
RWTH Aachen

Mathematische Grundlagen der Informatik

Provenance Analysis for Temporal
and Dynamic Logics

Bachelorarbeit

Lovro Mrkonjić

Erstgutachter: Prof. Dr. Erich Grädel
Zweitgutachter: Prof. Dr. Martin Grohe

25. September 2018

Contents

1 Introduction 1

2 Semirings 5

2.1 ω-Continuous Semirings . 6

2.2 Absorptive Lattice Semirings . 8

2.3 Families over Semirings . 20

3 Semiring Interpretations for Logics 23

3.1 Linear Temporal Logic (LTL) . 23

3.2 Computation Tree Logic (CTL) . 27

3.3 Propositional Dynamic Logic (PDL) 35

4 Algorithms for Semiring Interpretation 41

4.1 Paths and Complete Trees . 41

4.2 Until Operators in CTL . 47

4.2.1 Existential Until Operators 50

4.2.2 Universal Until Operators . 57

4.3 Release Operators in CTL . 68

4.3.1 Existential Release Operators 69

4.3.2 Universal Release Operators 79

4.4 Program Iterations in PDL . 99

5 Conclusion 103

Bibliography 105

Chapter 1

Introduction

A logical formula ϕ is usually interpreted over a structure A, which yields a truth
value indicating whether ϕ is true or false in A. The goal of provenance analysis
is to systematically find the facts in A that contribute to the truth value of ϕ and
to establish how the truth value of ϕ depends on those facts. This can be done by
generalizing the interpretation of logical formulas to semirings. Instead of assigning
truth values from the semiring B = {⊥,>} to the literals in A and evaluating ϕ to
another truth value, we assign values from a fixed semiring K to the literals and
interpret ϕ to obtain a new value JϕK in K. In other words, we extend the standard
interpretations of logical formulas to semiring interpretations. Depending on the
choice of K, we can obtain additional information aside from the truth value of ϕ in
A. In particular, provenance analysis can be performed by interpreting ϕ over A in
specific polynomial semirings K, we will call those semirings provenance semirings.

In this thesis, we will develop semiring interpretations for the well-known temporal
logics LTL (Linear Temporal Logic) and CTL (Computation Tree Logic) as well
as the positive fragment of the dynamic logic PDL (Propositional Dynamic Logic).
These logics can be used, for instance, for verification. Given a program, we could
build a transition system from its possible states and transitions. LTL, which we will
evaluate on paths in this thesis, could be used to analyse a single run of the program.
CTL is evaluated on transition systems and could therefore be used to analyse all
possible runs of the program. PDL allows us to model multiple transitions and
combine or iterate transitions, in particular, using the positive fragment of PDL, we
could for example ask if some target state in a multi-transition system is reachable
from a starting state by iterating one specific transition type. Provenance analysis
opens up new possibilities. In this example, we could even identify the transitions
that form paths between the starting state and the target state using the transition
type we specified.

The idea to perform provenance analysis for logics originated from the field of rela-
tional databases. For a short introduction, we will summarize some results obtained
by Green, Karvounarakis and Tannen in 2007 on semirings and provenance for
databases [GKT07]. A relational database can be thought of as a finite set of finite
relations where each relation has an arity n and contains a set of n-tuples. Given a
database, we can interpret queries to obtain new relations, where queries are strings
of a formal language that indicate how the new relation is calculated from the in-

1

CHAPTER 1. INTRODUCTION

put data. In practice, relations are usually depicted as tables, their tuples are the
table entries and queries can be written, for instance, in SQL (Structured Query
Language). For our simplified view on databases, we will also assume that all tuple
elements from all tuples in the database are in the same, finite domain D.

Green, Karvounarakis and Tannen introduced K-relations, where all possible tu-
ples in a relation are tagged with an element of a set K. Note that when we use
B = {⊥,>} for K, we obtain the usual notion of relations by tagging the tuples
that are present in a relation with > and the remaining tuples with ⊥. However, we
could also use the natural numbers N for K and tag tuples in a relation with their
multiplicity. We notice that, with suitable operations, both B and N form the com-
mutative semirings (B,∨,∧,⊥,>) and (N,+, ·, 0, 1). Indeed, Green, Karvounarakis
and Tannen generalized query interpretation to K-relations for any commutative
semiring (K,+, ·, 0, 1) and argued that only commutative semirings are suitable for
this purpose.

Moreover, they presented some interesting applications of this theory. Suppose there
are two relations R1 and R2 in our database and we want to interpret a simple query
q, for example a join of R1 and R2 chained with a projection. Interpreting q yields a
new relation R as the query result. Suppose there are two distinct tuples t1, t2 ∈ R1

and a tuple t3 ∈ R2 such that q can produce the tuple t by combining t1 with t3 or
t2 with t3 and then applying projection and assume that there is no other possibility
to obtain t. Obviously, we will have t ∈ R. If we would now like to add multiplicity
to the tuples, we would use N-relations and tag tuples with their multiplicities, for
example we could tag t1 with 2, t2 with 3 and t3 with 2. Using the generalized query
interpretation would yield an N-relation R and the tuple t would be tagged with
the multiplicity 2 · 2 + 3 · 2 = 10, which is exactly the number of ways that t can be
obtained from t1, t2 and t3.

Provenance analysis can now be performed by tagging each tuple with its own unique
token. Let X be the set of all those tokens and N[X] the set of all polynomials with
coefficients in N and free variables in X. Crucially, (N[X],+, ·, 0, 1) is a commu-
tative semiring with respect to standard polynomial addition and multiplication.
Therefore, using the example from above, we could tag t1 with x, t2 with y and
t3 with z so that {x, y, z} ⊆ X. Now, interpreting q in N[X] would yield the tag
x · z + y · z ∈ N[X] for the resulting tuple t. Clearly, this gives us an insight on the
provenance of the tuple t, we can see how many different ways there are to produce
t, which tuples from the input produce t and even how often those tuples are used.

The last result by Green, Karvounarakis and Tannen that we will mention for now
is that they have shown their extended query interpretation to be compatible with
semiring homomorphisms. They argued that any valuation of variables in X with
elements from a commutative semiring K induces a unique semiring homomorphism
from N[X] to K, so they concluded that N[X] is the most “general” semiring to
interpret queries. Indeed, we can see that once we have computed the provenance
polynomial x · z+ y · z for t in our example, all we have to do is to evaluate x, y and
z with the multiplicities 2, 3 and 2 of their corresponding tuples and the induced
homomorphism from N[X] to N would evaluate x · z+ y · z to 2 ·2 + 3 ·2 = 10, which
is exactly the multiplicity of t in our result.

Now, this approach can be adapted to first-order logic. In 2017, Grädel and Tannen

2

CHAPTER 1. INTRODUCTION

developed a provenance analysis for full first-order logic based on semiring inter-
pretations [GT17]. To illustrate the connection between relational databases and
first-order logic, recall that first-order sentences ϕ are interpreted over structures
A = (A, τ), where A is a universe and τ is a set of function and relation symbols.
We restrict A to be finite and τ to be finite and relational. Note that a function can
be viewed as a relation by using the function’s graph instead of the function itself.
Now, interpreting ϕ over A yields a value in B, indicating whether ϕ is true in A or
not.

Let R ∈ τ be a relation of arity n and consider an arbitrary n-tuple (a1, ..., an)
in A. Ra1...an and ¬Ra1...an are called literals and each of them is true or false
in A. Notice the similarity between A and a database. If R was a relation in a
simplified database where all elements are from A, we could informally say that the
literal Ra1...an was true if the tuple (a1, ..., an) was in R in our database and false
otherwise. An important difference is that the negative literals ¬Ra1...an are not
considered in databases, but they are important in logics, since formulas can usually
be negated.

Similarly to extending relations to K-relations, Grädel and Tannen built a semiring
interpretation for first-order logic by fixing an arbitrary, commutative semiring K
and allowing each literal to be assigned a value in K rather than just true or false.
Since for general semirings, it is not clear how to “negate” a value a ∈ K, they built
their semiring interpretation on the negation normal form of first-order sentences,
where only literals can appear in negated form and required both positive and neg-
ative literals to be tagged with values in K. In negation normal form, first-order
sentences are just combinations of conjunctions and disjunctions aside from quanti-
fiers and equalities. However, since the universe A is finite, quantifiers can be seen
as finite conjunctions and disjunctions as well.

Grädel and Tannen have defined their semiring interpretation by interpreting dis-
junctions as additions in the semiring and conjunctions as a multiplications. For
example, consider a first-order formula ϕ = L1 ∨ (L2 ∧ L3) in negation normal
form where L1, L2 and L3 are literals. Interpreting ϕ in a semiring K would yield
JϕK = JL1K + (JL2K · JL3K). Just as for the database example, we can choose a semi-
ring K and interpret the literals accordingly to obtain useful results. For instance,
as Grädel and Tannen pointed out, the Viterbi semiring V = ([0, 1],max, ·, 0, 1)
whose elements are confidence scores could be used. If we set the confidence
values for our literals to JL1K = 0.3, JL2K = 0.8 and JL3K = 0.5, we obtain
JϕK = max{0.3, 0.8 · 0.5} = 0.4. This is the confidence score for ϕ being true.

Moreover, similarly to databases, the semirings to provide the most general results
are polynomial semirings. In the above example, we can use N[X] with {x, y, z} ⊆ X
for provenance analysis. Assuming that L1, L2 and L3 are true in A, we can track
them by setting JL1K = x, JL2K = y and JL3K = z. Interpreting ϕ yields JϕK = x+yz.
As we can see, each monomial corresponds to a proof of ϕ in A. The variables in a
monomial indicate which literals are used in the proof, their exponents indicate how
often they are used and coefficients indicate how many distinct proofs there are that
use the same literals. Grädel and Tannen have also shown that this is generally true,
performing provenance analysis in first-order logic is therefore done by interpreting
formulas in polynomial semirings and the resulting polynomial describes all the
proofs of the formula.

3

CHAPTER 1. INTRODUCTION

This semiring interpretation is also compatible with homomorphisms, so if we were
only interested in counting the number of proofs for ϕ in the above example, we could
interpret the formula in N and assign 1 to the true literals L1, L2 and L3, or instead,
we could just plug the values into the polynomial x + yz for the corresponding
variables. This would yield 1 + 1 · 1 = 2 which is the correct number of different
proofs for ϕ.

Since, as we will see later on, LTL, CTL and PDL are logics that are interpreted
over relational structures, we will use a similar approach as Grädel and Tannen to
define semiring interpretations for these logics. In other words, we will tag literals
with elements of a semiring K and then interpret our formulas in negation normal
form. In particular, LTL, CTL and PDL have disjunctions and conjunctions as
well, and we will also interpret those by addition and multiplication in K. However,
these logics admit additional operators that are not always expressible in first-order
logic, so especially for CTL and PDL, we will have to think of new ways to interpret
them. Our interpretations will require additional conditions that are not met in
all commutative semirings. Therefore, we will first of all consider smaller classes
of semirings, introduce their important characteristics and look for new provenance
semiring candidates in those smaller classes in the next chapter.

4

Chapter 2

Semirings

We will first provide a formal definition of semirings according to Grädel and Tannen
[GT17]. Unless otherwise stated, the definitions and results in the beginning of this
chapter and the following section about ω-continuous semirings are adapted from
their unpublished work on provenance for logic and games [GT18].

(2.1) Definition (Semiring). A semiring is an algebraic structure (K,+, ·, 0, 1)
where 0 6= 1, (K,+, 0) is a commutative monoid, (K, ·, 1) is a monoid, multiplication
distributes over addition and multiplication by 0 annihilates elements, that is,

(1) a · (b+ c) = a · b+ a · c and (b+ c) · a = b · a+ c · a for a, b, c ∈ K and

(2) a · 0 = 0 and 0 · a = 0 for a ∈ K.

The semiring is commutative if the monoid (K, ·, 1) is commutative.

We will write K instead of (K,+, ·, 0, 1) if (+, ·, 0, 1) is clear from the context. Also,
we only consider commutative semirings. This is justified, because, as stated in
the introduction, we would like to interpret conjunctions as multiplications, so a
formula ϕ ∧ ψ would be interpreted as JϕK · JψK in K. Naturally, one would expect
the formula ψ ∧ ϕ that is interpreted as JψK · JϕK to yield the same semiring value.
However, this is not generally true unless the semiring K is commutative, therefore
we will implicitly assume all semirings in this thesis to be commutative.

To illustrate the above definition, we will show some examples of commutative se-
mirings provided by Grädel and Tannen. In the introduction, we have already
mentioned the Boolean semiring (B,∨,∧,⊥,>), the semiring of natural numbers
(N,+, ·, 0, 1), polynomial semirings (N[X],+, ·, 0, 1) for any set X and the Viterbi
semiring V = ([0, 1],max, ·, 0, 1). Additionally, T = (R∞+ ,min,+,∞, 0) is called
the tropical semiring, which can be used for the calculation of shortest paths,
F = ([0, 1],max,min, 0, 1) is the fuzzy semiring, which is usable for fuzzy logic and
A = ({P < C < S < T < 0},min,max, 0,P) also forms a semiring, where the values
are used for access control (P is public, C is confidential, S is secret, T is top secret
and 0 is inaccessible).

While first-order sentences can be interpreted in any commutative semiring, the in-
terpretations of CTL and PDL formulas will often be solutions of recursive equations.
These solutions can be found by computing fixed points of functions f : K → K.
Of course, it is unreasonable to assume that any function f : K → K has a fixed

5

CHAPTER 2. SEMIRINGS

point in K, we just have to consider a function f with f(0) = 1 and f(a) = 0 for
any a ∈ K with a 6= 0. However, the functions that we are interested in will be
expressible by variables, constants, additions and multiplications. Therefore, we say
that a semiring K admits least (greatest) fixed points if any function f : K → K
that is composed of constants, variables, addition and multiplication has a least
(greatest) fixed point in K. Clearly, there are commutative semirings that do not
admit any fixed points, for example, f : N → N with f(n) = n + 1 for n ∈ N does
not have a fixed point in N. Therefore, we will need semirings that satisfy additional
conditions to interpret CTL and PDL formulas.

First of all, the notion of least and greatest fixed points requires an order on semi-
rings. For any semiring K, we can define the relation ≤ on K by setting

a ≤ b iff there is a d ∈ K such that a+ d = b for a, b ∈ K.

Since (K,+, 0) has a neutral element, ≤ is reflexive. The associativity and commu-
tativity of (K,+, 0) also guarantee that ≤ is transitive. Therefore, ≤ is a partial
order on K if and only if it is antisymmetric. For example, on N, ≤ is antisymmetric,
but if K is a ring, ≤ is always symmetric because a + d = b implies b + (−d) = a.
We would like to consider semirings where ≤ is a partial order.

(2.2) Definition (Naturally Ordered Semiring). A semiring K is naturally ordered
if the relation ≤ is a partial order. In that case, we call ≤ the natural order on K.

In naturally ordered semirings, we always talk about least and greatest fixed points,
suprema, infima, maxima or minima with respect to the natural order.

2.1 ω-Continuous Semirings

In this thesis, we admit the axiom of choice and use ordinal numbers, where ω refers
to the ordinal number {0, 1, ...}. Since we have an appropriate order, we can describe
a class of semirings that admits least fixed points.

(2.3) Definition (ω-Continuous Semiring). A naturally ordered semiring K is ω-
continuous if every ascending ω-chain a0 ≤ a1 ≤ ... in K has a supremum supi∈ω ai
in K and addition and multiplication are ω-continuous, that is, for c ∈ K, we have

c+ sup
i∈ω

ai = sup
i∈ω

(c+ ai) and

c · sup
i∈ω

ai = sup
i∈ω

(c · ai).

Unfortunately, N is not ω-continuous, since the ascending chain 0 ≤ 1 ≤ ... does
not have a supremum in N. However, we can adjoin infinity to N to obtain an
ω-continuous semiring N∞ = N ∪ {∞} with

n+∞ =∞ for n ∈ N∞ and

n · ∞ =∞ for n ∈ N∞ \ {0}.

6

CHAPTER 2. SEMIRINGS

The properties of ω-continuous semirings allow us to define a summation for any
countable sequence of elements in K.

(2.4) Definition (Countable Summation). Let K be an ω-continuous semiring, the
summation of a countable sequence b0, b1, ... in K is defined as∑

i∈ω

bi = sup
i∈ω

(b0 + ...+ bi).

Notice that the partial sums b0 + ...+ bi form an ascending chain and that this sum-
mation is compatible with the usual, finite summation. Distributivity, associativity
and commutativity also extend to countable summation.

(2.5) Proposition (Countable Summation Laws). In an ω-continuous semiring K,
let c, b0, b1, ... ∈ K and (Ij)j∈J be a partition of ω, then we have

(1) c ·
∑
i∈ω

bi =
∑
i∈ω

(c · bi) and

(2)
∑
j∈J

∑
i∈Ij

bi =
∑
i∈ω

bi.

Aside from countable summation, ω-continuous semirings also admit least fixed
points. We use Kleene’s fixed-point theorem as stated by Baranga [Bar91]. In
an ω-continuous semiring K, a function f : K → K is called ω-continuous if for
ascending chains a0 ≤ a1 ≤ ... in K, f(supi∈ω ai) = supi∈ω f(ai). In particular, any
function composed of addition and multiplication is ω-continuous, since chaining
ω-continuous functions yields ω-continuous functions as well.

(2.6) Theorem. Let K be an ω-continuous semiring, then any ω-continuous func-
tion f : K → K has a least fixed point lfp(f) in K. Moreover, we have

lfp(f) = sup
i∈ω

f i(0).

For example, the function f(n) = n + 1 in N∞ has a least fixed point lfp(f) = ∞.
We can also verify that supi∈ω f

i(0) = sup{0, 1, ...} =∞.

For provenance analysis, we are also interested in more complex ω-continuous se-
mirings. However, the polynomial semiring N[X] is not ω-continuous. The first
problem is that the coefficients are in N, so supi∈ω(i · x) does not exist for any vari-
able x ∈ X and the second problem is that polynomials are finite, therefore

∑
i∈ω x

i

does not exist in N[X]. These restrictions can be bypassed by choosing a different
set of coefficients and allowing infinite polynomials.

(2.7) Definition (Formal Power Series). Let K be a semiring and X = {x1, ..., xn}
a finite set of variables. A formal power series with coefficients in K and variables
in X is a possibly infinite sum of monomials of the form a ·xe11 · ... ·xenn where a ∈ K
and e1, ..., en ∈ N. We denote the set of formal power series with coefficients in K
and variables in X as KJXK.

KJXK forms a semiring with the operations defined as usual. If K is ω-continuous,
then KJXK is ω-continuous as well. In particular, N∞JXK is ω-continuous and we can

7

CHAPTER 2. SEMIRINGS

use it for provenance analysis. We observe that both problems that we mentioned
above are solved in N∞JXK, since for x ∈ X, we have

sup
i∈ω

(i · x) =∞ · x ∈ N∞JXK and∑
i∈ω

xi = 1 + x+ x2 + ... ∈ N∞JXK.

To summarize, ω-continuous semirings admit least fixed points and countable sum-
mation. There is also an ω-continuous semiring N∞JXK that is suitable for prove-
nance analysis. However, ω-continuous semirings do not admit greatest fixed points,
therefore we will introduce another class of semirings that admits both least and
greatest fixed points.

2.2 Absorptive Lattice Semirings

The idea to use absorptive semirings whose natural order forms a complete lattice
originates from Grädel and Tannen [GT18].

A semiring K is called absorptive, if for any a, b ∈ K,

a+ a · b = a.

Absorption in provenance analysis is justified by the observation that, as seen in the
introduction, formulas of the form ϕ∨(ϕ∧ψ) would be interpreted as JϕK+JϕK ·JψK.
Clearly, in any logic, that formula is equivalent to ϕ. When we perform provenance
analysis, we find all the proofs for ϕ∨ (ϕ∧ψ). However, proving ϕ suffices to prove
the entire formula, so one could argue that it is now justified to disregard the proofs
for ϕ ∧ ψ, since they are “unnecessarily long”. So, in absorptive semirings, since
JϕK+JϕK ·JψK = JϕK, we do not find all the proofs for a formula, but we can still find
the “shortest” proofs. In turn, absorptive, naturally ordered semirings have useful
properties.

