properties left are distributivity and idempotence of addition (which
makes addition equivalent to the join). If we require the semiring to be multiplicatively
idempotent, then these are resolved as well and we end up with a distributive lattice.

Proposition 4.26. Let S be an absorptive and multiplicatively idempotent semiring.
Then a · b = a u b for all a, b ∈ S, so S is a distributive lattice with join +, meet ·, least
element 0 and greatest element 1.
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4.5 Related Concepts

Proof. We have already shown that a · b ≤ a, b and thus a · b ≤ a u b. Now let c be any
lower bound, so c ≤ a and c ≤ b. Using monotonicity and idempotence of multiplication,
we have c = c · c ≤ a · c ≤ a · b, so a · b is the greatest lower bound of a and b.

Absorptive semirings are particularly interesting when computing greatest fixed points for
which the fixed-point iteration starts at >, which then equals 1, and multiplication offers
a way to decrease this value during the iteration. Indeed, many of the above examples are
absorptive and we present a universal semiring for the class of all absorptive continuous
semirings in section 6.4, the semiring S∞[X] of absorptive polynomials.

4.5 Related Concepts

In [Mrk18], Mrkonjić proposes the notion of absorptive lattice semirings5 for provenance
analysis of CTL. In our terminology, these are, unsurprisingly, absorptive lattice semirings
together with additional assumptions: The natural order must be a completely distributive
lattice, multiplication must be sup-continuous for arbitrary sets (not just for chains) and
inf-continuous for ω-chains. Continuity of addition is not required since it is implied by
proposition 4.21. The main instance they study is the semiring of absorptive polynomials
which is also our primary focus in chapter 6. The application semirings V, T, L and the
fuzzy semiring are further examples of absorptive lattice semirings, because they all use
the standard order on [0, 1] (or an isomorphic one) which is a complete chain and thus
completely distributive (see [Ran52, section 5]).

For the general discussion, we try to keep the restrictions at a minimum and mostly work
with cpo semirings or, for some of the deeper results, with continuous semirings. Although
the later chapters focus more on absorptive semirings, we also allow non-absorptive
semirings such as N∞ or W[X]. Regarding continuity, note that we require multiplication
to preserve suprema and infima of arbitrary chains whereas [Mrk18] considers infima only
over ω-chains. The reason might be that they study CTL instead of LFP. CTL can be
embedded into alternation-free LFP for which fully ω-continuous semirings are indeed
sufficient, as we shall see in section 5.5.

An open question posed by Mrkonjić is whether some of the additional assumptions are
redundant and, in particular, whether every absorptive, naturally ordered semiring is also
an absorptive lattice semiring. Corollary 4.18 indeed shows that every absorptive cpo
semiring is also a lattice semiring. However, there are several examples which constitute a
negative answer to this question. A first observation is that there are absorptive semirings
which are not chain-complete (and thus no lattice semirings).

5We refer to Mrkonjić’s definition in italic letters to avoid confusion with our terminology.
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4 Semirings and Fixed Points

Example 4.27. Consider the semiring ([0, 1] \ { 1
42
},max,min, 0, 1) which modifies the

fuzzy semiring by excluding a single element. As the operations are max and min, they
remain well-defined and absorptive. The semiring is not chain-complete, as there are
chains approaching 1

42
which no longer have a least upper bound.

More interesting is the following example which features an absorptive lattice semiring
which is not continuous and thus not an absorptive lattice semiring in the sense of [Mrk18].
It further shows that the complete distributivity is not redundant.

Example 4.28. Consider the direct semiring product B× V (with operations defined
pointwise, e.g., (b1, v1) + (b2, v2) = (b1 ∨ b2,max(v1, v2))). Both B and V are completely
distributive, so B× V is a completely distributive lattice semiring as well. It is further
continuous due to the continuity of B and V.

We modify this semiring to be non-continuous by setting S = B × V \ {(>, 0)}. Note
that S is well-defined as (>, 0) does not result from addition or multiplication of other
elements. S is also fully chain-complete: Descending chains in S which would have the
infimum (>, 0) in B× V now have the infimum (⊥, 0) in S; ascending chains (and even
arbitrary sets) in S have the same supremum as in B × V. This is easy to see in the
following depiction of the natural order, hence S is an absorptive lattice semiring.

(⊥, 0) ≤ . . . ≤ (⊥, 1
2
) ≤ . . . ≤ (⊥, 1)

≤ ≤ ≤ ≤ ≤

. . . ≤ (>, 1
2
) ≤ . . . ≤ (>, 1)

However, addition is not continuous and, due to proposition 4.21, S is thus not completely
distributive, as witnessed by the chain C = {(>, 1

n
) | n < ω}:

(⊥, 1) +
l

C = (⊥, 1) + (⊥, 0) = (⊥, 1)

6=

(>, 1) =
l
{(>, 1)} =

l (
(⊥, 1) + C

)
Note that multiplication remains continuous. We have already argued that suprema
behave as in B× V. The same holds for chains whose infimum in B× V is different from
(>, 0). It remains to consider chains C ⊆ S such that C has the infimum (>, 0) in B×V
and thus

d
C = (⊥, 0) in S. Such chains have the form C = (>, C ′) where C ′ ⊆ V withd

C ′ = 0. Now consider any (b, v) ∈ S. Then
l (

(b, v) · (>, C ′)
)

=
l

(b, vC ′)
(∗)
= (⊥, 0) = (b, v) · (⊥, 0) = (b, v) ·

l
C
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4.5 Related Concepts

For (∗), note that v is a constant, so the chain vC ′ still has the infimum 0 in V and thusd
(b, vC ′) would have the infimum (b, 0) in B× V which is always (⊥, 0) in S.

This example shows that absorptive lattice semirings are not continuous in general. Even
if we require multiplication to be continuous, addition can still be non-continuous if the
semiring is not completely distributive.

We can modify B × V in a different way such that addition remains continuous but
multiplication does not. The following example illustrates the construction which is
dual to the previous example, underlining our claim that absorption leads to more
symmetry. Both example 4.29 and example 4.22 suggest that the continuity requirement
on multiplication in [Mrk18] is not redundant, but they do not rule out the possibility
that continuity could be implied by complete distributivity in absorptive semirings.

Example 4.29. Following the previous example, let S = B× V \ {(⊥, 1)}. Note that,
due to symmetry, the natural order on S is dual to the above example. In particular, S
is a lattice semiring but not completely distributive.

(⊥, 0) ≤ . . . ≤ (⊥, 1
2
) ≤ . . .

≤ ≤ ≤ ≤ ≤

(>, 0) ≤ . . . ≤ (>, 1
2
) ≤ . . . ≤ (>, 1)

Moreover, multiplication is not continuous for C = {(⊥, 1− 1
n
) | n ≥ 1}:

(>, 0) ·
⊔

C = (>, 0) · (>, 1) = (>, 0)

6=

(⊥, 0) =
⊔
{(⊥, 0)} =

⊔(
(>, 0) · C

)
Addition remains continuous which can be seen by dualizing the argument in the previous
example. Together, these two examples show that neither continuity (of either operation)
nor complete distributivity hold in all (absorptive) lattice semirings.

We do not consider complete distributivity in the remaining work. Instead, we require
continuity of both operations explicitly by working with continuous semirings. Our results
indicate that continuity is most likely the property we are actually interested in.

Another related notion worth mentioning is that of c-semirings introduced in [BMR97]
to generalize constraint satisfaction problems. Their definition is as follows.
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4 Semirings and Fixed Points

Definition 4.30. A c-semiring (S,+, ·, 0, 1) is a commutative semiring in which addition
is defined on (possibly infinite) subsets of S such that:

•
∑

({a}) = a for all a ∈ S,

•
∑

(∅) = 0 and
∑

(S) = 1,

•
∑

(
⋃
i∈I Ai) =

∑
({
∑

(Ai) | i ∈ I}) for families (Ai)i∈I of sets (flattening property).

Distributivity then requires that a ·
∑

(A) =
∑

(a · A) for all a ∈ S and A ⊆ S.

Note that the addition in c-semirings is always idempotent, as it is defined on sets. Given
a c-semiring, [BMR97] defines the order a ≤ b ⇐⇒ a+ b = b which, due to idempotence,
coincides with the natural order we consider. They further show that c-semirings are
lattice semirings in which the supremum

⊔
A is given by the sum

∑
(A). It is also

shown that multiplication is decreasing, which implies absorption (by proposition 4.25).
Distributivity in c-semirings implies that multiplication is sup-continuous, i.e., preserves
suprema of chains (addition is trivially sup-continuous due to idempotence).

Coming from our terminology, let S be an absorptive lattice semiring and extend addition
to sets by

∑
(A) =

⊔
A for A ⊆ S (note that this coincides with the addition in S on

finite sets). It follows from the properties of suprema that the flattening property is
satisfied. The only remaining difference is that we consider continuity only for chains
whereas distributivity for c-semirings must hold for arbitrary sets, but this is resolved by
corollary 4.24. We can thus state the following equivalence result.

Proposition 4.31. Every c-semiring is a sup-continuous absorptive lattice semiring.

Conversely, every sup-continuous absorptive lattice semiring S becomes a c-semiring by
setting

∑
(A) =

⊔
A (which coincides with the addition in S on finite sets).

In particular, every absorptive lattice semiring in the sense of [Mrk18] becomes a c-
semiring in this way. In the remaining work, we will see that absorptive continuous
semirings are the most viable choice for provenance analysis of fixed-point logic. It is
interesting to see that a similar notion (although defined in a different way) also arises in
other contexts.

4.6 Homomorphisms and Function Semirings

In cpo semirings, it is natural to require that homomorphisms additionally preserve the
cpo structure. Due to the definition of the natural order, some properties are always
preserved by semiring homomorphisms.

32



4.6 Homomorphisms and Function Semirings

Proposition 4.32. Let h : S → T be a semiring homomorphism on cpo semirings S and
T . Then

(1) h is monotone (preserves the order)

(2) h(⊥) = ⊥

(3) h(
⊔
C) ≥

⊔
h(C) and h(

d
C) ≤

d
h(C) for every chain C

Proof. Monotonicity follows from the additivity of h, claim (2) holds because of ⊥ = 0.
Lastly, (3) follows from (1), as

⊔
C ≥ c and thus h(

⊔
C) ≥ h(c) for all c ∈ C, hence

h(
⊔
C) ≥

⊔
h(C) (the second statement follows analogously).

We later see examples violating h(>) = > and the other direction in (3), which would
make h continuous, and therefore introduce cpo homomorphisms.

Definition 4.33. A cpo homomorphism is a function h : P → Q on cpos P , Q with:

• h(⊥) = ⊥,

• h(>) = >,

• h is continuous (preserves suprema and infima of nonempty chains)

A cpo-semiring homomorphism is a semiring homomorphism h : S → T on cpo semirings
which is also a cpo homomorphism.

Recall the truth projection †S : S → B from example 2.5 which is a semiring homo-
morphism if (and only if) S is positive. We can similarly describe when †S is also a
cpo-semiring homomorphism.

Example 4.34. Let S be a positive semiring. Then †S is a cpo-semiring homomorphism
if, and only if, S is chain-positive.

First note that the greatest element > ∈ S satisfies > 6= 0. Hence h(>) = > and we
always have h(⊥) = ⊥. One can additionally show (by case distinction on C = {0}) that
h(
⊔
C) =

⊔
h(C) for chains C ⊆ S.

If S is chain-positive, then we further see (by case distinction on 0 ∈ C) that †S also
preserves infima and is thus continuous. On the other hand, a chain C of positive elements
with

d
C = 0 leads to †S(

d
C) = ⊥ but

d
†S(C) = >.

This is a first indication that chain-positivity is needed for compatibility with standard
truth semantics (which are equivalent to semiring semantics in B).
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4 Semirings and Fixed Points

Note that continuous homomorphisms have to preserve suprema and infima of nonempty
chains, but not necessarily of arbitrary sets. However, as mentioned earlier, theorem 4.23
shows that suprema of sets are preserved in idempotent semirings.

Corollary 4.35. Let h : S → T be a continuous homomorphism on idempotent semirings.
Then h preserves suprema of arbitrary sets, so for all A ⊆ S:

h(
⊔

A) =
⊔

h(A)

For the interpretation of logic, we work with S-valuations which are functions f : A→ S

for a semiring S and some set A. We denote the set of such functions by SA and we can
turn SA into a semiring by defining pointwise operations. This simplifies notation and
most of the properties transfer from S to SA.

Proposition 4.36. Let S be a semiring and A be a nonempty set. Then the set of
functions SA = {f : A→ S} is a semiring with pointwise operations (f, g ∈ SA):

(f + g)(a) = f(a) + g(a)

(f · g)(a) = f(a) · g(a)

and the neutral elements 0 : a 7→ 0 and 1 : a 7→ 1.

If S is naturally ordered, then the above addition induces a natural order on SA with
f ≤ g iff f(a) ≤ g(a) for all a ∈ A. If ⊥ and > are the least and greatest elements of S,
then ⊥ : a 7→ ⊥ and > : a 7→ > are the least and greatest elements of SA.

Proposition 4.37. Let S be a semiring and A be a nonempty set. If S is naturally
ordered, idempotent, absorptive or multiplicative idempotent, then so is SA. If S is a cpo,
ω-complete, lattice, continuous or chain-positive semiring then so is SA.

The proof of these propositions is simply a matter of reducing the statements on SA

to the properties of S. As the operations are defined pointwise, so are natural order,
suprema and infima. For instance, the supremum of a chain C ⊆ SA is given by⊔
C =

(
a 7→

⊔
{f(a) | f ∈ C}

)
. Note that not all properties transfer: SA always has

divisors of 0 (given that |A| ≥ 2) even if S is positive.
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5 Semiring Semantics for Fixed-Point Logic

In this chapter, we return to fixed-point logic and show that semiring semantics for LFP
are well-defined for cpo semirings. The analysis of these semantics provides positive
answers to the previously stated questions which indicate that semiring semantics behave
reasonably when extended to fixed-point logic. At the end of the chapter, we discuss how
we can relax chain-completeness for certain logical fragments of LFP.

5.1 Definition

Recall the definition of semiring semantics via S-interpretations from definition 3.4,

q
[lfpRx. ϑ](y)

yα
`

=
(
lfpF ϑ

`

)
(α(y))

q
[gfpRx. ϑ](y)

yα
`

=
(
gfpF ϑ

`

)
(α(y))

where F ϑ
` is the update operator induced by the formula ϑ(R, x). In chapter 3, we relied

on a suitable semiring for the definition, which we can now make precise.

Theorem 5.1. Semirings semantics for LFP are well-defined for cpo semirings.

This result is based on the observation that cpo semirings guarantee least and greatest fixed
points of monotone operators. Let us also highlight the converse stated in theorem 4.10
which is a strong indication that cpo semirings are the most general choice6 for suitable
semirings. We have seen that cpo semirings are closely related to lattice semirings (which
are perhaps more natural as analogy to the powerset lattice used in standard semantics).

The update operators F ϑ
` operate on valuations π : Ak → S. In order for definition 3.4 to

be well-defined, we thus have to define an order on valuations. Given a cpo semiring S,
we view the set ValS,k of valuations as a function semiring. In particular, this induces
a pointwise order on valuations, so π1 ≤ π2 iff π1(a) ≤ π2(a) for all a ∈ Ak. This also
means that suprema and infima are computed pointwise (see section 4.6). Similarly,
S-interpretations ` form a function semiring and are compared pointwise as well.

With this in mind, we prove theorem 5.1 by showing that monotonicity of addition and
multiplication lifts to update operators F ϑ

` . Like most of the proofs in this chapter, this
is shown by induction on the structure of formulae and on the corresponding fixed-point
iteration for which we use the following notation.

6In section 5.5, we see that fully ω-continuous semirings might be an alternative.
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5 Semiring Semantics for Fixed-Point Logic

Definition 5.2. Let ϕ = [lfpRx. ϑ](y) be an LFP formula, S a cpo semiring, ` an
S-interpretation and α a variable valuation. The fixed-point iteration is the sequence of
S-valuations defined by transfinite recursion as follows.

π0 = ⊥ where ⊥ : a 7→ ⊥ is the least element of Valk,

πβ+1 = F ϑ
` (πβ) = JϑK•`[R/πβ ] for ordinals β ∈ On,

πλ =
⊔
{πβ | β < λ} for limit ordinals λ ∈ On.

For ϕ = [gfpRx. ϑ](y), we instead set π0 = > and πλ =
d
{πβ | β < λ}. If we want to

make ` explicit, we write π(β)
` for πβ.

If F ϑ
` is monotone, then this definition is well-defined and terminates in the least (or

greatest) fixed point (see the proof of the cpo fixed-point theorem 4.8 for details). We
split the proof into two parts which together show the monotonicity of F ϑ

` and J·K`.

Lemma 5.3. Let S be a cpo semiring, α be a valuation and ϑ(R,x) be a formula. If
JϑKα` is monotone in `, then the update operator F ϑ

` is monotone.

Proof. Let k be the arity of R and let π1, π2 ∈ Valk with π1 ≤ π2. To simplify notation,
let π′1 = F ϑ

` (π1) and π′2 = F ϑ
` (π2).

Due to π1 ≤ π2, we also have `[R/π1] ≤ `[R/π2]. Then π′1 ≤ π′2, as for all a ∈ Ak:

π′1(a) = JϑKα[x/a]`[R/π1]
≤ JϑKα[x/a]`[R/π2]

= π′2(a)

Proposition 5.4. Let S be a cpo semiring. Then JϕKα` is monotone with respect to `,
so given two S-interpretations `1 and `1, the following implication holds for all LFP
formulae ϕ and all variable valuations α:

`1 ≤ `2 =⇒ JϕKα`1 ≤ JϕKα`2

Proof. It suffices to consider formulae in negation normal form. The proof is mostly a
straight-forward induction with the most interesting case being lfp- and gfp-formulae.

• If ϕ is a literal ϕ = Rx, then JϕKα`1 = `1(Rα(x)) ≤ `2(Rα(x)) = JϕKα`2 . The same
holds for negative literals ϕ = ¬Rx (and for equality atoms).

• If ϕ = ϕ1 ∨ ϕ2, then JϕKα`i = Jϕ1Kα`i + Jϕ2Kα`i for i ∈ {1, 2} and the claim follows by
induction and monotonicity of +. The interpretation of ∧ via · is analogous.
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5.2 Semiring vs. Standard Semantics

• If ϕ = ∃x ϑ(x), then JϕKα`i =
∑

a∈AJϑKα[x/a]`i
. The sum is finite due to the finite

universe A, so the claim again follows by induction and monotonicity of +. The
case for ∀ is analogous.

• If ϕ = [lfpRx. ϑ](y) where R has arity k, we proceed by induction on the fixed-point
iterations. By the induction hypothesis and the previous lemma, F ϑ

`1
and F ϑ

`2
are

monotone and hence the fixed-point iterations are well-defined.

We show by transfinite induction on β that π(β)
`1
≤ π

(β)
`2

.

– π
(0)
`1

= ⊥ = π
(0)
`2

.

– For β + 1, let us abbreviate `′1 = `1[R/π
(β)
`1

] and analogously `′2 = `2[R/π
(β)
`2

].
Note that `1 ≤ `2 together with the induction hypothesis for β imply that
`′1 ≤ `′2, so we can apply the outer induction hypothesis for ϑ and obtain:

π
(β+1)
`1

= F ϑ
`1

(π
(β)
`1

) =
q
ϑ
y•
`′1
≤

q
ϑ
y•
`′2

= F ϑ
`2

(π
(β)
`2

) = π
(β+1)
`2

– For limit ordinals λ, we have π(β)
`1
≤ π

(β)
`2

for β < λ by induction and hence

π
(λ)
`1

=
⊔
{π(β)

`1
| β < λ} ≤

⊔
{π(β)

`2
| β < λ} = π

(λ)
`2

This ends the inner induction. As Valk is a set, there is a sufficiently large ordinal
α with π(α+1)

`1
= π

(α)
`1

and π(α+1)
`2

= π
(α)
`2

. Then π(α)
`1

and π(α)
`2

equal the least fixed
points of F ϑ

`1
and F ϑ

`2
, respectively, so we see that lfpF ϑ

`1
≤ lfpF ϑ

`2
. In particular,

JϕKα`1 =
(
lfpF ϑ

`1

)
(α(y)) ≤

(
lfpF ϑ

`2

)
(α(y)) = JϕKα`2

The proof for gfp-formulae is analogous via the corresponding fixed-point iteration.

This closes the proof and shows that JϕK` is monotone with respect to `.

Together with the previous lemma, we can conclude that the update operators used in
the definition of JϕK` are always monotone and thus least and greatest fixed points always
exist. This proves theorem 5.1 and answers the question on suitable semirings.

5.2 Semiring vs. Standard Semantics

Another question concerns the compatibility with standard semantics. For FO, we have
seen that we can provide canonical interpretations `A and relate model-defining interpre-
tations in positive semirings to standard semantics. We present analogue statements for
LFP under the additional requirement of chain-positivity.
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5 Semiring Semantics for Fixed-Point Logic

A first step is to recall the canonical truth interpretation `A : LitA → B for a given model
A. As for FO, its semantics correspond to standard semantics and we can thus view
S-interpretations ` : LitA → S as a generalization of standard semantics.

Proposition 5.5. Let A be a τ -structure with universe A, ϕ(x) an LFP formula and a

a tuple (with the same arity as x) of elements from A. Then

A |= ϕ(a) ⇐⇒ Jϕ(a)K`A = >

Proof sketch. Straightforward induction on ϕ. For fixed-point formulae, one shows by
induction on the fixed-point iterations that a ∈ Rβ ⇐⇒ πβ(a) = > (for all β ∈ On).

It is possible to also consider an analogue of the counting interpretation `#A in N∞ instead
of N, but it is less clear how one would count proofs in the presence of fixed points. We
therefore defer the discussion until chapter 6.

The other direction – from a model-defining S-interpretation ` to the induced model A` –
is more involved. For FO, we have required that S is positive to obtain the equivalence
of A` |= ϕ and JϕK` 6= 0. This is not sufficient for LFP.

Example 5.6. Consider the formula ϕinfpath(v) = [gfpRx. ∃y(Exy ∧Ry)](v) which
expresses that, given a directed graph, there is an infinite path from the node v.

We interpret this formula in the Viterbi semiring V = ([0, 1],max, ·, 0, 1)

on the graph shown on the right by setting `(Evv) = 1
2
and `(¬Evv) = 0.

Then ` is a model-defining V-interpretation and the induced model satisfies
A` |= Evv and thus A` |= ϕinfpath(v).

v 1
2

The computation of Jϕinfpath(v)K` in V yields the following fixed-point iteration:

π0(v) = > = 1

π1(v) = JEvvK`[R/π0] · JRvK`[R/π0] = 1
2
· 1 = 1

2

π2(v) = JEvvK`[R/π1] · JRvK`[R/π1] = 1
2
· 1
2

= 1
4

πn(v) =
(
1
2

)n
πω(v) = 0

So Jϕinfpath(v)K` = 0 even though A` |= ϕ(v). The reason is that V is not chain-positive:
All values πn(v) are positive but the infimum is still 0.

Nevertheless, one can argue that the computation in the Viterbi semiring makes sense. If
we have to use the fact Evv infinitely often to establish a proof of ϕ and we only have
low confidence in this edge, then it is reasonable to assign an overall confidence score of 0

to ϕ. So chain-positivity is not a hard requirement for applications.

38



5.2 Semiring vs. Standard Semantics

The example illustrates that the interpretation of gfp-formulae can be inconsistent with
the semantics of A`. To achieve compatibility with standard semantics, we therefore
require that the semiring is chain-positive, which intuitively means that infima preserve
truth (where we again understand truth as non-zero values).

Theorem 5.7. Let ` be a model-defining S-interpretation where S is both positive and
chain-positive. For every formula ϕ(x) and every tuple a from A we then have:

A` |= ϕ(a) ⇐⇒ Jϕ(a)K` 6= 0

Proof. Recall that A` |= L ⇐⇒ `(L) 6= 0 by definition, so the statement holds for
literals ϕ. This can be lifted to arbitrary formulae by induction on ϕ. We only have to
consider formulae in negation normal form, as ϕ and nnf(ϕ) are interpreted in the same
way by both A` and semiring semantics J·K`.

• ϕ = ϕ1 ∧ ϕ2. We need that S is positive and apply the induction hypothesis. The
cases for ∨, ∃, ∀ are analogous (recall that the universe is finite).

Jϕ(a)K` 6= 0
positive⇐⇒ Jϕ1(a)K` 6= 0 and Jϕ2(a)K` 6= 0

IH⇐⇒ A` |= ϕ1(a) and A` |= ϕ2(a) ⇐⇒ A` |= ϕ(a)

• ϕ = [gfpRx. ϑ](y). The proof is again by induction on the fixed-point iterations
(Rβ)β∈On in standard semantics and (πβ)β∈On in the semiring S. We claim that for
all β, we have a ∈ Rβ ⇐⇒ πβ(a) 6= 0.

For β = 0 this holds by definition. For successor ordinals, πβ+1(a) = Jϑ(a)K`[R/πβ ].
Let σ be the valuation with σ(a) ∈ {0, 1} and σ(a) = 0 ⇐⇒ πβ(a) 6= 0. We need
σ for the induction hypothesis on ϑ which requires a model-defining interpretation.
As R only occurs positively in ϑ, we can interpret negative literals ¬Rb arbitrarily,
so we use the model-defining interpretation `′ = `[R/πβ,¬R/σ]. The induced model
A`′ interprets R according to πβ which, by induction, corresponds to Rβ. Hence:

πβ+1(a) = Jϑ(a)K`′ 6= 0
IH⇐⇒ A`′ |= ϑ(a)

⇐⇒ A` |= ϑ(Rβ, a) ⇐⇒ a ∈ Rβ+1

For limit ordinals, we use that S is chain-positive:

πλ(a) 6= 0
chain-pos⇐⇒ πβ(a) 6= 0 for all β < λ

IH⇐⇒ a ∈ Rβ for all β < λ ⇐⇒ a ∈ Rλ

This proves the claim which in turn suffices to prove the case for gfp-formulae. The
proof for lfp-formulae is analogous, but does not require chain-positivity.
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5 Semiring Semantics for Fixed-Point Logic

These results show a compatibility with standard semantics similar to FO – if we
additionally assume that the semiring is chain-positive. Of special interest is the interplay
of semiring semantics and negation (as in proposition 2.11) since this includes duality.
We consider this in detail in the following section.

5.3 Duality

One reason to analyze duality is that we defined semiring semantics in terms of negation
normal form which relies on the equivalence

[lfpRx. ϑ](y) ≡ ¬[gfpRx. ϑ](y) where ϑ is the formula¬ϑ[R/¬R]

in standard LFP. This equivalence is based on the general duality of least and greatest
fixed points in the standard domain of LFP, the powerset lattice P(Ak) (cf. [GKL+07]).
Let B = Ak \B denote the complement of a subset B ⊆ Ak and let F : P(Ak)→ P(Ak)

be monotone, then we can express duality as

lfpF = gfpF where F is the mapping B 7→ F (B)

With semirings, there is no way to express negation explicitly. The reason is that we have
multiple truth values, but only use 0 to represent false, hence 0 has no unique negation.
However, the compatibility result in theorem 5.7 shows that reasonable assignments of
the literals lift to reasonable interpretations of LFP, including negation and duality:

Corollary 5.8. If ` is a model-defining S-interpretation for a positive and chain-positive
semiring S, then one of the following two values is 0 and the other is non-zero (for all R,
x, ϑ, a): q

[lfpRx. ϑ](a)
y
`
,

q
[gfpRx. ¬ϑ[R/¬R]](a)

y
`

We want to generalize this duality in the context of semirings in the same vein as for the
powerset lattice. It is useful to again view a set B ⊆ Ak as a function f : Ak → B. If
f : Ak → B is the function corresponding to B, then the complementarity of B and B
means that for every a, one of f(a) and f(a) is ⊥ and the other >. Alternatively, we
can say that f(a) · f(a) = 0 and f(a) + f(a) 6= 0. These two statements are equivalent
in B, but we can generalize this idea to arbitrary semirings where they lead to different
concepts of complements. So instead of having a unique complement, we propose several
ways to express complementarity of two semiring values.
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5.3 Duality

Definition 5.9. Let S be a cpo semiring. We provide three possible definitions of when
we consider two values a, b ∈ S to be complementary :

(C1) if a · b = 0,

(C2) if a+ b 6= 0,

(C3) if a = 0 and b 6= 0, or vice versa.