(2.8) Lemma. Let K be naturally ordered and absorptive, then, for a, b ∈ K,

(1) a+ b = sup{a, b} (addition yields the supremum),

(2) a · b ≤ a, b (multiplication decreases elements),

(3) 0 ≤ a (0 is the bottom element) and

(4) a ≤ 1 (1 is the top element).

Proof. For (1), a + b is clearly an upper bound on {a, b}. Now, consider an upper
bound c ∈ K on {a, b}. Then, we have d, e ∈ K with a+d = b+e = c. We conclude
that a+ b ≤ c, since (a+ b) + (d+ e) = (a+ d) + (b+ e) = c+ c = c+ c · 1 = c by
absorption. Therefore, a+ b is the least upper bound on {a, b}.
(2) is due to a · b+ a = a+ a · b = a and a · b+ b = b+ b · a = b by absorption.
(3) and (4) are shown by 0 + a = a and a+ 1 = 1 + 1 · a = 1. �

We will call a function f : K → K on a naturally ordered semiring K monotonic
if a ≤ b implies f(a) ≤ f(b) for a, b ∈ K. Addition and multiplication are both

8

CHAPTER 2. SEMIRINGS

monotonic in each argument, as we can easily verify by observing that a ≤ b implies
a+ d = b for some d ∈ K, so for any c ∈ K, we can infer

(a+ c) + d = (a+ d) + c = b+ c and

(a · c) + (d · c) = (a+ d) · c = b · c,

therefore a+c ≤ b+c and a·c ≤ b·c. Since composition of monotonic functions yields
monotonic functions as well, if the natural order on K was a complete lattice, the
Knaster-Tarski fixed-point theorem would imply that K admits least and greatest
fixed points.

(2.9) Definition (Complete Lattice). A partial order (K,≤) is a complete lattice
if every subset S ⊆ K has an infimum and a supremum in K. Additionally, (K,≤)
is called completely distributive [Ran52], if for any (Ij)j∈J where J is a set of indices
and Ij ⊆ K for j ∈ J , the equation

inf
j∈J

sup Ij = sup
f∈F

inf
j∈J

f(j)

holds, where F is the set of choice functions f : J → K with f(j) ∈ Ij for j ∈ J .

We can now define a class of semirings K that admit least and greatest fixed points.
However, we would also like the addition and multiplication in K to be compatible
with infima and suprema, therefore K should be absorptive, completely distributive
and satisfy additional conditions as well.

(2.10) Definition (Absorptive Lattice Semiring). An absorptive lattice semiring is
an absorptive, naturally ordered semiring K such that the natural order (K,≤) is
a completely distributive lattice. Moreover, for any c ∈ K, any subset S ⊆ K and
any descending ω-chain a0 ≥ a1 ≥ ..., the equations

(1) c · supS = sup(c · S) and

(2) c · inf
i∈ω

ai = inf
i∈ω

(c · ai)

are satisfied, where c · S = {c · a | a ∈ S}.
The additional conditions ensure the compatibility of multiplication with suprema
of arbitrary sets and infima of descending ω-chains. Using lemma (2.8), we can also
prove that addition is compatible with suprema and infima.

(2.11) Lemma. Let K be an absorptive lattice semiring. For any c ∈ K and any
non-empty subset ∅ (S ⊆ K,

(1) c+ supS = sup(c+ S) and

(2) c+ inf S = inf(c+ S)

hold with c+ S = {c+ a | a ∈ S}.
Proof. Since K is absorptive and naturally ordered, lemma (2.8) implies that
addition yields the supremum of two elements. Therefore, (1) is equivalent to
sup{c, supS} = sup{sup{c, a} | a ∈ S}. We prove both directions:

“≥”: sup{c, supS} is greater than c and supS, therefore it is also greater than any
a ∈ S, which makes it greater than sup{c, a} for any a ∈ S. We conclude that
sup{c, supS} ≥ sup{sup{c, a} | a ∈ S}.

9

CHAPTER 2. SEMIRINGS

“≤”: sup{sup{c, a} | a ∈ S} is greater than sup{c, a} for any a ∈ S, so, since S is
not empty, it is greater than c and greater than a for any a ∈ S. We conclude that
it is greater than supS as well, so sup{sup{c, a} | a ∈ S} ≥ sup{c, supS}.
For (2), we first show the direction c+ inf S ≤ inf(c+ S) using the monotonicity of
addition. Since inf S ≤ a for any a ∈ S, we have c + inf S ≤ c + a for any a ∈ S,
and therefore c+ inf S is a lower bound on c+ S.

The other direction is equivalent to sup{c, inf S} ≥ inf{sup{c, a} | a ∈ S} and we
can show it using the complete distributivity of (K,≤). We have

inf{sup{c, a} | a ∈ S} = inf
a∈S

sup{c, a} = sup
f∈F

inf
a∈S

f(a)

where F is the set of functions f : S → K with f(a) ∈ {c, a} for all a ∈ S. Consider
such a function f . If f(a) = c for some a ∈ S, then infa∈S f(a) ≤ c. Otherwise,
f(a) = a for all a ∈ S, so f = idS and infa∈S f(a) = inf S, therefore, sup{c, inf S} is
an upper bound on {infa∈S f(a) | f ∈ F} and the lemma is proven. �

(2.12) Corollary. Any absorptive lattice semiring K is also ω-continuous.

For ω-continuous semirings, it is possible to define a summation for countable se-
quences. We will see that absorptive lattice semirings can extend this summation
to work for arbitrary sets and that we can even define a multiplication for countable
sequences.

(2.13) Definition (Infinite Summation). Let K be an absorptive lattice semiring
and S ⊆ K. We define ∑

S = supS.

Since by lemma (2.8), addition and suprema coincide, this definition clearly coincides
with the regular summation for finite sets S and the summation in ω-continuous
semirings for countable sets S. We will now perform some further sanity checks.

(2.14) Proposition (Infinite Summation Laws). Let K be an absorptive lattice
semiring, c ∈ K, S ⊆ K and (Ij)j∈J be a partition of S, then the equations

(1) c ·
∑

S =
∑

(c · S) and

(2)
∑
j∈J

∑
Ij =

∑
S

hold with c · S = {c · a | a ∈ S}.
Proof. Since summation and suprema are the same, (1) is true by definition (2.10)
(1). Also, (2) is equivalent to supj∈J sup Ij = supS. We show both directions:

“≤”: Since supS is an upper bound on S, it is also an upper bound on all the
subsets Ij of S for j ∈ J . Therefore, supS ≥ sup Ij for j ∈ J and supS is an upper
bound on {sup Ij | j ∈ J}.
“≥”: For any a ∈ S, there is a j ∈ J with a ∈ Ij. This implies sup Ij ≥ a and
supj∈J sup Ij ≥ a for any a ∈ S. It follows that supj∈J sup Ij is an upper bound on
S, which ends the proof. �

(2.15) Definition (Countable Multiplication). In an absorptive lattice semiring

10

CHAPTER 2. SEMIRINGS

K, we define the multiplication for a countable sequence b0, b1, ... in K as∏
i∈ω

bi = inf
i∈ω

(b0 · ... · bi).

Since multiplication decreases elements, the partial products form a descending chain
and this is compatible with the normal, finite multiplication. Rearranging the order
of the elements of the sequence does not change the value of the product. This can
be shown by considering an arbitrary bijection π : ω → ω and observing that∏

i∈ω

bi = inf
i∈ω

(b0 · ... · bi) = inf
i∈ω

(bπ(0) · ... · bπ(i)) =
∏
i∈ω

bπ(i).

We will just show the direction “≤”. For any partial product in
∏

i∈ω bπ(i) of the
form bπ(0) ·...·bπ(i), there is a partial product in

∏
i∈ω bi of the form b0 ·...·bj that is less

than bπ(0) · ... · bπ(i), because since {0, ..., i} is finite, we can set j = max π({0, ..., i}),
and then b0 · ... · bj contains all the factors of bπ(0) · ... · bπ(i) and is therefore smaller,
since multiplication decreases elements. The converse direction can be shown the
same way by considering the inverse function π−1 of π. It is still left to show that
this multiplication is invariant under partitioning.

(2.16) Proposition (Countable Multiplication Law). Let K be an absorptive
lattice semiring, b0, b1, ... be a countable sequence in K and (Ij)j∈J a partition of ω,
then ∏

j∈J

∏
i∈Ij

bi =
∏
i∈ω

bi.

Proof. Since (Ij)j∈J is a partition of ω, each Ij and J is countable. Since the order
of the elements does not matter and countable products are compatible with finite
products, it is justified to say w.l.o.g. that J = α for some possibly finite ordinal
number α ≤ ω. We will now restate the proposition using the infimum definitions
of the products as

∏
j∈J

∏
i∈Ij

bi = inf
k<α

∏
k′≤k

∏
l∈Ik′

bl

 = inf
i∈ω

(b0 · ... · bi) =
∏
i∈ω

bi.

“≤”: It suffices to show that for every b0 · ... · bi, there is a k < α such that∏
k′≤k

∏
l∈Ik′

bl ≤ b0 · ... · bi.

Since {0, ..., i} is finite, there is a finite subset J ′ ⊆ J such that each element in
{0, ..., i} is contained in an Ij with j ∈ J ′. We pick k = max J ′ < α. Then, for any
k′ ∈ J ′, we have k′ ≤ k. Since multiplication decreases elements, we obtain∏

k′≤k

∏
l∈Ik′

bl ≤
∏
k′∈J ′

∏
l∈Ik′

bl,

so it remains to show
∏

k′∈J ′
∏

l∈Ik′
bl ≤ b0·...·bi. Consider the product

∏
l∈Ik′

bl for an

arbitrary k′ ∈ J ′. Since {0, ..., i} is finite, there is a partial product of
∏

l∈Ik′
bl that

11

CHAPTER 2. SEMIRINGS

contains all the factors bl with l ∈ Ik′ ∩ {0, ..., i} and with multiplication decreasing
elements, we have

∏
l∈Ik′

bl ≤
∏

l∈Ik′∩{0,...,i}
bl for each k′ ∈ J ′. The monotonicity of

multiplication in each argument yields

∏
k′∈J ′

∏
l∈Ik′

bl ≤
∏
k′∈J ′

∏
l∈Ik′∩{0,...,i}

bl.

We notice that all the products are finite and each of the elements in {0, ..., i} is
contained in exactly one Ik′ with k′ ∈ J ′, so precisely the elements b0, ..., bi constitute
the product. Associativity and commutativity yield

∏
k′∈J ′

∏
l∈Ik′∩{0,...,i}

bl = b0 · ... · bi,

which ends this direction of the proof.

“≥”: For this direction, we will show that for every k < α,

inf
i∈ω

(b0 · ... · bi) ≤
∏
k′≤k

∏
l∈Ik′

bl =: Pk.

Since the inner products in Pk could be infinite, we will use the same argument as
above and say w.l.o.g. that each Ij has a possibly finite cardinality αj ≤ ω and we
can fix an order on the indices in Ij by setting Ij = {ij,l | l ∈ αj}. We will also write
b(i) instead of bi for better readability and rewrite the inner products of Pk as

Pk =
∏
k′≤k

inf
l<αk′

(∏
l′≤l

b(ik′,l′)

)
.

We will prove by induction that for any k < α, we have

Pk = inf
(l0,...,lk)<(α0,...,αk)

∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

)

 ,

where < is defined component-wise on tuples.

For k = 0, we just rename indices and obtain

P0 = inf
l<α0

(∏
l′≤l

b(i0,l′)

)
= inf

(l0)<(α0)

∏
l′0≤l0

b(i0,l′0)

 .

12

CHAPTER 2. SEMIRINGS

For k + 1, we rewrite Pk+1

=
∏

k′≤k+1

inf
l<αk′

(∏
l′≤l

b(ik′,l′)

)

=

(∏
k′≤k

inf
l<αk′

(∏
l′≤l

b(ik′,l′)

))
·

 inf
lk+1<αk+1

 ∏
l′k+1≤lk+1

b(ik+1,l′k+1
)



(1)
=

 inf
(l0,...,lk)<(α0,...,αk)

∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

)


︸ ︷︷ ︸

p(l0,...,lk)

 ·
 inf
lk+1<αk+1

 ∏
l′k+1≤lk+1

b(ik+1,l′k+1
)


︸ ︷︷ ︸

c1

(2)
= inf

(l0,...,lk)<(α0,...,αk)


∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

)


︸ ︷︷ ︸

c2

·

 inf
lk+1<αk+1

 ∏
l′k+1≤lk+1

b(ik+1,l′k+1
)


︸ ︷︷ ︸

p′(lk+1)




(3)
= inf

(l0,...,lk)<(α0,...,αk)

 inf
lk+1<αk+1

∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

)

 ·
 ∏
l′k+1≤lk+1

b(ik+1,l′k+1
)


(4)
= inf

(l0,...,lk,lk+1)<(α0,...,αk,αk+1)

∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

)

 ·
 ∏
l′k+1≤lk+1

b(ik+1,l′k+1
)


= inf

(l0,...,lk,lk+1)<(α0,...,αk,αk+1)

 ∏
k′≤k+1

∏
l′
k′≤lk′

b(ik′,l′
k′

)

 .

We have to verify the transformations (1) to (4) before ending the induction. In
transformation (1), we make use of the induction hypothesis. For (2), we can enumer-
ate the tuples (l0, ..., lk) < (a0, ..., ak) in a way that the partial products p(l0, ..., lk)
form a descending chain by never decreasing any lk′ . Then, we apply condition (2)
of definition (2.10) to pull c1 into the infimum. The same argument is used for (3),
where we observe that the partial products p′(lk+1) form a descending chain and pull
c2 into the infimum. Transformation (4) is verified by observing that for index sets
A,B with xa,b ∈ K for a ∈ A and b ∈ B, we have infa∈A infb∈B xa,b = inf(a,b)∈A×B, be-
cause infima are invariant under partition, therefore we can merge the two infimum
computations. This ends the induction.

For an arbitrary Pk, we now know that Pk is the infimum of the partial products
P (l0, ..., lk) =

∏
k′≤k

∏
l′
k′≤lk′

b(ik′,l′
k′

) where (l0, ..., lk) < (α0, ..., αk). Each of these

products is finite and contains each factor bi′ for i′ ∈ ω at most once, because (Ij)j∈J
was a partition of ω. Therefore, there is an i ∈ ω such that b0 · ... · bi contains all
the factors in P (l0, ..., lk). So, the infimum infi∈ω(b0 · ... · bi) is less than Pk and the
proof is complete. �

We can now return to our goal of admitting least and greatest fixed points. Patrick

13

CHAPTER 2. SEMIRINGS

and Radhia Cousot have stated the Knaster-Tarski fixed-point theorem in their
work [CC79] and they have also shown how to construct the fixed points that we
are looking for. We can derive the following theorem.

(2.17) Theorem. Let K be an absorptive lattice semiring. Any monotonic function
f : K → K has a least fixed point lfp(f) and a greatest fixed point gfp(f) in K.
Moreover, we can define the transfinite sequences

x0 = 0 y0 = 1 for the ordinal 0,

xα+1 = f(xα) yα+1 = f(yα) for successor ordinals α + 1 and

xλ = sup
α<λ

xα yλ = inf
α<λ

yα for limit ordinals λ.

Then, there is a least ordinal β such that f(xβ) = xβ and a least ordinal γ with
f(yγ) = yγ and we have lfp(f) = xβ and gfp(f) = yγ.

Absorptive lattice semirings admit infinite summation, countable multiplication and
least and greatest fixed points. We will now consider an absorptive polynomial
semiring that will be used for provenance analysis later on. The following definitions
are due to Grädel and Tannen [GT18].

Let X be a finite set of variables {x1, ..., xn}. A monomial over X with exponents in

N∞ is a function m : X → N∞. Informally, we write x
m(x1)
1 ·...·xm(xn)

n . Multiplication
of monomials is defined by adding the exponents. An order on the monomials can
be defined like

m1 ≤ m2 iff m1(x) ≥ m2(x) for all x ∈ X.

We say that m2 absorbs m1 iff m1 ≤ m2. Intuitively speaking, “shorter” monomials,
that is, monomials with smaller exponents, absorb “longer” monomials with greater
exponents.

(2.18) Definition (Absorptive Polynomial). An absorptive polynomial over a finite
set of variables X is an antichain of monomials over X with exponents in N∞ with
respect to the monomial order. S∞[X] denotes the set of all absorptive polynomials
over X.

Addition and multiplication on absorptive polynomials are defined the usual way,
but we only keep the maximal monomials of the result. Also, there are no coefficients
for the monomials, duplicate monomials are only kept once. This ensures that the
result of an addition or multiplication is still an antichain of monomials. While
absorptive polynomials are in fact sets of monomials, we will often write them as
sums of monomials. For example, if we have X = {x, y, z}, then

(x+ y3 + z) + (x∞ + y2 + z) = x+ y2 + z,

because x absorbs x∞, y2 absorbs y3 and z occurs in both polynomials.

Grädel and Tannen have shown that (S∞[X],+, ·, 0, 1) is an absorptive semiring
with addition and multiplication defined as above, where 0 is the empty antichain of
monomials and 1 is the antichain that consists of a single monomial 1, which is the
monomial where all exponents are 0. They have also shown that S∞[X] is naturally
ordered and the natural order on absorptive polynomials can be characterized in
terms of the monomial order as follows. For P1, P2 ∈ S∞[X], we have

P1 ≤ P2 iff for every m1 ∈ P1, there is an m2 ∈ P2 such that m1 ≤ m2.

14

CHAPTER 2. SEMIRINGS

They have also shown that (S∞[X],≤) is a complete lattice and for any S ⊆ S∞[X],

supS = maximals

(⋃
P∈S

P

)
,

where maximals(M) for a set of monomials M denotes the antichain of the maximal
monomials in M with respect to monomial order. In other words, the supremum of
an arbitrary set of absorptive polynomials can be obtained by computing the union
of all the monomials in the polynomials and then picking the maximal polynomials
out of this union.

Additionally, every absorptive polynomial is finite, that is, every absorptive polyno-
mial contains only finitely many monomials according to Grädel and Tannen.

(2.19) Proposition. S∞[X] is an absorptive lattice semiring for any finite X.

Proof. We have to show that S∞[X] satisfies the conditions from definition (2.10).
We already know that S∞[X] is an absorptive, naturally ordered semiring and that
the natural order (S∞[X],≤) is a complete lattice. It is left to show that (S∞[X],≤)
is completely distributive and the conditions (1) and (2) from the definition are
satisfied.

For the complete distributivity, we show that for any (Ij)j∈J where J is a set of
indices and Ij ⊆ S∞[X] for j ∈ J ,

inf
j∈J

sup Ij = sup
f∈F

inf
j∈J

f(j)

is fulfilled and F is the set of choice functions with f(j) ∈ Ij for j ∈ J . As stated
above, this is equivalent to

P := inf
j∈J

maximals

⋃
R∈Ij

R

 = maximals

(⋃
f∈F

inf
j∈J

f(j)

)
=: Q.

“≤”: Let mp ∈ P be a monomial in P . This implies mp ≤ maximals
(⋃

R∈Ij R
)

for

all j ∈ J , so there is a monomial mj ∈ maximals
(⋃

R∈Ij R
)

with mp ≤ mj. Also,

mj is contained in a polynomial Rj in Ij. Now, let fmp ∈ F be a choice function
such that for each j ∈ J , f(j) ∈ Ij is the polynomial Rj that contains mj with
mp ≤ mj. We know that such a polynomial R in Ij must exist for each j ∈ J . So,
we have mp ≤ fmp(j) for each j ∈ J , therefore mp ≤ infj∈J fmp(j) and there is a
monomial m ∈ infj∈J fmp(j) that absorbs mp. Since fmp ∈ F , we have a monomial
mq ∈ Q that absorbs m. Thus, mp ≤ m ≤ mq and for each mp ∈ P there is an
mq ∈ Q which absorbs mp, so we have P ≤ Q.

“≥”: Consider a monomial mq ∈ Q, then mq ∈
⋃
f∈F infj∈J f(j). There is an

fmq ∈ F such that mq ∈ infj∈J fmq(j), so mq ≤ fmq(j) for each j ∈ J , which
means that there is an mj ∈ fmq(j) with mq ≤ mj. Since fmq(j) ∈ Ij, we have

mj ∈
⋃
R∈Ij R and therefore, there is an m′j ∈ maximals

(⋃
R∈Ij R

)
that absorbs

mj, so mq ≤ mj ≤ m′j. Since this implies mq ≤ maximals
(⋃

R∈Ij R
)

for each j ∈ J ,

15

CHAPTER 2. SEMIRINGS

we have mq ≤ P and there is an mp ∈ P with mq ≤ mp. This proves Q ≤ P ,
because mq was an arbitrary monomial in Q, and therefore P = Q.

Condition (1) of definition (2.10) states that for any c ∈ S∞[X] and S ⊆ S∞[X],

c · supS = sup(c · S)

holds where c · S = {c · a | a ∈ S}.
“≥”: This direction can be proved using the monotonicity of multiplication. Since
supS ≥ a for any a ∈ S, we have c · supS ≥ c · a for any a ∈ S which immediately
implies c · supS ≥ sup(c · S).

“≤”: For this direction, we restate the equation as

P := c ·maximals

(⋃
R∈S

R

)
= maximals

(⋃
R′∈c·S

R′

)
=: Q.

Consider an arbitrary monomial mp ∈ P . We know that mp = mc · m for two
monomials mc ∈ c and m ∈ maximals

(⋃
R∈S R

)
, so m ∈ R for some R ∈ S. Now,

mc · m occurs in c · R, but c · R is also a member of c · S, so mc · m occurs in(⋃
R′∈c·S R

′) and therefore we have a monomial mq ∈ Q that absorbs mc ·m = mp.
Since mp was arbitrary, P ≤ Q is proven.

Finally, we prove condition (2) of definition (2.10). For c ∈ S∞[X] and any descend-
ing ω-chain a0 ≥ a1 ≥ ... in S∞[X], we have to show

P := c · inf
i∈ω

ai = inf
i∈ω

(c · ai) =: Q.

“≤”: Again, we can show this direction by using monotonicity of multiplication.
We have infi∈ω ai ≤ ai for all i ∈ ω, so c · infi∈ω ai ≤ c · ai for i ∈ ω, which implies
c · infi∈ω ai ≤ infi∈ω(c · ai).
“≥”: We will first prove the statement for the cases where c is empty or contains
only one monomial and then use this to prove the general case. For empty c, c = 0
and both sides are 0. Now, assume that c only contains one monomial mc. We will
show that Q = c · Q′ for some Q′ ∈ S∞[X] and Q′ ≤ infi∈ω ai. Clearly, because of
monotonicity, this suffices to prove the statement.

We now have to find Q′. Intuitively, we would like to divide Q by c and we would
obtain Q′ = Q

c
. However, as division is not defined, we will exploit the assumption

that c consists of a single monomial mc and the fact that Q, being an absorptive
polynomial, has finitely many monomials, so w.l.o.g. we set Q = m1 + ... + mk for
some k ∈ N. Our intuitive argument would now yield

Q′ =
Q

c
=
m1 + ...+mk

mc

=
m1

mc

+ ...+
mk

mc

.

Of course, monomial division is undefined as well. However, monomial multiplication
is defined by adding the exponents of the monomials, so we could define monomial
division by subtracting the exponents. Recall that monomials m are defined as
functions m : X → N∞ and monomials with smaller exponents are greater than

16

CHAPTER 2. SEMIRINGS

monomials with larger exponents with respect to monomial order. So, for 1 ≤ i ≤ k,
we would define m′i = mi

mc
as

m′i(x) = mi(x)−mc(x) for x ∈ X.

However, subtraction is not defined yet in N∞. First of all, we have to make sure
that mi(x) is never less than mc(x). This is shown by observing that since Q =
infi∈ω(c · ai), we have Q ≤ c · a0 ≤ c. Therefore, any monomial mi in Q is absorbed
by some monomial in c. Since the only monomial in c is mc, we have for each
1 ≤ i ≤ k, that mi is absorbed by mc, so mi(x) ≥ mc(x) for each x ∈ X. Now, we
can define the subtraction on N∞. When subtracting two natural numbers, we use
the normal subtraction. We set ∞− n = ∞ for each n ∈ N and ∞−∞ = ∞ as
well. We do not have to define n −∞ for n ∈ N since n < ∞, but we know that
mi(x) is never less than mc(x). So, any m′i(x) is now well-defined and we can set
Q′ = m′1 + ...+m′k.

First, we verify Q = c·Q′. We have c·Q′ = mc ·(m′1+...+m′k) = mc ·m′1+...+mc ·m′k.
We can show that for 1 ≤ i ≤ k, mc ·m′i = mi by comparing exponents. For x ∈ X,

(mc ·m′i)(x) = mc(x) +m′i(x) = mc(x) + (mi(x)−mc(x))
(∗)
= mi(x).

The transformation (∗) can be shown by case distinction. If mi(x) ∈ N, then
mc(x) ≤ mi(x) is also a natural number, therefore addition and subtraction are
defined as normal and cancel each other out. Otherwise, mi(x) = ∞, but in that
case, regardless of mc(x), we have (mi(x) − mc(x)) = ∞ and therefore mc(x) +
(mi(x)−mc(x)) =∞ = mi(x) as well. This yields c ·Q′ = m1 + ...+mk = Q.

It remains to show that Q′ ≤ infi∈ω ai. For that, consider an arbitrary i ∈ ω. By
the definition of Q, we know that Q ≤ c · ai. So, for each of the monomials mj

in Q with 1 ≤ j ≤ k, there is a monomial m ∈ c · ai with mj ≤ m. Since c only
consists of a single monomial, every monomial in c · ai is the product of mc with
some monomial in ai, therefore we have m = m′ ·mc for some m′ ∈ ai. So, we can
express the exponents of m as m(x) = m′(x) +mc(x) for all x ∈ X. Since mj ≤ m,
we also have

mj(x) ≥ m(x) = m′(x) +mc(x)

for all x ∈ X. We claim that this implies

m′j(x) = mj(x)−mc(x) ≥ m′(x)

for all x ∈ X. This is again shown by case distinction. If mj(x) = ∞, then
m′j(x) = mj(x) − mc(x) = ∞ regardless of mc(x), and therefore m′j(x) ≥ m′(x)
regardless of m′(x). Otherwise, mj(x) ∈ N and since mj(x) ≥ m′(x) + mc(x), both
m′(x) and mc(x) are natural numbers as well and the subtraction is defined as usual.
Over the natural numbers, the inequality mj(x) ≥ m′(x) + mc(x) is equivalent to
mj(x)−mc(x) ≥ m′(x) and the claim is proven. Since m′j(x) ≥ m′(x) for all x ∈ X,
we have m′j ≤ m′ and m′ was in ai, so for every m′j, there is a monomial in ai that
absorbs m′j. This implies Q′ = m′1 + ... + m′j ≤ ai. Since i was arbitrary, we have
shown Q′ ≤ infi∈ω ai which ends the case where c has one monomial.

Now, suppose c has more than one monomial. We know that since c ∈ S∞[X], c is
the sum of finitely many monomials. We assume w.l.o.g. that c = c1 + ... + ck for

17

CHAPTER 2. SEMIRINGS

some k ∈ N where c1, ..., ck are single monomials. We can rewrite

Q = inf
i∈ω

(c · ai)

= inf
i∈ω

((c1 + ...+ ck) · ai)

= inf
i∈ω

(c1 · ai + ...+ ck · ai)

= inf
i∈ω

sup
1≤j≤k

cj · ai.

In the last step, we have replaced summation with a supremum by applying lemma
(2.8). Since we have already shown that S∞[X] is completely distributive, we have

Q = inf
i∈ω

sup
1≤j≤k

cj · ai = sup
f∈F

inf
i∈ω

f(i)

where F is the set of choice functions f : ω → K such that f(i) = cl · ai for some
1 ≤ l ≤ k. On the other side, we have

P = c · inf
i∈ω

ai

= (c1 + ...+ ck) · inf
i∈ω

ai

= c1 · inf
i∈ω

ai + ...+ ck · inf
i∈ω

ai

(∗)
= inf

i∈ω
(c1 · ai) + ...+ inf

i∈ω
(ck · ai)

= sup
1≤j≤k

inf
i∈ω

(cj · ai).

For (∗), we have already shown that this transformation works for single monomials
c1, ..., ck. So, it is left to show that

P = sup
1≤j≤k

inf
i∈ω

(cj · ai) ≥ sup
f∈F

inf
i∈ω

f(i) = Q.

It suffices to prove that for every f ∈ F , there is a j with 1 ≤ j ≤ k such that
infi∈ω f(i) ≤ infi∈ω cj · ai. We fix an arbitrary f ∈ F . Recall that for i ∈ ω,
f(i) = cl · ai for some 1 ≤ l ≤ k. Intuitively, we could say that for each i ∈ ω, f
picks some l ∈ {1, ..., k}. Since {1, ..., k} is finite, there is an element j ∈ {1, ..., k}
that is chosen infinitely many times, so for each i ∈ ω, there is an i′ ≥ i such
that f(i′) = cj · ai′ . To verify that infi∈ω f(i) ≤ infi∈ω cj · ai, consider an arbitrary
i ∈ ω. We know that there is an i′ ≥ i with f(i′) = cj · ai′ . Since a0 ≥ a1 ≥ ...
is a descending chain, we have ai′ ≤ ai and monotonicity yields f(i′) ≤ cj · ai,
therefore, infi∈ω f(i) ≤ cj · ai. Since i was arbitrary, infi∈ω f(i) is a lower bound on
{cj · ai | i ∈ ω}, which ends the proof. �

There are other examples of absorptive lattice semirings. Let (K,≤) be a com-
pletely distributive lattice. The commutative semiring (K,∨,∧,⊥,>) can be built
by defining the constants and operations as follows for a, b ∈ K:

a ∨ b = sup{a, b},
a ∧ b = inf{a, b},
⊥ = sup ∅ and

> = inf ∅.

18

CHAPTER 2. SEMIRINGS

(2.20) Proposition. Let (K,≤) be a completely distributive lattice. The induced
semiring (K,∨,∧,⊥,>) is an absorptive lattice semiring.

Proof. Absorption is verified by a ∨ (a ∧ b) = sup{a, inf{a, b}} = a.

K is also naturally ordered and the natural order is the same as the lattice order.
To see this, we show for a, b ∈ K that a ≤ b iff there is a c ∈ K such that a∨ c = b.

“⇒”: If a ≤ b, then we have a ∨ b = sup{a, b} = b.

“⇐”: If a ∨ c = b for some c ∈ K, then sup{a, c} = b, which implies a ≤ b.

Clearly, the natural order forms a completely distributive lattice. It is left to verify
the conditions (1) and (2) from definition (2.10). For condition (1), we show for any
c ∈ K and S ⊆ K that

c ∧ supS = sup(c ∧ S)

with c∧S = {c∧ a | a ∈ S}. Notice that ∧ yields the infimum, so we set J = {0, 1}
and I0 = {c} and I1 = S. Then, we have

c ∧ supS = inf{sup{c}, supS} = inf
j∈J

sup Ij.

Complete distributivity implies

c ∧ supS = inf
j∈J

sup Ij = sup
f∈F

inf
j∈J

f(j)

where F is the set of choice functions with f(j) ∈ Ij. In particular, we have
f(0) = c for any f ∈ F and f(1) ∈ S. So, for every c ∧ a ∈ c ∧ S, we have a f ∈ F
with f(1) = a and infj∈J f(j) = inf{c, a} = c ∧ a and for every f ∈ F we have
infj∈J f(j) = inf{c, f(1)} = c ∧ f(1) ∈ c ∧ S. This yields

c ∧ supS = sup
f∈F

inf
j∈J

f(j) = sup(c ∧ S).

Condition (2) dictates that for every c ∈ K and any descending chain a0 ≥ a1 ≥ ...
in K, we have

c ∧ inf
i∈ω

ai = inf
i∈ω

(c ∧ ai).

Since ∧ is the infimum, we rewrite to

inf

{
c, inf
i∈ω

ai

}
= inf

i∈ω
(inf{c, ai}).

“≤”: Clearly, inf{c, infi∈ω ai} ≤ c and inf{c, infi∈ω ai} ≤ infi∈ω ai ≤ ai for each
i ∈ ω, so inf{c, infi∈ω ai} ≤ inf{c, ai} for each i ∈ ω and therefore, we have shown
inf{c, infi∈ω ai} ≤ infi∈ω(inf{c, ai}).
“≥”: First, we observe infi∈ω(inf{c, ai}) ≤ inf{c, a0} ≤ c. Moreover, we have
infi∈ω(inf{c, ai}) ≤ inf{c, ai} ≤ ai for each i ∈ ω, so infi∈ω(inf{c, ai}) ≤ infi∈ω ai,
which yields infi∈ω(inf{c, ai}) ≤ inf{c, infi∈ω ai}.
This verifies condition (2) and ends the proof. �

We observe that we can obtain an absorptive lattice semiring from a completely
distributive lattice by defining the addition as the supremum in the lattice and

19

CHAPTER 2. SEMIRINGS

multiplication as the infimum in the lattice. Lemma (2.8) also guarantees that the
addition in an absorptive lattice semiring is always the supremum in the underlying
lattice. However, a similar proposition for the multiplication does not hold. The
absorptive lattice semiring S∞[X] is a counterexample that shows that multiplication
is not always the same as the infimum in the underlying lattice, since for x ∈ X, we
have x · x = x2 6= x = inf{x, x} . We conclude that every completely distributive
lattice induces an absorptive lattice semiring, but the multiplication is not uniquely
defined by the underlying lattice and there are absorptive lattice semirings that are
not constructed by means of proposition (2.20). In particular, the multiplication in
absorptive lattice semirings is not always idempotent.

It is an open question whether any of the conditions for absorptive lattice semirings
that we stated in definition (2.10) is redundant. In particular, it is not known
whether every absorptive, naturally ordered semiring K is an absorptive lattice
semiring.

2.3 Families over Semirings

In the previous sections, we have established classes of semirings where functions
f : K → K have fixed points under specific conditions. However, we will need fixed
points of functions that operate on multiple elements of K at the same time. In this
section, we will generalize the results from above to these functions.

Let I be an arbitrary set of indices and K a semiring. KI denotes the set of families
(ai)i∈I with ai ∈ K for i ∈ I. Assume that K is naturally ordered by ≤. We can
define an order on KI as follows. For (ai)i∈I , (bi)i∈I ∈ KI ,

(ai)i∈I ≤ (bi)i∈I iff ai ≤ bi for all i ∈ I.

(2.21) Lemma. Let K be a naturally ordered semiring and I a set of indices. For
an arbitrary subset S ⊆ KI , let Si = {ai | (ai)i∈I ∈ S} ⊆ K for i ∈ I. If each Si has
a supremum (an infimum) in K, then S has a supremum (an infimum) in KI and

supS = (supSi)i∈I or inf S = (inf Si)i∈I respectively.

Proof. We will just show the lemma for suprema, the proof for infima is dual. Since
(supSi)i∈I exists, we only have to verify that this is indeed the supremum of S. We
first show that it is an upper bound. Consider a family (ai)i∈I ∈ S. For each i ∈ I,
we have ai ∈ Si and therefore ai ≤ supSi, so (ai)i∈I ≤ (supSi)i∈I .

Now, let u = (ui)i∈I ∈ KI be an upper bound of S. Let i ∈ I be arbitrary
and consider an arbitrary ai ∈ Si. Since ai belongs to some family (aj)j∈I ∈ S
and (aj)j∈I ≤ u, we have in particular ai ≤ ui, so ui is an upper bound on Si,
since ai was arbitrary. This implies supSi ≤ ui and since i was arbitrary, we have
(supSi)i∈I ≤ u, so (supSi)i∈I is the least upper bound on S. �

(2.22) Corollary. For a naturally ordered semiring K and a set of indices I, if every
subset S ⊆ K has a supremum (an infimum) in K, then every subset S ′ ⊆ KI has a
supremum (an infimum) in KI which can be obtained component-wise. Moreover,
if every ascending ω-chain a0 ≤ a1 ≤ ... in K has a supremum in K, then every

20

CHAPTER 2. SEMIRINGS

ascending ω-chain (a0)i∈I ≤ (a1)i∈I ≤ ... in KI has a supremum in KI which can be
obtained component-wise.

Proof sketch. The first part of the corollary is a direct consequence of lemma
(2.21). We will just verify the second part of the corollary by observing that for
an ascending ω-chain (a0)i∈I ≤ (a1)i∈I ≤ ... in KI , we can write the chain as a set
S = {(aj)i∈I | j ∈ ω}. But then, lemma (2.21) can be applied, because the sets
Si = {(aj)i | j ∈ ω} form ascending ω-chains, because (a0)i∈I ≤ (a1)i∈I ≤ ... implies
(a0)i ≤ (a1)i ≤ ... for each i ∈ I. �

The above statements allow us to extend the fixed-point theorems for ω-continuous
and absorptive lattice semirings K to families over K.

(2.23) Theorem. Let K be an ω-continuous semiring and I a set of indices. If a
function f : KI → KI is component-wise ω-continuous in each argument, then f
has a least fixed point lfp(f) in KI and

lfp(f) = sup
i∈ω

f i(0).

Proof. Due to corollary (2.22), we already know that KI is ω-complete [Bar91],
that is, ascending chains in KI have suprema. We want to apply Kleene’s fixed-point
theorem to obtain the desired result, so we first have to show that f is ω-continuous,
that is, for any ascending ω-chain (a0)i∈I ≤ (a1)i∈I ≤ ... in KI , we have

sup
j∈ω

f((aj)i∈I) = f(sup
j∈ω

(aj)i∈I).

We can split f into its components fk : KI → K for k ∈ I and obtain

sup
j∈ω

f((aj)i∈I) = sup
j∈ω

(fk((aj)i∈I))k∈I .

Since suprema are calculated component-wise, we have

sup
j∈ω

(fk((aj)i∈I))k∈I =

(
sup
j∈ω

fk((aj)i∈I)

)
k∈I

.

As every component fk of f is ω-continuous in each argument, we can write(
sup
j∈ω

fk((aj)i∈I)

)
k∈I

=

(
fk((sup

j∈ω
aj,i)i∈I)

)
k∈I

.

Now, we reverse the component-wise supremum to(
fk((sup

j∈ω
aj,i)i∈I)

)
k∈I

=

(
fk(sup

j∈ω
(aj)i∈I)

)
k∈I

and put the components fk of f together to finally obtain(
fk(sup

j∈ω
(aj)i∈I)

)
k∈I

= f(sup
j∈ω

(aj)i∈I).

This ends the proof as Kleene’s fixed-point theorem can now be applied. �

21

CHAPTER 2. SEMIRINGS

In particular, a function f : KI → KI on families over an ω-continuous semiring K
whose components are only composed of addition and multiplication with constants
and variables is component-wise ω-continuous in each argument and therefore has a
least fixed point in KI . We can show a similar result for absorptive lattice semirings.

(2.24) Theorem. Let K be an absorptive lattice semiring and I a set of indices,
then KI is a complete lattice with respect to the order induced by the natural order
of K and any function f : KI → KI that is component-wise monotonic in each
argument with respect to the natural order on K is also monotonic in KI .

Proof. Since the natural order on K forms a complete lattice, it admits arbitrary
suprema and infima. Then, by corollary (2.22), the induced order on KI also admits
arbitrary suprema and infima, which makes it a complete lattice. Now, consider a
function f : KI → KI that is component-wise monotonic in each argument. We
claim that for (ai)i∈I , (bi)i∈I ∈ KI ,

(ai)i∈I ≤ (bi)i∈I implies f((ai)i∈I) ≤ f((bi)i∈I).