We lift this to functions π : A→ S (for some set A). Fixing one of these definitions, we
say that two functions π, σ are complementary (in this definition) if π(a) and σ(a) are
complementary (in this definition) for all a ∈ A.

All three notions essentially distinguish between 0 and positive values, in line with our
usual interpretation. (C1) expresses consistency whereas (C2) can be seen as completeness
condition. Requiring both (C1) and (C2) is equivalent to (C3) in positive semirings.

Recall that for the powerset lattice, we consider F : B 7→ F (B) as the dual operator to
F . Note that this does not mean that F and F are complementary (this would be the
case for F : B 7→ F (B)). Instead, we can formulate the duality of operators on semirings
in the following way.

Definition 5.10. Let S be a cpo semiring and F,G : SA → SA two operators on functions
(for some set A). Fixing one notion of complementarity, we say that F and G are dual if
F (π) and G(σ) are complementary for all complementary functions π, σ : A→ S.

For example, F (>) and G(⊥) must always be complementary. The duality of operators
leads to complementarity of their least and greatest fixed points if we make reasonable
assumptions on the semiring. This provides an adaption of the classic duality.

Theorem 5.11. Let S be a cpo semiring, A a set and fix one notion of complementarity.
Then SA is a cpo semiring and if F,G : SA → SA are monotone dual operators, then
lfp(F ) and gfp(G) are complementary if S has the following properties:

(C1) S is positive or continuous,

(C2),(C3) S is chain-positive,

Proof. The set SA is fully chain-complete as function semiring over S, so we can use
induction on the fixed-point iterations (πβ)β∈On for lfp(F ) and (σβ)β∈On for gfp(G).

By definition, π0 = > and σ0 = ⊥ are complementary. For β + 1, we know by induction
that πβ and σβ are complementary. As F and G are dual, this implies that πβ+1 = F (πβ)

and σβ+1 = G(σβ) are complementary.
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5 Semiring Semantics for Fixed-Point Logic

The only interesting case where we need the additional assumptions is for limit ordinals.
We have to show that πλ =

⊔
{πβ | β < λ} and σλ =

d
{σβ | β < λ} are complementary.

Operations on SA are defined pointwise, so we consider πλ(a) and σλ(a) for an arbitrary
a ∈ A. We know by induction that πβ(a) and σβ(a) are complementary (for all β < λ).

Let us first consider (C1) if S is positive. Complementarity then implies πβ(a) · σβ(a) = 0

and by positivity, πβ(a) = 0 or σβ(a) = 0. If there is a β < λ with σβ(a) = 0, then
certainly

d
{σβ(a) | β < λ} = 0 and thus πλ(a) · σλ(a) = 0. Otherwise, πβ(a) = 0 for all

β < λ, thus
⊔
{πβ(a) | β < λ} = 0 and again πλ(a) · σλ(a) = 0.

For (C2), we similarly have πβ(a)+σβ(a) 6= 0, and thus πβ(a) 6= 0 or σβ(a) 6= 0 (recall that
+-positivity holds in all cpo semirings). If there is a β < λ with πβ(a) 6= 0, then certainly⊔
{πβ(a) | β < λ} 6= 0. Otherwise, σβ(a) 6= 0 for all β < λ and we use chain-positivity to

conclude
d
{σβ(a) | β < λ} 6= 0. In both cases, πλ(a) + σλ(a) 6= 0.

For (C3), we can apply the same arguments. By complementarity, πβ(a) = 0 and
σβ(a) 6= 0 or vice versa (for each β < λ). Following the two case distinctions above, one
of πλ(a) and σλ(a) must be 0 and the other 6= 0.

It remains to consider (C1) if S is continuous (but not positive):

πλ(a) · σλ(a) =
⊔
{πβ(a) | β < λ} ·

l
{σδ | δ < λ}

=
⊔{

πβ(a) ·
l
{σδ(a) | δ < λ}

∣∣ β < λ
}

=
⊔{l

{πβ(a) · σδ(a) | δ < λ}
∣∣ β < λ

}
Fix any β < λ. Then πβ(a) · σδ(a) = 0 for δ = β and thus

d
{πβ(a) · σδ(a) | δ < λ} = 0.

As this holds for every β, we have πλ(a) · σλ(a) =
⊔
{0} = 0 as claimed.

While we have mostly focused on positive semirings so far, it is interesting to see that
continuous semirings provide an alternative to ensure consistency. This becomes relevant
when we introduce polynomials with dual-indeterminates in section 6.6 which have divisors
of 0 and are thus not positive. To see that we indeed need the additional requirements,
consider the following two examples.

Example 5.12. For (C1), recall the semiring S = B× V \ {(⊥, 1)} from example 4.29.
which is neither continuous nor positive. We define operators F,G : S → S by

F ((b, v)) = (b, 1+v
2

), G((b, v)) = (b, 0)

Note that we can lift these operators to SA (that is, F,G : SA → SA) by considering
A = {a} and identifying functions π : A→ S with their value π(a).

F and G are monotone and dual to each other. For their duality, note that (b1, v1) and
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5.3 Duality

(b2, v2) are complementary iff b1b2 = ⊥ and v1v2 = 0. Then also F ((b1, v1)) = (b1, v
′
1) and

G((b2, v2)) = (b2, 0) are complementary, as v′1 · 0 = 0. The iteration yields (for n ≥ 1)

F n((⊥, 0)) ·Gn((>, 1)) = (⊥, 1− 1
2n

) · (>, 0) = (⊥, 0)

which is still complementary, but the fixed points are not (recall that (⊥, 1) /∈ S):

lfp(F ) · gfp(G) = (>, 1) · (>, 0) = (>, 0) 6= 0

Example 5.13. For definition (C3), consider the Viterbi semiring V which is not chain-
positive. We again use a singleton set A = {a} and identify functions π : A → V
with their values π(a) ∈ V. We can then define the monotone operators F (x) = x and
G(y) = y

2
. If x, y are complementary, then so are x and y

2
, thus F and G are dual.

In the iteration, F n(0) = 0 and Gn(1) = 1
2n

are complementary, but for the fixed points,

lfp(F ) + gfp(G) = 0 + 0 = 0

Let us apply this general concept of duality back to logic. We have already seen duality
for model-defining valuations (if S is positive and chain-positive) in corollary 5.8. It is not
an accident that the corollary requires S to be positive – we need this to guarantee that
the update operators for ϑ and ϑ = ¬ϑ[R/¬R] are dual. In addition, we must require
that ` maps opposing literals to complementary values, since positive literals in ϑ become
negative literals in ϑ (except for the relation symbol R).

By showing duality of the update operators F ϑ
` and F ϑ

` , we can apply theorem 5.11 to
obtain analogues of proposition 2.11 for LFP. As for FO, these results justify the use of
the negation normal form in the definition of semiring semantics.

Proposition 5.14. Let S be a cpo semiring, ϑ(R,x) an LFP formula and fix one of the
definitions of complementarity. If ` is an S-interpretation such that `(L) and `(¬L) are
complementary for every literal L and additionally,

(C1) S is positive or continuous,

(C2,3) S is positive and chain-positive,

then F ϑ
` and F ϑ

` with ϑ = ¬ϑ[R/¬R] are dual operators.

Proof. We only consider (C1) and (C2), as (C3) is equivalent to their combination
in positive semirings. The proof is by induction on ϑ. The case for literals holds by
assumption. For the remaining cases, let π and σ be complementary valuations.
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5 Semiring Semantics for Fixed-Point Logic

• ϑ = ϑ1 ∧ ϑ2. Then nnf(ϑ) = nnf(ϑ1) ∨ nnf(ϑ2) and we obtain for (C1):

F ϑ(π) · F ϑ(σ) = (F ϑ1(π) · F ϑ2(π)) · (F ϑ1(σ) + F ϑ2(σ))

= F ϑ1(π) · F ϑ1(σ)︸ ︷︷ ︸
=0

·F ϑ2(π) + F ϑ1(π) · F ϑ2(π) · F ϑ2(σ)︸ ︷︷ ︸
=0

IH
= 0

For (C2), we have

F ϑ(π) + F ϑ(σ) = (F ϑ1(π) · F ϑ2(π)) + (F ϑ1(σ) + F ϑ2(σ))
(∗)
6= 0

Note that (∗) holds if F ϑ1
` (σ) 6= 0 or F ϑ1

` (σ) 6= 0. Otherwise, it follows by induction
that F ϑ1

` (π) 6= 0 and F ϑ2
` (π) 6= 0, so (∗) holds since S is positive. The cases for ∨,

∃ and ∀ are analogous.

• ϑ = [lfpP y. ψ](z). Then nnf(ϑ) = [gfpP y. nnf(ψ′)](z) with ψ′ = ¬ψ[R/¬R,P/¬P ].
We have:

F ϑ,α
` (π) =

(
lfpFψ

`[R/π]

)
(α(z))

F ϑ,α
` (σ) =

(
gfpFψ′

`[R/σ]

)
(α(z))

(∗)
=
(
gfpF

¬ψ[P/¬P ]
`[¬R/σ]

)
(α(z))

where (∗) holds as R can only occur positively in ϑ and thus also in ψ, so we can
replace R by ¬R in ψ′ if we also modify ` accordingly. As R only occurs positively
in ψ and only negatively in ¬ψ[P/¬P ], we can set `′ = `[R/π,¬R/σ] such that

F ϑ,α
` (π) =

(
lfpFψ

`′

)
(α(z))

F ϑ,α
` (σ) =

(
gfpF

¬ψ[P/¬P ]
`′

)
(α(z))

which allows us to apply the induction hypothesis for ψ to conclude that Fψ
`′ and

F
¬ψ[P/¬P ]
`′ are dual. By theorem 5.11, F ϑ,α

` (π) and F ϑ,α
` (σ) are thus complementary.

The proof for gfp-formulae is analogous.

For (C3), we obtain corollary 5.8 as a consequence of this result and theorem 5.11. For
(C1) and (C2), we get the following corollary.

Corollary 5.15. Let ` : LitA → S be an S-interpretation. Then the following holds:

(1) If S is positive or continuous, and `(L) · `(¬L) = 0 for all L ∈ LitA, then this
property lifts to all LFP formulae ϕ, that is: JϕK` · J¬ϕK` = 0.

(2) If S is positive and chain-positive, and `(L) + `(¬L) = 0 for all L ∈ LitA, then this
property lifts to all LFP formulae ϕ, that is: JϕK` + J¬ϕK` 6= 0.
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5.4 Fundamental Property

The above considerations show that the definition of interpretations for LFP in terms of
cpo semirings is reasonable and can be seen as a generalization of standard semantics.
With model-defining interpretations in chain-positive (and positive) semirings, we mainly
generalize standard semantics by allowing several values for truth and otherwise retain
standard properties. With arbitrary semirings and interpretations, we allow a broader
generalization which leads to different properties but is still useful for provenance analysis.
Examples are the semiring V or the dual-indeterminate polynomials in chapter 6.

5.4 Fundamental Property

Towards a general form of provenance, we want to use homomorphisms to switch from
general to application specific semirings. Unlike with FO, semiring homomorphisms are
not sufficient for this purpose since they do not preserve fixed points.

Example 5.16. Recall example 5.6. For ϕ(v) = [gfpRx. ∃y(Exy ∧Ry)](v), we obtained
the fixed-point iteration with πn(v) = (1

2
)n and the fixed-point Jϕ(v)K` = πω(v) = 0 for

the V-interpretation ` with `(Evv) = 1
2
.

Consider the truth projection homomorphism † : V→ B. If we compute the fixed point
in V and then apply the homomorphism, we get

†(Jϕ(v)K`) = †(0) = ⊥

If, on the other hand, we first apply the homomorphism to ` and then compute the
interpretation (and thus the fixed point) in B, we get

Jϕ(v)K†◦` =
(l
{†(πn) | n < ω}

)
(v) =

(l
{>}

)
(v) = >

So in this example, JϕKα†◦` 6= †(JϕKα` ). That is, the homomorphism † does not commute
with the interpretation of ϕ in the Viterbi semiring.

The reason for the different results in the example is that the homomorphism does not
preserve the infimum (which in this case happens because V is not chain-positive). We
therefore consider cpo-semiring homomorphisms which are in particular continuous, so
they preserve suprema and infima and are thus suitable for our needs.

Theorem 5.17 (fundamental property). Let h : S → T be a cpo-semiring homomorphism
and ` : LitA → S an S-interpretation. Then h ◦ ` : LitA → T is a T -interpretation and we
have h(JϕKα` ) = JϕKαh◦` for all LFP formulae ϕ and valuations α.
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5 Semiring Semantics for Fixed-Point Logic

As diagram: LitA

S T

LFP

S T

=⇒` h ◦ `

h

` h ◦ `

h

Proof. We show that for all LFP formulae ϕ in negation normal form, h(JϕKα` ) = JϕKαh◦`
holds for all valuations α and S-interpretations `, which suffices to prove the theorem.
The proof is by induction on ϕ.

• For literals ϕ = Rx, we have h(JϕKα` ) = h(`(Rα(x))) = (h ◦ `)(Rα(x)) = JϕKαh◦`.
The same holds for negative literals ϕ = ¬Rx.

• For ϕ = ϕ1 ∧ ϕ2, we use that h is a semiring homomorphism, so we have

h(JϕKα` ) = h(Jϕ1Kα` · Jϕ2Kα` )
hom
= h(Jϕ1Kα` ) · h(Jϕ2Kα` )

IH
= Jϕ1Kαh◦` · Jϕ2Kαh◦` = JϕKαh◦`

The proofs for ∨ and ∃, ∀ are analogous.

• For ϕ = [gfpRx. ϑ](y) with R of arity k, we again proceed via the fixed-point
iteration. Let (πβ)β∈On be the iteration for ` and let (σβ)β∈On be the iteration for
h ◦ `. We show by transfinite induction that for all β ∈ On:

h(πβ) = σβ, i.e., h(πβ(a)) = σβ(a) for all a ∈ Ak

– For β = 0, we have h(>) = >, as h is a cpo homomorphism.

– For successor ordinals, we can apply the induction hypothesis. Note that

πβ+1 = F ϑ
` (πβ) =

(
a 7→ JϑKα[x/a]`[R/πβ ]

)
σβ+1 = F ϑ

h◦`(σβ) =
(
a 7→ JϑKα[x/a](h◦`)[R/σβ ]

) (∗)
=
(
a 7→ JϑKα[x/a]h ◦ (`[R/πβ ])

)
In (∗), we use the induction hypothesis h(πβ) = σβ. So for every a:

h(πβ+1(a)) = h(JϑKα[x/a]`[R/πβ ]
)
IH
= JϑKα[x/a]h ◦ (`[R/πβ ])) = σβ+1(a)

where we apply the induction hypothesis of the outer induction.

– For limit ordinals, we use that h is continuous, so for every a:

h(πλ(a)) = h(
l
{πβ(a) | β < λ})

hom
=

l
{h(πβ(a)) | β < λ}

IH
=

l
{σβ(a) | β < λ} = σλ(a)

This closes the proof for gfp-formulae, as for sufficiently large β, we have

h(JϕKα` ) = h(πβ(α(y))) = σβ(α(y)) = JϕKαh◦`

The proof for lfp-formulae is analogous.
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5.5 Logical Fragments and Continuity

This result leads to the question which semiring homomorphisms are additionally cpo
homomorphisms. We have already seen in example 4.34 that the truth projection is
continuous (and thus a cpo-semiring homomorphism) precisely for the chain-positive
positive semirings. Another example is the isomorphism T → V, x 7→ e−x that is
continuous as composition of continuous functions (on the real numbers). So there
certainly are natural homomorphisms that preserve semiring semantics JϕK`.

To see why the fundamental property is useful, we show how it can be utilized to provide
a shorter proof of theorem 5.7 which states that A` |= ϕ(a) ⇐⇒ Jϕ(a)K` 6= 0 holds for
all model-defining S-interpretations ` where S is both positive and chain-positive.

Alternative proof of theorem 5.7.
We have already argued that †S ◦ ` = `A` (see section 2.2) and hence

Jϕ(a)K†S◦` = > ⇐⇒ A` |= ϕ(a)

by proposition 5.5. As †S is a cpo-semiring homomorphism, we then have:

A` |= ϕ(a) ⇐⇒ Jϕ(a)K†S◦` = > ⇐⇒ †S(Jϕ(a)K`) = > ⇐⇒ Jϕ(a)K` 6= 0

5.5 Logical Fragments and Continuity

The semiring semantics for full LFP require the semiring to have both suprema and
infima for chains of arbitrary cardinality. In the following section, we discuss how this
can be relaxed for two logical fragments: The positive fragment without greatest fixed
points and the alternation-free fragment which basically avoids nested fixed points.

Definition 5.18. An LFP formula is positive if it is in negation normal form and contains
no gfp-subformulae. The positive fragment (posLFP) consists of all positive formulae.

The interpretation of greatest fixed points leads to several complications, most notably
the notion of chain-positive semirings, which can be avoided when we only consider the
positive fragment. Instead of discussing these advantages in general, we want to bring an
interesting class of semirings into effect which we have not yet considered in detail, the
continuous semirings (recall that all suitable application semirings we consider are also
continuous). This is especially useful for posLFP where, due to the simpler formulae, we
can work with ω-continuous semirings (cf. [GT19]). Indeed, ω-continuous semirings have
already been proposed for provenance analysis of positive LFP and similar logics (e.g.,
[GKT07, GT19, Mrk18]).
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5 Semiring Semantics for Fixed-Point Logic

Theorem 5.19. The lifting of S-interpretations to posLFP according to definition 3.4 is
well-defined if S is an ω-continuous semiring.

To see why suprema of ω-chains suffice to express least fixed points, we observe that the
update operators F ϑ are ω-continuous if ϑ is positive. This allows us to apply Kleene’s
fixed-point theorem 4.6. We can formulate the slightly stronger result:

Proposition 5.20. Let S be an ω-continuous semiring and ϕ a positive formula. Then
JϕK` is ω-continuous in `, so for every ω-chain L = (`i)i<ω of S-interpretations,

JϕK⊔L =
⊔
{JϕK`i | i < ω}

The proof is a straight-forward induction based on the ω-continuity of the semiring
operations. We defer the proof to a similar statement for the alternation-free fragment.
Let us first give an example which illustrates that such a general continuity statement
does not hold for full LFP.

Example 5.21. Recall the Łukasiewicz semiring L = ([0, 1],max, ◦, 0, 1) with a ◦ b =

max(0, a+ b− 1) as introduced in section 4.3. Let us consider ϕ = ∃y [gfpRx. ϑ](y) with
ϑ = Rx ∧ P x over the singleton universe A = {a}.

We define the (ascending) ω-chain L = (`n)n<ω of L-interpretations by

`n(Pa) = 1− 1
n

(for n ≥ 2), `0(Pa) = `1(Pa) = 0

such that
(⊔
L
)
(Pa) = 1. The fixed-point iteration for JϕK⊔L yields πn(a) = 1 (for all

n < ω), so we obtain JϕK⊔L = 1.

For JϕK`10 with `10(Pa) = 0.9, we instead get:

π0(a) = 1

π1(a) = 1 ◦ 0.9 = 1− 0.1 = 0.9

π2(a) = 0.9 ◦ 0.9 = 0.9− 0.1 = 0.8

πω(a) = 0

So the value decreases by 0.1 in every step until it reaches 0. For `n (with n ≥ 2), we
similarly have a decrease by 1

n
in every step, so 0 is reached after n (and thus finitely

many) steps. The fixed point is thus always 0 for every `n and we obtain⊔
{JϕK`n | n < ω} =

⊔
{0} = 0 6= 1 = JϕK⊔L

So although L is continuous, JϕK` is not continuous (or ω-continuous) in `.
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5.5 Logical Fragments and Continuity

Another advantage of posLFP is that ω-continuous homomorphisms are sufficient to
preserve JϕK`. As we will see in chapter 6, this yields a much simpler situation than using
cpo-semiring homomorphisms for full LFP.

The second fragment we consider is the alternation-free fragment. Intuitively, this allows
both least and greatest fixed points as long as they are not nested (or, if they are nested,
they must be independent of each other). Note that we allow alternation of several
lfp-formulae (or several gfp-formulae). More background can be found in [GKL+07].

Definition 5.22. An LFP formula is alternating if its negation normal form contains two
subformulae ϕ = [lfpRx. ϕ̂](y) and ϕ′ = [gfpR′ x′. ϕ̂′](y′) such that ϕ′ is a subformula
of ϕ̂ and R occurs free in ϕ̂′, or vice versa (ϕ is a subformula of ϕ̂′ and R′ occurs free in
ϕ̂). The alternation-free fragment contains all formulae which are not alternating.

We first observe that the previous example features an alternation-free formula, so we
cannot obtain the same continuity result as for posLFP. The problem in the example is
that the `n differ in the interpretation of P which occurs free in the formula. This cannot
happen in alternation-free LFP if the values `n result from an outer fixed-point formula,
as we would then have an alternation between the outer formula (defining P ) and the
inner formula (using R). We can formulate a slightly restricted continuity result which
shows that we still only need ω-chains. As we allow both least and greatest fixed points,
we now have to work work with fully ω-continuous semirings.

Theorem 5.23. The lifting of S-interpretations to the alternation-free fragment of LFP
according to definition 3.4 is well-defined if S is a fully ω-continuous semiring.

To prove the theorem, we show the following continuity statement which is tailored to
alternation-free formulae by restricting the chains of S-interpretations.

Lemma 5.24. Let ϕ be an alternation-free formula, S a fully ω-continuous semiring
and ` an S-interpretation. Let further R1, . . . , Rn relation symbols (for some n < ω). We
then have the following statement (and its dual):

Let (π
(i)
1 )i<ω, . . . , (π

(i)
n )i<ω be ascending (descending) ω-chains of S-valuations. Then

L = (`i)i<ω with `i = `[R1/π
(i)
1 , . . . , Rn/π

(i)
n ] is an ascending (descending) ω-chain of S-

interpretations. If R1, . . . , Rn do not occur free within any gfp-subformula (lfp-subformula)
of ϕ, then

JϕK⊔L =
⊔
{JϕK`i | i < ω}

(
or, dually, JϕKd

L =
l
{JϕK`i | i < ω}

)
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5 Semiring Semantics for Fixed-Point Logic

Moreover, if the above statement holds for a formula ϑ(P,x) where P does not occur
free within any gfp-subformula (lfp-subformula) of ϑ, then the update operator F ϑ

` is
continuous (for every `) in the sense that for every ascending (descending) ω-chain C,

F ϑ,P
` (

⊔
C) =

⊔
{F ϑ,P

` (π) | π ∈ C}
(
or, dually, F ϑ,P

` (
l

C) =
l
{F ϑ,P

` (π) | π ∈ C}
)

Proof. For the proof, we only show the statements about ascending ω-chains, as the
argument for the dual statements is symmetric. Let us first prove the second part of
the lemma, so let ` be arbitrary and consider an ascending ω-chain C = (πi)i<ω. We set
`i = `[P/πi] and L = (`i)i<ω. Then L satisfies the conditions of the lemma and we have
`[P/

⊔
C] =

⊔
{`[P/πi] | i < ω} =

⊔
L, as the supremum is defined pointwise. By the

assumptions on ϑ, we obtain

F ϑ,P
` (

⊔
C) = JϑK•`[P/⊔C] = JϑK•⊔L =

⊔
{JϑK•`i | i < ω} =

⊔
{F ϑ,P

` (πi) | i < ω}

The proof of the first part is by induction on the negation normal form of ϕ.

• For literals ϕ, the statement is trivial.

• For ϕ = ϕ1 ∧ ϕ2, the statement follows by induction as we can use the continuity
of multiplication and the monotonicity of JϕK` (with respect to `):

JϕK⊔L = Jϕ1K⊔L · Jϕ1K⊔L IH
=
⊔
{Jϕ1K`i | i < ω} ·

⊔
{Jϕ2K`j | j < ω}

cont
=
⊔
{Jϕ1K`i · Jϕ2K`j | i, j < ω}

mon
=
⊔
{Jϕ1K`i · Jϕ2K`i | i < ω} =

⊔
{JϕK`i | i < ω}

The same argument holds for ∨, ∃ and ∀.

• For ϕ = [gfpP x. ϑ](y), we know that R1, . . . , Rn do not occur in ϑ. So JϕK⊔L =

JϕK`i = JϕK` (for all i < ω) and the statement follows.

• For ϕ = [lfpP x. ϑ](y), we show by induction on the fixed-point iteration that

π
(β)⊔
L =

⊔
{π(β)

`i
| i < ω}

holds for every β ≤ ω. For β = 0, this is trivial. For successor ordinals, we use the
induction hypothesis for β (IH2) and the outer induction hypothesis on ϑ (IH1):⊔{

π
(β+1)
`i

∣∣ i < ω
}

=
⊔{

JϑK•
`i[P/π

(β)
`i

]

∣∣ i < ω
}

IH1= JϑK•⊔
{`i[P/π

(β)
`i

] | i<ω}

(∗)
= JϑK•

(
⊔
L)[P/

⊔
{π(β)
`i
| i<ω}]

IH2= JϑK•
(
⊔
L)[P/π(β)⊔

L]
= π

(β+1)⊔
L
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where (∗) holds as the supremum of L is computed pointwise. When we apply IH1,
note that `i[P/π

(β)
`i

] defines an ascending ω-chain that satisfies the assumptions of
the lemma: P does not occur within gfp-subformulae of ϕ, as ϕ is alternation-free.

For the limit ordinal ω, we use the fact that we can swap suprema:

π
(ω)⊔
L =

⊔
{π(β)⊔

L | β < ω} IH
=
⊔{⊔

{π(β)
`i
| i < ω}

∣∣ β < ω
}

=
⊔{⊔

{π(β)
`i
| β < ω} | i < ω

}
=
⊔
{π(ω)

`i
| i < ω}

This ends the induction on the iteration. For the statement about ϕ, note that
the induction hypothesis on ϑ together with the second part of the lemma imply
that F ϑ is ω-continuous. So by Kleene’s fixed-point theorem 4.6, π(ω)⊔

L and π(ω)
`i

(for
every i < ω) are already the least fixed points and the statement follows.

The above lemma is rather technical, but has a number of consequences. First, it implies
theorem 5.23, as all update operators are fully ω-continuous such that Kleene’s fixed-point
theorem (and its dual version) apply and guarantee the existence of all fixed points.
As the positive fragment is a subset of the alternation-free fragment, this also proves
theorem 5.19 (if we drop the requirements on infima). Without greatest fixed points, the
lemma can be simplified (we no longer need the assumptions on R1, . . . , Rn if there are
no gfp subformulae), which leads to the continuity statement of proposition 5.20.

Open Question. These results raise the question whether fixed-point iterations (πβ)β∈On

induced by LFP formulae always reach the fixed-point at πω in continuous semirings. This
would imply that fully ω-continuous semirings are suitable for full LFP.

If semiring semantics JϕK` are continuous in `, then all update operators F ϑ
` are continuous

and Kleene’s fixed-point theorem answers this question. Example 5.21 makes clear that
this is not the case in general, so we have to seek other ways to answer this question. We
provide a positive answer for absorptive semirings in section 6.4, following our analysis of
absorptive polynomials S∞[X]. The general case remains open.

Background: To understand why the continuity of JϕK` fails and to provide connections
to order theory beyond the context of logic, let us briefly discuss a related, more general
question. Let S be a continuous semiring. Let f : S × S → S be a function which is
sup-continuous in the first and inf-continuous in the second argument. We define

• gy : x 7→ f(x, y) for every y ∈ S

• G : y 7→ lfp(gy),

• hx : y 7→ f(x, y) for every x ∈ S

• H : x 7→ gfp(hx)

Then gy is always sup-continuous and hx always inf-continuous. The question now is: Does
the continuity of f further imply that G is inf-continuous (and that H is sup-continuous)?
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5 Semiring Semantics for Fixed-Point Logic

Example 5.25. Example 5.21 can be translated into this setting by choosing S = L,
f(x, y) = x ◦ y and considering the ascending ω-chain xn = 1− 1

n
(for n ≥ 2):

H(
⊔
n xn) = H(1) = gfp(h1) = gfp(y 7→ y ◦ 1) = 1⊔

n

H(xn) =
⊔
n

gfp(hxn) =
⊔
n

gfp(y 7→ y ◦ xn) = 0

This provides a negative answer for H. f(x, y) represents the formula ϑ with two relation
symbols, one corresponding to the first argument x and the other corresponding to y.

Example 5.26. We can further give a negative answer for G by considering the semiring
S∞[a] of univariate absorptive polynomials (S∞[X] is introduced in section 6.4).

Consider the function f and the descending ω-
chain (yn)n<ω defined by

f(x, y) = max
(
y, xa

)
yn = an, for n < ω

The diagram on the right depicts the steps of the
fixed-point iteration gkyn(0) depending on n.

a1 a2

a1
a3

a2

a1

a4

a3

a2

a1

a5

a4

a3

a2

a1

1

· · · a∞

...

1

1

1

· · · a∞

...

1

1

1

1

· · · a∞

...

1

1

1

1

1

· · · a∞

...

1

1

1

1

1

1

· · · a∞

...

1

1

1

1

1

1

1

· · · a∞...

1 · · ·

...

E

n

k

Here, x
a stands for division by a. That is, an+1

a = an, a∞
a = a∞ and we additionally set

1
a = 1. Note that univariate absorptive polynomials consist of only one monomial (due to
absorption). For the empty polynomial 0, we additionally set 0

a = 0.

Then f is inf-continuous in y (for a fixed x). Due to the ascending chain condition of
S∞[a], it is further easy to see that f is sup-continuous in x. As the picture indicates, G
is not inf-continuous (we reason about lfp(gy) via the fixed-point iteration gky(⊥)):

G(
d
n yn) = G(a∞) = lfp(x 7→ f(x, a∞)) =

⊔
{⊥, a∞, a∞, a∞, . . . } = a∞

l

n

G(yn) =
l

n

lfp(x 7→ f(x, an)) =
l

n

⊔
{⊥, an, an−1, . . . , a, 1} =

l

n

1 = 1

Unlike the first example, f does not correspond to a formula, but the chain (yn)n<ω is
the result of repeated multiplication with a and thus occurs as a fixed-point iteration of
a formula in S∞[a].
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5.5 Logical Fragments and Continuity

These counterexamples to the generalized question make clear that our open question
has to be attacked by either focusing on certain semirings or by incorporating properties
of logical formulae (and the corresponding fixed-point iterations) into the argument.
Our answer for absorptive semirings in section 6.4 indeed relies on both absorption and,
indirectly, on the structure of formulae by using the fundamental property.
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This chapter discusses semirings of particular interest for provenance analysis, mainly
polynomial semirings in which we can use variables to track the influence of certain
literals. From an algebraic point of view, polynomial semirings are interesting due to
their universal property. That is, they capture computations in a large class of semirings
(via homomorphisms induced by polynomial evaluation) while at the same time having a
reasonable representation. Our main focus is on the chain-positive semiring S∞[X] of
(generalized) absorptive polynomials which we show to be universal among all absorptive
continuous semirings (in terms of cpo-semiring homomorphisms). This makes absorptive
polynomials a promising choice for provenance analysis and also leads to an answer of
the earlier stated open question in the context of absorption. We close this chapter by
extending the idea of dual-indeterminate polynomials from [GT17a] to polynomial cpo
semirings in order to improve the interpretation of negation.

As a reference point, consider the situation for FO as shown in figure 2 below. We have
no requirements on the semiring (other than being positive for some results) and can thus
work with polynomials N[X]. This is the (commutative) semiring freely generated by the
set X, so we can compute provenance information in a very general way. As indicated
in the figure, we can specialize this via homomorphisms to the universal idempotent
semiring B[X] and further to semirings which are additionally absorptive, multiplicative
idempotent or both (these semirings are introduced in this chapter).

N[X]

B[X]

S∞[X]

S[X]

W[X]

PosBool[X]

B

drop
coefficients

drop
exponents

absorb

absorb
drop exp.

N∞JXK

BJXK

S∞[X]

S[X]

W[X]

PosBool[X]

B

not chain-positive

chain-positive

N∞JXK

BJXK

S∞[X] S[X]W[X]

PosBool[X]

B

Figure 2: Polynomial semirings for FO (left), posLFP (center) and LFP (right) discussed in this
chapter. Arrows indicate canonical surjective homomorphisms. Thick arrows are ω-continuous
(center) or cpo homomorphisms (right) while dashed ones are not continuous.
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For fixed-point logics, we need cpo semirings and thus have to work with formal power
series instead of polynomials. If we only consider least fixed-points, then the situation is
comparable to FO as the canonical homomorphism happen to be ω-continuous and thus
preserve least fixed-points (see center diagram in figure 2). This also means that formal
power series N∞JXK are the most general ω-continuous semiring.

For greatest fixed points, the situation is more complex (diagram on the right). We can
use the same semirings as for posLFP, but we need cpo-semiring homomorphisms to
preserve all fixed points (see e.g. example 5.16). This leads to two kinds of polynomial
semirings between which the canonical homomorphisms are not continuous: The chain-
positive (but less general) ones, and the semirings which are not chain-positive (mainly
formal power series). Without chain-positivitiy, these semirings do not preserve truth
(in particular, †S is not continuous) and are thus not favorable for general provenance
computation. We therefore have to make additional restrictions such as absorption or
leaving out exponents to obtain universal semirings for the analysis of full LFP.

6.1 Counting

The first semiring we consider is N∞ as analogue of N for FO. The addition of ∞ makes
N∞ a lattice semiring suitable for provenance computation. In FO, N can be used to
count the number of proofs and we can make similar observations for posLFP.

Example 6.1. In the introductory example 3.5 we have considered the reachability
formula ϕpath(u, v) = [lfpRx. x = v ∨ ∃y(Exy ∧Ry)](u). We have seen that provenance
computation yields the number of paths from u to v (or, equivalently, the number of
proofs of ϕpath(u, v)). The two graphs we considered are shown below.

u

w1

w2

v z u w v

Writing valuations π as tuples (π(u), π(w1), π(w2), π(v), π(z)) or (π(u), π(v), π(w)), we
have seen that the fixed-point iteration for the left graph terminates at π4 = (3, 1, 2, 1, 0).
On the second graph, the iteration does not terminate after finitely many steps, as we
have πn = (n− 2, n− 1, 1). The least fixed-point in N∞ is thus πω = (∞,∞, 1).

In both cases, each entry is equal to the number of paths (possibly empty and allowing
repetitions) from the corresponding node to v. This example suggests that, for lfp-
formulae, we can use semiring semantics in N∞ to count proofs (for now, we rely on an
intuitive notion of proofs, we later make this precise).
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6.2 Formal Power Series

For greatest fixed points, the provenance information in N∞ is less useful as witnessed by
the example below. One reason is that both operations are increasing (that is, a+ b ≥ a, b

and a · b ≥ a, b for a, b 6= 0). As the fixed-point iteration starts with ∞, it therefore
remains at ∞ (unless the value of the previous iteration is multiplied by 0).

Example 6.2. Recall the formula ϕ(v) := ϕinfpath(v) = [gfpRx. ∃y(Exy ∧Ry)](v) from
example 5.6. Consider the interpretation ` induced by the following graph.

vw1 w2

There are two different infinite paths from v and thus two different proofs of ϕ1(v), so
we might expect Jϕ(v)K` = 2. Instead, we get Jϕ(v)K` = ∞. To see this, consider the
fixed-point iteration (where we write valuations π as (π(w1), π(v), π(w2))):

π0 = (∞,∞,∞), π1 = (1 · ∞, 1 · ∞+ 1 · ∞, 1 · ∞) = (∞,∞,∞)

The fixed-point iteration starts at ∞ and immediately terminates, as every node has at
least one outgoing edge. The same happens for alternating formulae such as

ϕ2(v) = [gfpX x. [lfpY x. ∃y(Exy ∧ ((Py ∧Xy) ∨ Y y)](x)](v)

Here, ϕ2(v) says that there is a path from v which visits infinitely many nodes labeled
with P . If we extend ` by `(Pw1) = 1 and `(Pw2) = `(Pv) = 0, then we only consider
w1 to be labeled with P and hence there is only one path witnessing the truth of ϕ2(v).
However, we again get Jϕ2(v)K` =∞.

These examples show that provenance computations in N∞ are not very informative for
greatest fixed points, so N∞ cannot be used to count proofs in LFP.

This example motivates the search for semirings in which multiplication is not increasing.
One possibility are polynomial semirings, such as formal power series, in which xy is
incomparable to x and y. The alternative are absorptive semirings in which multiplication
is always decreasing.

6.2 Formal Power Series

Polynomials with coefficients in N are not chain-complete for two reasons: They lack a
maximal coefficient and a supremum of the chain x, x+ x2, x+ x2 + x3, . . . To address
the first issue, we use N∞ instead of N for coefficients. For the second, we use formal
power series which are like polynomials but admit infinitely many monomials.
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6 Provenance Semirings

As we introduce a number of polynomial semirings below, let us first fix notation. The set
X of variables is always finite. In explanations and examples, we often use the symbols
x, y, z as well as a, b, c for variables. Regardless of the formal definition, we use the
common notation for monomials, e.g. x2y3 and write polynomials or formal power series
as (possibly infinite) sums of monomials.

Definition 6.3. A monomial m in the variables X with exponents from a semiring E
is a function m : X → E. The set of monomials with exponents in E is denoted by
ME. Monomial multiplication is defined as usual by adding exponents:

(
m1 ·m2

)
(x) =

m1(x) + m2(x). We writeM andM∞ for the setsMN andMN∞ , respectively, and 1

for the empty monomial with x 7→ 0 (for all x ∈ X).

Definition 6.4. Let S be a semiring. A formal power series with coefficients in S is a
function f : M→ S. The set of formal power series over S forms the semiring SJXK
with pointwise addition and the usual polynomial multiplication:(

f · g
)
(m) =

∑
m=m1m2

f(m1) · g(m2)

Following this definition, we can view SJXK as a function semiring (apart from its
multiplication, which is independent of the order anyway) and it follows that SJXK is
a lattice semiring whenever the same holds for the coefficient semiring S. Additionally,
SJXK is continuous whenever S is continuous (see [DK09]; they only consider continuity
with respect to suprema, but the argument for infima is analogous).

Proposition 6.5. If S is continuous or a lattice semiring, then so is SJXK.

We are interested in the formal power series N∞JXK and the idempotent version BJXK
that results from N∞JXK by dropping coefficients. The above proposition implies that
both are ω-continuous and thus suitable for posLFP. Indeed, N∞JXK has already been
proposed for provenance analysis of positive fixed-point logics such as datalog [GKT07]
and positive fragments of PDL, CTL [Mrk18] and LFP [GT19].

Example 6.6. As an example for posLFP, we again consider graph reachability via
ϕpath(u, v) = [lfpRx. x = v ∨ ∃y(Exy ∧Ry)︸ ︷︷ ︸

ϑ(x)

](u) on the following two graphs:

u v

w

a b

c

u w v

a

b

c
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6.2 Formal Power Series

For the graph on the left, we get the following iteration (each column is one valuation):

π(u) :

π(w) :

π(v) :

0

0

0

Fϑ7−→
0

0

1

Fϑ7−→
c

b

1

Fϑ7−→
c+ ab

b

1

which quickly terminates and yields Jϕpath(u, v)K` = c+ ab as expected. For the second
graph, we obtain an infinite iteration,

π(u) :

π(w) :

π(v) :

0

0

0

7→
0

0

1

7→
0

c

1

7→
ac

c+ bc

1

7→
ac+ abc

c+ bc+ b2c

1

· · ·

which leads to the infinite power series Jϕpath(u, v)K` =
∑

n<ω ab
nc. Each monomial abnc

correspond to one possible path that cycles n times at node w.

For both examples, we can consider the variable assignment a, b, c 7→ 1 which induces an
ω-continuous homomorphism h : N∞JXK→ N∞ corresponding to polynomial evaluation.
Applying h to the result in N∞JXK then yields the same value as the computation in N∞

(when we interpret all edges by 1). For the first example, we indeed have h(ab+c) = 1+1 =

2 and for the second graph, we have h(
∑

n<ω ab
nc) =

∑
n<ω h(abnc) =

∑
n<ω 1 =∞.

These examples show that N∞JXK is well-suited for provenance analysis of posLFP.

As seen for the homomorphism h above, another reason why formal power series N∞JXK
are interesting is that they inherit the universality of N[X], as stated in [GKT07].

Proposition 6.7. Let T be an ω-continuous semiring and let v : X → T be a variable
assignment. Then there is a uniquely defined ω-continuous homomorphism h : N∞JXK→
T that extends v (i.e., h(x) = v(x) for all x ∈ X).

The homomorphism can be defined as h : f 7→
∑

m∈M f(m) · h(m), where the factors
f(m) are interpreted as repeated addition (possibly infinite) in the target semiring T and
the countable sum can be defined via suprema in ω-continuous semirings (see [GKT07]).
As h is ω-continuous, it preserves semiring semantics for posLFP.

Formal power series are, however, not suitable as universal semirings for the interpretation
of full LFP. The reason is that they are not chain-positive, so the truth projection † is
not a continuous homomorphism and formal power series are thus not compatible with
standard semantics. The reason why the ω-continuous homomorphism h defined above is
not continuous is that infima do not commute with the countable sum over all monomials.

Another potential issue is that formal power series may be infinite and thus difficult
to represent (although [GKT07] shows that finiteness and individual coefficients can be
computed for datalog provenance).
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6 Provenance Semirings

Example 6.8. Consider ϕinfpath on one of the graphs from the previous example:

ϕ(u) = ϕinfpath(u) = [gfpRx. ∃y(Exy ∧Ry)](u)

u w v

1
b

1

To simplify the presentation, we only track the self-loop at w and consider BJXK with
X = {b} instead of N∞JXK. The following argument also applies to the more general
setting. The top element of BJbK is the infinite power series 1 + b+ b2 + b3 + . . . and the
fixed-point iteration yields the following values for the node w:

π1(w) = 1 + b+ b2 + b3 + · · ·+ bn + . . .

π2(w) = b+ b2 + b3 + · · ·+ bn + . . .

π3(w) = b2 + b3 + · · ·+ bn + . . .

πn+1(w) = bn + . . .

Consider any monomial m with the exponent m(b) = k. Then the last occurrence of m is
in πk+1(w) and the infimum is thus 0. Hence also Jϕ(u)K` = Jϕ(w)K` = 0.

This is in conflict with standard semantics. The assignment b 7→ > lifts to a homomor-
phism h : BJbK→ B such that h ◦ ` is model-defining for the above graph. As the graph
has an infinite path, we get Jϕ(u)Kh◦` = > although h(Jϕ(u)K`) = h(0) = ⊥. This shows
in particular that the homomorphism h (which is simply the truth projection †) is not
continuous, even though it is defined in a natural way by a variable assignment.

In N∞JXK, we obtain Jϕ(u)K` = 0 by the same argument. This leads to a similar conflict
with N∞: The assignment b 7→ 1 induces a homomorphism h, but we have Jϕ(u)Kh◦` =∞
in N∞ and Jϕ(u)K` = 0 in N∞JXK.

These considerations show that formal power series are no longer universal in the presence
of greatest fixed points. All of these issues are connected to the missing chain-positivity
which is here exhibited by repeatedly applying multiplication.

6.3 Why-Semiring

In previous examples, we have seen several issues with greatest fixed points related to
chain-positivity or caused by an increasing multiplication. In the reachability example
for N∞, we have further argued that we are often mostly interested in shortest paths. We
now present two possible solutions: With the why-semiring, we only consider which facts
(literals) are needed for a proof, but we do not count how often they are used. So it does
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6.3 Why-Semiring

not matter how often we loop through the cycle, we only remember whether we used the
cycle at all. The second solution is to use the absorptive polynomials presented in the
next section which only represent shortest proofs.

The why-semiring is motivated by why-provenance for databases. In [Gre11], it has been
defined as Why(X) = (P(P(X)),∪,d, ∅, {∅}) where P1 dP2 = {m1 ∪m2 | m1 ∈ P1,m2 ∈
P2} is pairwise union. We give an equivalent definition in terms of polynomials. A
slightly more general semiring considered in [Gre11] is Trio(X) which additionally allows
coefficients from N. A chain-complete version could use N∞ instead of N, but would
exhibit similar behavior and issues as N∞ and W[X], so we do not consider it here.

Definition 6.9. The why-semiring W[X] is the set of all functions P :MB → B which we
interpret as polynomials, together with standard polynomial addition and multiplication.

Following the definition of W[X] via P(P(X)), we view monomials fromMB as subsets
of X and functions P as subsets ofMB for convenience.

W[X] results from B[X] or BJXK by dropping exponents, as x2 = x for all x ∈ X.
However, W[X] is not multiplicative idempotent in general7, as (x+ y)2 = x+ xy + y. An
important property of the why-semiring is its finiteness which makes it chain-complete
and continuous (and thus, being idempotent, a lattice semiring).

Proposition 6.10. The why-semiring W[X] is a continuous lattice semiring.

Moreover, all chains are finite and thus have maximal (or minimal) elements. As
homomorphisms are order-preserving, this implies that every homomorphism is continuous
and we can formulate the following universality result. It further implies that JϕK` is
continuous in `, as there are only finitely many W[X]-interpretations.

Proposition 6.11. Let S be an idempotent cpo semiring and let f : X → S be a variable
assignment with f(x)2 = f(x) for all x ∈ X. Then f extends to a unique homomorphism
h : W[X]→ T . This homomorphism is continuous.

In particular, this applies to all semirings which are both idempotent and multiplicatively
idempotent. Note that this result does not suffice to preserve fixed-points. For this, we
require h to be a cpo homomorphism, so we additionally need h(>) = >. In W[X], the
neutral element 1 is the empty monomial while > is the set of all monomials, so h(1) = 1

does not imply h(>) = >. And we can indeed define homomorphisms which do not
preserve fixed-points.

7It should be noted that this observation contradicts the claim in [GT17b] that Why(X) results from
B[X] by making multiplication idempotent.
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6 Provenance Semirings

Example 6.12. The mapping x 7→ 1 (for all x ∈ X) induces the trivial homomorphism
h : W[X] → W[X] with h(p) = 1 for all p 6= 0 (we can view the image of h as an
embedding of B into W[X]; this is possible for every idempotent semiring).

Let X = {x} and consider ϕinfpath(v) on a graph consisting of a single node v with a
self-loop (as in example 5.6). For the W [X]-interpretation with `(Evv) = x, we then get
the iteration π0(v) = > = 1 + x, π1(v) = x · (1 + x) = x, π2(v) = x · x = x and hence
JϕK` = x. Applying the homomorphism h, we obtain h(JϕK`) = h(x) = 1. If we instead
apply h first, we get (h ◦ l)(Evv) = 1 and then JϕKh◦` = > = 1 + x.

The why-semiring is also interesting in its own right. If we assign variables to the facts
(literals) we want to track, we may think of a monomial JϕK` as the set of tracked facts
occurring in a proof. For posLFP this indeed works, so we learn why the formula holds
(but not how exactly the proof looks). For greatest fixed-points, the situation is, yet again,
not so clear. The reason can be found in the fixed-point iteration: We start with the set
of all monomials and then rule those out whose variables (or rather, the associated facts)
do not suffice to prove ϕ. We do however keep monomials with superfluous variables
even though they might not correspond to proofs, as the following example shows.

Example 6.13. Let us first consider the positive formula ϕpath on the following graph:

ϕpath(u, v) = [lfpRx. x = v ∨ ∃y(Exy ∧Ry)](u)

u w v

a

b

c

Consider X = {a, b, c} and the model-defining W[X]-interpretation indicated in the
picture (e.g., `(Euw) = a, `(¬Euw) = 0). We then get the fixed-point iteration

π(u) :

π(w) :

π(v) :

0

0

0

7→
0

0

1

7→
0

c

1

7→
ac

c+ bc

1

7→
ac+ abc

c+ bc

1

and obtain the overall value Jϕpath(u, v)K` = ac + abc. The monomial ac corresponds
to the path u → w → v witnessing the truth of ϕpath(u, v), while the monomial abc
corresponds to all paths which additionally cycle (finitely often) at w. So we learn from
the provenance computation that we can prove the formula by using the edges {a, c} or
by using the edges {a, b, c} as we would expect.

Now consider ϕinfpath(u) = [gfpRx. ∃y(Exy ∧Ry)](u) on the same graph. There is only
one infinite path using the edges {a, b}. However, the fixed-point iteration yields

π(u) :

π(w) :

π(v) :

>
>
>

7→
a>
b>+ c>
0

7→
ab>+ ac>
b>
0

7→
ab>
b>
0

62



6.4 Absorptive Polynomials

where > is the set of all monomials. Hence Jϕinfpath(u)K` = ab> = ab+abc. The monomial
ab indeed corresponds to the infinite path, but there is no infinite path for the monomial
abc. So for greatest fixed points, not all monomials correspond to proofs.

The reason is that multiplication in the gfp-iteration results in expressions of the form
m> where m corresponds to the actual proof of ϕ. The monomials in m> all contain
enough variables for a proof of ϕ, but also contain superfluous variables (such as abc).
The actual provenance information is thus carried by the shortest monomials m.

For least fixed-points, we only add monomials during the iteration that actually correspond
to proofs, so such problems cannot occur. For full LFP however, the example makes clear
that W[X] is not the semiring we are looking for. What we need is a way to avoid the
unwanted longer monomials – this is achieved by absorption.

6.4 Absorptive Polynomials

The alternative to the why-semiring is to introduce absorption among monomials. Then
only the shortest monomials remain, so JϕK` only contains information about the minimal
witnesses for the truth of ϕ. Absorptive polynomials have been introduced as the semiring
Sorp(X) in [DMRT14] where it was defined as a quotient of N[X] (modulo absorption).
We refer to this semiring as S[X]. More important for us is the definition of generalized
absorptive polynomials S∞[X] in [GT19] and [Mrk18] which complete S[X] by allowing
the exponent ∞, thereby achieving chain-completeness. As we are only concerned with
S∞[X] in this work, we use the term absorptive polynomials for the semiring S∞[X].

A central property of absorptive polynomials is their universality. The definition as
quotient of N[X] modulo absorption in [DMRT14] means that Sorp(X) is the most
general absorptive semiring. For provenance of LFP, however, we need universality in
terms of cpo-semiring homomorphisms to preserve fixed-points. We show that in this
respect, S∞[X] is the most general absorptive continuous semiring.

We have already seen another motivation to consider absorptive semirings: In N∞, both
operations are increasing. This leads to an asymmetry between least and greatest fixed
points and causes the latter to contain less information. If we instead require that
a, b ≥ ab (for all elements a, b), then this already implies absorption (see proposition 4.25).
In other words, absorption goes hand in hand with a higher degree of symmetry which in
turn leads to better results for greatest fixed points.
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1
x y

x2 y2xy

x3 y3x2y xy2

x∞ y∞

x∞y xy∞

x∞y∞

Figure 3: Hasse diagram of the lattice of monomials over {x, y} ordered by absorption.

Definition

We follow the definition by Grädel and Tannen [GT19]. The starting point is the
absorption order on monomials which intuitively means that shorter monomials (with
smaller exponents) absorb longer ones. Absorptive polynomials are then polynomials
(without coefficients) in which we only keep shortest monomials.

Definition 6.14. The absorption order onM∞ is the partial order defined by

m1 ≥ m2 ⇐⇒ m1(x) ≤ m2(x) for all x ∈ X

If m1 ≥ m2, we say that m1 absorbs the monomial m2.

Note that we have m1 ≥ m2 if the exponents in m1 are smaller than m2, so m1 is shorter.
For example, ab2 absorbs a3b2 and ab∞, but not a2b. The empty monomial 1 absorbs all
other monomials. As the absorption order is defined variable-wise and N∞ is a complete
lattice, the monomialsM∞ form a complete lattice under absorption (see figure 3).

Remark: The monomialsM∞ can also be described as the function semiring (N∞)X .
Following the above definition, we see that the absorption order is the inverse of the
natural order on (N∞)X . This is the reason why the infimum of a family of monomials
(mi)i∈I can be expressed variable-wise by taking the supremum of the exponents mi(x)

for each variable x. For example, the chain (mi)i<ω = x, xy, xy2, . . . , xyi, . . . has the
infimum xy∞ where 1 =

⊔
imi(x) and ∞ =

⊔
imi(y) =

⊔
i i.

Absorptive polynomials are antichains of monomials, as we only keep the absorption-
maximal monomials after each operation, e.g. ab2 + ab = ab. While S∞[X] is infinite, it
is a simple yet crucial observation that antichains of monomials and ascending chains
are always finite [GT19]. One way to see this is by Dickson’s lemma as formulated in
[FFSS11] which states that every infinite sequence (ai)i<ω of elements from Nk (for some
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finite k and using the product order for k-tuples) contains an ascending pair ai ≤ aj
with i < j. Following the proof of Dickson’s lemma, it is easy to see that the same holds
for (N∞)k. This translates to our setting when we viewM∞ as (N∞)|X| and note that
absorption order is the inverse of the standard product order.

Proposition 6.15. M∞ is a complete lattice under the absorption order. Moreover, all
antichains and ascending chains inM∞ are finite.

Addition and multiplication are defined via the standard operations on polynomials,
except that we afterwards apply absorption. To this end, we write maximals(M) for the
set of absorption-maximal monomials in the M ⊆M∞, which always yields an antichain.

Definition 6.16. An absorptive polynomial (with variables in X and exponents in N∞)
is an antichain in M∞. The set of absorptive polynomials forms the semiring S∞[X]

with operations defined by

P +Q = maximals(P ∪Q)

P ·Q = maximals({m1 ·m2 | m1 ∈ P,m2 ∈ Q})

The semiring S[X] is defined in the same way based onM instead ofM∞.

One can easily verify that this defines a semiring. We write an absorptive polynomial as
sum of its monomials, e.g. P = a2b+ b∞. The neutral elements are the empty antichain,
which we write as 0, and the antichain consisting only of the monomial 1.

The semiring S[X] of absorptive polynomials with exponents from N instead of N∞

is not chain-positive, as the infimum of x, x2, x3, x4, . . . is 0. We can thus view the
additional monomials x∞ as a completion of S[X] to achieve chain-positivity. The
canonical homomorphism from formal power series N∞JXK or BJXK to S∞[X] is given
by f 7→ maximals({m | f(m) 6= 0}) and is not continuous:

Example 6.17. Recall the problematic example 6.8 for formal power series BJbK. In
S∞[b], the iteration has a similar but simpler form (values on the right):

π1(w) = 1 + b+ b2 + b3 + · · ·+ bn + . . . 7→ 1

π2(w) = b+ b2 + b3 + · · ·+ bn + . . . 7→ b

π3(w) = b2 + b3 + · · ·+ bn + . . . 7→ b2

πn+1(w) = bn + . . . 7→ bn

πω(w) = 0 67→ b∞

Due to the completion of S∞[X], we now obtain the infimum b∞ instead of 0.
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Properties

A key property is the finiteness of absorptive polynomials due to proposition 6.15. This
further implies that S∞[X] is countable as a set of finite subsets of the countable setM∞.
The natural order can be described via the absorption order on monomials:

Proposition 6.18. For P,Q ∈ S∞[X],

P ≤ Q ⇐⇒ for every m1 ∈ P there is m2 ∈ Q with m1 ≤ m2.