Assume (ai)i∈I ≤ (bi)i∈I and split f in components fk : KI → K for k ∈ I, then

(fk((ai)i∈I))k∈I ≤ (fk((bi)i∈I))k∈I

has to be shown. We verify this component-wise for k ∈ I. Since ai ≤ bi for
each i ∈ I, each argument of fk((ai)i∈I) is bounded by the corresponding argument
of fk((bi)i∈I). Since fk is monotonic in each argument, this implies the desired
statement fk((ai)i∈I) ≤ fk((bi)i∈I) and ends the proof. �

The Knaster-Tarski fixed-point theorem yields the following corollary.

(2.25) Corollary. For an absorptive lattice semiring K and an index set I, any
monotonic function f : KI → KI has a least fixed point lfp(f) and a greatest fixed
point gfp(f) in KI and they can by obtained the same way as in theorem (2.17).

We have seen that the results from this chapter can be extended to families over
the appropriate semirings and we will now use ω-continuous semirings whenever we
need least fixed points and absorptive lattice semirings whenever we need both least
and greatest fixed points. The infinitary summations and multiplications that were
defined in this chapter will prove to be useful as well.

22

Chapter 3

Semiring Interpretations for Logics

It is our goal to define semiring interpretations for LTL, CTL and a fragment of
PDL, which we will do separately for each logic. However, we will first explain the
syntax and the usual two-value semantics of these logics before extending them to
semirings. Finally, we will use the polynomial semirings defined in the previous
chapter to provide examples for provenance analysis.

3.1 Linear Temporal Logic (LTL)

Linear Temporal Logic (LTL) is interpreted over path structuresW = (W,<, (Pi)i∈I)
where < is a linear order, I is an index set and Pi are atomic propositions which can
be true or false at any w ∈ W . We can see the Pi as unary relations. In provenance
analysis, we are dealing with finite inputs, so we assume W to be finite, therefore
we set |W | = n ∈ N. We notice that W is isomorphic to a unique path structure
({0, ..., n−1}, <, (Pi)i∈I), so it is justified to assume w.l.o.g. that W = {0, ..., n−1}.
We call τ = {<} ∪ {Pi | i ∈ I} the signature of W and we will often use P,Q, ... as
atomic proposition symbols.

LTL is called a temporal logic, because formulas are interpreted at some node j ∈
{0, ..., n− 1} and we can imagine j to be the current state and the successor nodes
along the path W to be future states that LTL can reason about.

First of all, we will define the syntax and standard semantics for LTL. These defini-
tions are based on Bauer, Leucker and Schallhart’s work on LTL [BLS10]. Although
they define LTL with a different set of operators than usual, they make sure that
their set of operators admits a simple transformation to negation normal form, which
is why it is very useful for provenance analysis.

(3.1) Definition (Syntax of LTL). Given a signature τ , the formulas ϕ ∈ LTL(τ)
are generated by the grammar

ϕ = 0 | 1 | Pi | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ with Pi ∈ τ.

We also use the abbreviations Fψ = 1Uψ and Gψ = 0Rψ for ψ ∈ LTL(τ).

As for the semantics, formulas ϕ ∈ LTL(τ) are interpreted in matching path struc-
tures W . Assuming |W | = n, we write W , j |= ϕ if ϕ is true at the node j < n in

23

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

W , otherwise, we write W , j 6|= ϕ. We can now define the semantics inductively.

(3.2) Definition (Semantics of LTL). Let W = (W, τ) be a path structure with
|W | = n. The formula 0 is always false and 1 is always true, so we have

W , j 6|= 0 and W , j |= 1 for all j ∈ {0, ..., n− 1}.

The semantics of Pi are given by the structureW . We write PWi ⊆ W for the subset
of all nodes where the atomic proposition Pi holds, then we have

W , j |= Pi iff j ∈ PWi .

For the compound formulas, let ϕ and ψ be in LTL(τ). The boolean connectives ¬,
∨ and ∧ are interpreted as usual, that is,

W , j |= ¬ϕ iff W , j 6|= ϕ,

W , j |= ϕ ∨ ψ iff W , j |= ϕ or W , j |= ψ and

W , j |= ϕ ∧ ψ iff W , j |= ϕ and W , j |= ψ.

The operator X is called the next operator. The formula Xϕ says that ϕ holds at
the successor node of the current node. Notice that this implies the existence of a
successor. Therefore, the dual operator X, which we will call the weak next operator,
does not make this assertion. The semantics are

W , j |= Xϕ iff j + 1 < n and W , j + 1 |= ϕ and

W , j |= Xϕ iff j + 1 = n or W , j + 1 |= ϕ.

The remaining two operators U and R are called until operator and release operator
respectively. Intuitively speaking, the formula ϕUψ asserts that ϕ holds true until
eventually, ψ comes true at some point in the future. The release formula ϕRψ says
that ψ must stay true unless it is released by ϕ, that is, ψ may only become false
after ϕ was true. Figure (3.3) below illustrates some models for these formulas when
evaluating at node j. The semantics are given by

W , j |= ϕUψ iff W , k |= ψ for some j ≤ k < n such that

W , l |= ϕ for all j ≤ l < k and

W , j |= ϕRψ iff W ,m |= ψ for all j ≤ m < n or instead,

W , k |= ϕ for some j ≤ k < n with

W , l |= ψ for all j ≤ l ≤ k.

j

P

PUQ:

P Q

k

jPRQ:

QQQ P, Q

k

0RQ:

QQ

j

Q Q

Figure (3.3): Models of until and release formulas in LTL.

24

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

Consequently, F is the finally operator and Fψ = 1Uψ states that ψ will eventually
come true. It is a special case of ϕUψ where there is no precondition ϕ. Similarly,
G is the globally operator and Gψ = 0Rψ states that ψ stays true forever, since it
is a special case of ϕRψ without a release condition ϕ. For example, in figure (3.3),
the first model is also a model of FQ and the third model also fulfills GQ.

Before defining our semiring interpretation for LTL, we observe that this definition
of LTL admits a negation normal form. For ϕ, ψ ∈ LTL(τ), the equivalences

¬0 ≡ 1, ¬1 ≡ 0,

¬(ϕ ∨ ψ) ≡ (¬ϕ) ∧ (¬ψ), ¬(ϕ ∧ ψ) ≡ (¬ϕ) ∨ (¬ψ),

¬(Xϕ) ≡ X(¬ϕ), ¬(Xϕ) ≡ X(¬ϕ),

¬(ϕUψ) ≡ (¬ϕ)R(¬ψ) ¬(ϕRψ) ≡ (¬ϕ)U(¬ψ)

hold. Now, as announced in the introduction, we will use the same approach as
Grädel and Tannen to interpret LTL formulas in semirings. Let K be a commutative
semiring. For LTL, this will suffice. Let τ be a signature and W the finite universe
of a path structure. The set of literals LitW (τ) is defined as

LitW (τ) = {Piw | Pi ∈ τ, w ∈ W} ∪ {¬Piw | Pi ∈ τ, w ∈ W}.

A K-interpretation is a function π : LitW (τ) → K that maps literals to values in
K. Under π, any formula ϕ ∈ LTL(τ) can be interpreted at any node w ∈ W .

(3.4) Definition (Semiring Interpretation for LTL). Let K be a commutative se-
miring, W = {0, ..., n − 1} for n ∈ N a finite universe and τ a signature. Given a
K-interpretation π, we can interpret a formula θ ∈ LTL(τ) at node j ∈ W to obtain
a semiring value πJθKj ∈ K, thereby extending π to a function LTL(τ) ×W → K.
We define this semiring interpretation inductively on the negation normal form of
θ. Let Pi ∈ τ and ϕ and ψ be formulas in LTL(τ), then we set

πJ0Kj = 0, πJ1Kj = 1,

πJPiKj = π(Pij), πJ¬PiKj = π(¬Pij),
πJϕ ∨ ψKj = πJϕKj + πJψKj, πJϕ ∧ ψKj = πJϕKj · πJψKj,

πJXϕKj =

{
πJϕKj+1 if j + 1 < n

0 otherwise,

πJXϕKj =

{
πJϕKj+1 if j + 1 < n

1 otherwise,

πJϕUψKj =
∑
j≤k<n

(
πJψKk ·

∏
j≤l<k

πJϕKl

)
and

πJϕRψKj =
∏

j≤m<n

πJψKm +
∑
j≤k<n

(
πJϕKk ·

∏
j≤l≤k

πJψKl

)
.

Since the semiring (K,+, ·, 0, 1) has constants for 0 and 1, the first two definitions
are not surprising. Also, as stated in the introduction, disjunctions are interpreted

25

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

as additions and conjunctions are interpreted as multiplications. The interpretations
of the atomic propositions are given by π directly. As for the next operators Xϕ and
Xϕ, we evaluate the formulas at the next node, if present. Otherwise, the normal
next operator defaults to 0 whereas the weak next operator defaults to 1.

For the until operator, we look at its semantics and notice that it can be expressed
as a disjunction. There can be any k with j ≤ k < n where ψ becomes true, which
is a disjunction over j ≤ k < n. Also, for this k, ϕ must be true for all j ≤ l < k
to fulfill the formula, so we have an inner conjunction over j ≤ l < k. Translating
disjunctions to summations and conjunctions to multiplications yields the above
definition. The same approach is used for the release operator.

As a further sanity check, for j ∈ W and ψ ∈ LTL(τ), we can use the above
definitions to evaluate finally and globally operators as well, which yields exactly
the expected results

πJFψKj = πJ1UψKj =
∑
j≤k<n

πJψKk and πJGψKj = πJ0RψKj =
∏

j≤m<n

πJψKm.

Assuming that addition and multiplication can be performed in constant time, the
until operator and the release operator can be interpreted in O(n2) whereas the
remaining operators can be evaluated in constant time. We will close the section
about LTL with an example.

(3.5) Example. Let P and Q be atomic propositions and consider the N[X]-
interpretation π with X = {p, q, r, s, x, y} given in figure (3.6).

j

P → p
Q → x
P → q P → r

Q → y
P → s

k l mi

Figure (3.6): The N[X]-interpretation π.

Normally, we would represent structures graphically by tagging the nodes with the
atomic propositions they fulfill. For K-interpretations, we also need to know which
values in K are assigned to the literals, so P → p at node j in the above example
means that π(Pj) = p. Any literals whose values are not explicitly given in the
figure, including all negative literals, are assumed to be tagged with 0.

We would like to interpret the formula ϕ = PUQ under π at node j. Since ϕ is in
negation normal form, we can use definition (3.4) directly and obtain

πJPUQKj = px+ pqry,

since k and m are the only nodes where Q is tagged with a nonzero value.

We can interpret another formula ψ = ¬F(¬P) under π at j. First, we translate it
into its negation normal form by

¬F(¬P) = ¬(1U(¬P)) ≡ (¬1)R(¬(¬P)) ≡ 0RP = GP.

Now, we can calculate the interpretation

πJ¬F(¬P)Kj = πJGP Kj = pqrs.

26

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

3.2 Computation Tree Logic (CTL)

Since LTL was evaluated on paths, from every node on the path, there was only one
“past” and one “future” sequence of nodes and there were no cycles. Computation
Tree Logic (CTL) introduces branching. The nodes do not have to be arranged
linearly, but instead, there may be multiple predecessors and successors for a single
node and there could also be cycles.

Formally, CTL is interpreted on transition systems G = (V,E, (Pi)i∈I) where Pi are
atomic propositions and I is an index set like for LTL. However, we now have a
binary relation E ⊆ V × V that represents the edges between the nodes in V . We
assume V to be finite, but paths over V can still be infinite because of possible
cycles. We also assume G to be non-terminating, that is, for each v ∈ V , there is
a successor w ∈ V with (v, w) ∈ E. The signature of G is τ = {E} ∪ {Pi | i ∈ I}.
Syntax and standard semantics of CTL are adapted from a book by Huth and Ryan.
[HR00].

(3.7) Definition (Syntax of CTL). Let τ be a signature, the formulas in CTL(τ)
are generated by the symbol ϕ of the grammar

ϕ = 0 | 1 | Pi | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | E(φ) | A(φ) with Pi ∈ τ,
φ = Xϕ | ϕUϕ | ϕRϕ.

The formulas generated by the symbol φ are called path formulas and the next, until
and release operators from LTL have the same meaning here. However, the path
formulas are no valid CTL formulas and they can only appear directly after a path
quantifier in CTL, where E is the existential and A the universal path quantifier.
So, we could eliminate the symbol φ and include all six possible formulas formed by
E(φ) and A(φ) directly, that would be

E(Xϕ),A(Xϕ),E(ϕUϕ),A(ϕUϕ),E(ϕRϕ) and A(ϕRϕ).

For ψ ∈ CTL(τ), the abbreviations Fψ = 1Uψ and Gψ = 0Rψ are still valid for
path formulas. With the above observations and the LTL semantics in mind, it is
straightforward to define semantics for CTL inductively.

(3.8) Definition (Semantics of CTL). Let G = (V, τ) be a transition system. We
always evaluate a formula θ ∈ CTL(τ) at a node v ∈ V . The formulas 0, 1, Pi for
Pi ∈ τ and the boolean connectives ¬, ∨, ∧ are interpreted as in LTL.

Let ϕ and ψ be formulas in CTL(τ). We first define the semantics of path formulas
φ. Let π = v0v1... be an infinite path in G, that is, v0, v1, ... ∈ V and (vi, vi+1) ∈ E
for i ∈ ω. We write π |= φ iff the path π fulfills the path formula φ.

The only difference between the LTL semantics and the evaluation of φ on π is the
fact that π is infinite, whereas we assumed LTL path structures W to be finite.
However, the next, until and release operators still work the same way on infinite

27

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

paths with only slight changes. For π = v0v1..., we set

π |= Xϕ iff G, v1 |= ϕ,

π |= ϕUψ iff G, vk |= ψ for some k ∈ ω such that

G, vl |= ϕ for all l < k and

π |= ϕRψ iff G, vj |= ψ for all j ∈ ω or instead,

G, vk |= ϕ for some k ∈ ω with

G, vl |= ψ for all l ≤ k.

Since the semantics of path formulas φ are defined, we can now define

G, v |= E(φ) iff π |= φ for some infinite path π starting at v and

G, v |= A(φ) iff π |= φ for all infinite paths π starting at v.

Notice that the restriction of the quantifiers to infinite paths does not cause counter-
intuitive behaviour, because we assumed that G is non-terminating, therefore any
path can be extended into an infinite path. Also, E(Xϕ) corresponds to ♦ϕ and
A(Xϕ) corresponds to �ϕ in modal logic. Figure (3.9) illustrates some models for
specific CTL formulas when evaluating at node v.

v

P

A(PUQ):

P P P

Q Q

E(FP) and E(GQ):

v

P

QQ

Q

Figure (3.9): CTL formulas with models.

CTL admits a negation normal form, since for ϕ, ψ ∈ CTL(τ), the equivalences

¬E(Xϕ) ≡ A(X(¬ϕ)), ¬A(Xϕ) ≡ E(X(¬ϕ)),

¬E(ϕUψ) ≡ A((¬ϕ)R(¬ψ)), ¬A(ϕUψ) ≡ E((¬ϕ)R(¬ψ)),

¬E(ϕRψ) ≡ A((¬ϕ)U(¬ψ)), ¬A(ϕRψ) ≡ E((¬ϕ)U(¬ψ))

hold. Therefore, we would like to define a semiring interpretation for CTL. Given
a set of nodes V and a signature τ , we will now have to consider the positive edge
literals as well, because we might want to track them when performing provenance
analysis. We set

LitV (τ) = {Piv | Pi ∈ τ, v ∈ V } ∪ {¬Piv | Pi ∈ τ, v ∈ V } ∪ {Evw | v, w ∈ V }.

Now, a K-interpretation π : LitV (τ)→ K assigns semiring values to all the literals
and we would like to interpret CTL formulas under π. Clearly, this approach is very
similar to our approach for LTL. We interpret formulas in their negation normal
form and the formulas 0 and 1 as well as atomic propositions and the ∨ and ∧
connectives can be interpreted the same way as in LTL.

28

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

The two operators E(Xϕ) and A(Xϕ) are interpreted the same way that Grädel and
Tannen interpreted their equivalents ♦ϕ and �ϕ in modal logic [GT18]. To illustrate
their approach, consider the incomplete N[X]-interpretation π in figure (3.10) with
{p, q, r, s} ⊆ X. Relevant edges (v, w) are labelled with π(Evw) and missing edges
are implicitly tagged with 0.

v

P → r

...

p

P → s

w
1

w
2

w
3

...

...

q

0

Figure (3.10): Incomplete N[X]-interpretation π.

For v ∈ V , the set of successors is defined as

vE = {w ∈ V | π(Evw) 6= 0}.

We assume K-interpretations to be non-terminating, so vE 6= ∅ for all v ∈ V .

Generally, we interpret E(Xϕ) and A(Xϕ) at v for ϕ ∈ CTL(τ) as

πJE(Xϕ)Kv =
∑
w∈vE

π(Evw) · πJϕKw and

πJA(Xϕ)Kv =
∏
w∈vE

π(Evw) · πJϕKw.

So, we understand E(Xϕ) as a disjunction of ϕ over all successors, but we also
evaluate the edges that we used. A(Xϕ) is interpreted as a conjunction over all
successors. In the above example, we would obtain

πJE(XP)Kv = pr + qs and

πJA(XP)Kv = pqrs.

Especially for the universal quantifier, it is crucial to disregard the edges tagged
with 0, since they would make the entire product 0, which is counter-intuitive. As
we can see, showing A(XP) at v in the above example makes use of the fact that
P holds at w1 and w3, hence the factors r and s, and also, the edges (v, w1) and
(v, w3) are used, therefore, we have the factors p and q. The node w2 is irrelevant,
as (v, w2) is tagged with zero, so pqrs represents a full proof of A(XP) at v.

Finally, we move on to interpreting the until and release formulas. Let ϕ and ψ
be in CTL(τ) and consider the formula E(ϕUψ). Instead of evaluating the formula
directly, we consider the equivalence

E(ϕUψ) ≡ ψ ∨ (ϕ ∧ E(X(E(ϕUψ)))).

If we evaluate E(ϕUψ) at a node v, clearly, if ψ is true at v, we know that E(ϕUψ)
holds at v. The other possibility for E(ϕUψ) to be true at v would be that ϕ holds

29

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

at v and there is some successor of v where E(ϕUψ) is true. This way, we can “push”
the formula E(ϕUψ) on to the successors of the current node.

Since we already know how to evaluate the next operator, we can translate this into
an equation system. For all v ∈ V , we have the equations

πJE(ϕUψ)Kv = πJψKv + πJϕKv ·
∑
w∈vE

π(Evw) · πJE(ϕUψ)Kw.

If K is ω-continuous, we can solve this system. Consider the function f : KV → KV

which is defined component-wise for v ∈ V as

fv(X) = πJψKv + πJϕKv ·
∑
w∈vE

π(Evw) ·Xw where X ∈ KV .

By theorem (2.23), since f is component-wise ω-continuous in each argument, it has
a least fixed point lfp(f) ∈ KV . Setting

πJE(ϕUψ)Kv = lfp(f)v

for each v ∈ V fulfills the above equations, since

lfp(f)v = fv(lfp(f)) = πJψKv + πJϕKv ·
∑
w∈vE

π(Evw) · lfp(f)w for v ∈ V.

Obviously, the equation would be fulfilled by any other fixed point of f as well, but
we use the least fixed point, since the until operator specifies a reachability condition,
that is, when E(ϕUψ) holds at v, a node where ψ holds must be reachable. Another
justification for using the least fixed point can be found when we translate E(ϕUψ)
to the modal µ-calculus Lµ. Although we will not define Lµ here, we note that

E(ϕUψ) translates to µX.(ψ ∨ (ϕ ∧ ♦X)),

which calls for a least fixed point and exactly justifies the definition of f .

The remaining formulas A(ϕUψ), E(ϕRψ) and A(ϕRψ) can be dealt with in a
similar way. For A(ϕUψ), we have the equivalence

A(ϕUψ) ≡ ψ ∨ (ϕ ∧ A(X(A(ϕUψ))),

so it suffices to just replace the summation in our operator f by a multiplication.
We obtain g : KV → KV with

gv(X) = πJψKv + πJϕKv ·
∏
w∈vE

π(Evw) ·Xw for v ∈ V.

The translation of
A(ϕUψ) to µX.(ψ ∨ (ϕ ∧�X)) in Lµ

justifies the definition πJA(ϕUψ)Kv = lfp(g)v.

For the release operators, we have to slightly change the functions f and g. Consider
the formula E(ϕRψ) at some node v. By the semantics of E(ϕRψ), ψ must be true
in any case at v as a necessary condition to fulfill E(ϕRψ). Now, if ϕ is true at v

30

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

as well, this is sufficient to show E(ϕRψ), or, the other possibility is that E(ϕRψ)
is true at some successor of v, so we have

E(ϕRψ) ≡ ψ ∧ (ϕ ∨ E(X(E(ϕRψ)))).

This gives rise to the function f ′ : KV → KV with

f ′v(X) = πJψKv ·

(
πJϕKv +

∑
w∈vE

π(Evw) ·Xw

)
for v ∈ V.

Similarly, for A(ϕUψ), we use g′ : KV → KV defined as

g′v(X) = πJψKv ·

(
πJϕKv +

∏
w∈vE

π(Evw) ·Xw

)
for v ∈ V.

However, release operators do not specify reachability conditions. For example, to
fulfill E(ϕRψ) at a node v, no node where ϕ holds has to be reachable, in fact, an
infinite path of nodes where ψ holds is enough. So, the release operator specifies the
safety condition that ψ stays true indefinitely or until it is released by ϕ. Therefore,
we use greatest fixed points. To ensure their existence, we have to assume that K
is an absorptive lattice semiring and use corollary (2.25) that implies the existence
of greatest fixed points for f ′ and g′, because they are component-wise monotonic
in each argument. We set

πJE(ϕRψ)Kv = gfp(f ′)v and

πJA(ϕRψ)Kv = gfp(g′)v for v ∈ V.

The translations to Lµ of

E(ϕRψ) to νX.(ψ ∧ (ϕ ∨ ♦X)) and

A(ϕRψ) to νX.(ψ ∧ (ϕ ∨�X))

back our definition. We will now summarize the considerations above and inductively
define the semiring interpretation for CTL.

(3.11) Definition (Semiring Interpretation for CTL). Let K be an absorptive lat-
tice semiring, V a finite set of nodes, τ a signature and π : LitV (τ) → K a K-
interpretation. We define the semiring interpretation of any formula θ ∈ CTL(τ) at
any node v ∈ V inductively on the negation normal form of θ by setting

πJ0Kv = 0, πJ1Kv = 1,

πJPiKv = π(Piv), πJ¬PiKv = π(¬Piv),

πJϕ ∨ ψKv = πJϕKv + πJψKv and πJϕ ∧ ψKv = πJϕKv · πJψKv,

where ϕ, ψ ∈ CTL(τ) as in LTL and further, we set

πJE(Xϕ)Kv =
∑
w∈vE

π(Evw) · πJϕKw, πJA(Xϕ)Kv =
∏
w∈vE

π(Evw) · πJϕKw,

πJE(ϕUψ)Kv = lfp(fE(ϕUψ))v, πJA(ϕUψ)Kv = lfp(fA(ϕUψ))v,

πJE(ϕRψ)Kv = gfp(fE(ϕRψ))v and πJA(ϕRψ)Kv = gfp(fA(ϕRψ))v

31

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

with the corresponding functions KV → KV being defined as

fE(ϕUψ)
v (X) = πJψKv + πJϕKv ·

∑
w∈vE

π(Evw) ·Xw,

fA(ϕUψ)
v (X) = πJψKv + πJϕKv ·

∏
w∈vE

π(Evw) ·Xw,

fE(ϕRψ)
v (X) = πJψKv ·

(
πJϕKv +

∑
w∈vE

π(Evw) ·Xw

)
and

fA(ϕRψ)
v (X) = πJψKv ·

(
πJϕKv +

∏
w∈vE

π(Evw) ·Xw

)
.

Since absorptive lattice semirings have to fulfill very strong conditions and we only
need them for the release operators, it is worth noting that if there were no release
operators, ω-continuous semirings would be enough to interpret CTL.

(3.12) Definition (Positive CTL). We define posCTL(τ) ⊆ CTL(τ) for a signature
τ as the subset of formulas ϕ ∈ CTL(τ) where release operators do not occur in the
negation normal form of ϕ.

Formulas in posCTL(τ) can be interpreted by means of definition (3.11) in any ω-
continuous semiring K. We will provide two examples for the semiring interpretation
of CTL formulas.

(3.13) Example. Let τ = {E,P} and consider the N∞JXK-interpretation π from
figure (3.14) below where X = {p, q, r}.

v w

p

q

P → r

Figure (3.14): N∞JXK-interpretation π.

We will interpret the formula E(FP) ∈ CTL(τ) in N∞JXK under π at node v. Notice
that E(FP) = E(1UP) ∈ posCTL(τ), so that the ω-continuous semiring N∞JXK is
suited for that purpose. We have

πJE(FP)Kv = πJE(1UP)Kv = lfp(fE(1UP))v.

Since we have two nodes v and w and vE = {w} and wE = {v}, we can write the
two components of fE(1UP) : K{v,w} → K{v,w} as

fE(1UP)
v (Y) = πJP Kv + πJ1Kv · π(Evw) · Yw and

fE(1UP)
w (Y) = πJP Kw + πJ1Kw · π(Ewv) · Yv.

By theorem (2.23), lfp(fE(1UP)) = supi∈ω(fE(1UP))i(0), so we can iterate fE(1UP) to
obtain the fixed point. We start with Y0 = (0, 0) and set Yi+1 = fE(1UP)(Yi) for
i ∈ ω. This yields the iteration rules

(Yi+1)v = fE(1UP)
v (Yi) = πJP Kv + πJ1Kv · π(Evw) · (Yi)w = p · (Yi)w and

(Yi+1)w = fE(1UP)
w (Yi) = πJP Kw + πJ1Kw · π(Ewv) · (Yi)v = r + q · (Yi)v.

32

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

We can create the following table of (Yi)v and (Yi)w for 0 ≤ i ≤ 5:

i 0 1 2 3 4 5 ...

(Yi)v 0 0 pr pr pr + p2qr pr + p2qr ...

(Yi)w 0 r r r + pqr r + pqr r + pqr + p2q2r ...

Of course, we cannot enumerate all Yi for i ∈ ω, but from the table, we can conclude
that (Yi)v contains all monomials of the form p(pq)jr with j ≤ k for some k ∈ ω and
k increases with i, that is, more monomials are added as the iteration progresses. A
similar observation can be made for (Yi)w, which contains all the monomials (pq)j

′
r

with j′ ≤ k′ for some increasing k′. We claim

sup
i∈ω

(Yi)v =
∑
j∈ω

p(pq)jr = p(pq)∗r and

sup
i∈ω

(Yi)w =
∑
j∈ω

(pq)jr = (pq)∗r

where a∗ is short for
∑

j∈ω a
j for a ∈ K when K is ω-continuous. By lemma (2.21),

these are the components of the supremum of {Yi | i ∈ ω}, so

lfp(fE(1UP)) = sup
i∈ω

(fE(1UP))i(0) = sup
i∈ω

Yi = (p(pq)∗r, (pq)∗r).

Therefore, we have evaluated E(FP) at v, and as a coproduct, we have evaluated it
at w as well and obtain

πJE(FP)Kv = πJE(1UP)Kv = lfp(fE(1UP))v = p(pq)∗r and

πJE(FP)Kw = πJE(1UP)Kw = lfp(fE(1UP))w = (pq)∗r.

As a sanity check for this result, we take a look at the literals that are used when
proving E(FP) at v. We can take the p-labelled edge (v, w) to w and then show
P at w, which is labelled with r. However, before showing P at w, we can iterate
through the cycle (w, v, w) arbitrarily often, and since the cycle’s edges are labelled
with p and q, the result p(pq)∗r represents exactly all the ways to prove E(FP) at
v. For w, it is very similar, except that we do not have to take the p-transition in
the beginning, since we are starting at w, so the result (pq)∗r is justified. We will
now provide another example with a greatest fixed point.

(3.15) Example. In this example, τ = {E,Q} and we use the S∞[X]-interpretation
π in figure (3.16) below with X = {p, q, r, s}.

v wp

Q → sQ → r

q

Figure (3.16): S∞[X]-interpretation π.

The formula that we will interpret in S∞[X] under π at node v is E(GQ) ∈ CTL(τ),
which is equal to E(0RQ), so

πJE(GQ)Kv = πJE(0RQ)Kv = gfp(fE(0RQ))v.

33

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

We have vE = wE = {w}, so that the components of fE(0RQ) : K{v,w} → K{v,w} are

fE(0RQ)
v (Y) = πJQKv · (πJ0Kv + π(Evw) · Yw) and

fE(0RQ)
w (Y) = πJQKw · (πJ0Kw + π(Eww) · Yw).

By corollary (2.25), gfp(fE(0RQ)) exists and can be obtained by means of theorem
(2.17), that is, we start iterating at Y0 = (1, 1), set Yi+1 = fE(0RQ)(Yi) for i ∈ ω and
Yω = infi∈ω Yi. We will see in this example that Yω is already a fixed point, so there
is no need to iterate further than Yω. We simplify

(Yi+1)v = fE(0RQ)
v (Yi) = πJQKv · (πJ0Kv + π(Evw) · Yw) = pr · (Yi)w and

(Yi+1)w = fE(0RQ)
w (Yi) = πJQKw · (πJ0Kw + π(Eww) · Yw) = qs · (Yi)w for i ∈ ω.

This yields the following table for 0 ≤ i ≤ 5:

i 0 1 2 3 4 5 ...

(Yi)v 1 pr pqrs pq2rs2 pq3rs3 pq4rs4 ...

(Yi)w 1 qs q2s2 q3s3 q4s4 q5s5 ...

We use the abbreviation a∞ =
∏

i∈ω a for a ∈ K where K is an absorptive lattice
semiring. Notice that in S∞[X], greater exponents make monomials smaller, so we
have (qs)∞ = q∞s∞ ≤ qjsj = (qs)j for all j ∈ ω. Now, using the above table and
lemma (2.21), it is easy to see that

(Yω)v = inf
i∈ω

(Yi)v = pr(qs)∞ and

(Yω)w = inf
i∈ω

(Yi)w = (qs)∞.

This is already a fixed point, since fE(0RQ)(Yω) = Yω, because

fE(0RQ)
v (Yω) = pr · (Yω)w = pr(qs)∞ = (Yω)v and

fE(0RQ)
w (Yω) = qs · (Yω)w = qs · (qs)∞ = (qs)∞ = (Yω)w.

So, it is the greatest fixed point and we have

πJE(GQ)Kv = πJE(0RQ)Kv = gfp(fE(0RQ))v = (Yω)v = pr(qs)∞ and

πJE(GQ)Kw = πJE(0RQ)Kw = gfp(fE(0RQ))w = (Yω)w = (qs)∞.

Indeed, the only way to prove E(GQ) at v is by using the infinite path (v, w, w, ...),
so we use the fact that Q holds at v and the edge (v, w) once, hence the factor pr,
and we use the edge (w,w) and the fact that Q holds at w infinitely often, hence
(qs)∞. At the node w, we use the path (w,w, ...), so we just have (qs)∞.

Unfortunately, as seen in the two examples, we can only interpret CTL formulas
manually for now and it requires infinite iterations, so we have to intuitively see a
pattern in the iterations and use induction to find the fixed points. However, we can
see that cycles are causing the iterations to be infinite, which raises the question
whether the results can be obtained systematically. Indeed, in the next chapter,
we will present algorithms that are capable of interpreting CTL formulas without
infinite iterations.

34

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

3.3 Propositional Dynamic Logic (PDL)

Propositional Dynamic Logic (PDL) is interpreted over Kripke structures K =
(V, (Ea)a∈A, (Pi)i∈I) where I is an index set and A is a set of actions. Intuitively, we
can interpret the actions as atomic programs and if (v, w) ∈ Ea for some a ∈ A, we
can say that performing action a at state v takes the system to state w. Again, V
is assumed to be finite and τ = {Ea | a ∈ A} ∪ {Pi | i ∈ I} is called the signature
of K. The syntax and usual semantics of PDL are adapted from Berwanger’s work
from 2005 [Ber05].

(3.17) Definition (Syntax of PDL). Given a signature τ , PDL(τ) is generated by
the symbol ϕ of the grammar

ϕ = 0 | 1 | Pi | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | 〈ρ〉ϕ | [ρ]ϕ with Pi ∈ τ,
ρ = a | ρ ∪ ρ | ρ; ρ | ρ∗ | ϕ? with Ea ∈ τ.

The symbol ρ generates the programs. The elementary programs are the actions
a. The operator ρ; ρ chains two programs, ρ ∪ ρ indeterministically chooses one
of the given programs and ρ∗ indeterministically iterates ρ zero or more times.
Additionally, ϕ? checks if ϕ is true at the current state or not. Knowing the meaning
of the programs, we say that 〈ρ〉ϕ is true iff there is a run of ρ that ends in a state
where ϕ holds and [ρ]ϕ holds iff all runs of ρ end in a state where ϕ is true.

Although we will usually interpret formulas ϕ at a single node v ∈ V , the easiest
way to define the semantics of PDL is by setting JϕKK ⊆ V = {v ∈ V | K, v |= ϕ}
and interpreting programs ρ as binary relations JρKK ⊆ V × V .

(3.18) Definition (Semantics of PDL). Given a Kripke structure K = (V, τ), we de-
fine the semantics for formulas and programs inductively at the same time. Assume
ϕ, ψ ∈ PDL(τ), we set

J0KK = ∅, J1KK = V,

JPiKK = PKi , J¬ϕKK = V \ JϕKK,
Jϕ ∨ ψKK = JϕKK ∪ JψKK, Jϕ ∧ ψKK = JϕKK ∩ JψKK,

J〈ρ〉ϕKK = {v ∈ V | there is a w ∈ V with (v, w) ∈ JρKK and K, w |= ϕ} and

J[ρ]ϕKK = {v ∈ V | for all w ∈ V with (v, w) ∈ JρKK, we have K, w |= ϕ}.

For the programs, assume ρ, ρ1 and ρ2 are subprograms and ϕ ∈ PDL(τ), then

JaKK = EKa ,

Jρ1 ∪ ρ2KK = Jρ1KK ∪ Jρ2KK,
Jρ1; ρ2KK = {(v, w) | there is a u ∈ V with (v, u) ∈ Jρ1KK and (u,w) ∈ Jρ2KK},

Jρ∗KK = {(v, w) | v = w or w is reachable from v via edges in JρKK} and

Jϕ?KK = {(v, v) | K, v |= ϕ}.

Figure (3.19) illustrates some models of PDL formulas when evaluating at node v.
We label the edges with the action they belong to.

35

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

v

P

[(a;b)*]P:

v⟨a* ⟩ ⟨b* ⟩P:

P P

P

a ab b

a a b b

Figure (3.19): PDL formulas with models.

For programs ρ and formulas ϕ, we call formulas of the form 〈ρ〉ϕ existential and
formulas of the form [ρ]ϕ universal. Clearly, PDL has a negation normal form when
we consider

¬〈ρ〉ϕ ≡ [ρ](¬ϕ) and ¬[ρ]ϕ ≡ 〈ρ〉(¬ϕ).

(3.20) Definition (Positive PDL). Let τ be an arbitrary signature, we define
posPDL(τ) ⊆ PDL(τ) as the subset of PDL(τ) formulas whose negation normal form
does not contain a universal subformula [ρ]ϕ where ρ is a program and ϕ ∈ PDL(τ).

In this thesis, we will only define a semiring interpretation for the positive fragment
of PDL. For that, the semirings K that we use will have to be ω-continuous. For a
set of nodes V and signature τ , we have the literals

LitV (τ) ={Piv | Pi ∈ τ, v ∈ V } ∪ {¬Piv | Pi ∈ τ, v ∈ V }
∪{Eavw | Ea ∈ τ, v, w ∈ V }.

A K-interpretation π : LitV (τ)→ K is extended to all posPDL(τ) formulas. We can
handle all formulas except for 〈ρ〉ϕ the same way as in CTL, where ρ is a program
and ϕ ∈ posPDL(τ). Formulas of the form 〈ρ〉ϕ require us to assign a meaning
to programs ρ first. Under the standard semantics, programs were interpreted as
binary relations. Therefore, under π, we interpret programs as binary K-relations,
that is for a program ρ and (v, w) ∈ V × V , we will define

πJρK(v,w) ∈ K,

thereby extending π to a function π : Prog(τ)× (V × V)→ K where Prog(τ) is the
set of programs over τ . Now, it is left to define πJρK(v,w) inductively for all programs
ρ and (v, w) ∈ V × V .

The meaning of atomic programs a is given directly by the edge relation Ea, we set

πJaK(v,w) = π(Eavw).

Let ρ1, ρ2 and ρ be programs and ψ ∈ PDL(τ). For the compound programs, we
will translate the standard semantics into semiring semantics. ρ1 ∪ ρ2 can be seen
as a disjunction, so we set

πJρ1 ∪ ρ2K(v,w) = πJρ1K(v,w) + πJρ2K(v,w).

The program ρ1; ρ2 can also be seen as a disjunction. To evaluate ρ1; ρ2 at (v, w),
we have to look for a middle node u and evaluate ρ1 at (v, u) and ρ2 at (u,w). This
yields the definition

πJρ1; ρ2K(v,w) =
∑
u∈V

πJρ1K(v,u) · πJρ2K(u,w).

36

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

For ψ?, we notice that ψ? is a program that does not change the state. Therefore,
evaluating ψ? at (v, w) with v 6= w should automatically yield 0. When evaluating
ψ? at (v, v), we have to check whether ψ holds at v, so we have the definition

πJψ?K(v,w) =

{
πJψKv if v = w

0 otherwise.

The most complicated program is ρ∗. When we evaluate ρ∗ at (v, w), we want to
know if w is reachable from v by ρ-transitions. Obviously, this is automatically
true if v = w. The other possibility is that v has a ρ-successor u from which w is
reachable, so we could recursively evaluate ρ∗ at (u,w). For (v, w) ∈ V × V , we can
translate this to the equation system

πJρ∗K(v,w) = πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) · πJρ∗K(u,w).

The term πJ1?K(v,w) is 1 iff v = w, because in that case, w is reachable from v
without using any transitions at all. For v 6= w, this does not apply and πJ1?K(v,w)

is 0. Since K is ω-continuous, we can solve this equation system by iterating the
function f : KV×V → KV×V , which is defined component-wise as

f(v,w)(X) = πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) ·X(u,w) where X ∈ KV×V .

Since f is component-wise ω-continuous in each argument, by theorem (2.23), f has
a least fixed point lfp(f) ∈ KV×V and we can verify that lfp(f) fulfills the equation

lfp(f)(v,w) = f(v,w)(lfp(f)) = πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) · lfp(f)(u,w).

So, it is justified to set

πJρ∗K(v,w) = lfp(f)(v,w).

We notice that this is very similar to our approach for the existential until operator
in CTL, except that we iterate over binary K-relations KV×V instead of unary K-
relations KV . Taking the least fixed point is again justified by observing that 〈ρ∗〉ϕ
specifies a reachability condition.

Having defined the meanings of programs, it is easy to interpret 〈ρ〉ϕ at a node v by
noticing that this formula is true iff there is a ρ-successor of v where ϕ holds. This
can be seen as a disjunction over all successors of V , so we define

πJ〈ρ〉ϕKv =
∑
w∈V

πJρK(v,w) · πJϕKw.