Proof. If P ≤ Q, then P +P ′ = Q for some P ′ ∈ S∞[X] and thus Q = maximals(P ∪P ′).
As P ∪ P ′ is finite, for every m ∈ P there is m′ ∈ maximals(P ∪ P ′) = Q with m ≤ m′.

For the other direction, consider P +Q. As every m1 ∈ P is absorbed by some m2 ∈ Q,
we have P +Q = maximals(P ∪Q) = maximals(Q) = Q and thus P ≤ Q.

Most importantly, S∞[X] is an absorptive lattice semiring [GT19] and thus suitable for the
interpretation of fixed-point logics. Absorption is not surprising due to our construction.
For the lattice property, we need an additional observation.

Lemma 6.19. Let M ⊆ M∞. Then for every monomial m ∈ M there exists m′ ∈
maximals(M) with m ≤ m′.

Proof sketch. Towards a contradiction, assume that that there is no such m′. Then m is
not maximal, so there is an m1 ≥ m. By repeating this argument, we obtain an infinite
ascending chain m ≤ m1 ≤ m2 ≤ . . . which contradicts proposition 6.15.

Theorem 6.20. S∞[X] is an absorptive lattice semiring.

Proof. First note that S∞[X] is naturally ordered as a consequence of proposition 6.18.
For absorption, we have to show P + PQ = P . Every monomial in PQ is of the form
m1 ·m2 with m1 ∈ P and m2 ∈ Q. Such a monomial is absorbed by m1 ∈ P and thus
P + PQ ≤ P . The other direction holds by natural order.

To show that S∞[X] is a complete lattice, we show that suprema of arbitrary sets exist:⊔
S = maximals(

⋃
S), where S ⊆ S∞[X].

Let P ∈ S. Then P ⊆
⋃
S and thus P ≤ maximals(

⋃
S) by the previous lemma. Hence

maximals(
⋃
S) is an upper bound for S.
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To see that it is the least upper bound, let Q be any upper bound for S, so Q ≥ P

for all P ∈ S. For each m ∈ maximals(
⋃
S) there is a P ∈ S with m ∈ P and hence

m ≤ P ≤ Q. It follows that maximals(
⋃
S) ≤ Q.

The above proof provides a simple characterization for suprema of arbitrary sets. For
chains, the situation is even simpler as S∞[X] fulfills the ascending chain condition (ACC).
That is, each ascending chain reaches its supremum after finitely many steps.

Proposition 6.21. Let (Pi)i<ω be an ascending ω-chain in S∞[X]. Then there is a k < ω

such that Pj = Pk =
⊔
i Pi for all j ≥ k.

Proof. The supremum has the finite form
⊔
i Pi = m1 + · · · + mn for some n < ω. As⊔

i Pi = maximals(
⋃
i Pi), for every 1 ≤ j ≤ n there is an index ij such that mj ∈ Pij .

Then Pk =
⊔
i Pi with k = max{ij | 1 ≤ j ≤ n}.

Descending chains of absorptive polynomials may be infinite. To simplify the analysis of
infima, we first observe that it suffices to consider ω-chains since S∞[X] is countable.

Lemma 6.22. Let S be a cpo semiring and C ⊆ S a countable chain. Then there is an
ω-chain (xi)i<ω such that xi ∈ C for all i < ω and further

d
C =

d
i xi.

Moreover, if f : S → T is a monotone function into a cpo semiring T , then additionallyd
f(C) =

d
i f(xi). Analogue statements hold for suprema.

Proof. We only show the statement involving f , as it implies the first (using the identity
on S) and only consider infinite C (otherwise the statement is trivial).

Fix a bijection g : ω → C and recursively define

x0 = g(0), xi+1 =

{
g(i+ 1), if g(i+ 1) ≤ xi

xi, otherwise

Then (xi)i<ω is a descending ω-chain. We have xi ∈ C by definition and thus
d
i f(xi) ≥d

f(C). Conversely, for every c ∈ C there is an i with g(i) = c and thus c ≥ xi. By
monotonicity, we have f(c) ≥ f(xi) ≥

d
i f(xi) and hence

d
f(C) ≥

d
i f(xi).

In [Mrk18] it is shown (as requirement of the notion of absorptive lattice semirings
they consider) that the natural order on S∞[X] is completely distributive and that the
operations satisfy some notion of continuity. We adapt this result to our setting:

Theorem 6.23. S∞[X] is a completely distributive, continuous lattice semiring.
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6 Provenance Semirings

Proof. Only continuity is left to prove. It is already shown in [Mrk18] that addition is
continuous (due to proposition 4.21) and that multiplication satisfies

Q ·
⊔

S =
⊔

Q · S, for every set S ⊆ S∞[X] and Q ∈ S∞[X],

Q ·
l

i<ω

Pi =
l

i<ω

Q · Pi, for every ω-chain (Pi)i<ω ⊆ S∞[X] and Q ∈ S∞[X].

The last statement can be lifted to arbitrary chains C ⊆ S∞[X] by the previous lemma
which yields an ω-chain (Pi)i<ω with

d
C =

d
i Pi and

d
Q · C =

d
iQ · Pi.

Characterization of Infima

We have seen in theorem 6.20 that suprema of arbitrary sets can easily be characterized.
In this section, we seek a characterization for infima of ω-chains which lays the foundation
for later results. The main idea is to consider chains of monomials instead of polynomials
as they are much easier to handle.

For the remainder of this section, fix a descending ω-chain of polynomials (Pi)i<ω in
S∞[X] and let Pω =

d
i Pi. We consider special chains of monomials:

Definition 6.24. A descending ω-chain m = (mi)i<ω inM∞ is a monomial chain through
(Pi)i<ω if mi ∈ Pi for all i < ω. We denote the set of such monomial chains by M.

In order to characterize Pω, we introduce a graph representation for (Pi)i<ω to visualize
all possible monomial chains. An example is shown in figure 4.

Definition 6.25. Given (Pi)i<ω, the chain graph is the directed graph G = (V,E) with

• V = {(i,m) | i < ω,m ∈ Pi},

• E consists precisely of the edges ((i,m), (i+ 1,m′)) with m′ ≤ m.

Lemma 6.26. The following statements hold in any chain graph:

(1) For each node (i,m), there is a path from (0,m0) to (i,m) for some m0 ∈ P0. Every
node (i′,m′) on this path satisfies m ≤ m′.

(2) The infinite paths from nodes (0,m) correspond to monomial chains through (Pi)i<ω.

(3) The chain graph is finitely branching.
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6.4 Absorptive Polynomials

P0 : a b+ c∞+

P1 : ab b2+ c∞+

P2 : a2b2 b3+ b2c+

P3 : a3b2 b∞+

P4 : a4b2 b∞+

Pω : a∞b2 b∞+

P0 : x y+

P1 : x2 xy+ y2+

P2 : x3 x2y+ xy2+ y3+

P3 : x4 x3y+ x2y2+ xy3+ y4+

Pω : x∞ y∞+

Figure 4: Two examples of descending polynomial chains, the corresponding chain graph and
infimum. On the left, the gray area indicates the subgraph for a∞b2 (in the proof of theorem 6.27).
On the right, the number of monomials increases unboundedly.

Proof. Claim (1) is by induction on i. The base case for i = 0 is trivial. For (i+ 1,m), we
have m ∈ Pi+1 ≤ Pi. So there is an m′ ∈ Pi with m ≤ m′ and thus an edge from (i,m′)

to (i + 1,m). By induction, a path to (i,m′) exists and can be extended to (i + 1,m).
Claims (2) and (3) hold by construction and since absorptive polynomials are finite.

We are now ready to prove the characterization for infima of chains in S∞[X]. The proof
makes use of the well-known Kőnig’s lemma which states that every node in a finitely
branching, connected, infinite graph is part of an infinite path.

Theorem 6.27 (characterization of infima).
l

i<ω

Pi =
⊔{l

i<ω

mi | m ∈M
}

= maximals(
{l

i<ω

mi | m ∈M
}

)

Proof of theorem 6.27. By definition, mi ≤ Pi and thus
d
imi ≤

d
i Pi for every m ∈M.

Hence
d
i Pi ≥

⊔
{
d
imi | m ∈M}.

For the other direction, consider the infimum Pω =
d
i Pi. We claim that for every

monomial mω ∈ Pω, there is a monomial chain m ∈M with
d
imi ≥ mω. This implies

the other direction and thus the theorem.

To prove the claim, fix a monomial mω ∈ Pω and let G = (V,E) be the chain graph for
(Pi)i<ω. Consider the subgraph G′ induced by V ′ = {(i,m) | m ≥ mω} ⊆ V . For each i,
we have Pω ≤ Pi and hence there is a monomial m ∈ Pi with mω ≤ m. By the previous
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6 Provenance Semirings

lemma, each of the corresponding nodes (i,m) ∈ V ′ lies on a path in G′ from a node
(0,m0) with m0 ∈ P0. As P0 is finite, there must be an m0 ∈ P0 that is the origin of
infinitely many such paths. Then the component of (0,m0) in G′ is infinite.

By Kőnig’s lemma, there is an infinite path from (0,m0) in G′ which corresponds to a
monomial chain m ∈ M. By definition of G′, we have mi ≥ mω for all i < ω and thusd
imi ≥ mω. This proves the claim, ending the proof.

Remark 1: We only need finitely many monomial chains to define the infimum due to
the finiteness of Pω. So there are m(1), . . . ,m(k) ∈M such that

l

i<ω

Pi =
⊔{l

i<ω

mi | m ∈Mfin
}

=
l

i<ω

m
(1)
i + · · ·+

l

i<ω

m
(k)
i

Remark 2: This result is similar in shape to the complete distributivity of S∞[X].
Let (Pi)i<ω be a family (not necessarily a chain) of polynomials. Since polynomials
are antichains of monomials (which we can, under slight abuse of notation, view as
polynomials), we have Pi =

⊔
Pi for all i. Complete distributivity then yields

l

i<ω

Pi =
l

i<ω

⊔
Pi =

⊔
f∈F

l

i<ω

f(i)

where F is the set of choice functions with f(i) ∈ Pi for all i < ω. Each function f

defines what we might call a monomial family through (Pi)i<ω. If the Pi form a chain,
then each m ∈M induces the function f(i) = mi, but there are also functions which do
not correspond to monomial chains. The key insight of the above theorem is thus that
for chains of polynomials, we only need chains of monomials to describe the infimum.
Monomial chains have a very simple structure (this becomes apparent when we viewM∞

as function semiring) which makes this insight useful for us.

The characterization via monomial chains enables us to prove further statements about
infima. A first consequence of our proof is chain-positivity.

Corollary 6.28. S∞[X] is chain-positive.

Proof. By lemma 6.22, it suffices to consider ω-chains (Pi)i<ω. As Pi 6= 0 by assumption,
there is at least one node (i,m) in the chain graph with m ∈ Pi for each i < ω. As P0

is finite, there is m0 ∈ P0 such that infinitely many of these nodes are reachable from
(0,m0). By Kőnig’s lemma, there is an infinite path from (0,m0) which corresponds to a
monomial chain m ∈M. By the above theorem, Pω ≥

d
imi and thus Pω 6= 0.
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6.4 Absorptive Polynomials

Universality

A central property of S∞[X] is the following universality result which, combined with the
fundamental property, has several consequences and in particular shows that provenance
computation in S∞[X] is sufficient to capture computations in any absorptive continuous
semiring. The remainder of this section is devoted to its proof.

Theorem 6.29 (universality). Let T be an absorptive continuous semiring and let further
f : X → T be a variable assignment. Then there is a uniquely defined cpo-semiring
homomorphism h : S∞[X]→ T that extends f (i.e., h(x) = f(x) for all x ∈ X).

We first observe that, similar to x∞ =
d
n x

n for x ∈ X, we can define an infinitary power
a∞ for every a ∈ T , as the powers (an)n<ω form a descending chain due to absorption.

Definition 6.30. The infinitary power of a ∈ T is defined as a∞ =
d
n<ω a

n.

Lemma 6.31. Let a ∈ T . Then a · a∞ = a∞.

Proof. This follows from the continuity of T , as a ·
d
n a

n =
d
n(a · an) =

d
n a

n.

Let us start by defining the homomorphism h. On monomials, h is uniquely defined by f
as we require h to be multiplicative and continuous:

• For x ∈ X, we require h(x) = f(x) and further h(1) = 1.

• By induction and multiplicity, it follows that h(xn) = f(x)n for all n < ω.

• By continuity, x∞ =
d
n x

n implies h(x∞) = h(
d
n x

n) =
d
n h(xn).

• Multiplicity requires h(xayb) = h(xa) · h(yb) for x, y ∈ X and a, b ∈ N∞.

• We thus have to set h(m) :=
∏

x∈X f(x)m(x) for monomials m ∈M∞.

This uniquely defines h on monomials and we can verify multiplicity:

h(m1) · h(m2) =
∏
x∈X

f(x)m1(x) ·
∏
x∈X

f(x)m2(x) (∗)
=
∏
x∈X

f(x)m1(x)+m2(x) = h(m1 ·m2)

where (∗) holds as T is commutative using the above lemma if m1(x) =∞ or m2(x) =∞.
Note that without the continuity requirement, h would not be uniquely defined as we
could also define a homomorphism with h(x∞) = 0.

Lemma 6.32. h preserves the absorption order on monomials.
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Proof. For m ∈ M∞, we can write h(m) =
∏

x∈X f(x)m(x). If m1 ≤ m2, then m1(x) ≥
m2(x) and thus f(x)m1(x) ≤ f(x)m2(x) by absorption in T , for all x ∈ X. As X is finite
and multiplication in T is monotone, this implies h(m1) ≤ h(m2).

The definition on monomials uniquely lifts to polynomials:

• Additivity requires h(m1 +m2) = h(m1) + h(m2) for monomials m1,m2.

• We thus have to define h(P ) :=
∑

m∈P h(m) for P ∈ S∞[X].

To prove that h is a homomorphism, it remains to show that h is additive and multi-
plicative. As T is idempotent, a ≤ b implies a + b = b for a, b ∈ T . Together with the
previous lemma, m1 ≤ m2 implies h(m1) + h(m2) = h(m2) = h(m1 +m2) for monomials
m1,m2. If m1 and m2 are incomparable, then h(m1) +h(m2) = h(m1 +m2) by definition.
By induction, this yields h(m1 + · · · + mk) = h(m1) + · · · + h(mk) for all monomials
m1, . . . ,mk and k < ω. This implies that h is indeed a homomorphism:

h(P +Q) = h
(∑
m∈P

m+
∑
m′∈Q

m′
)

=
∑
m∈P

h(m) +
∑
m′∈Q

h(m′) = h(P ) + h(Q)

h(P ·Q) = h
(∑
m∈P,m′∈Q

m ·m′
)

=
∑
m∈P,m′∈Q

h(m) · h(m′)

=
(∑
m∈P

h(m)
)
·
( ∑
m′∈Q

h(m′)
)

= h(P ) · h(Q)

The crucial observation for theorem 6.29 is that h is continuous. This is easy to see
for suprema due to the ascending chain condition. In fact, we can directly show that h
preserves suprema of arbitrary sets S which are essentially described by the union

⋃
S.

Proposition 6.33. Let h : S∞[X] → T be a semiring homomorphism where T is an
absorptive cpo semiring. Then for every set S ⊆ S∞[X],⊔

h(S) = h
(⊔

S
)

Proof. First note that T is a lattice semiring, so
⊔
h(S) is defined. Moreover, recall that

h preserves addition and thereby also the natural order. The direction h(
⊔
S) ≥

⊔
h(S)

is then trivial by monotonicity (same argument as in proposition 4.32).

For the other direction, note that
⊔
S = m1 + · · ·+mk for some monomials m1, . . . ,mk.

Consider one monomial mi. Since
⊔
S = maximals

(⋃
S
)
, there is a P ∈ S with

mi ∈ P . Then
⊔
h(S) ≥ h(P ) ≥ h(mi). This holds for each 1 ≤ i ≤ k and implies⊔

h(S) ≥ h(m1) + · · ·+ h(mk) = h(m1 + · · ·+mk) = h(
⊔
S).
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6.4 Absorptive Polynomials

For infima, the proof is more complicated. We first show that h is continuous on monomials
and then turn our attention to ω-chains of polynomials. We start with a simple fact on
ω-chains in continuous semirings.

Lemma 6.34 (splitting lemma). Let T be a continuous semiring, ◦ ∈ {+, ·} and let
(ai)i<ω and (bi)i<ω be descending ω-chains in T . Then

l

i<ω

ai ◦ bi =
l

i<ω

ai ◦
l

j<ω

bj

Proof. We have the following equality, where (∗) holds by continuity of T :

l

i

ai ◦ bi
(1)
=

l

i

l

j

ai ◦ bj
(∗)
=

l

i

(ai ◦
l

j

bj)
(∗)
=

l

i

ai ◦
l

j

bj

We prove both directions of (1). Fix i, j and let k = max(i, j). Then ai ◦ bj ≥ ak ◦ bk ≥d
k ak ◦ bk by monotonicity of ◦. As i, j are arbitrary, this proves

d
i

d
j ai ◦ bj ≥

d
k ak ◦ bk.

For the other direction, we have ai ◦ bi ≥ ai ◦
d
j bj for every i by monotonicity of ◦. By

continuity, ai ◦ bi ≥
d
j ai ◦ bj for every i, and thus

d
i ai ◦ bi ≥

d
i

d
j ai ◦ bj.

Proving that h preserves infima of monomial chains is easy due to the fixed number of
variables. This enables us to split a chain of monomials into chains for all variables.

Proposition 6.35. For every ω-chain (mi)i<ω of monomials, h(
d
imi) =

d
i h(mi).

Proof. Let mω =
d
imi. As the infimum is computed variable-wise, we have mω(x) =⊔

imi(x) for all x ∈ X. Then

l

i

h(mi) =
l

i

∏
x∈X

h(x)mi(x)
(1)
=
∏
x∈X

l

i

h(x)mi(x)

(2)
=
∏
x∈X

h(x)
⊔
mi(x) =

∏
x∈X

h(x)mω(x) = h(mω)

where (1) holds by the splitting lemma. For (2), we fix an x ∈ X and make a case
distinction. If

⊔
imi(x) = n for some n < ω, then there is an i such that mj(x) = n for

all j ≥ n and thus
d
i h(x)mi(x) = h(x)n. If

⊔
imi(x) =∞, then the values mi(x) become

arbitrarily large and thus
d
i h(x)mi(x) =

d
i h(x)i = h(x)∞.

For polynomials, more work is required. While the number of monomials is always finite,
it is not fixed and cannot be limited in general (see figure 4 for an example). For the
remainder of this section, let (Pi)i<ω be a descending ω-chain and let Pω =

d
i Pi be its

infimum. Theorem 6.27 expresses Pω in terms of monomial chains, but this result does
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P0 : a b+

P1 : a∞ b+

P2 : a∞ b2c+ ab+

P3 : a∞ b2c+

P4 : a∞ b3c2+ ab2c+

Pω : a∞ b∞c2+

P ∗0 : 1

P ∗1 : a bc+

P ∗2 : a2 b2c2+

P ∗3 : a3 b3c2+

P ∗4 : a4 b4c2+

P ∗ω : a∞ b∞c2+

Figure 5: An example of a polynomial chain and the corresponding canonical chain. On the
left, the gray area indicates the uncovered monomials for P ∗2 (in the proof of proposition 6.38).

not apply to
d
i h(Pi). Instead, we would like to find a decomposition into finitely many

monomial chains such that for all i,

Pi = m
(1)
i + · · ·+ m

(k)
i and thus h(Pi) = h(m

(1)
i ) + · · ·+ h(m

(k)
i )

An application of the splitting lemma would then suffice to prove continuity. As figure 4
shows, we do not have a decomposition into finitely many chains in general: The number
of monomials might grow unboundedly and there may be monomials (such as b2c and c∞

in the picture on the left) that are not part of any monomial chain in M.

We therefore introduce a second, canonical ω-chain (P ∗i )i<ω which by construction is
composed of finitely many monomial chains. This chain has the same infimum P ∗ω = Pω
and we show that, when applying h, we still have

d
i h(P ∗i ) ≥

d
i h(Pi) which suffices to

prove theorem 6.29. An example is shown in figure 5.

Definition 6.36. Let m ∈M∞ be a monomial. The canonical monomial chain (m∗n)n<ω
induced by m is defined as follows, for all x ∈ X:

m∗n(x) = min(n,m(x))

The canonical polynomial chain (P ∗n)n<ω for Pω = m1 + · · ·+mk is defined by

P ∗n = (m1)
∗
n + · · ·+ (mk)

∗
n

It is clear from this definition that
d
nm

∗
n = m and thus

d
n P
∗
n = Pω. We make two

further observations which are crucial for the following proof.
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Lemma 6.37. The canonical monomial chain has the following properties:

(1) If m, v ∈M∞ with m ≤ v, then m∗n ≤ v∗n for all n < ω.

(2) If m =
d
imi for an ω-chain (mi)i<ω of monomials, then ∀n ∃i: m∗n ≥ mi.

Proof. Recall that m ≤ v holds if m(x) ≥ v(x) for each x ∈ X. Hence m ≤ v implies
min(n,m(x)) ≥ min(n, v(x)) and thus m∗n ≤ v∗n for all n < ω.

For (2), fix n < ω and x ∈ X. As the infimum m is computed variable-wise, we have
m(x) =

⊔
imi(x) and proceed by case distinction.

• If m(x) =∞, there must be an i with mi(x) ≥ n and thus m∗n(x) = n ≤ mi(x).

• If m(x) = c ∈ N, then we must have mi(x) = c for some sufficiently large i and
hence m∗n(x) = c ≤ mi(x).

So for each x, we can find an ix such that m∗n(x) ≤ mix(x). As X is finite, we can set
i = max{ix | x ∈ X} and obtain m∗n ≥ mi.

Given a monomial chain (mi)i<ω, the lemma relates this chain to the canonical monomial
chain of its infimum. The next step is to lift this observation to polynomial chains.

Proposition 6.38. The canonical polynomial chain (P ∗n)n<ω for Pω satisfies

∀n ∃i : P ∗n ≥ Pi

Proof. Fix n and assume towards a contradiction that there is no i with P ∗n ≥ Pi.

Consider the chain graph for (Pi)i<ω. We call a node (i,m) covered if P ∗n ≥ m and
uncovered otherwise. For each i, there must be an m ∈ Pi such that (i,m) is uncovered
(as otherwise P ∗n ≥ Pi). By lemma 6.26, there is a path from (0,m0) to (i,m) for some
m0 ∈ P0 and for all nodes (i′,m′) on this path, we have m ≤ m′. But then all nodes on
the path are uncovered, as otherwise P ∗n ≥ m′ would imply P ∗n ≥ m.

As P0 is finite, there must be an m0 ∈ P0 that lies on infinitely many of these paths. If
we consider the subgraph induced by the uncovered nodes, then the component of m0

must thus be infinite and by Kőnig’s lemma, we obtain a monomial chain m ∈M that
only contains uncovered monomials. Let mω =

d
imi be its infimum.

By the characterization of infima in theorem 6.27, we know that Pω ≥
d
imi, so there is

a monomial v ∈ Pω with v ≥ mω. Consider the canonical monomial chains (v∗n)n<ω and
(m∗n)n<ω for v and mω, respectively. By lemma 6.37 (2), there is an i such that m∗n ≥ mi

and part (1) of the lemma implies v∗n ≥ m∗n. And since v∗n occurs in P ∗n , we thus have
P ∗n ≥ v∗n ≥ m∗n ≥ mi which is a contradiction to mi being uncovered.

75



6 Provenance Semirings

This relation between the chain (Pi)i<ω and the canonical chain (P ∗n)n<ω yields the
connection between

d
i h(Pi) and

d
n h(P ∗n) we need:

Corollary 6.39.
l

n<ω

P ∗n ≥
l

i<ω

Pi, and further,
l

n<ω

h(P ∗n) ≥
l

i<ω

h(Pi).

The above corollary is a direct consequence of the proposition, as h is monotone. It is the
main piece needed for the universality theorem which we can now finally prove, putting
everything together.

Proof of the universality theorem 6.29.

We have already defined h : S∞[X] → T and shown that this definition is uniquely
induced by f : X → T . Moreover, we have seen that h is a homomorphism, so what
remains is to show that h is continuous.

Let C ⊆ S∞[X] be a chain. By proposition 6.33,
⊔
h(C) = h(

⊔
C). For infima, one

direction is trivial by monotonicity of h (see proposition 4.32):
l

h(C) ≥ h(
l

C)

For the other direction, consider an ω-chain (Pi)i<ω with infimum Pω = v1 + · · ·+ vk. We
use the above corollary, the splitting lemma and the observation that h preserves infima
of monomial chains from proposition 6.35 to conclude:

l

i<ω

h(Pi) ≤
l

n<ω

h(P ∗n) =
l

n<ω

h
(
(v1)

∗
n

)
+ · · ·+ h

(
(vk)

∗
n

)
split
=

l

n<ω

h
(
(v1)

∗
n

)
+ · · ·+

l

n<ω

h
(
(vk)

∗
n

)
6.35
= h

(l

n<ω

(v1)
∗
n

)
+ · · ·+ h

(l

n<ω

(vk)
∗
n

)
= h

(
v1
)

+ · · ·+ h
(
vk
)

= h(Pω) = h(
l

i<ω

Pi)

This result lifts to arbitrary chains by lemma 6.22, so h is continuous.

Before we consider consequences of the universality theorem, we show that it is as broad
as possible. It is relatively easy to see that the target semiring T has to be absorptive for
h to be well-defined. The following example shows that T must further be continuous, as
otherwise h is not guaranteed to be continuous.
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Example 6.40. Recall the absorptive non-continuous semiring T = B × V \ {(>, 0)}
from example 4.28. Consider the homomorphism h : S∞[a, b]→ T induced by the variable
assignment a 7→ (⊥, 1), b 7→ (>, 1

2
). Then h is not continuous, as witnessed by the

descending ω-chain a+ bn (for n < ω):
l

n

h(a+ bn) =
l

n

(⊥, 1) + (>, 1
2
)n =

l

n

(>, 1) = (>, 1)

h
(l

n

a+ bn
)

= h(a+ b∞) = (⊥, 1) + (>, 1
2
)∞ = (⊥, 1)

where (>, 1
2
)∞ =

d
n(>, 1

2n
) = (⊥, 0), as we exclude the element (>, 0).

Continuity of Semiring Semantics

Based on the results of [Mrk18], we have seen that S∞[X] is a continuous semiring. With
the universality theorem, we can now address our open question from section 5.5 by
showing that in S∞[X], JϕK` is continuous in `. We first need auxiliary statements on the
infinitary power which mostly follow from the splitting lemma 6.34.

Lemma 6.41. Let S be an absorptive continuous semiring. The infinitary power has the
following properties, for a, b ∈ S:

(1) a · a∞ = a∞ (and thus an · ak = an+k for all n, k ∈ N∞),

(2) (ab)∞ = a∞b∞ (and thus (an)∞ = an·∞ for all n ∈ N∞),

(3) (a+ b)∞ = a∞ + b∞,

(4) a ≤ b implies a∞ ≤ b∞ (monotonicity),

(5) h(a∞) = h(a)∞ for continuous homomorphisms h : S → T ,

(6) (
d
i xi)

∞ =
d
x∞i for descending ω-chains (xi)i<ω in S.

Proof. Property (1) was already shown in lemma 6.31, (2) holds by the splitting lemma
6.34 and (4) follows from (3) since a ≤ b ⇐⇒ a + b = b (in idempotent semirings).
Statement (5) follows from the properties of h, in (6) we can swap the two infima:

l

i<ω

x∞i =
l

i<ω

l

n<ω

xni =
l

n<ω

l

i<ω

xni
6.34
=

l

n<ω

(l

i<ω

xi

)n
=
(l

i<ω

xi

)∞
Only (3) remains to prove. We clearly have (a + b)n ≥ an + bn (for all n < ω) and
hence (a + b)∞ ≥ a∞ + b∞. For the other direction, fix n and consider (a + b)2n =
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∑2n
i=0

(
2n
i

)
a2n−ibi. Each summand is absorbed by either an (if i ≤ n) or by bn (if i ≥ n),

hence an + bn ≥ (a+ b)2n ≥ (a+ b)∞ and the claim follows.

In S∞[X], we further have an analogue of property (6) for arbitrary suprema.

Lemma 6.42. For each set S ⊆ S∞[X], we write S∞ = {P∞ | P ∈ S} and have:(⊔
S
)∞

=
⊔

S∞

Proof. The direction (
⊔
S)∞ ≥

⊔
S∞ is trivial by monotonicity of the infinitary power.

For the other direction, let
⊔
S = m1 + · · · + mk for a finite number of monomials

m1, . . . ,mk. By the above lemma, (
⊔
S)∞ = m∞1 + · · ·+m∞k .

Fix one such monomial mi. As
⊔
S = maximals(

⋃
S), there is a P ∈ S with mi ∈ P .

Hence mi ≤ P and thus m∞i ≤ P∞ ≤
⊔
S∞. As this holds for each 1 ≤ i ≤ k, we can

conclude m∞1 + · · ·+m∞k ≤
⊔
S∞.

Remark: The above lemma does not generalize to absorptive continuous semirings, even
if we require S to be a chain. For an example, consider any chain (ai)i<ω ⊆ V approaching
1 with ai < 1. Then (

⊔
i ai)

∞ = 1∞ = 1 while
⊔
i(a
∞
i ) =

⊔
i 0 = 0.

Theorem 6.43. In S∞[X], JϕK` is continuous in `. That is, for every formula ϕ and
every chain L of S∞[X]-interpretations,

JϕK⊔L =
⊔
{JϕK` | ` ∈ L} and JϕKd

L =
l
{JϕK` | ` ∈ L}.

Proof. We show that JϕKd
i `i

=
d
iJϕK`i for descending ω-chains (`i)i<ω. The statement

for L follows from lemma 6.22 (note that JϕK` is monotone in `), suprema are analogous.

We consider the most general interpretation `∗. Let X∗ = {xL | L ∈ LitA} and define
`∗(L) = xL. Let further JϕK`∗ = m1 + · · ·+ mk. Given any S∞[X]-interpretation `, we
can apply the universality theorem to the variable assignment xL 7→ `(L) and obtain a
cpo-semiring homomorphism h` : S∞[X∗]→ S∞[X] with ` = h` ◦ `∗.

Let `ω =
d
i `i to ease notation. We claim that h`ω(m) =

d
i h`i(m) for every monomial

m in S∞[X∗]. To see this, let xL ∈ X and a ∈ N∞. We then have:

h`ω(xaL)
(1)
= h`ω(xL)a = `ω(L)a =

(l

i<ω

`i(L)
)a (2)

=
l

i<ω

`i(L)a
(1)
=

l

i<ω

h`i(x
a
L)
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6.4 Absorptive Polynomials

where (1) and (2) hold by lemma 6.41. If we consider suprema instead of infima, then (2)

needs the second lemma 6.42. This is the reason why the proof works for S∞[X], but
does not generalize to arbitrary absorptive continuous semirings. The claim for m follows
by applying the splitting lemma. We can now prove the theorem:

JϕK`ω = h`ω
(
JϕK`∗

)
= h`ω(m1) + · · ·+ h`ω(mk)

=
l

i<ω

h`i(m1) + · · ·+
l

i<ω

h`i(mk)

=
l

i<ω

h`i(m1) + · · ·+ h`i(mk) =
l

i<ω

h`i(JϕK`∗) =
l

i<ω

JϕK`i

This continuity result allows us to apply Kleene’s fixed-point theorem 4.6. In particular,
all fixed-point iterations (πβ)β∈On of (least and greatest) fixed-point formulae terminate
at πω (or earlier), answering our open question in section 5.5 for the semiring S∞[X].

Corollary 6.44. Let ` be a S∞[X]-interpretation and ϕ = [fpRx. ϑ](y). Let F ϑ
` and

(πβ)β∈On be the corresponding update operator and fixed-point iteration. Then F ϑ
` is

continuous and the iteration reaches its fixed point at πω (i.e., πω+1 = πω).

We now want to generalize this answer to absorptive semirings. Recall that the continuity
of JϕK` does not hold in all absorptive continuous semirings as witnessed by the semiring
L in example 5.21. We can nevertheless state the following consequence.

Corollary 6.45. Semiring semantics JϕK` are well-defined for fully ω-continuous absorp-
tive semirings and fixed-point iterations (πβ)β∈On of LFP formulae always reach the fixed
point at πω (i.e., πω+1 = πω).

In order to establish this result, let us review the proofs of both the universality theorem
6.29 and the fundamental property 5.17. Regarding the universality result, where did
we rely on T being continuous? Most of the reasoning was concerned with S∞[X], so
the only places are in the definition of the infinitary power (which we used to define h)
and in the splitting lemma, both of which only talk about ω-chains. We also need the
continuity of T for lemma 6.22, but this is only used to lift our reasoning from ω-chains
to arbitrary chains. By carefully following our proof, we can thus formulate a similar
universality for ω-continuous semirings:

Theorem 6.46. Let T be an absorptive, fully ω-continuous semiring and let f : X → T

be an assignment of the variables. Then there is a uniquely defined fully ω-continuous
homomorphism h : S∞[X]→ T that extends f .
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6 Provenance Semirings

Now recall the proof of the fundamental property in section 5.4. The continuity of
the homomorphism h is only needed for fixed-point formulae, to be precise only for
limit ordinal steps in the fixed-point iteration. Given a homomorphism h : S → T , let
ϕ = [fpRx. ϑ](y) and let (πβ)β∈On and (σβ)β∈On be the corresponding iterations in S

and T , respectively. The proof shows by induction that h(πβ) = σβ.

If S, T and h are not continuous but only fully ω-continuous, then the iterations are
certainly well-defined for β < ω + ω and we still have h(πβ) = σβ (in fact, this even
holds for larger β due to the argument in lemma 6.22, but this is not relevant here). In
particular, this applies to β = ω and β = ω + 1 which suffices to prove corollary 6.45.

Proof of corollary 6.45. Given a a formula ϕ, a fully ω-continuous absorptive semiring T
and a T -interpretation `, we again consider the most general S∞[X∗]-interpretation `∗

as in the proof of theorem 6.43. By the above universality, there is a fully ω-continuous
homomorphism h : S∞[X∗]→ T such that ` = h ◦ `∗.

The only interesting case is if ϕ = [fpRx. ϑ](y). Let (πβ)β∈On be the fixed-point iteration
for JϕK`∗ in S∞[X∗] and let (σβ)β<ω+ω be the first steps of the fixed-point iteration for
JϕKh◦`∗ in T . Note that the iteration σβ is well-defined, as T is fully ω-complete.

Following the proof of the fundamental property 5.17, we see that h(πβ) = σβ for
all β < ω + ω. We further know from corollary 6.44 that πω = πω+1. But then,
σω+1 = h(πω+1) = h(πω) = σω, hence σω is the (least or greatest) fixed-point of F ϑ

` .

These results answer our open question for absorptive semirings and underline the
importance of the universality theorem for S∞[X].

As a conclusion of this section, we can say that absorptive polynomials are arguably the
most interesting semiring for provenance analysis of LFP. The reason is that they are
not only compatible with standard semantics, but also universal among all absorptive
continuous semirings which covers most of the application semirings presented earlier.
Absorption of course limits the information to shortest proofs (or minimal witnesses),
but we have seen for W[X] that this is most likely what we want in the presence of
greatest fixed-points. Compared to W[X], the exponents in S∞[X] can provide additional
information which, depending on the situation, can be useful.
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6.4 Absorptive Polynomials

Example 6.47. Recall the following example we considered for W[X] and BJXK:

ϕinfpath(u) = [gfpRx. ∃y(Exy ∧Ry)](u)

u w v

a

b

c

In W[X], we obtained the monomial abc (not corresponding to an infinite path) and in
BJXK, the formula evaluated to 0. In S∞[X], we instead get a reasonable result:

π(u) :

π(w) :

π(v) :

1

1

1

7→
a

b+ c

0

7→
ab+ ac

b2 + bc

0

7→
ab2 + abc

b3 + b2c

0

· · ·
ab∞

b∞

0

Not only do we see that there is only one infinite path from u, but we further learn that
edge a is used only once whereas edge b appears infinitely often on this path. Interpreting
ϕinfpath in S∞[X] thus provides information about reachable cycles: The edges with
exponent ∞ form the cycle, the other edges indicate the path to the cycle.

The universal property now allows us to evaluate ϕinfpath in other absorptive semirings by
simply instantiating the variables. For example, assume that we have high confidence
in edges a and c, but low confidence in b. We can then consider the homomorphism
h : S∞[X]→ V with h(a) = h(c) = 1 and h(b) = 1

2
and obtain the following result:

q
ϕinfpath(u)

y
h◦` = 1 · (1

2
)∞ = 0

u w v

1
1/2

1

Another possibility is to use the access control semiring A. If we think of the vertices as
different pages of a website and the edges as links between them (some of which can only
be accessed by members or administrators with certain access privileges), we can easily
compute the access level a user needs to spend his lifetime clicking on these links:

q
ϕinfpath(u)

y
h◦` = max(C, S∞) = max(C, S) = S

u w v

C
S

P

For some applications, we do not need the additional information of exponents as in the
access control example. We can then use the finite semiring PosBool[X] that results from
S∞[X] by dropping exponents.
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6 Provenance Semirings

6.5 PosBool-Semiring

The PosBool[X] semiring is the simplest polynomial semiring we consider. We have
already introduced it in section 4.3 in terms of positive boolean formulae (up to logical
equivalence). It also results from W[X] by applying absorption [Gre11]. Coming from
S∞[X], we can further characterize PosBool[X] as the set of absorptive polynomials
without exponents.

Definition 6.48. The semiring PosBool[X] is the set of absorptive polynomials with
variables in X and exponents in B, with operations defined as for S∞[X]. We view
monomials m ∈MB as sets {x ∈ X | m(x) = >}.

To see that this is isomorphic to our earlier definition, note that we can identify absorptive
polynomials such as xy + xz with positive formulae in disjunctive normal form such as
(x ∧ y) ∨ (x ∧ z). Absorption corresponds to the logical equivalence x ∨ (x ∧ y) ≡ x.
Since PosBool[X] is isomorphic to positive boolean formulae up to logical equivalence,
this makes semiring semantics less dependent on the syntactic presentation of a formula.
That is, ϕ ∨ ϕ, ϕ ∧ ϕ and ϕ all yield the same value when interpreted over PosBool[X],
whereas their interpretations in W[X] or S∞[X] may differ. In particular, PosBool[X] is
multiplicatively idempotent, for example (x+ y)2 = x+ xy+ y = x+ y due to absorption.

We have already mentioned that PosBool[X] is the distributive lattice (with +,· as join
and meet) freely generated by the set X. We can thus formulate a universality result
similar to the previous ones. Note that PosBool[X] is finite, so the continuity is trivial.

Proposition 6.49. Let S be an absorptive and multiplicative idempotent cpo semiring.
Every function f : X → S extends to a unique homomorphism h : PosBool[X]→ T that
coincides with f on X. This homomorphism is a cpo-semiring homomorphism.

Intuitively, PosBool[X] combines the abstractions of W[X] and S∞[X] for provenance
analysis: It only counts which literals are used in a proof (not how often) and it only
considers shortest proofs (due to absorption). This makes PosBool[X] less informative
than the other two semirings but also easier to handle. If we only want to know whether
a formula depends on a certain literal, then the information in PosBool[X] is sufficient
and we do not need the additional information (and complexity) of W[X] or S∞[X]. We
consider an example of provenance analysis in PosBool[X] in section 7.2 where we use it
to compute winning strategies in parity games.
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6.6 Polynomials in Dual Indeterminates

6.6 Polynomials in Dual Indeterminates

The polynomial semirings introduced in this chapter can be used for tracking provenance
where we track certain literals in the computation of JϕK` by mapping them to (unique)
variables. We sometimes not only want to track given facts, but instead leave open
whether a certain fact is true or not. This form of reverse provenance analysis can give
information about all models of a formula instead of fixing a particular model. We
can always achieve this by setting `(Ra) = x and `(¬Ra) = y, but then we also obtain
monomials such as xy which correspond to opposing literals and thus bear no connection
to actual models.

In [GT17a], Grädel and Tannen therefore proposed polynomials in dual indeterminates
for reverse analysis of FO which we adapt for LFP. That is, we use variables X for
positive literals and a dual set X = {x | x ∈ X} for negative literals (e.g., `(Ra) = x

and `(¬Ra) = x). Instead of working in S∞[X ∪X], where we still have conflicting
monomials such as xx, we define a quotient semiring S∞[X,X] in which xx = 0.

In this section, we formally introduce dual-indeterminate polynomials (dual polynomials
for short) as quotient semirings and show that the resulting semirings are suitable for
fixed-point logics. Many previous results for compatibility with standard semantics and
duality require positive semirings, whereas xx = 0 introduces divisors of 0. We thus
devise an alternative duality result for dual polynomials.

Definition

In the following, we understand M, M∞ and all monomials to be defined over the
variables X ∪X instead of X. Most of the statements hold for several semirings; we
write P[X] for either of the polynomial semirings W[X], S∞[X], PosBool[X] or the formal
power series N∞JXK, BJXK.

Definition 6.50. A monomial m ∈ M∞ is conflicting if there is an x ∈ X such that
both m(x) 6= 0 and m(x) 6= 0. Otherwise m is non-conflicting.

For P ∈ P[X ∪X], we define P̂ ∈ P[X ∪X] by

P̂ = {m ∈ P | m is non-conflicting} ⊆ P, for S∞,W,PosBool

P̂ (m) = 0 if m is conflicting, and P̂ (m) = P (m) otherwise, for power series

For provenance with dual indeterminates, we want to work only with the polynomials P̂ .
We thus define the following congruence relation.
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6 Provenance Semirings

Definition 6.51. We define ∼ on P[X ∪X] by

P ∼ Q ⇐⇒ P̂ = Q̂

We write [P ]∼ for the equivalence class containing P .

Proposition 6.52. ∼ is a congruence relation on P[X ∪X].

Proof. By definition, ∼ is an equivalence relation. For the congruence property, let
P ∼ P ′ and Q ∼ Q′, so P̂ = P̂ ′ and Q̂ = Q̂′. We first consider S∞[X ∪X]. For addition,

P̂ +Q = maximals{m ∈ P ∪Q | m non-conflicting} = maximals(P̂ ∪ Q̂) = P̂ + Q̂

With the analogue for P̂ ′ +Q′, it follows that P̂ +Q = P̂ ′ +Q′ and thus P +Q ∼ P ′+Q′.
If m1 is conflicting, then so is m1m2 (for every monomial m2). We thus have

P̂Q = maximals{m1m2 | m1 ∈ P,m2 ∈ Q,m1m2 non-conflicting}
= maximals{m1m2 | m1 ∈ P̂ ,m2 ∈ Q̂,m1m2 non-conflicting}

Together with the analogue for P̂ ′Q′, we obtain PQ ∼ P ′Q′ and ∼ is a congruence. The
proof for PosBool[X ∪X] is analogous.

For N∞JX ∪XK the operations are defined monomial-wise, so for non-conflicting m,

(P +Q)(m) = P (m) +Q(m) = P̂ (m) + Q̂(m)

(PQ)(m) =
∑

m=m1m2

P (m1) ·Q(m1)
(∗)
=
∑

m=m1m2̂

P (m1) · Q̂(m1)

where (∗) holds as m = m1m2 implies that m1 and m2 are also non-conflicting. Together
with the corresponding statements for P ′+Q′ and P ′Q′, it follows that ∼ is a congruence.
The proofs for W[X ∪X] and BJX ∪XK are analogous.

We can then use ∼ to define the desired quotient semirings8 (cf. [Gol99, chapter 8]).

Definition 6.53. The semirings P[X,X] are the quotients P[X ∪X]/∼, that is

P[X,X] = {[P ]∼ | P ∈ P[X ∪X]}, [P ]∼ ◦ [Q]∼ = [P ◦Q]∼ (for ◦ ∈ {+, ·})

We refer to these semirings as dual(-indeterminate) polynomials.

8Equivalently, we could use the ideal generated by the monomials xx to define the quotients. Note
however that, unlike in rings, not every ideal defines a quotient semiring.
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Note that ∼ is a particularly simple congruence in the sense that we can unambiguously
identify each equivalence class [P ]∼ with its representative P̂ . If the context is clear, we
may thus write P̂ for [P ]∼ to simplify notation (as in the next definition).

While we can still work with model-defining P[X,X]-interpretations, we need a different
notion to unleash the full power of dual polynomials. Grädel and Tannen introduce
model-compatible interpretation for reverse provenance analysis [GT17a].

Definition 6.54. A P[X,X]-interpretation ` is model-compatible if for each positive
literal Ra ∈ LitA, one of the following holds:

(1) `(Ra) = x and `(¬Ra) = x, for some x ∈ X,

(2) `(Ra) = 0 and `(¬Ra) = 1,

(3) `(Ra) = 1 and `(¬Ra) = 0.

Although they satisfy `(L) ·`(¬L) = 0 and `(L)+`(¬L) 6= 0, model-compatible interpreta-
tions are not model-defining in general. Instead, such interpretations only partially define
models (literals that are mapped to 0, 1) but leave other facts open (literals mapped to
x, x), so they are compatible with several models. Before we consider an example, let us
first make a few general observations about dual polynomials.

Properties

In the following, we establish that dual polynomials remain continuous (and in particular
suitable for fixed-point logic). It is further clear from the definition that P[X,X] is
idempotent or absorptive whenever P[X ∪X] has the respective property.

Lemma 6.55. P[X,X] is naturally ordered and has the following properties:

(1) If P,Q ∈ P[X ∪X] with P ≤ Q, then [P ]∼ ≤ [Q]∼.

(2) If [P ]∼ ≤ [Q]∼, then P̂ ≤ Q̂.

Proof. For (1), P + P ′ = Q implies [P ]∼ + [P ′]∼ = [Q]∼ and thus [P ]∼ ≤ [Q]∼.

For (2), [P ]∼ + [P ′]∼ = [Q]∼ implies [P + P ′]∼ = [Q]∼ and thus P̂ + P ′ = Q̂. We have
shown that P̂ + P ′ = P̂ + P̂ ′ in the proof of proposition 6.52 and thus P̂ ≤ Q̂.

Statement (2) implies that P[X,X] is naturally ordered.
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Proposition 6.56. Let C ⊆ P[X ∪X] be a chain and [C]∼ = {[P ]∼ | P ∈ C}. Then⊔
[C]∼ =

[⊔
C
]
∼

and
l

[C]∼ =
[l

C
]
∼

Proof. Note that [C]∼ is a chain by the above lemma. We first show that [
⊔
C]∼ is

an upper bound: We have
⊔
C ≥ P for all P ∈ C and thus

[⊔
C
]
∼ ≥ [P ]∼ by the

lemma. Now let [Q]∼ be any upper bound for the chain [C]∼. We set Ĉ = {P̂ | P ∈ C},
which is a chain by the above lemma, and claim that

⊔
Ĉ =

⊔̂
C. The claim implies

the proposition: We have [Q]∼ ≥ [P ]∼ for all P ∈ C. Then Q̂ ≥ P̂ by the lemma and
hence Q̂ ≥

⊔
Ĉ =

⊔̂
C which implies [Q]∼ ≥

[⊔
C
]
∼. The proof for infima is completely

analogous and requires
d
Ĉ =

d̂
C.

We show the two claims for each semiring. For formal power series, the claim holds as
suprema/infima are computed monomial-wise. In W[X ∪X] and PosBool[X ∪X], the
claim is trivial due to the finiteness of these semirings. The only interesting case is
S∞[X ∪X]. The claim for suprema is trivial due to the ascending chain property. For
infima, we employ the characterization in theorem 6.27.

Let (Pi)i<ω be an ω-chain in S∞[X ∪X]. Then
d
i Pi =

⊔
{
d
imi | m ∈ M}. Consider

any m ∈M. If mi is conflicting for some i, then so is
d
imi ≤ mi. Conversely, if

d
imi is

conflicting, then there is an i such that mi is conflicting. Following this observation,

l̂

i<ω

Pi =
⊔{l̂

i<ω

mi | m ∈M
}

=
⊔{l

i<ω

mi | m ∈ M̂
}

=
l

i<ω

P̂i

where M̂ ⊆M is the set of monomial chains such that mi is non-conflicting for each i –
these are precisely the monomial chains through (P̂i)i<ω. This result lifts to arbitrary
chains by lemma 6.22 (note that ·̂ is monotone, i.e., P ≤ Q implies P̂ ≤ Q̂).

Corollary 6.57. P[X,X] is a continuous semiring.

Proof. We first show that P[X,X] is a cpo semiring. Let C be any chain and consider
Ĉ = {P̂ | [P ]∼ ∈ C}. Then Ĉ is a chain in P[X ∪X] and C = [Ĉ]∼. By the previous
proposition,

⊔
[Ĉ]∼ and

d
[Ĉ]∼ exist.

For continuity, we need to show [Q]∼ ·
⊔
C =

⊔
([Q]∼ · C) (and the analogues for

addition/infima). As P[X ∪X] is continuous, we again use the chain Ĉ:

[Q]∼ ·
⊔

C = [Q]∼ ·
⊔

[Ĉ]∼
6.56
= [Q]∼ ·

[⊔
Ĉ
]
∼

=
[
Q ·
⊔

Ĉ
]
∼

cont.
=
[⊔

Q · Ĉ
]
∼

6.56
=
⊔

[Q · Ĉ]∼ =
⊔

[Q]∼ · [Ĉ]∼ =
⊔

[Q]∼ · C
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These results show that working with dual polynomials is possible for all semirings
discussed in this chapter. Given that suprema and infima are preserved in the sense
of proposition 6.56, it is not surprising that switching from P[X ∪X] to P[X,X] also
preserves JϕK`. That is, instead of computing with dual indeterminates we may as well
compute in P[X ∪X] and afterwards discard all conflicting monomials.

Corollary 6.58. Let ` be a P[X ∪X]-interpretation. This induces the interpretation

[`]∼ : LitA → P[X,X], Ra 7→
[
`(Ra)

]
∼

Then for every formula ϕ, q
ϕ
y
[`]∼

=
[
JϕK`

]
∼

Proof sketch. Induction on the negation normal form of ϕ. For literals, the claim holds
by definition of [`]∼. For ∧, ∨, ∃, ∀, it follows by induction using the definition of
the operations in P[X,X]. For fixed-point formulae, consider the fixed-point iterations
(πβ)β∈On and (σβ)β∈On for JϕK[`]∼ and JϕK`, respectively. One can show by induction on β
that πβ = [σβ]∼. For β = 0, note that if > is the top element of P[X ∪X], then [>]∼ is
the top element of P[X,X]. For limit ordinals, the claim follows by proposition 6.56.

The universality theorems can also be adapted to dual polynomials. If the variable
assignment f : X ∪X → T respects dual variables such that f(x) · f(x) = 0, then the
induced homomorphism h : P[X ∪X] satisfies h(xx) = 0 and thus factors through the
quotient P[X,X]. We state the universality for absorptive dual polynomials, results for
the other semirings can be adapted in the same way.

Theorem 6.59. Let T be an absorptive continuous semiring and let f : X ∪X → T be
an assignment of the variables such that f(x) · f(x) = 0 for all x ∈ X.

Then there is a uniquely defined cpo-semiring homomorphism h : S∞[X,X] → T that
extends f (that is, h(x) = f(x) and h(x) = f(x) for all x ∈ X).

Duality

Most of the duality results from section 5.3 require positive semirings. Dual polynomials
are not positive due to x · x = 0 so these results do not apply. As an example, consider
the S∞[X,X]-valuation ` over a singleton universe A = {a} with

` :
Ra 7→ x

¬Ra 7→ 0
and ` :

Pa 7→ 0

¬Pa 7→ x
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Then ` is complementary for every notion of complementary discussed in section 5.3.
However, for ϕ(a) = Ra ∧ ¬Pa we have JϕK` + J¬ϕK` = xx+ (0 + 0) = 0.

The quotient semirings P[X,X] are continuous, so the consistency result still holds. That
is, if ` is consistent then JϕK` · J¬ϕK` = 0 for all formulae ϕ. To establish stronger duality
results, we introduce a new notion of complementarity which is based on the observation
that we can define complements in PosBool[X,X].

Definition 6.60. Let P ∈ PosBool[X,X]. We define the complement of P by

P =
∏
m∈P

m, and m =
∑
x∈m

x+
∑
x∈m

x

In particular, we have 0 = 1 and 1 = 0.

As an example, xy + z = (x+ y) · z = xz + yz. Recall that we can view PosBool[X,X]

as set of (normalized) positive boolean formulae. In this sense, P corresponds to ¬P (to
be precise, to the negation normal form of ¬P where we replace ¬x by x and ¬x by x to
obtain a positive formula), so it is not surprising that we can define such a complement
and that it satisfies similar laws as negation:

P +Q = P ·Q, PQ = P +Q, P = P, P · P = 0

Note that, although we call P the complement of P , this is not a complement in the
sense of a boolean algebra, as P + P = 1 does not hold in general (e.g., x+ x 6= 1).

Given this complement, we view P and Q as complementary if P = Q. Instead of
defining a similar complement directly in S∞[X,X], we use the canonical homomorphism
to PosBool[X,X] and make the following generalized definition.

Definition 6.61. Let S be a semiring and h : S → PosBool[X,X] a cpo-semiring
homomorphism. We consider a, b ∈ S to be complementary if h(a) = h(b).

Similar to previous duality results, this complementarity lifts from ` to JϕK`.

Proposition 6.62. Let S and h be as in definition 6.61. If ` is a complementary
S-valuation, then JϕK` and J¬ϕK` are complementary for all formulae ϕ.

Proof. Induction on the negation normal form of ϕ. We only show the interesting cases.

• For ϕ = ϕ1 ∧ ϕ2, the claim holds by induction and the properties of h:

h(JϕK`) = h(Jϕ1K`) · h(Jϕ2K`) = h(Jϕ1K`) + h(Jϕ2K`)
IH
= h(J¬ϕ1K`) + h(J¬ϕ2K`) = h(J¬ϕK`)
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6.6 Polynomials in Dual Indeterminates

• For ϕ = [gfpRx. ϑ](y), we proceed by induction on the fixed-point iterations
(πβ)β∈On and (σβ)β∈On for ϕ and ¬ϕ and show that πβ and σβ are complementary.

– For β = 0, we have h(>) = 1 = 0 = h(⊥).

– For β+1, we proceed as in the proof of proposition 5.14. Set `′ = `[R/πβ,¬R/σβ]

so we can write πβ+1 = JϑK•`′ and σβ+1 = J¬ϑK•`′ . Note that `′ is complementary
as πβ, σβ are complementary. The claim thus holds by induction on ϑ.

– For limit ordinals, we use that h is continuous:

h(πλ) = h
(l
{πβ | β < λ}

)
=

l
{h(πβ) | β < λ} = h(πβ∗)

Analogously, h(σλ) = h(σβ∗). The ordinal β∗ < λ must exist as PosBool[X,X]

is finite. By induction, h(πβ∗) = h(σβ∗) and the claim follows.

The claim for ϕ follows from the inductive claim (for sufficiently large β).