Now, we can interpret positive PDL in ω-continuous semirings.

(3.21) Definition (Semiring Interpretation for Positive PDL). Let K be an ω-
continuous semiring, V a finite set of nodes, τ a signature and π : LitV (τ) → K
a K-interpretation. We define the semiring interpretation of any program and any
formula θ ∈ PDL(τ) by simultaneous induction on the negation normal form of

37

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

formulas and on the programs. Let ϕ, ψ ∈ posPDL(τ), ρ1, ρ2 and ρ be programs
and v, w ∈ V , we set

πJ0Kv = 0, πJ1Kv = 1,

πJPiKv = π(Piv), πJ¬PiKv = π(¬Piv),

πJϕ ∨ ψKv = πJϕKv + πJψKv, πJϕ ∧ ψKv = πJϕKv · πJψKv and

πJ〈ρ〉ϕKv =
∑
w∈V

πJρK(v,w) · πJϕKw

for the formulas and for the programs, we set

πJaK(v,w) = π(Eavw),

πJρ1 ∪ ρ2K(v,w) = πJρ1K(v,w) + πJρ2K(v,w),

πJρ1; ρ2K(v,w) =
∑
u∈V

πJρ1K(v,u) · πJρ2K(u,w),

πJρ∗K(v,w) = lfp(fρ
∗
)(v,w) and

πJϕ?K(v,w) =

{
πJϕKv if v = w

0 otherwise.

The function fρ
∗

: KV×V → KV×V is defined as

fρ
∗

(v,w)(X) = πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) ·X(u,w).

(3.22) Example. We illustrate this with an example for τ = {Ea, P} and a N∞JXK-
interpretation π given in figure (3.23) with X = {p, q, r, s}. Edges (v, w) are labelled
with actions a and their appropriate values π(Eavw).

v wa → q

P → sP → r

a → p

Figure (3.23): N∞JXK-interpretation π.

We would like to evaluate 〈a∗〉P at node v in N∞JXK under π. First of all, we
will evaluate the program a∗ at all pairs of nodes, therefore, we use lemma (2.23)
and compute lfp(fa

∗
) = supi∈ω(fa

∗
)i(0). We have four components, so we start at

38

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

Y0 = (0, 0, 0, 0) and set Yi+1 = fa
∗
(Yi) for i ∈ ω. This can be simplified to

(Yi+1)(v,v) = fa
∗

(v,v)(Yi) = πJ1?K(v,v) +
∑
u∈V

πJaK(v,u) · (Yi)(u,v)

= 1 + p · (Yi)(v,v) + q · (Yi)(w,v)

(Yi+1)(v,w) = fa
∗

(v,w)(Yi) = πJ1?K(v,w) +
∑
u∈V

πJaK(v,u) · (Yi)(u,w)

= p · (Yi)(v,w) + q · (Yi)(w,w)

(Yi+1)(w,v) = fa
∗

(w,v)(Yi) = πJ1?K(w,v) +
∑
u∈V

πJaK(w,u) · (Yi)(u,v)

= 0 and

(Yi+1)(w,w) = fa
∗

(w,w)(Yi) = πJ1?K(w,w) +
∑
u∈V

πJaK(w,u) · (Yi)(u,w)

= 1.

We compute a table for 0 ≤ i ≤ 5:

i 0 1 2 3 4 5 ...

(Yi)(v,v) 0 1 1 + p 1 + p+ p2 1 + p+ p2 + p3 1 + p+ p2 + p3 + p4 ...

(Yi)(v,w) 0 0 q q + pq q + pq + p2q q + pq + p2q + p3q ...

(Yi)(w,v) 0 0 0 0 0 0 ...

(Yi)(w,w) 0 1 1 1 1 1 ...

Clearly, we have supi∈ω(Yi)(v,v) = p∗ and supi∈ω(Yi)(v,w) = p∗q. Therefore,

πJa∗K(v,v) = lfp(fa
∗
)(v,v) = sup

i∈ω
(Yi)(v,v) = p∗ and

πJa∗K(v,w) = lfp(fa
∗
)(v,w) = sup

i∈ω
(Yi)(v,w) = p∗q.

With these results, we can evaluate 〈a∗〉P at v as

πJ〈a∗〉P Kv =
∑
u∈V

πJa∗K(v,u) · πJP Ku

= πJa∗K(v,v) · πJP Kv + πJa∗K(v,w) · πJP Kw
= p∗r + p∗qs.

We can check this result for sanity. To prove 〈a∗〉P at node v, we can clearly take
the p-labelled edge (v, v) ∈ Ea arbitrarily often, hence the factor p∗. Then, we can
use the fact P at v, which is labelled with r, or we can take the edge (v, w) ∈ Ea
and the fact P at w, which are labelled with q and s respectively to close the proof.
So, the expected result is indeed p∗(r + qs) = p∗r + p∗qs.

(3.24) Remark. There is no obvious way to extend the above approach to universal
formulas [ρ]ϕ where ρ is a program and ϕ ∈ PDL(τ).

The naive approach to handle formulas [ρ]ϕ would be setting

πJ[ρ]ϕKv =
∏

w∈V,πJρK(v,w) 6=0

πJρK(v,w) · πJϕKw.

39

CHAPTER 3. SEMIRING INTERPRETATIONS FOR LOGICS

The drawback of this is that programs change their meanings depending on whether
they are used existentially or universally. Consider the formulas 〈a∪b〉P and [a∪b]P
in PDL(τ) with {Ea, Eb, P} ⊆ τ and the S∞[X]-interpretation π in figure (3.25) with
X = {p, q, r, s, x, y, z}.

v

P → x

P → z

w
1

w
2

w
3

P → y

a → p

b → s

a → q
b → r

Figure (3.25): S∞[X]-interpretation π.

Using the naive approach, we would obtain

πJ〈a ∪ b〉P Kv = px+ (q + r)y + sz = px+ qy + ry + sz and

πJ[a ∪ b]P Kv = px · (q + r)y · sz = pxqysz + pxrysz.

The existential formula is interpreted correctly, since any monomial represents a
valid proof for 〈a∪ b〉P at v by taking an edge labelled with a or b and then showing
P at the successor. For the universal formula, the problem lies in

πJa ∪ bK(v,w2) = πJaK(v,w2) + πJbK(v,w2) = q + r.

This is counter-intuitive as it would be expected for the universal formula to use
both q and r instead of choosing between them, since (v, w2) consists of two edges,
one labelled with a and one with b. We could try to fix this by interpreting pro-
grams differently depending on whether they are used existentially or universally,
for example, we would set

πJ〈a ∪ b〉K(v,w2) = πJ〈a〉K(v,w2) + πJ〈b〉K(v,w2) = q + r as before and

πJ[a ∪ b]K(v,w2) = πJ[a]K(v,w2) · πJ[b]K(v,w2) = qr.

This would yield πJ[a ∪ b]P Kv = px · qry · sz = pxqrysz. However, this is still
unsatisfactory, as we would need the fact that P holds at w2 twice, since w2 is
reached from v in two separate ways, so the expected result is pxqry2sz.

Resolving this problem would require a new definition of the semiring interpretation
that breaks the separation between programs and formulas. When evaluating the
program [a ∪ b] in the above example, we would have to keep in mind that w2 is
reached twice and that the formula P will have to be evaluated twice at w2. In
order to avoid these problems, we restrict our semiring interpretation to positive
PDL formulas.

40

Chapter 4

Algorithms for Semiring
Interpretation

The next goal is to show how the semiring interpretations from the previous chapter
can be performed algorithmically. Given a formula θ in LTL, CTL or posPDL in
negation normal form and a suitable K-interpretation π over a finite set of nodes
V , we would like to compute the semiring interpretation πJθKv for some v ∈ V .
Assuming that addition and multiplication in K can be performed in constant time,
most types of formulas can be interpreted trivially. For example, if θ = ϕ ∨ ψ is
a disjunction and the interpretations πJϕKv and πJψKv are already known, then we
have πJθKv = πJϕKv +πJψKv, which is easy to compute under the above assumption.

However, the following types of formulas or programs are interpreted in terms of
fixed points:

• until formulas E(ϕUψ) and A(ϕUψ) in CTL,

• release formulas E(ϕRψ) and A(ϕRψ) in CTL and

• program iterations ρ∗ in PDL.

It is not immediately clear how to interpret the above formulas and programs al-
gorithmically, since we have to find the corresponding fixed points, but so far, we
have only established theorem (2.23) and corollary (2.25) to do that, and both make
use of infinite or transfinite sequences. In this chapter, we will introduce alternative
approaches to find the desired fixed points without infinite iterations and show that
it can be done algorithmically.

4.1 Paths and Complete Trees

Looking back at the examples (3.13), (3.15) and (3.22), where we evaluated exis-
tential until and release formulas in CTL as well as a program iteration in PDL, we
notice that all the monomials in the results represent paths over the given transition
system. In the following sections, we will see that this is not a coincidence and we
will capture this concept formally. Consider a formula E(ϕUψ) in CTL(τ) that is

41

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

interpreted at a node v ∈ V , where G = (V, τ) is a transition system. Proving that
E(ϕUψ) holds at v requires a path in G that starts at v and ends at some node
w ∈ V where ψ holds, while ϕ is true at the non-terminal nodes of the path. Figure
(4.1) illustrates a transition system G and a path over G that witnesses that E(PUQ)
holds at v.

v w

P, QP

v w v w

P P P Q

Path:

Figure (4.1): Transition system with path that witnesses E(PUQ) at v.

We have labelled the nodes of the path with the facts that we used for the proof
of E(PUQ) at v. So, on the first traversal of w, we have used the fact P at w and
continued the proof, but on the second traversal, we have used the fact Q and ended
the proof, since this is enough to witness that PUQ holds on the path, and as the
path starts at v, we know that E(PUQ) is true at v. Of course, we could have
obtained a shorter proof by using the fact Q at the first traversal of w, or we could
build arbitrarily long proofs by repeatedly using P at the first n ∈ N traversals of
w and then using Q. The example gives rise to the following formal definition.

(4.2) Definition (Path). A path over V p is a finite or infinite path whose nodes
are labelled with elements of V . We denote

the set of nodes of p as n(p),

the set of edges of p as e(p) and

the set of non-terminal, or internal nodes of p as i(p) ⊆ n(p).

If p is finite, then there is also a terminal node t(p) ∈ n(p). The path has a label
function Lp : n(p) → V , which can be extended to edges by setting Lp((x, y)) =
(Lp(x), Lp(y)) ∈ V × V for (x, y) ∈ e(p).
P (V) denotes the set of all paths over V . We can add subscripts or superscripts to
refer to specific subsets of P (V). Subscripts denote the starting node of the paths,
for example, if v ∈ V , then Pv(V) ⊆ P (V) denotes the set of paths over V that start
at a node that is labelled with v. Superscripts will be used to indicate the length of
the path, which we define as |e(p)|, the number of edges on the path. Notice that
the length of a path is a cardinal number κ and that the length of infinite paths is
ω. With that in mind, for example, P≥ω(V) refers to the set of infinite paths over
V and P<52(V) refers to the set of paths over V with less than 52 edges. We also
introduce P fin(V) and P inf(V) to refer to the set of finite and infinite paths over V
respectively. Of course, we will often combine subscripts and superscripts.

Also, we will usually identify the nodes of a path with their labels. For example,
consider the path from figure (4.1). We denote it as p = (v, w, v, w) and we would
say that it starts at v and ends at w instead of saying that it starts at a node labelled
with v and ends at a node labelled with w. We would also say that v occurs twice
in p, meaning that there are two separate nodes in p that are labelled with v. The

42

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

label function will only be used for formal definitions.

Paths are useful for semiring interpretations of existential formulas. In figure (4.3)
below, we extend the transition system from figure (4.1) to a S∞[X]-interpretation
π with X = {p, q, r, s, t}.

v wP → r

v w v w

P → r P → s P → r Q → t

Path:

p

q

 P → s
Q → t

p q p

Figure (4.3): S∞[X]-interpretation π with path that witnesses E(PUQ) at v.

The same path p0 = (v, w, v, w) as in figure (4.1) is also depicted here in figure
(4.3), but the facts are now labelled with values from S∞[X]. We can now define
the PUQ-cost of p0 under π as

πJPUQKp0 = r · p · s · q · r · p · t = p2qr2st.

The PUQ-cost of p0 indicates which facts are used to prove that PUQ holds on p.
First, we have to make sure that the edges exist, hence the factors p2q. Then, P
must be true at the internal nodes of p0, therefore we have the factors r2s. Finally,
Q must be true at the terminal node, so we have the last factor t.

This concept can be generalized to arbitrary until formulas ϕUψ and finite paths p.
The ϕUψ-cost of p is defined by evaluating ϕ at the internal nodes, taking the edges
into account and then evaluating ψ at the terminal node. The formal definition is
given below.

(4.4) Definition (Until-Costs for Paths). Let K be ω-continuous. For a K-
interpretation π and a finite path p over V , we define the ϕUψ-cost of p as

πJϕUψKp =

 ∏
x∈i(p)

πJϕKLp(x)

 ·
 ∏

(x,y)∈e(p)

π(ELp(x)Lp(y))

 · πJψKLp(t(p))

where ϕ, ψ are CTL formulas.

Clearly, ϕUψ-costs for infinite paths are not defined, since ϕUψ requires ψ to come
true at some point on a path, so infinite paths are not suited to witness E(ϕUψ).

A similar concept can be introduced for release formulas. Consider a path p and a
release formula ϕRψ. If p is finite, proving ϕRψ on p requires us to use the edges,
show that ψ holds on all nodes and show that ϕ is true at the terminal node. Also,
unlike until formulas, release formulas can be witnessed by infinite paths. If p is
infinite, it witnesses ϕRψ if we can show that the edges exist and that ψ is true on
all nodes. So, the ϕRψ-cost of an infinite path is a countable product, but this is no
problem, since release formulas are interpreted in absorptive lattice semirings, which

43

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

admit countable products according to definition (2.15). We obtain the following
definition.

(4.5) Definition (Release-Costs for Paths). Let K be an absorptive lattice semi-
ring. If π is a K-interpretation and p is a path over V , then for CTL formulas ϕ
and ψ, the ϕRψ-cost of p is defined as

πJϕRψKp =

 ∏
x∈n(p)

πJψKLp(x)

 ·
 ∏

(x,y)∈e(p)

π(ELp(x)Lp(y))

 · πJϕKLp(t(p))

if p is finite, otherwise, it is defined as

πJϕRψKp =

 ∏
x∈n(p)

πJψKLp(x)

 ·
 ∏

(x,y)∈e(p)

π(ELp(x)Lp(y))

 .

The third and final type of costs that we will define for paths is the ρ-cost of a
path p, where ρ is a program in PDL. If p is a finite path over V starting at v ∈ V
and ending at w ∈ V , it witnesses that w is reachable by ρ-transitions from v if we
evaluate ρ on every edge in p. We obtain a straightforward definition of the ρ-costs
of paths.

(4.6) Definition (Program-Costs for Paths). Let K be an ω-continuous semiring.
For a K-interpretation π and a finite path p over V , the ρ-cost of p, where ρ is a
PDL program, is defined as

πJρKp =
∏
e∈e(p)

πJρKLp(e).

As for until formulas, infinite paths are disregarded, because infinite paths are not
suited to witness that a node w is reachable from a node v. Figure (4.7) informally
illustrates the three types of path costs that we have defined above.

v
π(Evw)

w u
π(Ewu)

π⟦φ⟧
v

π⟦φ⟧
w

π⟦ψ⟧
u

φUψ-costs:

v
π(Evw)

w u
π(Ewu)

π⟦ψ⟧
v

π⟦ψ⟧
w

π⟦ψ⟧
u
·π⟦φ⟧

u

φRψ-costs:

v
π(Evw)

w u
π(Ewu)

π⟦ψ⟧
v

π⟦ψ⟧
w

φRψ-costs:
...

π⟦ψ⟧
u

v
π⟦ρ⟧

(v, w)
w uρ-costs:

π⟦ρ⟧
(w, u)

(finite path)

(infinite path)

Figure (4.7): Informal illustration of path costs.

So far, we have only considered existential formulas and paths. Obviously, to show
that an existential formula like E(ϕUψ) in CTL is true at v ∈ V , we just need one

44

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

path p that starts at v and fulfills ϕUψ. However, when we consider a universal
formula A(ϕUψ) in CTL, a single path will generally not be suited to witness the
truth of this formula at a node v. We will use trees instead of paths for universal
formulas. To justify this, consider the formula A(PUQ) interpreted in the transition
system G from figure (4.8) at node v as an example.

v

P

P, Q P

Q Q

w
2

w
1

w
3

w
4

w
5

P, Q

Figure (4.8): Transition system G.

We claim that the following two trees t1 and t2 from figure (4.9) each witness the
truth of A(PUQ) at node v in G. The nodes of the trees are labelled with the atomic
propositions that are used to prove A(PUQ) with the corresponding tree.

v

P

P P P

Q Q

w
2

w
1

w
3

w
4

w
5

Q
w
4

Q
w
5

v

P

Q P

Q Q

w
2

w
1

w
3

w
4

w
5

t
1
: t

2
:

Q

Figure (4.9): Two trees over G.

The trees are constructed by starting at v and trying to prove A(PUQ). Since Q is
not true at v, in both cases, we have to use P at v and show A(PUQ) at all three
successors of v. Since Q also does not hold at w2, we have no choice but using P
and continuing to the successors of w2. As for w1 and w3, since both P and Q are
true there, we have the option to use Q directly, which is done in t2, or we can use
P and continue to the successors of w1 and w3, like in t1. At w4 or w5, we always
use Q and end the branch of the tree.

We call both t1 and t2 complete trees with respect to G. In a complete tree, any non-
leaf node has exactly the same successors as the corresponding node in the transition
system G. This property is crucial for proving universal formulas, because it ensures
that all infinite paths starting from v are covered by the tree and eventually cross
one of the leaves. Since we have P at all internal nodes and Q at all the leaf nodes,
we know that any infinite path starting at v has to cross a leaf and therefore fulfill
PUQ. Like for the paths, we will capture this concept formally.

(4.10) Definition (Complete Tree). A complete tree over V t with respect to a
transition system G = (V,E, (Pi)i∈I) is a finite or infinite tree whose nodes are

45

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

labelled with elements of V . We denote

the set of nodes of t as n(t),

the set of edges of t as e(t),

the set of terminal, or leaf nodes of t as l(t) ⊆ n(p) and

the set of non-terminal, or internal nodes of p as i(t) ⊆ n(p).

The label function is denoted as Lt : n(t)→ V and the tree fulfills the completeness
property, that is, for every node x ∈ n(t), if Lt(x) = v ∈ V , then for every outgoing
edge of v (v, w) ∈ E, there is exactly one successor y of x with (x, y) ∈ e(t) and
L(y) = w and for every successor z of x with (x, z) ∈ e(t) and Lt(z) = u, there is
an outgoing edge of v (v, u) ∈ E. As for paths, the label function can be extended
to edges by setting Lt((x, y)) = (Lt(x), Lt(y)) ∈ E for (x, y) ∈ e(t).
Notice that this definition can be extended to K-interpretations π instead of tran-
sition systems G. If K is a semiring, V is a set of nodes and π : LitV (τ) → K is a
K-interpretation where E ∈ τ , then π induces an edge relation

Eπ = {(v, w) ∈ V × V | π(Evw) 6= 0}.

Therefore, we can also define complete trees with respect to a K-interpretation π
by applying the completeness property to Eπ. This is justified, because edges that
are tagged with 0 by a K-interpretation are “absent” edges, and edges tagged with
nonzero values are “present” edges when performing provenance analysis.