We can apply this result to W[X,X], S∞[X,X] and PosBool[X,X] via the canonical
homomorphisms to PosBool[X,X], in particular for model-compatible interpretations.

Corollary 6.63. Let ` be a model-compatible interpretation in W[X,X], S∞[X,X] or
PosBool[X,X]. Then for every formula ϕ, JϕK` · J¬ϕK` = 0 and JϕK` + J¬ϕK` 6= 0.

Proof. Consider complementarity via the canonical homomorphisms to PosBool[X,X].
Then ` is complementary and thus JϕK` and J¬ϕK` are complementary as well.

Let P = JϕK` and Q = J¬ϕK`. We know that h(P ) = h(Q) and thus 0 = h(P ) · h(Q) =

h(PQ). As h is one of the canonical homomorphisms, this implies PQ = 0 as claimed.

Assume that P + Q = 0. Then P = 0 and Q = 0 which leads to a contradiction, as
h(0) = 1 6= 0 = h(0). We must thus have P +Q 6= 0 as claimed.

Note that the duality is in fact much stronger than this corollary. For example, assume that
we start with a model-compatible interpretation in S∞[X,X] and obtain JϕK` = xy2 + z∞.
We then already know that J¬ϕK` = xazb + yczd for some exponents a, b, c, d ∈ N∞.

Applications in Reverse Analysis

So far, we have mostly shown that dual polynomials have similar properties as the original
polynomial semirings. We now turn our attention to applications for provenance analysis.
Let us start with a motivating example.
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6 Provenance Semirings

Example 6.64. Consider the following formula which states that on all paths from u,
the proposition P holds for every node.

ϕ(u) =
[
gfpRx. Px ∧ ∀y

(
¬Exy ∨Ry︸ ︷︷ ︸
Exy→Ry

)]
(u)

u
P

v
P 7→ p

b

c
a

We interpret this formula over the graph shown on the right using the model-compatible
interpretation ` indicated in the picture, e.g. `(Pu) = 1, `(Pv) = p, `(Euu) = a and
`(¬Euv) = b. That is, we fix that P holds at u, but leave open whether it also holds
at v and whether any of the edges exist. This interpretation results in the following
fixed-point iteration in PosBool[X,X]:

π(u) :

π(v) :

1

1
7→ 1

p
7→ b+ p

p
7→ b+ p

p

We obtain the overall value Jϕ(u)K` = b + p which tells us that the formula holds in
all models where P holds at v and further in all models where edge b is missing. Note
that the variables a and c do not occur in the resulting polynomial, as their presence (or
absence) is not relevant for the truth of ϕ. In this sense, model-compatible interpretations
allow us to reason about several models at once. In particular, we see that ϕ(u) does not
hold in all models where edge b is present and P does not hold at v.

Using the more expressive semiring S∞[X,X] reveals more information about the proofs
of ϕ(u) in these models. The iteration then continues in the following way:

π(u) :

π(v) :

b+ p

p
7→ ab+ ap+ b2 + bp+ p2

bp+ cp+ p2
7→ ab+acp+ap2+b3+b2p+bp2+cp3+p4

abp+ap2+b2p+bp2+cp+p3
. . .

We see that the size of the polynomials quickly increases, so it is not obvious what the
fixed point is. Careful examination of all possible monomial chains leads to the following
result. In the next chapter, we show how the same result can be obtained without being
overly careful.

Jϕ(u)K` = ab+ acp+ b∞ + p∞

First note that this polynomial simplifies to the earlier result b + p by dropping the
exponents. Due to the universal quantification, witnesses for the truth of ϕ(u) are not as
simple as in earlier examples and we again refer to the forthcoming chapter for a concise
explanation. For now, we note that one way to satisfy ϕ(u) is to ensure that all paths
are finite (and P holds on these paths), which corresponds to the monomials ab and acp.
If infinite paths are possible, we either have to make sure that P holds at v, leading to
p∞, or that v is unreachable, leading to b∞. In both cases, the literals corresponding to p
and b have to be used infinitely often due to the infinite paths.
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6.6 Polynomials in Dual Indeterminates

Following [GT17a], we can make the relation between interpretations and models precise.
Let ` : LitA → P[X,X] be a model-compatible interpretation. Then a model A over
the same alphabet A is said to be compatible with ` if A |= L for all literals with
`(L) = 1. We denote the set of models compatible with ` by Mod`. A variable assignment
f : X ∪X → B with f(x) = 1 and f(x) = 0, or vice versa, allows us to switch from a
model-compatible interpretation to a model-defining one.

For the converse, the intuition is that the interpretation `A induced by a model A ∈ Mod`
is a specialization of ` in the sense that `A results from ` by a similar variable assignment.
For this to be possible, we require ` to be non-overlapping. That is, no two different
literals are mapped to the same variable x (if the same variable is used for two literals L
and L′, then a model with A |= L but A 6|= L′ cannot be defined by applying a variable
assignment to `). Combining these observations with the universal properties, we can
formulate the following adaption of a result9 in [GT17a] for LFP.

Proposition 6.65. Let ` be a non-overlapping model-compatible S-interpretation where
S is one of W[X,X], S∞[X,X] or PosBool[X,X]. Then a formula ϕ is Mod`-satisfiable
if, and only if, JϕK` 6= 0 (and ϕ is Mod`-valid if, and only if, J¬ϕK` = 0).

Proof. We assume w.l.o.g. that all variables in X appear in `. First assume that there is
A ∈ Mod` with A |= ϕ. Consider the B-interpretation `A induced by A. We now define a
variable assignment f : X ∪X → B to turn ` into `A. For x ∈ X, let L be the unique
literal with `(L) = x, `(¬L) = x and set f(x) = `A(L) and f(x) = `A(¬L).

Note that f is well-defined since ` is non-overlapping. Moreover, f uniquely induces a
cpo-semiring homomorphism h : S → B due to the previous universality results. By
definition of f , we have `A = h ◦ ` and thus obtain:

A |= ϕ ⇐⇒ 0 6= JϕK`A = JϕKh◦` = h
(
JϕK`

)
=⇒ JϕK` 6= 0

For the other direction, we assume JϕK` 6= 0 and can thus fix a monomial m ∈ JϕK`. We
again define a variable assignment f : X ∪X → B such that for each x ∈ X:

• if x appears in m, then f(x) = 1 and f(x) = 0,

• if x appears in m, then f(x) = 0 and f(x) = 1,

• otherwise, f(x) = 1 and f(x) = 0 (this is an arbitrary choice).

Note that f is well-defined as m is non-conflicting. Then f induces a cpo-semiring
homomorphism h : S → B with h(m) = 1 and h ◦ ` is model-defining. Let A = Ah◦` be

9In [GT17a], the interpretation is not explicitly assumed to be non-overlapping. However, the result
formulated there is only correct for non-overlapping interpretations.
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6 Provenance Semirings

the corresponding model. Clearly, A ∈ Mod` and the claim follows:

1 = h(m) ≤ h(JϕK`) = JϕKh◦` =⇒ A |= ϕ

The statement about Mod`-validity follows from the statement on satisfiability.

The above proof justifies our explanation in the preceding example: Each monomial m in
JϕK` corresponds to one (or more) models compatible with `.

As a conclusion of this chapter, we can say that absorptive polynomials S∞[X] and their
dual-indeterminate version S∞[X,X] are the most interesting semirings for provenance
analysis of fixed-point logic. While more general semirings, such as formal power series
N∞JXK, are available for positive LFP, greatest fixed points require chain-positive semir-
ings and we further need absorption to rule out monomials not corresponding to actual
proofs, as seen for the semiring W[X]. The desirable properties of S∞[X], most notably
chain-positivity and universality, come at the price of restricting provenance informa-
tion to what we described as shortest proofs, corresponding to the absorption-maximal
monomials. We have, however, seen in several examples that this is often sufficient and
that for some applications, we can even work with the much simpler semiring PosBool[X]

which does not track multiplicities (that is, exponents) of variables. From an algebraic
point of view, there is no hard requirement for absorption, but we have motivated this
property both by the problematic example in W[X] and by symmetry arguments.

What remains is a precise understanding of the provenance information JϕK` we compute
in S∞[X] or PosBool[X]. So far, we have always argued in terms of proofs on an intuitive
level, but we have seen in example 6.64 that this does not work well in all cases. To
improve upon this situation, the following chapter considers winning strategies in model
checking games as a well-defined notion of proofs.
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This chapter presents an alternative view on semiring semantics via model checking games.
The goal is a characterization of JϕK` in terms of winning strategies in the game for ϕ, in
analogy to the proof-tree characterization for N[X]-provenance of FO in [GT17a]. This
does not only lead to a better understanding of semiring semantics, but further shows
what kind of information semiring provenance can reveal about a formula.

The focus is on the semiring S∞[X] which exhibits a tight connection between the
computation of JϕK` and (truncations of) winning strategies in the associated model
checking game. We start by introducing the required notions of parity games, model
checking games and strategies. Before we proceed with the two main results, the puzzle
lemma and the characterization theorem, we take the opportunity to use parity games as
an exemplary application of semiring provenance in PosBool[X,X]. At the end of the
chapter, we lift our results to absorptive continuous semirings via the universality of
S∞[X] and sketch ideas to generalize the characterization to non-absorptive semirings.

7.1 Preliminaries: Parity Games

Towards model checking games, we start by briefly introducing parity games. More
background can be found in [GKL+07, chapter 3].

Definition 7.1. A parity game G = (V, V0, V1, E,Ω) is a two player game played on a
directed graph (V,E) with V = V0 ∪̇ V1 and a node labeling Ω : V → N.

For v ∈ V , we denote the set of successor positions by vE = {w | (v, w) ∈ E}. Positions
v with vE = ∅ are called terminal positions. Player 0 moves at the positions in V0 and
player 1 at V1, possible moves are described by E.

We call Ω(v) the priority of the position v ∈ V . The maximal priority assigned by Ω

must be finite and is called the index of the game G.

The semantics of a game G are as follows: If a player cannot move, they lose (this happens
at terminal positions). If a play does not end in a terminal position, then it is infinite
and the winner is determined by the parity of the smallest priority that occurs infinitely
often in the play. Priorities which only occur finitely often are irrelevant.

Definition 7.2. A play in G from v0 is a sequence ρ = v0v1v2 . . . of positions with
(vi, vi+1) ∈ E (for all i) which is either infinite or ends in a terminal position.

The play ρ is winning for player 0 if either,
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7 Understanding Provenance via Games

(1) ρ = v0v1 . . . vk and vk ∈ V1 (so player 1 cannot move), or

(2) ρ is infinite and the smallest number occurring infinitely often in the sequence
Ω(v0)Ω(v1)Ω(v2) . . . is even (we call this the parity condition).

Otherwise, ρ is winning for player 1.

Following [GT19], we represent strategies via the tree unraveling of a game.

Definition 7.3. Let G = (V, V0, V1, E,Ω) be a parity game. The tree unraveling of G
from v0 is the tree T (G, v0) = (V #, V #

0 , V
#
1 , E

#) where

• V # is the set of all finite paths π = v0v1 . . . vk (for some k < ω) through G,

• V #
σ = {πv ∈ V # | v ∈ Vσ} is the set of paths ending in a node of player σ,

• E# = {(πv, πvv′) | πv ∈ V # and (v, v′) ∈ E}.

For π, π′ ∈ V #, we write π v π′ if π is a prefix of π′. For a node πv, we call V (πv) = v

the position of πv. For π = v0 . . . vk, we write |π| = k + 1 for the length of π. Each play
ρ = v0v1v2 . . . in G induces a unique path (v0), (v0v1), (v0v1v2), . . . through T (G, v0).

Strategies can then be defined as subtrees of the tree unraveling, which allows for a more
visual way to reason about strategies. The model checking games we consider are always
finite, so the tree unraveling and all strategies are finitely branching.

Definition 7.4. A strategy S of player σ ∈ {0, 1} from v0 in G is a subtree of T (G, v0) of
the form S = (W,F ) with W ⊆ V # and F ⊆ (W ×W ) ∩ E# that satisfies the following
conditions. Let V̂ #

σ be the set V #
σ without terminal nodes (i.e., leaves).

(1) W is closed under predecessors: if πv ∈ W , then also π ∈ W ,

(2) player σ makes unique choices: if π ∈ W ∩ V̂ #
σ , then |πF | = 1,

(3) all choices of the opponent are considered: if π ∈ W ∩ V #
1−σ, then πF = πE#.

Equivalently, we sometimes view a strategy as a function S : W ∩ V̂ #
σ → V with

S(πv) ∈ vE encoding the choices of player σ in (2).

A play π is consistent with S if the corresponding path in T (G, v0) is contained in S.
The strategy S is winning if all plays consistent with S are winning (for player σ).

Two kinds of strategies are of particular interest to us: A positional strategy requires the
player to make a unique choice for each position, independent of the history, and it is
well known that parity games are positionally determined (see e.g. [GKL+07] for a proof).
We also consider weakly positional strategies in which each play must be positional but
the player can make different decisions across different plays.
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Figure 6: An example of a small parity game and a depiction of a winning strategy for player 0

from position a. The strategy is weakly positional, but not positional (at position d).

Definition 7.5. Let G = (V, V0, V1, E,Ω) be a parity game, σ ∈ {0, 1} and let V̂σ be the
set Vσ without terminal positions. A strategy S = (W,F ) for player σ in G is

(1) positional, if S(πv) = S(π′v) for all v ∈ V̂σ and π, π′ ∈ W ,

(2) weakly positional, if S(πv) = S(π′v) for all v ∈ V̂σ and π, π′ ∈ W with π v π′.

An example of a parity game and a winning strategy for player 0 is shown in figure 6. We
always depict V0 by circular and V1 by rectangular nodes. The small numbers indicate
the priorities of each node. For the strategy, we denote a node πv simply by its position
v (note that π is already determined by the path from the root to the node πv).

7.2 Excursion: Strategy Computation with Semirings

Before we look into model checking games, let us consider an application of semiring
provenance to parity games. This involves many of the topics we considered so far, most
importantly homomorphisms, dual polynomials and absorption.

For this excursion, we fix a parity game G = (V, V0, V1, E,Ω) with index d (that is,
Ω : V → {0, . . . , d}). It is known that the winning region of player 0 (the nodes from
which they have a winning strategy) is definable in LFP by the following construction
due to Walukiewicz [Wal02]. In the modal µ-calculus (which can be embedded into LFP
and is more concise in this case, see e.g. [GKL+07]) the formula can be written as follows,
where we interpret Pi as the set of all positions with priority i.

ϕ = σXd . . . µX1. νX0.
((
V0 → ♦

( d∧
i=0

Pi → Xi

))
∧
(
V1 → �

( d∧
i=0

Pi → Xi

)))

Here, σ is either ν or µ, depending on whether d is even or odd. This formula induces
an LFP formula ϕ(u) defining the winning region. We have not introduced the modal
µ-calculus, but the exact definition of ϕ(u) is mostly irrelevant for our application. Due
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x1

x3

y

x2

z1

z2

u
0 2

1 1 1

q
ϕ(u)

y
`

= x1y + x3yz1 + x3yz2

Figure 7: A parity game with edge labeling ` (left) and the corresponding provenance information
(right). The highlighted monomial corresponds to the highlighted positional winning strategy.

to the positional determinacy, we know that ϕ(u) holds if, and only if, player 0 has a
positional winning strategy from the position u.

Our goal is to compute all positional winning strategies for player 0 in G. To this end,
we work in PosBool[X,X] and define the model-compatible interpretation ` as follows.
We view G as a structure over the signature {V0, V1, P0, . . . , Pd, E} as used in the formula
above. The idea is that we fix the priorities and all edges of the opponent and track
edges of player 0 by variables.

• We set X = {xvw | (v, w) ∈ E, v ∈ V0}.

• For (v, w) ∈ E with v ∈ V0, we set `(Evw) = xvw and `(¬Evw) = xvw.

• All other literals are interpreted by {0, 1} according to G.

An example (with simplified variable names) is shown in figure 7. One can see that the
monomials of JϕK` correspond to the positional winning strategies and we now want to
prove this observation in general. The following lemma is the only consideration on the
formula ϕ(u) we need for this purpose.

Lemma 7.6. The dual variables xvw do not occur in Jϕ(u)K`.

Proof. Negative literals of the form ¬Exy only occur in the subformula

V1 → �
( d∧
i=0

Pi → Xi

)
or, in LFP, ¬V1x ∨ ∀y

(
¬Exy ∨

d∧
i=0

¬Piy ∨Xiy
)

We only introduce variables xvw for v ∈ V0. But for v ∈ V0, we have v /∈ V1 and thus

J¬V1 v ∨ . . . K` = J¬V1vK` + J. . .K` = 1 + J. . .K` = 1

That is, the value of the subformula involving the literals ¬Exy is absorbed.
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The monomial corresponding to a strategy can be defined directly: Given a positional
strategy S, the strategy monomial mS is defined as

mS = {xvw | v ∈ V0 and (v, w) appears in S (i.e., S(πv) = πvw for some π)}.

We first make a general observation about strategy monomials of positional strategies.

Lemma 7.7. Let S1 and S2 be two different positional winning strategies from u. Then
mS1 and mS2 are incomparable (none absorbs the other).

Proof. Let m1 = mS1 and m2 = mS2 and assume that m1 < m2, i.e., m2 ⊂ m1. Consider
the subgame G2 which results from G by removing all edges (v, w) ∈ E with v ∈ V0 for
which xvw /∈ m2. Further consider the component of u in G2. For each node v ∈ V0 in this
component, there is a unique w such that xvw ∈ m2 because S2 is a positional strategy.

Let G1 be the subgame defined in the same way for m1. Because of m2 ⊂ m1, all edges of
G2 are also contained in G1. Since S1 is positional, this means that G1 and G2 coincide on
the component of u.

Due to m2 ⊂ m1, there must further be a variable xvw ∈ m1 \m2. The corresponding
edge (v, w) of G1 is not part of G2 and can thus not lie in the component of u. But then
v is not reachable in G1 and can thus not occur in S1, which is a contradiction.

We further need two main steps that relate positional strategies and monomials in Jϕ(u)K`.
The first one is that winning strategies induce monomials of Jϕ(u)K`.

Proposition 7.8. If S is a positional winning strategy for player 0 from v in G, then
mS ≤ Jϕ(u)K`. That is, there is a monomial m ∈ Jϕ(u)K` with mS ≤ m.

Proof. Consider the subgame G ′ which results from G by removing all edges (v, w) ∈ E
with v ∈ V0 which are not used in S (so xvw /∈ mS). Then G ′ is compatible with `, so there
is an assignment f : X ∪X → B which lifts to a homomorphism h : PosBool[X,X]→ B
such that h ◦ ` = `G′ .

Since S is a winning strategy in G ′, we know that G ′ |= ϕ(u) and thus h(Jϕ(u)K`) =

Jϕ(u)Kh◦` = >. Then there must be a monomial m ∈ Jϕ(u)K` with h(m) = >. This
means that for all variables xvw ∈ m, we must have h(xvw) = >. But by definition of G ′
and h, this only holds for variables xvw ∈ mS . Hence m ⊆ mS and thus mS ≤ m.

Conversely, monomials of Jϕ(u)K` induce positional winning strategies from u by applying
the positional determinacy of parity games.
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Proposition 7.9. Let m ∈ Jϕ(u)K`. Then there is a positional winning strategy S for
player 0 from u with m ≤ mS .

Proof. Consider the homomorphism h : PosBool[X,X]→ B induced by m, i.e., h(xvw) =

> if xvw ∈ m and h(xvw) = ⊥ otherwise. Then h(m) = > and thus Jϕ(u)Kh◦` = >.

Note that h ◦ ` is model-defining. The induced model G ′ is the subgame which results
from G by removing all edges (v, w) for which xvw /∈ m. Because Jϕ(u)Kh◦` = >, we have
G ′ |= ϕ(u). Hence u is winning for player 0, so by positional determinacy there is a
positional winning strategy S from u in G ′. Because S can only use the edges of G ′, it
follows that mS ⊆ m and thus m ≤ mS .

Combining these observations indeed shows that the monomials in Jϕ(u)K` precisely
correspond to the positional winning strategies from u in G, as seen in figure 7. While
there are certainly other ways to compute all winning strategies, this illustrates that
semiring provenance can provide useful information and that PosBool[X,X] is already
sufficient if we only need to know whether tracked literals are used in a proof (or a
positional strategy) or not. We further see that the universality results are of great
importance as they connect model-compatible interpretations (such as ` above) and
actual models (such as the subgames G ′ used in the proofs).

Corollary 7.10. The monomials in Jϕ(u)K` are in one-to-one correspondence with the
positional winning strategies for player 0 from position u in the game G:

Jϕ(u)K` = {mS | S is a positional winning strategy from u}

Proof. Let S be a positional winning strategy. Then there is m′ ∈ Jϕ(u)K` with mS ≤ m′.
Considering m′, there is a positional winning strategy S ′ with m′ ≤ mS′ . Lemma 7.7
implies that S = S ′ and hence mS = m′ ∈ Jϕ(u)K`.

Conversely, let m ∈ Jϕ(u)K`. Then there is a positional winning strategy S with m ≤ mS .
We have already shown that mS ∈ Jϕ(u)K`. But this implies m = mS , as otherwise m
would be absorbed by mS .

In this excursion, we have seen how to compute all positional winning strategies via
semiring provenance, which in particular allows us to count the number of these strategies.
In [GT19], it is shown that counting positional winning strategies (of acyclic reachability
games) using K-valuations is impossible. These valuations map nodes to semiring values
and are induced by annotations of both terminal positions and edges. K-valuations are
preserved by counting bisimulations that respect these annotations, which means that a
game and its tree unraveling yield the same K-valuation. We instead use S-interpretations
to track only the edges (of one player) and we use different variables for every edge. For
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the tree unraveling (of an acyclic reachability game), this means that we use different
variables for all edges in the tree, even if they correspond to the same edge in the
game graph. For this reason, their argument (based on bisimulations that respect the
annotation of edges) does not apply to our setting.

7.3 Model Checking Games

Coming back from our excursion, we now want to turn the tables: Instead of using
semiring provenance to compute strategies, we want to use strategies to characterize
semiring semantics JϕK`. To achieve this, we consider strategies in model checking games.
In LFP, these are parity games (we again refer to [GKL+07] for more details), as the
parity condition can be used to encode the semantics of least and greatest fixed points
(and especially their alternation).

We first define the classical model checking game for a model A (with universe A) and a
formula ϕ. In the context of semirings semantics, we have a formula ϕ and a universe A –
but no model. We thus define the notion of generic model10 checking games. Intuitively,
these are games in which the interpretation of literals is not yet fixed. Instead, we fix it
afterwards (in the next section) by applying a semiring interpretation ` to strategies of
the generic model checking game.

For technical reasons, we assume the formula ϕ to be well-named. That is, all fixed-point
subformulae use different relation symbols and these symbols do not occur outside of
the scope of the respective subformula. Recall that we write [fpRx. ϑ](y) for either
[lfpRx. ϑ](y) or [gfpRx. ϑ](y).

Definition 7.11. Let ϕ be a well-named LFP formula in negation normal form over
the finite relational signature τ . Let A be a τ -model with universe A. The (classical)
model checking game for A and ϕ is the parity game G(A, ϕ) = (V, V0, V1, E,Ω) defined
as follows. We call player 0 the Verifier and player 1 the Falsifier.

The positions are all subformulae ψ in which all free variables are instantiated by elements
of the universe A, so V = {ψ(a) | ψ(x) is a subformula of ϕ}.

We define the the sets V0, V1 and E for each position ψ(a) depending on ψ:

• If ψ = Rx belonging to a fixed-point formula [fpRx. ϑ](y), then Ra ∈ V0 and the
only outgoing edge is Ra→ ϑ(a).

• If ψ ∈ LitA (not belonging to a fixed-point formula), we consult the model:
If A |= ψ(a), then ψ(a) ∈ V1 (Verifier wins), otherwise ψ(a) ∈ V0.

10Truth be told, these are actually generic checking games, as they are independent of any models.
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• If ψ = ψ1 ∨ ψ2, then ψ(a) ∈ V0 with edges ψ(a)→ ψ1(a) and ψ(a)→ ψ2(a).
If ψ = ψ1 ∧ ψ2, then ψ(a) ∈ V1 with edges ψ(a)→ ψ1(a) and ψ(a)→ ψ2(a).

• If ψ = ∃y ϑ(y), then ψ(a) ∈ V0 with edges ψ(a)→ ϑ(a, b) for each b ∈ A.
If ψ = ∀y ϑ(y), then ψ(a) ∈ V1 with edges ψ(a)→ ϑ(a, b) for each b ∈ A.

• If ψ = [fpRx. ϑ](y), then ψ(a) ∈ V0. For ψ(a) = [fpRx. ϑ](b), we add the single
edge ψ(a)→ ϑ(b).

The priorities are defined for nodes Ra belonging to fixed-point formulae such that,

(1) if Ra belongs to an lfp-formula, then Ω(Ra) is odd,

(2) if Ra belongs to a gfp-formula, then Ω(Ra) is even,

(3) if Ra belongs to ψR = [fpRx. ϑ](y) and Pb belongs to ψP = [fpP x. ϑ′](y) where
ψP is a subformula of ϑ, then Ω(Ra) ≤ Ω(Pb).

That is, outermost fixed-point formulae get the smallest priorities. We want the priorities
of all other positions to be irrelevant. If d is the highest priority used above, we thus
label all other positions with d+ 1.

Winning strategies for the game G(A, ϕ) constitute proofs of A |= ϕ which leads to the
following central property (see [GKL+07] for a proof).

Theorem 7.12. Let ϕ and A be as in the above definition. Then A |= ϕ(a) if, and only
if, Verifier has a winning strategy in G(A, ϕ) from position ϕ(a).

In the context of semiring semantics, we do not have a model A but instead only fix the
universe A and an S-interpretation `. We separate the two and first define generic model
checking games in which all terminal positions are won by Verifier. We later re-introduce
` when we define the outcome of (winning) strategies.

Definition 7.13. Let ϕ be a well-named LFP formula in negation normal form over the
finite relational signature τ and let A be a finite universe. The (generic) model checking
game for ϕ (over A and τ) is the parity game GA(ϕ) defined exactly as G(A, ϕ) except
for its terminal positions (other positions, edges and priorities are as in G(A, ϕ)):

• If ψ ∈ LitA (not belonging to a fixed-point formula), then ψ(a) ∈ V1
(we consider all terminal positions to be winning for Verifier)

We write GA(ϕ(a)) for the game GA(ϕ) with distinguished initial position ϕ(a) and where
we only keep positions reachable from ϕ(a). Strategies for GA(ϕ(a)) are always strategies
from the initial position.
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ϕ(x) =
[
gfpX x.

[
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)]
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]
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Figure 8: Example of a model checking game GA(ϕ) for the given formula ϕ over A = {u, v}.
Terminal positions (dashed border) include the value assigned by `, if ` is defined as illustrated
on the right. Only the relevant priorities are shown. The highlighted edges indicate a winning
strategy with non-zero outcome.

We call such a model checking game generic as it is the same for all models with universe
A (and signature τ). An example together with an S-interpretation for the terminal
positions is shown in figure 8. Our goal is to use generic model checking games together
with interpretations ` to describe the result of a provenance computation JϕK` by means
of the values of literals appearing in winning strategies for the game G(ϕ).

Before we proceed, we need further notation. Recall that we always assume a finite
universe A. We write G(ϕ) for the game GA(ϕ) if A is clear from the context. When
discussing strategies, we always take the perspective of Verifier, so winning means winning
for Verifier. The set of all winning strategies of G(ϕ(a)), which are the winning strategies
from position ϕ(a) in G(ϕ), is denoted byWϕ(a). All strategies we consider in the following
are winning strategies which we usually denote by the letter S. Given S = (W,F ), we
often write π ∈ S instead of π ∈ W .

The following observations are used frequently in proofs and are clear from the definition
of strategies and the winning condition.

101



7 Understanding Provenance via Games

Lemma 7.14. Consider G(ϕ) = (V, V0, V1, E,Ω) for some formula ϕ.

(1) Let ρ = ρ0 ρ
′ be a play in G(ϕ) where ρ0 is a finite prefix and ρ′ is not empty. Then

ρ is winning if, and only if, ρ′ is winning.

(2) Let S be a (winning) strategy in G(ϕ) from some position v ∈ V and let π ∈ S.
Then the subtree of S rooted at π (i.e., the subgraph induced by all nodes π′ ∈ S
with π v π′) is a (winning) strategy from V (π).

We are especially concerned with literals appearing in strategies. Recall that LitA is the
finite set of literals (over A and τ). For a strategy S and a literal L ∈ LitA, we write |S|L
for the number occurrences of L in leaves of S, or, formally:

Definition 7.15. Let ϕ be a formula, S ∈ Wϕ(a) and L ∈ LitA. Moreover, let

WL = {πL ∈ S | L is a terminal position in G(ϕ)}

That is, WL is the set of leaves of S with position L. We then define

|S|L =

{
|WL|, if WL is finite

∞, otherwise

Note that we always have |S|Ra = 0 if R belongs to a fixed-point formula [fpRx. ϑ](y),
as the positions Ra have outgoing edges (to ϑ(a)) in the model checking game and are
thus not terminal (and therefore no leaves of S).

The characterization we want to achieve is of the form

Jϕ(a)K` =
∑

S∈Wϕ(a)

JSK`

where the outcome JSK` of the strategy S should intuitively be the product of all literals
(or rather, their values under `) appearing in S. Note that this is not yet well-defined, as
both the number of winning strategies and the number of literals in S can be infinite. We
consider this characterization for the important class of absorptive continuous semirings
where it can be phrased in a reasonable way (mostly due to the infinitary power a∞

and because > = 1), but we believe that similar statements are possible also for other
semirings such as N∞ and W[X].

Recall that we can define a∞ =
d
n a

n in all absorptive semirings S. Given a strategy
S, we define its outcome JSK` under an S-interpretation ` as the product of all literals
appearing in leaves of S. The infinitary power is needed in case of |S|L =∞.
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Definition 7.16. Let S be a strategy in the game G(ϕ) for some formula ϕ and let ` be
an S-interpretation for an absorptive semiring S. The outcome of S is the product

JSK` =
∏

L∈LitA

`(L)|S|L

If ` is model-defining, we can identify winning strategies in G(ϕ) with non-zero outcome
with winning strategies in the classical model checking game G(A`, ϕ). We must addi-
tionally impose a positivity requirement on the semiring to ensure that the outcome can
only be zero if S contains a zero-valued literal.

Proposition 7.17. Let S be a positive, chain-positive and absorptive semiring, let ` be
a model-defining S-interpretation and ϕ a formula. Then the winning strategies S in the
game G(ϕ(a)) with JSK` 6= 0 are precisely the winning strategies from position ϕ(a) in the
classical model checking game G(A`, ϕ).

Proof. The games G(ϕ(a)) and G(A`, ϕ) are equivalent except for the literals. In G(ϕ(a)),
all literals are considered to be winning (for Verifier), whereas in G(A`, ϕ), only the literals
L with A` |= L are winning. As the model A` is defined by `, literals with A` 6|= L are
annotated by `(L) = 0. Hence strategies visiting L have the outcome 0.

For the formal argument, let S ∈ Wϕ(a). Due to the positivity and chain-positivity of S,
we have `(L)|S|L = 0 if, and only if, `(L) = 0 and |S|L > 0. By definition of the outcome,
this implies that JSK` 6= 0 if, and only if, |S|L = 0 for all literals L with `(L) = 0, i.e., with
A` 6|= L. It follows that S is a winning strategy in G(A`, ϕ) if, and only if, JSK` 6= 0.

This observation makes clear that the characterization of Jϕ(a)K` is all about winning
strategies in the classical sense and can thus be seen as a description of semiring semantics
in terms of proofs of the formula ϕ(a). In order to establish this result for all absorptive
continuous semirings, we show that it holds for absorptive polynomials S∞[X] and make
use of their universality.

7.4 Characterization for Absorptive Polynomials

In the semiring S∞[X] of absorptive polynomials, we can express the sum over all
strategies as supremum (recall that S∞[X] is idempotent and a lattice semiring). The
characterization we want to prove can then be formulated as follows. The rest of this
section is devoted to the proof and consequences of this result.
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7 Understanding Provenance via Games

Theorem 7.18 (strategy characterization). Let ` be an S∞[X]-interpretation and ϕ(x)

a formula. Then
Jϕ(a)K` =

⊔
{JSK` | S ∈ Wϕ(a)}

Absorption on Strategies

Given two strategies S1 and S2 in a game G(ϕ(a)) and an S∞[X]-interpretation `, we
say that S1 ≤ S2 (that is, S2 absorbs S1) if JS1K` ≤ JS2K`. When we consider the
supremum

⊔
{JSK` | S ∈ G(ϕ(a))}, only the absorption-maximal strategies are relevant.

An interesting question is what kind of strategies these are. Thinking of examples such
as graph reachability, it is clear that absorption-maximal strategies must not correspond
to paths with unnecessary repetitions. This suggests that absorption-maximal strategies
are related to positional strategies. While this is almost true, consider this example:

x

y

This game is a simple reachability game (without cycles), yet the only two positional
strategies have the outcomes x2 and y2. So although the outcome xy is absorption-
maximal, the corresponding strategy is not positional. It is, however, weakly positional,
as it only makes different decisions in different plays. This example is also considered in
[GT19] where it is claimed that the restriction to weakly positional strategies does not
reduce strategic power in reachability games with cycles. We show that the same holds
for the larger class of parity games.

This observation is applicable not only to model checking games, but to finite parity games
with labeled terminal positions in general. Given a finite parity game G = (V, V0, V1, E,Ω),
let T = {v ∈ V | vE = ∅} be the set of terminal positions (of either player) and consider
a labeling ` : T → S∞[X]. We can adapt the definition of outcomes accordingly:

JSK` =
∏
t∈T

`(t)|S|t

where S is a strategy in G and |S|t is the number of occurrences (possibly ∞) of the
terminal position t. If G = G(ϕ), then this definition coincides with the original one.

Proposition 7.19. Let G, T and ` be defined as above and let S be a any winning
strategy (for player 0) from position v ∈ V . Then there is a weakly positional winning
strategy S ′ (for player 0) from v such that S ≤ S ′.
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Figure 9: Illustration of the recursive construction in the proof of proposition 7.19. Grey
subtrees are positional winning strategies in G′, striped parts do not contain v.

Proof. We show how to construct a weakly positional strategy S ′ such that |S|t ≥ |S ′|t
for all t ∈ T , since this implies S ≤ S ′. In particular, S is winning and thus visits no
terminals t ∈ T ∩ V0, so the same must hold for S ′.

Let T∞ = {t ∈ T | |S|t = ∞} be the set of terminals appearing infinitely often in S.
These impose no restriction, as we always have |S|t ≥ |S ′|t for t ∈ T∞. We are thus more
concerned with the literals Tfin = T \ T∞ which we call problematic.

First consider the parity game G ′ = (V, V ′0 , V
′
1 , E,Ω) with V ′0 = (V0 \ T ) ∪ Tfin and

V ′1 = (V1 \ T ) ∪ T∞. That is, we consider all terminals in T∞ to be winning and all
problematic terminals to be losing (from the perspective of player 0). Let W ⊆ V be the
set of all positions from which there is a positional winning strategy in G ′.

Let further n =
∑

t∈Tfin |S|t. Then n is finite (note that T is finite), so there is a depth k
such that no more occurrences of Tfin happen below depth k (that is, for all π ∈ S with
|π| ≥ k we have V (π) /∈ Tfin). Consider any node π ∈ S with |π| = k. Then the subtree
of S rooted at π is a winning strategy in G ′ from V (π) (because it avoids Tfin). Due to
positional determinacy, there is a positional winning strategy Sπ from V (π) in G ′.

Let T result from S by replacing all π ∈ S with |π| = k by the these strategies Sπ. We
describe a recursive process to transform T into a weakly positional strategy T ′.

(1) Let v ∈ V be the position of the root of T .

(2) If v ∈ W , then there is a positional winning strategy T ′ from v in G ′. By definition
of G ′, we have |S|t ≥ |T ′|t for all t ∈ T , so we stop and return T ′.

(3) If v does not occur in T below the root, then T is already weakly positional with
respect to position v. Let T1, . . . , Tn be the subtrees rooted in the children of T ’s
root. We obtain weakly positional versions T ′1 , . . . , T ′n by recursion. We then replace
each subtree Ti by T ′i and return the result.

(4) Otherwise, v does occur somewhere else in T . Note that v cannot occur in the
strategies Sπ, as we would then have v ∈ W . Hence all occurrences of v occur in a
finite prefix of T . There must thus be a node π ∈ T with V (π) = v such that the
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7 Understanding Provenance via Games

subtree T ′ rooted at π contains no further occurrences of v. We then proceed with
T ′ as in step (3) and return the result.

Let S ′ be the overall result of applying these steps to T . Note that the process terminates
as we always recurse on subtrees and step (2) applies when we reach one of the subtrees
Sπ. Moreover, S ′ is weakly positional and winning: Each sufficiently long play eventually
enters one of the subtrees Sπ. So each play has the form ρ = ρ0 ρ

′ where ρ′ is the (possibly
empty) play through Sπ. Steps (3) and (4) ensure that each position in ρ0 occurs only
once in the entire play ρ. The remaining play ρ′ follows the positional strategy Sπ. Hence
ρ is positional and S ′ is thus weakly positional. If ρ′ is empty, then the play ends in a
terminal. Assuming |S|t ≥ |S ′|t for all t ∈ T , this terminal position must be winning. If
ρ′ is nonempty, then ρ′ (and thus ρ) is winning due to Sπ.

It remains to show that |S|t ≥ |S ′|t for all t ∈ T . First note that by definition of
G ′, the strategies Sπ only visit literals in T∞. Hence |S|t ≥ |T |t for all t ∈ T . The
recursive construction only removes parts of T or replaces subtrees with positional
winning strategies for G ′ which do not visit Tfin. Hence S ′ contains fewer (or equally
many) problematic literals than T and thus |S|t ≥ |T |t ≥ |S ′|t for all t ∈ T .

Towards the Characterization: Strategy Truncations

The main idea to prove the characterization is to relate the fixed-point iteration with
prefixes of the strategy S. That is, we cut off the tree S after n occurrences of the relation
symbol R belonging to the fixed-point formula. The outcome of the resulting subtree of
S then corresponds to the n-th step of the fixed-point iteration.

Definition 7.20. Let S = (W,F ) be a strategy in G(ϕ) = (V, V0, V1, E,Ω) and let R be
a relation symbol of arity r. For π = v0v1 . . . vk ∈ W , we define

|π|R =
∣∣{i | vi = Ra for some a ∈ Ar}

∣∣
The (R, n)-truncation of S is the tree (W ′, F ′) defined as follows. Its nodes are finite
sequences over V ∪ {Q}, where Q is a special symbol which marks the nodes at which
we cut off subtrees of S. For n ≥ 1, we define

• W ′ = {π ∈ W | |π|R < n} ∪ {πQ | π Ra ∈ W , |π|R = n− 1},

• F ′ = F ∩ (W ′ ×W ′) ∪ {(π, πQ) | πQ ∈ W ′}.

For n = 0, we instead set W ′ = {Q} and F ′ = ∅. If R is clear from the context, we write
S|n for the (R, n)-truncation of S.
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Figure 10: A visualization of a strategy S and its (R,n)-truncations for n = 1, 2.

The idea of strategy truncations is roughly comparable to the unfolding of parity games
in [GKL+07, chapter 3]. However, we need more information than just winning or
non-winning, so we have to work with strategies instead of modifying the game.

See figure 10 for an example. We lift the definition of the outcome JSK` to truncations
JS|nK` by treating Q as an additional literal. That is,

JS|nK` = `(Q)|S|Q ·
∏

L∈LitA

`(L)|S|L

As a first observation, we note that for a fixed strategy S, the outcomes of its truncations
converge towards the outcome of S.

Lemma 7.21. Let ` be an S∞[X]-interpretation.

(1) Let ϕ = [lfpRx. ϑ](y) and let S ∈ Wϕ(a). If we extend ` by `(Q) = 0, then⊔
n<ω

JS|nK` = JSK`

(2) Let ϕ = [gfpRx. ϑ](y) and let S ∈ Wϕ(a). If we extend ` by `(Q) = 1, then
l

n<ω

JS|nK` = JSK`

Proof. For (1), note that JS|nK` = 0 whenever S has a path with at least n R-nodes
(so S|n contains a Q-node). We show that there is a k such that all paths of S have
less than k R-nodes. Assume towards a contradiction that this is not the case. Then
consider the subgraph of S consisting of all nodes from which a path to an R-node exists.
This subgraph must then have paths of arbitrary length and by Kőnigs lemma (note
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that S is finitely branching), it must have an infinite path. This is a contradiction, as
this infinite path would contain an infinite number of R-nodes and would thus be losing.
Hence JS|nK` = JSK` for all n ≥ k and the claim follows.

For (2), we first note that the truncations JS|nK` indeed form a chain. The reason is
that `(Q) = 1 is the greatest element, so replacing subtrees of S by Q leads to a larger
outcome. Using the splitting lemma, the infimum can be written as follows (we can ignore
the value `(Q) appearing in the outcome, as 1 is also the neutral element).

l

n<ω

JS|nK` =
∏

L∈LitA

l

n<ω

`(L)|S|n|L =
∏

L∈LitA

`(L)cL , where cL =
⊔
n<ω

∣∣S|n∣∣L
The main observation is that each node of S is eventually contained in S|n (for sufficiently
large n). Consider a literal L. If |S|L is finite, then for sufficiently large n, we have
|S|n|L = |S|L and thus cL = |S|L. If |S|L = ∞, then for each k there is a sufficiently
large n such that |S|n|L ≥ k and thus cL =∞, which closes the proof.

The Puzzle Lemma

As in the universality proof for S∞[X], greatest fixed points are more challenging than
least fixed points. To overcome this obstacle, we make use of the characterization of
infima from theorem 6.27 by means of monomial chains. In the current setting, the
monomials are outcomes of strategy truncations and the following lemma plays a central
role in the proof of the characterization theorem.

Lemma 7.22 (puzzle lemma). Let ϕ = [gfpRx. ϑ](y), let r be the arity of R and let
a ∈ Ar. Let ` be an S∞[X]-interpretation extended by `(Q) = 1. Let further (Si)i<ω be a
family of strategies in Wϕ(a) such that (JSi|iK`)i<ω is a descending chain. Then there is a
winning strategy S ∈ Wϕ(a) with JSK` ≥

d
i JSi|iK`.

For an intuition why this result is not obvious, we consider the following example. The
key problem is that the strategies Si can all be different. In particular, It can happen
that for every i, the outcome of the truncation Si|i is larger than the outcome of the full
strategy Si. The insight of the lemma is that we can always use one of the truncations
Si|i (for sufficiently large i) to construct a strategy S with the desired property. This
construction has to be done carefully to ensure that the resulting strategy S is winning.
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Example 7.23. Consider the following setting:

ϕinfpath(u) = [gfpRx. ∃y(Exy ∧Ry)](u)
u v

y
x z

Let Si be the strategy corresponding to the infinite path that cycles i− 1 times via x,
then uses edge y and finally cycles via z. The i-truncation then cuts off Si after taking
the edge y and we obtain the outcomes

JSiK` = xiyz∞ and
l

i<ω

JSi|iK` =
l

i<ω

xiy = x∞y.

We see that the infimum only contains the variables x and y, although there is no winning
strategy with this outcome. Instead, we obtain S by repeating the cycling part of any
truncation Si|i (without the problematic literal y). This results in the strategy S with
outcome JSK` = x∞ that corresponds to the path always cycling via x. This path is
not consistent with any of the strategies Si. In general, we have to make sure that the
additional plays in S (which result from the repetition of Si|i) are always winning.

As a first step, we can apply the splitting lemma to the infimum and obtain:

l

i<ω

JSi|iK` =
∏

L∈LitA

`(L)nL with nL =
⊔
i<ω

∣∣Si|i∣∣L
Literals with nL =∞ (such as the edge x in the example) can appear arbitrarily often in
S, so they do not impose any restrictions. If nL <∞, then we must have |S|L ≤ nL to
guarantee that the outcome of S is larger than the infimum. We therefore call literals L
with nL <∞ (such as the edge y) problematic. The outline of the proof is as follows:

• We decompose the trees Si|i into layers based on the appearance of R-nodes.

• We choose a sufficiently large i such that there is one such layer in Si|i which does
not contain any problematic literals at all.

• We construct S by first following Si|i and then repeating this layer ad infinitum.
For the construction, we collect several subtrees (which we call puzzle pieces) from
this layer which we can then join together to form the repetition.

• The form of the puzzle pieces ensures that S is winning. In particular, we only join
the pieces at R-nodes. Paths through infinitely many pieces are thus guaranteed to
satisfy the parity condition.
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Figure 11: A visualization of a strategy. The gray nodes form the first layer (for k = 1). The
two trees in this layer are puzzle pieces, the left one has an infinite winning path.

Decomposition into layers

Fix an i and let Si|i = (W,F ). We call each node π ∈ W with V (π) = Ra (for any
a ∈ Ar) an R-node. If an R-node happens to be a leaf, we speak of an R-leaf.

For each n ≥ 0, we define the sets

W≤n = {π ∈ W | |π|R ≤ n}, W+
≤n = W≤n ∪ {πv ∈ W | π ∈ W≤n, v ∈ V }

We sort the nodes π ∈ W into layers based on the number of R-nodes on the path to π.
For now, think of a layer as a forest in which all roots and most of the leaves are R-nodes.
The R-leaves of one layer are the root nodes of the next layer, apart from this layers do
not overlap. The constant k controls the thickness of the layer (the maximal number of
R-nodes that can occur on paths through the layer).

For any j ≥ 1, the j-th layer is the subgraph of Si|i induced by the node set

Wj = W+
≤ j·k \W≤(j−1)·k where k = |A|r + 2.

Note that each tree in a layer is a strategy (i.e., satisfies conditions (1)-(3) of definition 7.4)
except for its leaves. See figure 11 for a visualization.

Avoiding problematic literals

Let n =
∑
{nL | L ∈ LitA, nL <∞} be the sum of the problematic nL, which is an upper

bound on the number of problematic literals appearing in any truncation Si|i. Note that
n is always finite. We now choose any i such that:

i ≥ (n+ 1) · k = (n+ 1) · (|A|r + 2)
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7.4 Characterization for Absorptive Polynomials

From now on, we only work with Si|i = (W,F ). Consider the layers W1, . . . ,Wn+1 of Si|i.
First assume that there is a j such that Wj = ∅. By definition of the layers, we thus have
|π|R ≤ (j − 1) · k < i for all π ∈ Si|i. But this means that each path in Si|i has less than
i R-nodes. By definition of the truncation, this means that Si|i = Si. In this case we can
simply set S = Si and are done.

Otherwise, there are n+ 1 nonempty layers and at most n occurrences of problematic
literals. Hence there must be a layer j such that Wj does not contain any problematic
literals. In the following, we concentrate only on this layer Wj.

Collecting puzzle pieces

We want to build the strategy S from the prefix of Si|i up to layer Wj and then continue
by always repeating the layer Wj. Because Wj does not contain any problematic literals,
this eventually yields JSK` ≥ JSi|iK` as required.

Let T be one of the components in Wj, so T is a tree. We call a path in T winning if it
is infinite or ends in a terminal position, so it corresponds to a play consistent with Si.
Paths ending in R-leaves of T (which could be continued by leaving the layer Wj) are
not considered to be winning.

Definition 7.24. A puzzle piece P = (W ′, F ′) is a subtree of Wj such that

(a) The root of P is an R-node,

(b) For each inner node π ∈ P , we have πF ′ = πF (P contains all successors),

(c) Each maximal path through P is either winning or ends in an R-node.

A puzzle piece P with root π matches a node π′ ∈ Wj if V (π) = V (π′). A complete puzzle
is a set of puzzle pieces such that for each piece in the set and all R-leaves π of this piece,
the set contains a puzzle piece that matches π.

First observe that T itself is a puzzle piece: Each maximal path through T which does
not end in an R-node must visit less than k R-nodes. If we append this path to the
unique path from the root of Si|i to the root of T , then the resulting path contains less
than i R-nodes. Hence the path is not truncated in Si|i, so it is also a maximal path of
Si and thus winning. However, a single piece does not make a complete puzzle. Instead,
we collect smaller pieces from T by the following algorithm:

(1) Initialize L = {π̂} where π̂ is the root of T (which is an R-node).

(2) Pick a node π ∈ L and remove it from L (if L is empty, terminate).

(3) If we have already found a puzzle piece matching π, go to step (2).
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7 Understanding Provenance via Games

(4) Let P be the subgraph of T induced by the following set of nodes. Then P is a
puzzle piece matching π and we add it to our set of pieces.

W ′ := {π′ ∈ T | π v π′ and there is no R-node π′′ with π @ π′′ @ π′)}

(5) For each a ∈ Ar: If P has a leaf π′ with V (π′) = Ra, add one such leaf π′ to L.

(6) Go back to step (2).

If the definition of P in step (4) is correct, then this algorithm clearly terminates after
finding at most |A|r puzzle pieces and the resulting set of pieces is a complete puzzle.
For step (4), recall the definition of Wj. For the root of T , we have |π̂|R = (j − 1)k + 1

and Wj contains in particular the nodes π with (j − 1)k < |π|R ≤ jk.

Assume that in (2), we picked a node π with |π|R = n (for some n). By definition of
W ′, the piece P only contains nodes π′ with |π′|R ≤ n+ 1. In particular, the leaves that
we add to L in step (5) all satisfy |π′|R ≤ n+ 1. We start with |π̂|R = (j − 1)k + 1 and
perform at most k − 2 iterations, hence we always have |π|R < jk for all π ∈ L.

This guarantees that P is always a puzzle piece in step (4): Inner nodes of P cannot be
R-nodes and hence P always contains all successors of inner nodes, so (b) is satisfied. For
(c), assume towards a contradiction that there is a maximal path through P which does
not end in an R-node and is not winning. This path is also a path in Si and because all
infinite paths of Si are winning, the path must be finite. Because all terminal positions
in Si are winning, the path must end in a leaf of T which is not a leaf of Si. But such
leaves of T must be R-nodes by definition of the layers, which is a contradiction. Hence
(c) holds as well and P is a puzzle piece.

We proceed in the same way for all other components of Wj and obtain a complete puzzle
for each component. The overall result is the union of all these puzzles, which is again a
complete puzzle. An illustration of such a puzzle (as individual pieces and in assembled
form) is shown in figure 12; the next step is to perform the assembly.

Completing the puzzle

We now have a complete puzzle with a matching piece for all root nodes of Wj (these are
precisely the R-leaves of the preceding layer Wj−1). All that remains is to join the pieces
together to form the strategy S. Note that puzzle pieces can contain infinite paths or
even infinitely many R-leaves. We therefore construct S recursively layer by layer.

• S0 is the subgraph induced by W+
≤(j−1)k, i.e., the prefix of Si|i up to layer Wj. By

definition of the layers, all leaves of S0 are either leaves of Si or R-leaves of Wj−1.
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Figure 12: A schematic illustration of the pieces in a complete puzzle and their infinite repetition.
We abbreviate R-nodes Ra (at which we join pieces) by just a. The gray lines indicate three
paths: One through infinitely many pieces, a finite one and an infinite one that only visits finitely
many pieces (from left to right). All three are winning by construction.

• Given Sn, we construct Sn+1 as follows. Recall that for π = v0 . . . vl ∈ Sn, we write
|π| = l for its length (which equals the depth of π in Sn). Consider the set

X = {π ∈ Sn | π is an R-leaf of Sn with |π| = n}

Because Sn is finitely branching (as we construct it from subtrees of Si|i), this set
is finite. Moreover, each π ∈ X is either the R-leaf of a puzzle piece or, initially,
the root of one component of Wj. In both cases, the complete puzzle contains a
piece matching π. The tree Sn+1 results from Sn by replacing all leaves π ∈ X with
the unique puzzle piece matching π. Then Sn+1 has no more R-leaves at depth n
(note that the puzzle pieces we collected always consist of at least two nodes).

When we replace π ∈ X by a piece P , we rename the nodes of P accordingly,
to match our definition of strategies (if π̂ is the root of P , we rename each node
π̂π′ ∈ P to ππ′ when adding it to Sn+1).

• We define S =
⋃
n<ω

Sn, so S contains no more R-leaves.

Then S is a strategy: Each node π ∈ S corresponds to a node π′ ∈ Si|i (either π′ is an
inner node of a puzzle piece, or π′ ∈ S0) and π has the same successors as π′. Moreover,
the outcome is JSK` ≥ JSi|iK` as desired, because the repetition of puzzle pieces does
not contain any problematic literals. Lastly, S is a winning strategy: Consider a play
consistent with S and the corresponding maximal path through S. If the path is finite,
it ends in a leaf of S which corresponds to a leaf of Si and is therefore winning. If the
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7 Understanding Provenance via Games

path visits infinitely many puzzle pieces (whose root nodes are R-nodes), then it visits
infinitely many R-nodes and is thus winning by the parity condition (note that R belongs
to the outermost fixed-point formula in ϕ). If the path is infinite and stays in S0, then it
corresponds to an infinite path of Si|i and is thus winning. Otherwise, the path is infinite,
leaves S0 at some point and visits only finitely many puzzle pieces. This means that it
must from some point on stay in one piece, so it is winning by definition of puzzle pieces.
We have therefore completed the puzzle (lemma).

The Characterization

We are now ready to prove the characterization:

Jϕ(a)K` =
⊔
{JSK` | S ∈ Wϕ(a)}

The interesting part is the proof for fixed-point formulae ϕ = [fpRx. ϑ](y). A strategy
S ∈ Wϕ(a) may then look as in the picture below. We write L/. . . to denote either a
literal or an infinite path (without occurrences of R-nodes).

ϕ(a) ϑ(a)

L/. . .

Rb

Ra

ϑ(b)

ϑ(a)

L/. . .

Rb

Ra

ϑ(b)

ϑ(a)

Q Q

Winning strategy Sϑ
for the game G(ϑ(a)).

Winning strategies Sb, Sa (or their truncations) from
ϕ(b) (highlighted) and ϕ(a), except for the root node.

The strategy S must first move to ϑ(a) and thus contains a winning strategy from ϑ(a) in
G(ϕ). If we only consider the strategy from ϑ(a) up to the first occurrence of an R-node,
as indicated above, we obtain a winning strategy for the game G(ϑ(a)). Note that in
G(ϑ(a)), R-nodes are terminals and are thus winning.

In G(ϕ(a)), these R-nodes are not terminals. Hence S must further contain substrategies
for these R-nodes (Rb and Ra above). Because the positions ϕ(b) and Rb must both
be followed by ϑ(b), we can view the substrategy from Rb as a winning strategy Sb for
G(ϕ(b)) (as highlighted above).

We thus see that each winning strategy S in G(ϕ(a)) can be decomposed into a prefix
Sϑ which we can identify with a winning strategy for G(ϑ(a)) and, for all R-leaves of Sϑ,
substrategies which are winning strategies in G(ϕ). Conversely, every winning strategy
Sϑ for G(ϑ(a)) can be combined with winning strategies from ϕ(a), ϕ(b), . . . for all the
R-leaves of Sϑ to form a winning strategy in G(ϕ(a)).
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7.4 Characterization for Absorptive Polynomials

If we build the strategy by starting with Sϑ but then appending the truncations Sa|n and
Sb|n instead of Sa,Sb (as indicated by the dashed lines in the picture), then the result is
the n+ 1-truncation S|n+1 of a winning strategy S ∈ Wϕ(a), because Sϑ contains at most
one R-node on each path. We exploit this observation in an inductive proof that relates
the n-truncations of winning strategies with the n-th step of the fixed-point iteration.