If the edge relation, given by a transition system or a K-interpretation, is clear
from the context, then T (V) denotes the set of all complete trees over V . The
same conventions that we established for paths apply here as well, for example, we
will often disregard the label functions. Also, since all trees that we will consider
are complete, we will often write “trees” instead of “complete trees”. Subscripts
denote the root of the trees, so Tv(V) denotes the set of all trees over V rooted at v.
Superscripts indicate the height of the trees, which is defined as the length of a path
with maximal length in the tree that starts at the root. Notice that this is a cardinal
number, which is finite for finite trees and ω for infinite trees. For example, T≤2(V)
denotes the set of trees over V up to height 2 and T fin(V) and T inf(V) denote the
finite and infinite trees over V respectively.

Just like we have defined ϕUψ-costs for paths, we can define ϕUψ-costs for trees.
Suppose that t is a complete tree rooted at v and we want to use t to witness that
A(ϕUψ) holds at v. First, we would have to show that the edges exist, then we
would have to make sure that ψ holds at all the leaf nodes and also, we would have
to prove that ϕ is true at the internal nodes. Notice that t has to be finite, because
any path from the root has to end in a leaf where ψ holds. An infinite ϕ-path is not
enough to satisfy an until formula. This yields the following definition.

(4.11) Definition (Until-Costs for Trees). Let K be ω-continuous. For a K-
interpretation π and a finite, complete tree t over V , the ϕUψ-cost of t for CTL
formulas ϕ and ψ is

πJϕUψKt =

∏
x∈i(t)

πJϕKLt(x)

 ·
 ∏

(x,y)∈e(t)

π(ELt(x)Lt(y))

 ·
∏
x∈l(t)

πJψKLt(x)

 .

46

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

For the ϕRψ-costs of trees, we use a similar approach. Assume that t is a complete
tree rooted at v and we want to use it to show that A(ϕRψ) holds at v. We would
have to prove that ψ is true at all nodes of t, ϕ is true at the leaf nodes and the edges
all exist. However, t is not necessarily finite. For example, some branches could end
in leaves where ϕ is true, whereas other branches could be infinite ψ-paths. In fact,
t does not need to have any leaves at all. Therefore, we need countable products to
define the ϕRψ-costs of trees.

(4.12) Definition (Release-Costs for Trees). Let K be an absorptive lattice se-
miring. If π is a K-interpretation and t is a complete tree over V , we define the
ϕRψ-cost of t as

πJϕRψKt =

 ∏
x∈n(t)

πJψKLt(x)

 ·
 ∏

(x,y)∈e(t)

π(ELt(x)Lt(y))

 ·
∏
x∈l(t)

πJϕKLt(x)

 ,

where ϕ and ψ are CTL formulas.

For now, we have used intuitive arguments to define paths, trees and their costs.
In the following sections, we will prove that the fixed points that are defined in the
previous chapter can be expressed in terms of path or tree costs and from that, we
will derive algorithms that compute the desired fixed points.

4.2 Until Operators in CTL

Recall example (3.13) where we had the N∞JXK-interpretation π given below in
figure (4.13) and obtained πJE(FP)Kv = πJE(1UP)Kv = p(pq)∗r.

v w

p

q

P → r

Figure (4.13): N∞JXK-interpretation π.

Now, consider the set P fin
v (V) of all finite paths over the above transition system

that start at v. When we consider the 1UP -costs of those paths, many of them
will have the costs 0, for example, if their terminal node is not w or if they use
transitions other than (v, w) and (w, v), because those are labelled with 0. So, all
the paths p0 ∈ P fin

v (V) with πJ1UP Kp0 6= 0 have the form (v, (w, v)i, w) for some
i ∈ N, that is, they start at v and end at w and the cycle (w, v, w) is repeated i
times in between. With the observation that

πJ1UP K(v,(w,v)i,w) = p(pq)ir

for all i ∈ N, we can draw the interesting conclusion that

πJE(1UP)Kv = p(pq)∗r =
∑
i∈N

p(pq)ir =
∑

p0∈Pfin
v (V)

πJ1UP Kp0 .

47

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Putting this in words, the interpretation of E(1UP) at v is the same as the sum
of the 1UP -costs of all finite paths starting at v. This is not surprising, since the
1UP -costs of finite paths starting at v exactly represent proofs for E(1UP) at v.

We will generalize this to arbitrary formulas E(ϕUψ). Moreover, we can obtain a
similar result for universal formulas by replacing paths with complete trees. We
claim that the interpretation of A(ϕUψ) at v yields the sum of the ϕUψ-costs of all
finite, complete trees rooted at v. This yields the following theorem.

(4.14) Theorem. Let K be an ω-continuous semiring, V a finite set of nodes and π
a K-interpretation over V . For arbitrary formulas ϕ and ψ in CTL and any v ∈ V ,
we have

(1) πJE(ϕUψ)Kv =
∑

p∈Pfin
v (V)

πJϕUψKp and

(2) πJA(ϕUψ)Kv =
∑

t∈Tfin
v (V)

πJϕUψKt.

Proof. First of all, we notice that the above summations are well-defined in
ω-continuous semirings, since P fin

v (V) and T fin
v (V) are both countable, as we can

enumerate the paths by their length and the trees by their height. The finiteness of
V ensures that for any given length or height i, there are only finitely many distinct
paths or trees over V respectively.

Now, we prove part (1) of the theorem by calculating lfp(fE(ϕUψ)) according to
definition (3.11). Using lemma (2.23), this is done by setting Xi = (fE(ϕUψ))i(0) for
i ∈ ω and then calculating supi∈ωXi. We will show by induction on i that

(Xi)v =
∑

p∈P<i
v (V)

πJϕUψKp for all v ∈ V.

For i = 0, this is clearly true as (X0)v = 0 for v ∈ V , and since there are no paths
of length less than 0, P<0

v (V) is empty and the empty sum is always 0.

Now, assume the hypothesis holds for i and consider i+ 1. We have

(Xi+1)v = πJψKv + πJϕKv ·
∑
w∈vE

π(Evw) · (Xi)w

= πJψKv +
∑
w∈vE

πJϕKv · π(Evw) ·

 ∑
p∈P<i

w (V)

πJϕUψKp


Notice that πJψKv is exactly the cost of the path (v). Also, multiplying πJϕKv and
π(Evw) to the cost of a path p ∈ P<i

w (V) yields the costs of the path (v, p), which
is obtained by appending v to the start of p. Notice that (v, p) starts at v and has
a length between 1 and i, so we have

(Xi+1)v = πJϕUψK(v) +
∑
w∈vE

∑
p∈P<i

w (V)

πJϕUψK(v,p)

=
∑

p∈P=0
v (V)

πJϕUψKp +
∑

p∈
⋃

1≤j≤i P
=j
v (V)

πJϕUψKp

=
∑

p∈P<i+1
v

πJϕUψKp,

48

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

since (v) is the only path of length 0 starting at v. This ends the induction.

Now, we can use proposition (2.5) that states that countable summation in ω-
continuous semirings is invariant under partition. Therefore, we partition the finite
paths over V starting at v by their length and obtain∑

p∈Pfin
v (V)

πJϕUψKp =
∑
i∈ω

∑
p∈P=i

v (V)

πJϕUψKp

= sup
i∈ω

 ∑
p∈P=0

v (V)

πJϕUψKp + ...+
∑

p∈P=i
v (V)

πJϕUψKp


= sup

i∈ω

∑
p∈P<i+1

v (V)

πJϕUψKp

= sup
i∈ω

(Xi+1)v

= sup
i∈ω\{0}

(Xi)v.

Since (X0)v is 0, we can add it into the supremum. Using lemma (2.21), we have∑
p∈Pfin

v (V)

πJϕUψKp = sup
i∈ω\{0}

(Xi)v

= sup
i∈ω

(Xi)v

= (sup
i∈ω

Xi)v

= lfp(fE(ϕUψ))v

= πJE(ϕUψ)Kv.

This ends the proof for (1). The proof of part (2) is very similar. Here, we need
to calculate lfp(fA(ϕUψ)), which is done by setting Yi = (fA(ϕUψ))i(0) for i ∈ ω and
then calculating the supremum. It will suffice to show by induction that for i ∈ ω,
we have

(Yi)v =
∑

t∈T<i
v (V)

πJϕUψKt.

The rest of the proof is the same as for part (1), except that we replace X with Y
and paths with trees. For i = 0, there is nothing to be shown, since there are no
trees of height less than 0 and (Y0)v = 0.

If the induction hypothesis holds for i, then for i+ 1, we have

(Yi+1)v = πJψKv + πJϕKv ·
∏
w∈vE

π(Evw) · (Yi)w

= πJψKv + πJϕKv ·
∏
w∈vE

π(Evw) ·

 ∑
t∈T<i

w (V)

πJϕUψKt

 .

Since π is non-terminating and V is finite, vE is non-empty and finite, so w.l.o.g.,
we can write vE = {w1, ..., wl} ⊆ V for some l ∈ N. Every tuple (t1, ..., tl) with
tj ∈ T<iwj

(V) along with the edges (v, wj) for 1 ≤ j ≤ l and the root node v forms

49

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

a complete tree over V with a height h between 1 and i. Conversely, any complete
tree over V rooted at v with height 1 ≤ h ≤ i can be split into v, the edges (v, wj)
for 1 ≤ j ≤ l and a tuple of trees (t1, ..., tl) such that tj ∈ T<iwj

(V). Therefore, we
can simplify the product to

(Yi+1)v = πJψKv +
∑

(t1,...,tl)∈T<i
w1

(V)×...×T<i
wl

(V)

πJϕKv ·

(
l∏

j=1

π(Evwl)

)
·

(
l∏

j=1

πJϕUψKtj

)

= πJψKv +
∑

t∈
⋃

1≤h≤i T
=i
v (V)

πJϕUψKt

=
∑

t∈T<i+1
v (V)

πJϕUψKt.

The last step is justified by noticing that (v) is the only complete tree of height 0
rooted at v and its cost is πJψKv. Since this closes the induction, we can now use
the same argument as above to obtain∑

t∈Tfin
v (V)

πJϕUψKt = (sup
i∈ω

Yi)v

= lfp(fA(ϕUψ))v

= πJA(ϕUψ)Kv,

which ends the proof. �

Of course, even with theorem (4.14) above, there is still no obvious way to compute
πJE(ϕUψ)Kv and πJA(ϕUψ)Kv algorithmically, since we have just transformed the
fixed points that required infinite iterations into infinite sums. However, since our
transition systems only have a finite set of nodes V , long paths and large trees are
bound to contain repetitions and recurring patterns. For example, if we have n
nodes and a path is longer than n, the path must traverse a cycle. Obviously, the
presence of cycles implies that there are infinitely many paths and we cannot hope
to enumerate all the paths. However, if there is a single cycle with cost c, then the
expression c∗ covers the costs of arbitrarily many repetitions of the cycle. We will
exploit this to compute representations of πJE(ϕUψ)Kv and πJA(ϕUψ)Kv.

4.2.1 Existential Until Operators

First, we will look at the existential until formulas E(ϕUψ). Let K be ω-continuous,
V a finite set of nodes and π an arbitrary K-interpretation. In order to calculate
πJE(ϕUψ)Kv for some v ∈ V , we will use results from automata theory. First of all,
we will transform the K-interpretation π into a K-automaton Av(π). Intuitively, a
K-automaton A is a transition system with a starting state s and a final state t and
edges are labelled with elements in K by a cost function. Our goal is to build Av(π)
for E(ϕUψ) in such a way that Av(π) “recognizes” proofs for E(ϕUψ) at v, that is,
the paths p from s to t in Av(π) should have the same costs as paths p′ ∈ P fin

v (V)
over V that witness E(ϕUψ) at v. We will first define K-automata formally and
then describe how Av(π) can be built.

(4.15) Definition (K-Automaton). A K-automaton for an ω-continuous semiring
K is a structure A = (Q,C, s, t) where Q is a finite set of states, C : Q×Q→ K is

50

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

a cost function and s and t are starting and final states respectively, so C(q, s) = 0
and C(t, q) = 0 for q ∈ Q. We extend C to finite paths over Q by setting C(p) for
p ∈ P fin(Q) as the product of the costs of the edges in p, that is

C(p) =
∏

(x,y)∈e(p)

C(L(x), L(y)).

Moreover, Ps→t(Q) is the set of all paths over Q going from s to t and we set

C(A) =
∑

p∈Ps→t(Q)

C(p).

When transforming π into Av(π) = (Q,C, s, t), we would like to accomplish

C(Av(π)) = πJE(ϕUψ)Kv =
∑

p∈Pfin
v (V)

πJϕUψKp,

therefore, the s-t-paths over Q should exactly represent the proofs of E(ϕUψ) at v.
We set Q = V ∪{s, t} and w.l.o.g., s, t /∈ V . Since the proof of E(ϕUψ) should start
at v, we connect the starting state s with v, so we set

C(s, v) = 1 and C(s, w) = 0 for all w ∈ Q \ {v}.

Notice that the edge (s, v) effectively has no cost, since 1 is the neutral element of
multiplication. Once we arrive from the starting state to v, we have two options. We
can show that ψ holds at v and move to the final state t, since in that case, E(ϕUψ)
is proven at v. The second possibility is to show ϕ at v and take an edge (v, w)
to another node w, and then prove E(ϕUψ) at w. From w, we have the same two
options, that is, showing ψ and moving to the final state or proving ϕ and taking
yet another edge (w, u) to a node u. Therefore, we set

C(w, t) = πJψKw for all w ∈ V and

C(w, u) = πJϕKw · π(Ewu) for all w, u ∈ V.

It is left to prove that these intuitive definitions of Av(π) yield the desired result.

(4.16) Proposition. Let K be an ω-continuous semiring, V a finite set of nodes, π

a K-interpretation over V and v ∈ V . The K-automaton AE(ϕUψ)
v (π) = (Q,C, s, t)

with s, t /∈ V is defined by setting Q = V ∪ {s, t} and defining C by

C(q, s) = 0 for all q ∈ Q,
C(t, q) = 0 for all q ∈ Q,
C(s, v) = 1,

C(s, q) = 0 for all q ∈ Q \ {v},
C(w, t) = πJψKw for all w ∈ V and

C(w, u) = πJϕKw · π(Ewu) for all w, u ∈ V.

Then, AE(ϕUψ)
v (π) has the cost

C(AE(ϕUψ)
v (π)) =

∑
p∈Pfin

v (V)

πJϕUψKp.

51

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Proof. By the definition of the cost of AE(ϕUψ)
v (π), we have to show that

(1)
∑

p′∈Ps→t(Q)

C(p′) =
∑

p∈Pfin
v (V)

πJϕUψKp.

It suffices to consider Ns→t(Q), the set of s-t-paths over Q with nonzero cost and the
set of finite paths starting at v with nonzero ϕUψ-costs Nfin

v (V). We first observe
that there is a bijection f : Ns→t(Q)→ Nfin

v (V) which is defined as follows. Consider
a path p′ ∈ Ns→t(Q). The states s and t occur exactly at the start and the end of
the path, since p′ is an s-t-path with nonzero cost. Therefore, there is some n ∈ N
with p′ = (s, v0, ..., vn, t) and v0, ..., vn ∈ V . Also, v0 = v, since p′ would otherwise
have cost 0. We set

f(p′) = f((s, v0, ..., vn, t)) = (v0, ..., vn) = p.

Clearly, we have p ∈ P fin
v (V). The function f also preserves costs, that is, we have

C(p′) = πJϕUψKp. We verify this by looking at the definition of C and finding that
(s, v0) has cost 1, so that C((s, v0, ..., vn, t)) = C((v0, ..., vn, t)). Moreover, (vn, t)
has the cost πJψKvn and the edges in (v0, ..., vn) cover πJϕKvi and π(Evivi+1) for
0 ≤ i < n, so the cost of p′ is exactly πJϕUψK(v0,...,vn) = πJϕUψKp.

This proves that f is well-defined, since we now know that p is in Nfin
v (V) for

p′ ∈ Ns→t(Q). Also, f can be easily inverted. Let p′′ ∈ Nfin
v (V), then we obtain

(s, p′′, t) by appending s to the first node of p′′ and t to the last node. This is also
cost-preserving, so (s, p′′, t) is in Ns→t(Q) and f is indeed bijective. Also, this ends
the proof, since we can see that the two sums in (1) have exactly the same nonzero
summands and are therefore equal. �

To provide an example for this transformation, we will transform the N∞JXK-
interpretation π from example (3.13) to a K-automaton. We want to evaluate

E(FP) = E(1UP) at v. Figure (4.17) shows how AE(1UP)
v (π) is built from π. Tran-

sitions with cost 0 are omitted.

v w

p

q

P → r

ts 1 rv w

p

q

Figure (4.17): N∞JXK-interpretation π (above) and AE(1UP)
v (π) (below).

The next goal is to calculate C(AE(1UP)
v (π)), since we have shown that this is equal to

πJE(1UP)Kv. We will now show how to obtain a representation of C(A) for general
K-automata A and then apply this method to the above example.

52

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Our approach is inspired by the well-known state removal method from automata
theory. The state removal method is used to build a regular expression for a language
that is recognized by a given automaton. A description of the state removal method
was given, for instance, by Neumann in 2005 [Neu05]. Of course, we will have to
adapt this method to work with K-automata, but the idea behind state removal
remains the same.

Given a K-automaton A = (Q,C, s, t), we pick a state q ∈ Q \ {s, t} and remove
it, so that Q′ = Q \ {q}. Then, we adapt the cost function to compensate for the
removed state. For q1, q2 ∈ Q \ {q}, this is done by setting

C ′(q1, q2) = C(q1, q2) + C(q1, q) · (C(q, q))∗ · C(q, q2).

The intuitive understanding is that before q was removed, q2 was reachable from
q1 via q, that is, by taking the edge (q1, q) and then (q, q2). Of course, (q, q) could
be iterated arbitrarily often before taking (q, q2) and ending up at q2. However,
since q is missing in the new automaton A′ = (Q′, C ′, s, t), the new cost function C ′

compensates for this by adding C(q1, q) · (C(q, q))∗ · C(q, q2) to C(q1, q2).

We will show that removing a state as above does not change the cost of the au-
tomaton, that is

C(A) = C(A′).

With this result, we can compute C(A) by repeatedly removing states until only s
and t are left. When only s and t are left, it is easy to see the cost of the automaton.
We will now formally state the algorithm and and prove its correctness.

(4.18) Algorithm (State Removal). The input for the state removal algorithm is
a K-automaton A = (Q,C, s, t). The algorithm then computes a representation of
C(A) using addition, multiplication and the star operator (∗) in K.

1. Start with A0 = (Q0, C0, s, t) = A.

2. Repeat for i = 0, 1, ... as long as Qi 6= {s, t}:

(a) Pick an arbitrary state qi ∈ Qi \ {s, t}.
(b) Remove qi by setting Qi+1 = Qi \ {qi}.
(c) For all qsrc, qdest ∈ Qi+1, set

Ci+1(qsrc, qdest) = Ci(qsrc, qdest) + Ci(qsrc, qi) · (Ci(qi, qi))∗ · Ci(qi, qdest).

(d) This yields Ai+1 = (Qi+1, Ci+1, s, t).

3. The loop terminates at An = (Qn, Cn, s, t) with Qn = {s, t} for some n ∈ N.

4. The output is Cn(s, t).

Proof. We first verify that the algorithm actually terminates and that all the
operations are well-defined. Let n be |Q \ {s, t}|, the number of “normal” states in
A. Clearly, after n iterations, the loop (2) terminates and only s and t are left as
states in An. Also, since the runtime of step (c) in the inner loop is in O(n2), the

53

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

runtime of the entire algorithm is in O(n3), assuming that the operations +, · and
∗ in the semiring are performed in constant time.

Also, all incoming edges to s and all outgoing edges from t are labelled with 0 in
each iteration. This is easily verified by observing that step (c) of the algorithm
preserves this property. Therefore, the only edge labelled with a nonzero value in
An is (s, t) and the only s-t-path with nonzero cost in An is (s, t). We have

Cn(s, t) =
∑

p∈Ps→t(Qn)

Cn(p) = Cn(An).

The final step of the proof is to verify that this is indeed the cost of A, so it is left
to show

C(A) = C0(A0) = Cn(An).

This can be shown inductively by proving for i ∈ N that

Ci(Ai) = Ci+1(Ai+1).