Proof of theorem 7.18. Induction on the negation normal form of ϕ(a):

• ϕ(a) = L ∈ Lit: Then G(ϕ(a)) consists only of a terminal position (which is winning).
There is only one (trivial) strategy with JSK` = `(L) = Jϕ(a)K`.

• ϕ(a) = ϕ1(a) ∨ ϕ2(a). The game G(ϕ(a)) is shown on the
right. Each strategy S for G(ϕ(a)) makes a unique choice at
ϕ(a) and thus either consists of a strategy S1 for G(ϕ1(a))

or a strategy S2 for G(ϕ2(a)), but not both. Conversely, a
strategy Si for G(ϕi(a)) lifts to a strategy S from ϕ(a) (for
i ∈ {0, 1}). We thus have:

ϕ(a)

G(ϕ1(a)) G(ϕ2(a))

⊔
{JSK` | S ∈ Wϕ(a)} =

⊔
{JSiK` | Si ∈ Wϕi(a), i ∈ {0, 1}}

=
⊔
{JS1K` | S1 ∈ Wϕ1(a)} t

⊔
{JS2K` | S2 ∈ Wϕ2(a)}

IH
= Jϕ1(a)K` t Jϕ2(a)K` = Jϕ1(a)K` + Jϕ2(a)K` = Jϕ(a)K`

• ϕ(a) = ϕ1(a)∧ϕ2(a). The reasoning is similar: Each strategy
S for G(ϕ(a)) consists of both a strategy S1 for G(ϕ1(a)) and
a strategy S2 for G(ϕ2(a)). The converse direction (all S1 and
S2 together induce a strategy S) holds as well.

ϕ(a)

G(ϕ1(a)) G(ϕ2(a))

If S consists of the two strategies S1 and S2, then we further have JSK` = JS1K` · JS2K`
by definition of the outcome and lemma 6.41 (1). The claim follows by induction and
continuity of S∞[X] (for suprema of arbitrary sets, by corollary 4.24):

Jϕ1(a)K` · Jϕ1(a)K`
IH
=
⊔
{JS1K` | S1 ∈ Wϕ1(a)} ·

⊔
{JS2K` | S2 ∈ Wϕ2(a)}

=
⊔
{JS1K` · JS2K` | Si ∈ Wϕi(a) for i ∈ {1, 2}}

=
⊔
{JSK` | S ∈ Wϕ(a)}

The cases for ∃ and ∀ follow by the same arguments (except that we have |A| instead of
2 child nodes). For fixed-point formulae, we use the decomposition into Sϑ and Sa,Sb
as motivated above. Consider the fixed-point iteration (πβ)β∈On for ϕ = [fpRx. ϑ](y),
where R is of arity r.
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7 Understanding Provenance via Games

We first show by induction that the following holds for all n < ω and all a ∈ Ar, where
we set `(Q) = 0 for ϕ = [lfpRx. ϑ](y) and `(Q) = 1 for ϕ = [gfpRx. ϑ](y):

πn(a) =
⊔
{JS|nK` | S ∈ Wϕ(a)}

• For n = 0, we trivially have π0 = 0 and JS|0K` = 0 for least fixed points and π0 = 1

and JS|0K` = 1 for greatest fixed points.

• For the induction step n→ n+ 1, we first show πn+1(a) ≤
⊔
{JS|n+1K` | S ∈ Wϕ(a)}.

To simplify notation, we set Lit∗A = LitA \ {Ra | a ∈ Ar}. By the induction hypothesis
on ϑ and on πn, we can write πn+1 as follows:

πn+1(a) = Jϑ(a)K`[R/πn] =
⊔{

JSϑK`[R/πn]
∣∣ Sϑ ∈ Wϑ(a)

}
=
⊔{ ∏

L∈Lit∗A

`(L)nL ·
∏
b∈Ar

(⊔
{JSb|nK` | Sb ∈ Wϕ(b)}

)bL︸ ︷︷ ︸
(∗)

∣∣∣ Sϑ ∈ Wϑ(a)

}

where we set nL = |Sϑ|L and bL = |Sϑ|Rb, depending on Sϑ. Let us first fix a strategy
Sϑ and b ∈ Ar and consider the term (∗). Recall that absorptive polynomials are
finite and that for a set S,

⊔
S = maximals(

⋃
S). We can thus write

(∗) =
(
JS1

b|nK` + · · ·+ JSkb|nK`
)bL

for some S1
b, . . . ,Skb ∈ Wϕ(b). If bL =∞, then by lemma 6.41:

(∗) = JS1
b|nK`

∞
+ · · ·+ JSkb|nK`

∞

Otherwise, bL = l <∞. Then each monomial of (∗) is of the form

JS i1b |nK` · · · JS
il
b |nK`, where i1, . . . , il ∈ {1, . . . , k}

To prove that πn+1(a) ≤
⊔
{JS|n+1K` | S ∈ Wϕ(a)}, we show that each monomial of

πn+1(a) is absorbed by the right-hand side. Given the above considerations, we know
that these monomials are of the form

m =
∏

L∈Lit∗A

`(L)n
′
L , n′L = nL +

∑
b∈Ar
bL=∞

|Sb|n|L · ∞ +
∑
b∈Ar

bL=l<∞

∣∣S1
b|n
∣∣
L
· · ·
∣∣S lb|n∣∣L

for some Sϑ ∈ Wϑ(a) (which defines nL) and some Sb, S ib ∈ Wϕ(b) (for all b and i).

Now consider the strategy which starts with Sϑ and for each b ∈ Ar, we replace
all Rb-leaves of Sϑ by either Sb (if there are infinitely many such leaves) or by the
strategies S1

b, . . . ,S lb if there are l <∞ such leaves (it does not matter in which order
these strategies are assigned to the leaves). The result is a strategy S ∈ Wϕ(a).
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7.4 Characterization for Absorptive Polynomials

We further see that S|n+1 results from Sϑ in the same way if we replace leaves by the
truncations Sb|n instead of Sb (and S ib|n instead of S ib), because Sϑ contains R-nodes
only as leaves. By this construction, we see that |S|L = n′L for each L ∈ Lit∗A and
hence m = JS|n+1K` and thus m ≤

⊔
{JS|n+1K` | S ∈ Wϕ(a)} as claimed.

• For the other direction, we fix a strategy S ∈ Wϕ(a) and show that JS|n+1K` ≤ πn+1(a).
In the case that `(Q) = 0 and Q appears in S|n+1, we have JS|n+1K` = 0 and there
is nothing to show. If `(Q) = 1, the appearance of Q does not affect the outcome
JS|n+1K`. We again decompose S into a prefix Sϑ corresponding to a winning strategy
in G(ϑ(a)) and substrategies from all R-leaves of Sϑ.

We first consider any b ∈ Ar for which |Sϑ|Rb = ∞ such that we have infinitely
many such substrategies from Rb-leaves. We make the following claim: There is a
strategy S ′b ∈ Wϕ(b) such that the strategy S ′ which is like S but uses S ′b for all of
the infinitely many Rb-leaves of Sϑ satisfies JS|n+1K` ≤ JS ′|n+1K`.

Proof: Let (S ib)i<ω be the family of all substrategies S uses from Rb-leaves of Sϑ. As
in the proof of the puzzle lemma, we call a literal L problematic if

∣∣S|n+1

∣∣
L
<∞. Let

L be a problematic literal. Then there can only be finitely many i with
∣∣S ib|n∣∣L > 0

(otherwise L would occur infinitely often in S|n+1). As ω is infinite while the number
of literals is finite, there is an i < ω such that S ib|n contains no problematic literals at
all. We then set S ′b = S ib and the claim follows.

Due to this claim and because Ar is finite, we obtain a strategy S ′ with JS|n+1K` ≤
JS ′|n+1K` such that for all b ∈ Ar with |Sϑ|Rb =∞, S ′ uses the same strategy from
all Rb-leaves of Sϑ. From the other direction, we know that

πn+1(a) ≥
∏

L∈Lit∗A

`(L)nL ·
∏
b∈Ar

(⊔
{JSb|nK` | Sb ∈ Wϕ(b)}︸ ︷︷ ︸

=:Pb

)bL
where nL = |Sϑ|L and bL = |Sϑ|Rb. Consider the strategies S ′ uses from the R-leaves
of Sϑ: For b ∈ Ar with |Sϑ|Rb = ∞, let Sb be the strategy that S ′ uses from all
Rb-leaves. For b with |Sϑ|Rb = l <∞, let S1

b, . . . ,S lb be the strategies S ′ uses from
the Rb-leaves of Sϑ. Let further

n′L = nL +
∑
b∈Ar
bL=∞

|Sb|n|L · ∞ +
∑
b∈Ar

bL=l<∞

∣∣S1
b|n
∣∣
L
· · ·
∣∣S lb|n∣∣L

We can apply commutativity and lemma 6.41 to conclude

JS ′|n+1K` =
∏

L∈Lit∗A

`(L)n
′
L =

∏
L∈Lit∗A

`(L)nL ·
∏
b∈Ar
bL=∞

JSb|nK`
∞ ·

∏
b∈Ar

bL=l<∞

JS1
b|nK` · · · JS lb|nK`

≤
∏

L∈Lit∗A

`(L)nL ·
∏
b∈Ar
bL=∞

P∞b ·
∏
b∈Ar

bL=l<∞

P l
b ≤ πn+1(a)
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7 Understanding Provenance via Games

This proves the inductive claim. We now show that for least and greatest fixed points,

πω(a) =
⊔
{JSK` | S ∈ Wϕ(a)}

• For ϕ = [lfpRx. ϑ](y), this follows via lemma 7.21 by swapping suprema:

πω(a) =
⊔
n<ω

πn(a) =
⊔
n<ω

⊔
{JS|nK` | S ∈ Wϕ(a)}

=
⊔{ ⊔

n<ω

JS|nK`
∣∣ S ∈ Wϕ(a)

}
=
⊔
{JSK` | S ∈ Wϕ(a)}

• For ϕ = [gfpRx. ϑ](y), the proof is more difficult and requires the puzzle lemma 7.22.
We first note that one direction is trivial (using lemma 7.21 in the last step):

l

n<ω

⊔
{JS|nK` | S ∈ Wϕ(a)} ≥

⊔
{

l

n<ω

JS|nK` | S ∈ Wϕ(a)} =
⊔
{JSK` | S ∈ Wϕ(a)}

For the other direction, we use the characterization of infima from theorem 6.27:

πω(a) =
l

n<ω

⊔
{JS|nK` | S ∈ Wϕ(a)}︸ ︷︷ ︸

=:Pn

=
⊔{ l

n<ω

mn

∣∣ m ∈M
}

where M is the set of monomial chains through the polynomials Pn. That is, mn =

JSn|nK` for some strategy Sn ∈ Wϕ(a) (for each n < ω). Consider one monomial
chain m ∈ M. By the puzzle lemma, there is a strategy Sm ∈ Wϕ(a) such that
JSmK` ≥

d
nmn. This implies the nontrivial direction:

πω(a) =
⊔{ l

n<ω

mn

∣∣ m ∈M
}
≤
⊔
{JSmK` | m ∈M} ≤

⊔
{JSK` | S ∈ Wϕ(a)}

By corollary 6.44, we have Jϕ(a)K` = πω(a), finally closing the proof.

Consequences

This result generalizes to all absorptive continuous semirings due to the universal property
of S∞[X]. We first observe that outcomes of strategies are preserved (using lemma 6.41):

Lemma 7.25. Let S and T be absorptive continuous semirings, let h : S → T be a
cpo-semiring homomorphism. Let further ` be an S-interpretation, ϕ a formula and S a
strategy in G(ϕ). Then

h(JSK`) = JSKh◦`
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7.4 Characterization for Absorptive Polynomials

Corollary 7.26. Let T be an absorptive continuous semiring, let ` be a T -interpretation
and ϕ(x) a formula. Then

Jϕ(a)K` =
⊔
{JSK` | S ∈ Wϕ(a)}

Proof. Consider the most general S∞[X]-interpretation `∗ with `∗(L) = xL and X =

{xL | L ∈ LitA}. By the universality theorem, there is a cpo-semiring homomorphism
h : S∞[X]→ T with ` = h ◦ `∗. Then,

Jϕ(a)K` = h(Jϕ(a)K`∗) = h
(⊔
{JSK`∗ | S ∈ Wϕ(a)}

)
(∗)
=
⊔
{h(JSK`∗) | S ∈ Wϕ(a)} =

⊔
{JSK` | S ∈ Wϕ(a)}

where (∗) holds by proposition 6.33.

When working with model-defining interpretations, we can consider strategies in the
classical model checking game G(A`, ϕ) instead of the generic game (see proposition 7.17).
Our considerations about absorption on strategies further show that we can restrict the
supremum to only consider weakly positional strategies (see proposition 7.19).

Corollary 7.27. Let T be an absorptive continuous semiring, let ` be a model-defining
T -interpretation and ϕ(x) a formula. Then

Jϕ(a)K` =
⊔
{JSK` | S is a weakly positional winning strategy in G

(
A`, ϕ(a)

)
}

Remark: The finiteness of absorptive polynomials implies that for every formula ϕ(a),
there is only a finite number of absorption-maximal strategies. This also holds for the
absorptive continuous semiring T , as homomorphisms respect absorption.

The last corollary we mention considers the semiring PosBool[X] in which we can further
restrict the strategies to be positional instead of weakly positional. The reason is that
PosBool[X] is multiplicatively idempotent. For the outcome, it is thus only relevant which
literals occur in S, but not how often. The positional determinacy of parity games then
yields an analogue of proposition 7.19 that, given a strategy S, guarantees the existence
of a positional strategy S ′ ≥ S. As in the excursion in section 7.2, we can thus use
PosBool[X] if we are interested in information about positional strategies.

Corollary 7.28. let ` be a PosBool[X]-interpretation (or a PosBool[X,X]-interpretation)
and ϕ(x) a formula. Then

Jϕ(a)K` =
⊔
{JSK` | S is a positional winning strategy in G

(
ϕ(a)

)
}
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7 Understanding Provenance via Games

To close this section, let us recall the reverse analysis example from the last chapter
where we used dual polynomials to reason about several models at once. Recall that dual
polynomials S∞[X,X] form an absorptive continuous semiring and are thus covered by
the above corollaries.

Example 7.29. Recall the setting of example 6.64:

ϕ(u) =
[
gfpRx. Px ∧ ∀y

(
¬Exy ∨Ry︸ ︷︷ ︸
Exy→Ry

)]
(u)

u
P

v
P 7→ p

b

c
a

We have seen the results Jϕ(u)K` = b + p in PosBool[X,X] and (perhaps less obvious)
Jϕ(u)K` = ab+acp+ b∞+p∞ in S∞[X,X]. The strategy characterization provides a more
intuitive approach to reason about the evaluation of ϕ(u) by considering the following
model checking game. We shorten the node labels for space reasons replace terminals by
their semiring value (see figure 8 for a more detailed example).

ϕ(u)

∧

1

∀ ∨

Ru

∨

∨ ∨

Rv

∀ ∧

p

ϕ(v)

a c
b 1

0

0

The only choices for Verifier occur in the nodes labeled ∨. We can thus compute the
outcome of all positional strategies by considering all combinations of these choices. As
we are only interested in absorption-maximal strategies and 1 is the greatest element, we
can w.l.o.g. assume that Verifier always moves to 1 from the lower right ∨-node. The
remaining 8 combinations then lead to strategies with the following outcomes:

moving to b︷ ︸︸ ︷
ab, ab, acp, a∞p∞︸ ︷︷ ︸

moving to a

,

moving to b︷ ︸︸ ︷
b∞, b∞, c∞p∞, p∞

The strategy with outcome b∞ is highlighted in the picture above. In PosBool[X,X],
these outcomes simplify to just b+ p (by dropping exponents and due to absorption). For
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7.5 Thoughts Beyond Absorption

S∞[X,X], we must additionally consider weakly positional strategies. As an example,
consider the highlighted node and the strategy for b∞. As this node is reached via the
∀-node belonging to Falsifier, Verifier is allowed to make different decisions whenever the
highlighted node is visited. However, it is easy to see that for the game above, doing so
would only lead to smaller outcomes (such as b∞c5 instead of b∞). We thus obtain the
following result from the strategy characterization:

Jϕ(u)K` = ab+ acp+ b∞ + p∞

Although the semiring PosBool[X,X] leads to a more intuitive result for this example
(and is sufficient when we just want to know in which models ϕ(u) holds), we see that the
information computed in S∞[X] can indeed be explained by viewing winning strategies
as witnesses for the truth of ϕ(u).

7.5 Thoughts Beyond Absorption

The proof of the strategy characterization theorem relied on the structure of absorptive
polynomials S∞[X] for some arguments. Nevertheless, we conjecture that the connection
to model checking games can be extended also to non-absorptive semirings such as W[X]

and N∞. Without absorption, we have to adapt the definition of the outcome as follows:

JSK` =

{ ∏
L∈LitA `(L)|S|L , if S is finite

> ·
∏

L∈LitA `(L)|S|L , if S is infinite

First note that this coincides with our earlier definition in S∞[X] (and in all absorptive
continuous semirings), as there > = 1. For the rationale behind this generalization, recall
that we defined the outcome JSK` as product of all literals occurring in S. Instead, we
can equivalently define it as the product over all plays, where we associate each finite
play with the terminal it ends in (to be precise, with the value ` assigns to this terminal).
By considering only the literals in S, we ignore infinite plays, so we may associate them
with the value 1. Here we instead associate infinite plays with the value >.

Infinite winning strategies can only arise from greatest fixed points, so this definition
essentially distinguishes between least and greatest fixed points and introduces an asym-
metry if > 6= 1. This is in line with our observations for the semiring N∞, in which this
asymmetry often leads to the value > =∞ for gfp-formulae.

The definition of JSK` requires the existence of an infinitary power a∞. Note that this is
only required when S is infinite. We make the following observations.
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7 Understanding Provenance via Games

Lemma 7.30. Let S be a cpo semiring. Then

(1) > · > = >,

(2) for all a, b ∈ S: (a+ ab) · > = a · > (absorption relative to >),

(3) for all a ∈ S: (an · >)n<ω is a descending chain.

Proof. We trivially have >2 ≤ >. For the other direction, note that 1 ≤ > and hence
monotonicity of multiplication implies > = 1 · > ≤ > · >. For (2), we use a similar
argument: We trivially have (a + ab)> = a> + ab> ≥ a> and for the other direction,
(1 + b)> ≤ > implies (a + ab)> ≤ a> by monotonicity of multiplication. For (3), we
trivially have a> ≤ > and thus a2> ≤ a>. The claim follows by induction on n.

Similar to the generalization of JSK`, we can view the chain an> as a generalization of
the chain an we have in absorptive semirings. Following this analogy, we define:

a∞ :=
l

n<ω

an>

With these considerations, we formulate the following conjecture which states that the
strategy characterization applies to all continuous semirings.

Conjecture. Let ϕ(x) be a formula, S a continuous semiring and ` an S-interpretation.
Then,

Jϕ(a)K` =
∑
{JSK` | S ∈ Wϕ(a)}

where we define the summation of a countable subset A = {ai | i < ω} ⊆ S by the
supremum over all partial summations:∑

A =
⊔
n<ω

a1 + · · ·+ an

Note that, although the number of strategies can be uncountable, there are only countably
many different outcomes due to the finite number of literals, so the sum is well-defined.

The motivation behind this conjecture stems on the one hand from the well-known
equivalence between model checking games and logic which should also apply to semirings
semantics. On the other hand, it is motivated by an analysis of our proof of the
characterization theorem. We have used induction to relate the fixed-point iteration
with truncations of strategies. For these truncations, we now set `(Q) = > instead
of `(Q) = 1, following our previous adaptions. It is then easy to see that lemma 7.21
still applies (in particular, the sequence of truncations JS|nK` still forms a chain). An
important observation was the decomposition of winning strategies S into a prefix Sϑ
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7.5 Thoughts Beyond Absorption

and several strategies for the R-leaves of Sϑ, which is independent of the semiring and
still applies. The second key step was the puzzle lemma. Here, the main idea of repeating
a literal-free layer ad infinitum is independent of the semiring as well. Our reasoning on
problematic literals was based on absorption, but we can instead use absorption relative
to > as shown above.

The step that relied the most on S∞[X] is the actual computation in the induction step
of the final proof, where we reasoned via monomials. For the limit ordinal step πω,
we have further used the characterization of infima via monomial chains. In specific
semirings, we can find alternative arguments: For W[X], we can similarly reason via
monomials and the proof for πω can exploit the finiteness of this semiring. For N∞, we
can use the well-foundedness for πω and can otherwise rely on the simple structure and
case distinctions between finite and infinite number of outcomes. In both semirings, the
computation in the induction step can be simplified by observing that a2> = a> for all
elements a, which allows us to simplify the outcome of infinite strategies S by omitting
the exponents |S|L. Note that the refined strategy characterization is in line with our
examples in chapter 6: In N∞, we have > =∞, so whenever there is a winning strategy
which permits an infinite play, the formula evaluates to ∞. This explains our examples
with infinite paths. In W[X], we obtain more information, but due to the multiplication
with > we also obtain monomials not corresponding to proofs. We have seen this in
example 6.13 where we got the monomial abc as part of the polynomial ab>.

The arguments for these semirings do not work in general (for example, x> 6= x2> in
BJXK). Instead, a convenient way to establish the conjecture would be to work with
a universal semiring more general than S∞[X] that captures all continuous semirings.
It is not clear whether such a semiring exists, but we want to suggest an interesting
candidate. Consider the extension of formal power series N∞JXK and BJXK by permitting
the exponent∞, in the same way that S∞[X] extends S[X]. That is, we allow monomials
such as x∞ and x3y∞ to occur in power series. In contrast to S∞[X], this does not solve
the problem of chain-positivity, as the same counterexample is still possible. However,
fixed-point iterations induced by gfp-formulae always start at > which now includes x∞,
so instead of

d
n x

n> = 0 (our counterexample for chain-positivity in BJXK) we now haved
n x

n> = x∞>. So while the extension of formal power series is not chain-positive in
general, the intuition is that chain-positivity might still hold for chains resulting from
formulae. Similarly, homomorphisms induced by variable assignments are not continuous,
but could still suffice to preserve fixed-point iterations of formulae.

An important detail is that the conjecture is related to our earlier stated open question
whether fixed-point iterations terminate at ω in continuous semirings (see section 5.5). If
our inductive proof using strategy truncations can be used to establish the conjecture,
then this implies a positive answer to the open question. The reason is that at step ω,
the supremum (or infimum) over the outcomes of all n-truncations of a strategy yields
the outcome of the complete strategy (due to lemma 7.21). This means that πω can be

123



7 Understanding Provenance via Games

described by the outcomes of all winning strategies and is thus already the overall result
of the fixed-point iteration.

Even if the ideas sketched above turn out to be feasible and formal power series can
thus capture computations in all continuous semirings, our statement that S∞[X] is the
sensible choice for provenance analysis of LFP still stands. The reason is that, as we have
seen for W[X], the refined outcome with > 6= 1 can lead to monomials not corresponding
to strategies. We therefore do not view the proposed extension of power series as an
alternative to S∞[X], but rather as a potential way to reason about semiring semantics
(via model checking games) beyond absorption.
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8 Conclusion

Summary

In this thesis, we have defined and analyzed semiring semantics for the fixed-point logic
LFP as a means to perform provenance analysis. While semiring provenance for positive
LFP has already been considered in [GT19], we have also studied greatest fixed points
which turn out to be challenging in several aspects. Greatest fixed points have already
been studied for the logic CTL in [Mrk18] and we have expanded on these results both by
considering a more expressive logic and by permitting a more general notion of semirings.

The first main result is that semiring semantics for LFP are well-defined for all cpo
semirings, in particular for continuous semirings which include a wide range of natural
examples and applications. These notions are inspired by an order-theoretic perspective
which allows a uniform treatment of both least and greatest fixed points. We have
argued that cpo semirings are possibly the most general class of semirings suitable for
LFP, with an alternative being fully ω-continuous semirings (for alternation-free LFP
or in the context of absorption). To provide a sound foundation, we have discussed
the relation between the concepts of cpo, continuous and lattice semirings as well as
algebraic properties such as idempotence and absorption with many examples, including
counterexamples that answer a question on absorptive lattice semirings from [Mrk18].

Our analysis of the resulting semantics was motivated by questions from a provenance point
of view, most notably the compatibility with standard semantics and the interplay with
negation. To overcome challenges arising from greatest fixed points, we have introduced
the concept of chain-positivity to guarantee that semiring semantics preserve truth. This
justifies our view of these semantics as a generalization of standard semantics by multiple
truth values and includes the concept of duality of least and greatest fixed points. This
view is also evident in the truth projection homomorphism †S which connects semiring
and standard semantics. In general, homomorphisms have played a central role in many
arguments and we have seen that cpo-semiring homomorphisms are required to preserve
semiring semantics for LFP. Another difficulty of greatest fixed points becomes apparent
for polynomial semirings which provide the most general (and thus most interesting)
provenance information. While formal power series N∞JXK can be used for positive
LFP, the interpretation of greatest fixed points is more involved and we have argued
by symmetry that we need absorptive semirings to obtain reasonable information. In
particular, we have analyzed (generalized) absorptive polynomials S∞[X] in detail and
have shown them to be the most general absorptive continuous semiring (in terms of
cpo-semiring homomorphisms), thus taking the place of N∞JXK as the semiring of choice
for provenance analysis of full LFP.
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8 Conclusion

To formalize the meaning of reasonable provenance information, we have shown that
provenance computations in absorptive continuous semirings can be characterized by
winning strategies in model checking games. As a consequence, these semirings provide
information about absorption-maximal winning strategies and we have seen that these are
related to (weakly) positional strategies or, in other words, to shortest proofs of formulae.
This leads to the overall conclusion that, under the assumptions of chain-positivity and
absorption, the idea of semiring provenance can successfully be applied to full LFP.

Future Work

An important follow-up question is how semiring semantics can actually be computed,
given a formula ϕ and an interpretation `. We can certainly compute information in the
finite semiring PosBool[X], but the most important semiring S∞[X] is infinite and thus
requires further work. Instead of the fixed-point iteration, model checking games may
provide a more accessible approach to compute S∞[X]-provenance.

Motivated by observations for positive and alternation-free LFP, we have further posed
the open question (in section 5.5) whether the fixed-point iteration always stops at
step ω in continuous semirings (which would imply that we can work with fully ω-
continuous semirings). As the continuity of update operators F ϑ

` is not guaranteed for
alternating formulae, we have instead used the universality of S∞[X] to answer this
question for absorptive semirings. The general case remains open and is closely related
to our conjecture that the strategy characterization applies to all continuous semirings
(in section 7.5). We have suggested an extension of formal power series by the exponent
∞ as one possible way to resolve both issues.

In chapter 7, we have used the outcomes of winning strategies in parity games in order
to understand semiring semantics. A related question is how one can define semiring
provenance for parity games in the first place, similar to the provenance analysis of
reachability games proposed in [GT19]. Our excursion on the computation of positional
winning strategies illustrates that one can perform provenance analysis of parity games
through the evaluation of logical formulae, but there might also be a more direct approach.

Leaving the context of provenance analysis, semiring semantics are also interesting in
their own right. For example, it is known that on finite structures, every LFP formula
is equivalent to a formula in positive LFP (e.g., [GKL+07]). This does not hold for
S∞[X]-semantics, where lfp-iterations are always finite. Starting from an interpretation
that maps literals to variables, lfp-formulae can thus never evaluate to monomials of the
form x∞. This illustrates that it might be worthwhile to study the properties of semiring
semantics for certain (classes of) semirings in future work.
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