This is equivalent to ∑
pi+1∈Ps→t(Qi+1)

Ci+1(pi+1) =
∑

pi∈Ps→t(Qi)

Ci(pi).

We define the reduction function R : Ps→t(Qi) → Ps→t(Qi+1). The reduction func-
tion removes all occurrences of qi from paths in Ps→t(Qi), so for pi ∈ Ps→t(Qi),
R(pi) = pi+1 is built from pi by removing all occurrences of qi. Clearly, we have
pi+1 ∈ Ps→t(Qi+1). Since by proposition (2.5), summation is invariant under parti-
tioning and the fibers of R partition Ps→t(Qi), we have

∑
pi∈Ps→t(Qi)

Ci(pi) =
∑

pi+1∈Ps→t(Qi+1)

 ∑
pi∈R−1({pi+1})

Ci(pi).


It remains to show for each pi+1 ∈ Ps→t(Qi+1) that

Ci+1(pi+1) =
∑

pi∈R−1({pi+1})

Ci(pi).

Intuitively speaking, this means that the cost of pi+1 under Ci+1 exactly covers the
Ci-costs of all paths mapped to pi+1 by R. In order to show this, we will first prove
the following statement by induction. Let (a0, ..., ak) be a path in Ps→t(Qi+1) of
length k ≥ 1. Then, we have

Ci+1((a0, ..., ak)) =
∑

(j1,...,jk)∈ωk

Ci((a0, q
j1
i , a1, ..., ak−1, q

jk
i , ak)).

In the above equation, qji for j ∈ ω means that the state qi is traversed j times at
the corresponding location in the path. To start the induction, consider k = 1 and

54

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

the path (a0, a1). The hypothesis is true because of

Ci+1((a0, a1)) = Ci+1(a0, a1)

= Ci(a0, a1) + Ci(a0, qi) · (Ci(qi, qi))∗ · Ci(qi, a1)

= Ci(a0, a1) +
∑
l∈ω

Ci(a0, qi) · (Ci(qi, qi))l · Ci(qi, a1)

= Ci((a0, a1)) +
∑

l∈ω\{0}

Ci((a0, q
l
i, a1))

=
∑

(j1)∈ω1

Ci((a0, q
j1
i , a1)).

Now, we assume the hypothesis to be true for k. For k + 1, we obtain

Ci+1((a0, ..., ak, ak+1))

= Ci+1((a0, ..., ak)) · Ci+1((ak, ak+1))

(1)
=

 ∑
(j1,...,jk)∈ωk

Ci((a0, q
j1
i , ..., q

jk
i , ak))

 ·
 ∑
jk+1∈ω

Ci((ak, q
jk+1

i , ak+1))


(2)
=

∑
(j1,...,jk)∈ωk

 ∑
jk+1∈ω

Ci((a0, q
j1
i , ..., q

jk
i , ak)) · Ci((ak, q

jk+1

i , ak+1))


(3)
=

∑
(j1,...,jk+1)∈ωk+1

Ci((a0, q
j1
i , ..., q

jk
i , ak, q

jk+1

i , ak+1)).

For (1), we used the induction hypothesis for the first part, and for Ci+1((ak, ak+1)),
the same argument as for the case k = 1 applies. (2) is shown by applying distribu-
tivity of multiplication over countable sums twice, as stated in proposition (2.5).
The transformation (3) uses the invariance of summation under partitioning from
the same proposition and ends the induction.

Now, we return to Ci+1(pi+1) for pi+1 ∈ Ps→t(Qi+1). We can write

pi+1 = (s, a1, ..., ak−1, t)

for some k ≥ 1. Clearly, the statement that we have proved above yields

Ci+1(pi+1) = Ci+1((s, a1, ..., ak−1, t)) =
∑

(j1,...,jk)∈ωk

Ci((s, q
j1
i , a1, ..., ak−1, q

jk
i , t)).

Now, consider the set R−1({pi+1}). Remember that R removes all occurrences of qi
from paths pi ∈ Ps→t(Qi), so the paths that R maps to pi+1 are exactly the paths
in the set

R−1({pi+1}) = {(s, qj1i , a1, ..., ak−1, q
jk
i , t) | (j1, ..., jk) ∈ ωk} ⊆ Ps→t(Qi).

Therefore, for any pi+1 ∈ Ps→t(Qi+1), we have some k with

Ci+1(pi+1) =
∑

(j1,...,jk)∈ωk

Ci((s, q
j1
i , a1, ..., ak−1, q

jk
i , t)) =

∑
pi∈R−1({pi+1})

Ci(pi),

55

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

which ends the proof. �

We can now use state removal to evaluate E(ϕUψ) under a K-interpretation π over
V at some node v ∈ V . We just have to put the above results together.

1. Build AE(ϕUψ)
v (π) as in proposition (4.16).

• Together with theorem (4.14), we have

C(AE(ϕUψ)
v (π)) =

∑
p∈Pfin

v (V)

πJϕUψKp = πJE(ϕUψ)Kv.

2. Use state removal to obtain C(AE(ϕUψ)
v (π)).

• This is exactly the interpretation πJE(ϕUψ)Kv.

Let n = |V |, then AE(ϕUψ)
v (π) has n+ 2 states, so the runtime of step (1) is in O(n2)

and the runtime of state removal is in O(n3), which yields a total runtime in O(n3).

We close this subsection by applying state removal to AE(1UP)
v (π), which we built

earlier in figure (4.17). The two steps of state removal are shown in figure (4.19)
below.

v w

p

q

s t1 r

vs t1 pr

pq

s t
(pq)*pr

Figure (4.19): State removal performed on AE(1UP)
v (π).

The result of the state removal algorithm is (pq)∗pr = p(pq)∗r, which is the label of
(s, t) in the last step. So, we have

C(AE(1UP)
v (π)) = πJE(1UP)Kv = πJE(FP)Kv = p(pq)∗r.

This is the same result that we obtained in example (3.13) by manually perform-
ing the fixed-point iteration. We conclude that the state removal algorithm is a
systematic approach to interpret existential until operators in CTL.

56

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

4.2.2 Universal Until Operators

Consider an ω-continuous semiring K, a formula A(ϕUψ) in CTL and a matching
K-interpretation π over a finite set of nodes V . As seen in theorem (4.14), we have

πJA(ϕUψ)Kv =
∑

t∈Tfin
v (V)

πJϕUψKt for all v ∈ V.

Same as for the existential formulas, we will use an approach from automata theory
to calculate this. However, since universal formulas are witnessed by trees instead
of paths, we will use methods for tree automata. In a book by Comon, Dauchet,
Gilleron, Jacquemard, Lugiez, Löding, Tison and Tommasi [CDG+07], they describe
a method that converts tree automata to regular tree expressions. This subsection
presents an adaptation of their method to obtain an expression for πJA(ϕUψ)Kv.

First of all, recall the ϕUψ-costs for trees that we introduced in definition (4.11).
We would like to be able to split trees as shown in figure (4.20) below. We have
marked the node in t1 where t2 should be appended with a star (∗). Edge costs are
disregarded and nodes are labelled with their contributions to the ϕUψ-cost of their
respective tree.

v

w u

v w

t:

π⟦φ⟧
v

π⟦φ⟧
u

π⟦ψ⟧
w

π⟦ψ⟧
v

π⟦ψ⟧
w

v

w u*

t
1
:

π⟦φ⟧
v

π⟦ψ⟧
u

π⟦ψ⟧
w

u

v w

π⟦φ⟧
u

π⟦ψ⟧
v

π⟦ψ⟧
w

t
2
:

splits
into

and

Figure (4.20): A tree t being split into two trees t1 and t2.

Obviously, splitting trees like that does not play along with our definition of ϕUψ-
costs. The problem is the marked u-leaf in t1. For πJϕUψKt, we would have obtained
πJϕKu as the cost of the u-node. However, in t1 and t2, the u-node appears twice.
In t1, it is a leaf, therefore we get the cost πJψKu and in t2, it is the root and we get
the correct cost πJϕKu. Because of the factor πJψKu in t1, we generally have

πJϕUψKt 6= πJϕUψKt1 · πJϕUψKt2 ,

but we would naturally expect both sides to be equal, since t1 and t2 form t when
t2 is inserted into t1 at the marked node.

Overcoming this issue requires a new definition of tree costs where marked leaves
are treated differently. Instead of evaluating u in t1 to πJψKu, we evaluate it to a
variable xu ∈ X where X = {xv | v ∈ V } is a set of variables. When appending t2
to t1, we simply insert the cost of t2 into the cost of t1, which is a polynomial. To
see that this works, we disregard the edge costs in the above example and calculate

πJϕUψKt = πJϕKv · πJψKw · πJϕKu · πJψKv · πJψKw.

57

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Then, we calculate the costs of t1 and t2 with the new evaluation strategy and obtain

πJϕUψKt1 = πJϕKv · πJψKw · xu and

πJϕUψKt2 = πJϕKu · πJψKv · πJψKw.

Clearly, inserting the cost of t2 into xu in the costs of t1 yields exactly the cost of
t. Now, we will provide a formal definition for the polynomial costs of trees with
marked leaves.

(4.21) Definition (Complete Tree with Marked Leaves). A complete tree with
marked leaves over V is a tree t ∈ T (V) with a subset m(t) ⊆ l(t) of marked leaves.

We will sometimes restrict the nodes that may be marked to a subset M ⊆ V . That
means that only leaves which are labelled with an element from M may be marked.
We write T (V,M) for the set of all complete trees over V with marked leaves in M .
In the above example, only u-leaves are marked in t1, so t1 ∈ T (V, {u}). Since t and
t2 do not contain marked leaves, we have t, t2 ∈ T (V, ∅). Notice that for trees in
T (V,M), some or all leaves in M may be unmarked, so we have T (V,M) ⊆ T (V, V)
for all M ⊆ V . Now, we will specify how to handle marked leaves when calculating
the ϕUψ-costs of trees.

(4.22) Definition (Until-Costs for Trees with Marked Leaves). Let K be ω-
continuous and V a finite set of nodes. Let π be a K-interpretation and t a finite,
complete tree over V with marked leaves. We set X = {xv | v ∈ V } and for ϕ and
ψ in CTL, the ϕUψ-cost of t is

πJϕUψKt =

∏
x∈i(t)

πJϕKLt(x)

 ·
 ∏

(x,y)∈e(t)

π(ELt(x)Lt(y))

 ·
 ∏
x∈l(t)\m(t)

πJψKLt(x)


·

 ∏
y∈m(t)

xLt(y)

 ∈ KJXK.

Intuitively speaking, the marked leaves are ignored for the normal evaluation and
a marked leaf v gets evaluated as xv. The result is formally an element of KJXK,
because there are variables in X and coefficients in K. We use formal power series
instead of normal polynomials, because generally, unlike K[X], KJXK is again ω-
continuous.

Next, we will define insertion for formal power series KJXK with X = {xv | v ∈ V }.
Let p and q be formal power series p ∈ KJX1K and q ∈ KJX2K with X1, X2 ⊆ X.
For v ∈ V , we define the insertion p ·v q. Informally, we insert q into p for each
occurrence of the variable xv.

The formal definition is based on an observation by Green, Karvounarakis and
Tannen [GKT07]. Notice that q induces a unique ω-continuous homomorphism
hvq : KJX1K → KJ(X1 \ {xv}) ∪X2K with hvq(xv) = q and hvq(r) = r if xv does not
occur in r. So, we can set

p ·v q = hvq(p).

The fact that hvq is uniquely defined can be shown by observing that p is an element
of KJX1K, but we can see it as an element of KJX1 \ {xv}KJxvK. So, we can write p

58

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

as
p =

∑
i∈ω

p(i) · xiv

where p(i) ∈ KJX1 \ {xv}K is the coefficient of xiv. Clearly, as hvq is an ω-continuous
homomorphism and hvq(p(i)) = p(i), we have

hvq(p) = hvq

(∑
i∈ω

p(i) · xiv

)
=
∑
i∈ω

p(i) · hvq(xv)i =
∑
i∈ω

p(i) · qi,

which is a uniquely defined element of KJ(X1 \ {xv}) ∪X2K.

Now that we have defined polynomial insertion, we can prove some properties.

(4.23) Lemma. Let K be an ω-continuous semiring, V a finite set of nodes and
X = {xv | v ∈ V }. For any v ∈ V , formal power series p, q, r ∈ KJXK and ascending
chains s0 ≤ s1 ≤ ... in KJXK, we have

(1) (p ·v q) ·v r = p ·v (q ·v r) (·v is associative),

(2) (p+ q) ·v r = p ·v r + q ·v r,
(3) (p · q) ·v r = (p ·v r) · (q ·v r),
(4) (sup

i∈ω
si) ·v p = sup

i∈ω
(si ·v p) and

(5) p ·v (sup
i∈ω

si) = sup
i∈ω

(p ·v si).

Proof. For (1), we rewrite the equation using the definition of ·v to

(hvr ◦ hvq)(p) = hvhvr(q)(p).

Since hvr and hvq are both ω-continuous homomorphisms, hvr ◦ hvq is an ω-continuous
homomorphism as well. We have (hvr ◦ hvq)(t) = t for any polynomial that does not
contain xv and

(hvr ◦ hvq)(xv) = hvr(h
v
q(xv)) = hvr(q).

As hvhvr(q) is the unique ω-continuous homomorphism that fulfills these properties,

we conclude that hvr ◦ hvq = hhvr(q) and (1) is proven.

For (2) and (3), we simply use the definition and obtain

(p+ q) ·v r = hvr(p+ q) = hvr(p) + hvr(q) = p ·v r + q ·v r and

(p · q) ·v r = hvr(p · q) = hvr(p) · hvr(q) = (p ·v r) · (q ·v r),

since hvr is a homomorphism.

(4) uses the fact that hvp is ω-continuous, so

(sup
i∈ω

si) ·v p = hvp((sup
i∈ω

si)) = sup
i∈ω

hvp(si) = sup
i∈ω

(si ·v p).

The final statement (5) states that the polynomial function f vp induced by p is ω-
continuous. The polynomial function f vp is defined by f vp (q) = hvq(p) for q ∈ KJXK.
Grädel and Tannen have stated that this function is ω-continuous [GT18]. Therefore,

59

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

we will only provide a proof sketch for (5) by induction on p. If p does not contain
xv, then p ·v (supi∈ω si) = p and p ·v si = p for each i ∈ ω, so there is nothing to
prove. For p = xv, we have p ·v t = t for any power series t, so clearly, both sides
are equal. Knowing that addition and multiplication are ω-continuous and using
the statements (2), (3) and (4), we can inductively conclude that (5) is true for any
formal power series p ∈ KJXK. �

Before getting back to the trees, we will define another operation on formal power
series. The idea is that a tree t that is rooted at w and has a marked leaf w at
the same time could be appended to itself arbitrarily often to build arbitrarily large
trees. Therefore, we will need iteration for formal power series. Let p ∈ KJXK be a
formal power series and v ∈ V . For i ∈ ω, we inductively define

p0,v = xv and

pi+1,v = xv + p ·v pi,v.

Informally, pi,v represents the sum of all the polynomials built by inserting p into
itself for the variable xv up to a depth of i. For example, if p = axv for some a ∈ K,
then we have

p0,v = xv,

p1,v = xv + axv,

p2,v = xv + axv + a2xv,

Since KJXK is ω-continuous, we can define

p∗v = sup
i∈ω

pi,v.

Notice that p0,v, p1,v, ... is an ascending chain, which is verified by showing that
pi,v ≤ pi+1,v inductively. For i = 0, we have p0,v = xv and p1,v = xv + p ·v p0,v, so
p0,v ≤ p1,v is true. For i > 0, we have pi+1,v = xv + p ·v pi,v. Since addition and ·v are
ω-continuous, they are also monotonic and therefore, with the induction hypothesis,
we have

pi+1,v = xv + p ·v pi,v ≥ xv + p ·v pi−1,v = pi,v.

This shows that p∗v is well-defined. In the above example, we would obtain

(axv)
∗v = xv + axv + a2xv + ... = a∗xv.

As we can see, the insertion depth is unlimited here. Note that the objects described
by the iteration operator ∗v do not always have a simple representation as in the
example above. Consider a non-linear power series ax2

v, then we have

(ax2
v)
∗v = xv + ax2

v + 2a2x3
v + 5a3x4

v +

Looking at the monomial 2a2x3
v explains the issue. We can obtain a2x3

v by inserting
ax2

v into itself for one of the variables xv. However, since x2
v = xv · xv, there are two

options to do this since xv technically occurs twice in ax2
v. Hence, the monomial

2a2x3
v has the coefficient 2.

Even though expressions with ∗v are harder to read than the usual star expressions
from the previous subsection, we will see that they are very useful for describing the
ϕUψ-costs of infinite sets of trees.

60

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Fix an ω-continuous semiring K, a K-interpretation π over a finite set of nodes V
and a formula A(ϕUψ) in CTL. We can assign an arbitrary order to the nodes in
V , so w.l.o.g., we assume that V = {1, ..., n} for some n ∈ N. By theorem (4.14),
we know that for v ∈ V , we have

πJA(ϕUψ)Kv =
∑

t∈Tfin
v (V)

πJϕUψKt.

We can compute a representation of πJA(ϕUψ)Kv using +, ·, ·w and ∗w for w ∈ V
inductively. We modify the approach that is used in [CDG+07] to convert tree
automata to regular tree expressions. For any 1 ≤ i ≤ n, 0 ≤ j ≤ n and L ⊆ V , we
define T (i, j, L) as the set of all finite, complete trees t over V with the following
properties:

• t is rooted at i,

• t may contain marked leaves, but only leaves that are labelled with an element
of L can be marked,

• t is not trivial, meaning that the root of t must not be a marked leaf and

• all unmarked nodes in t except for the root node must be labelled with an
element of {1, ..., j}.

Parallelly, we define the costs

C(i, j, L) =
∑

t∈T (i,j,L)

πJϕUψKt.

Clearly, we have T (v, n, ∅) = T fin
v (V), so we are looking for C(v, n, ∅). In the follow-

ing, we will show how all C(i, j, L) can be computed inductively over j.

For j = 0, C(i, 0, L) is easy to compute, since T (i, 0, L) only contains trees without
any unmarked nodes except for the root. There are no more than two such trees,
one of them is the tree that only consists of the root i and the second one is the tree
that consists of i with all of its successors and all of them are marked.

Moving on to j > 0, we assume that we have already computed C(i, j′, L) for any
j′ < j. We claim that

C(i, j, L) =

{
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j if j ∈ L
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j ·j 0 otherwise.

Figure (4.24) provides an intuitive justification for this equation.

61

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

i

j j j

j j j j

j j j j

root
layer

main
layer

Figure (4.24): A t tree in T (i, j, L) split in two layers.

The figure shows an informal representation of a tree t in T (i, j, L). As seen in
the picture, we can split the tree along any occurrence of the node j. Clearly, the
subtrees will not contain any instances of j except for root nodes and marked leaves.
The root layer, which is the subtree that contains the root, will be a tree rooted
at i with unmarked nodes in {1, ..., j − 1} and marked leaves in L ∪ {j}, since we
have split it at j. Therefore, it is an element of T (i, j − 1, L∪ {j}). The main layer
consists of trees that are rooted at j and contain marked leaves in L ∪ {j}, so they
are elements of T (j, j − 1, L ∪ {j}). Clearly, these trees can be chained arbitrarily
often, therefore, we use the iteration operator ∗j. Notice that if j /∈ L, there must
not be any marked j-leaves at the bottom of t, therefore we use ·j0 to eliminate any
trees with marked j-leaves that were generated by the iteration operator.

Now, it is left to prove the above equation formally. We will first introduce the
concept of the j-height of a tree. For j ∈ V , the j-height of a tree t over V is
defined as the maximum number of occurrences of j along a path from the root, not
including marked leaves. For example, the j-height of the tree from figure (4.24) is
3, assuming that i 6= j. Additionally, we will need the following lemma.

(4.25) Lemma. Let t ∈ T (V, V) be a finite, complete tree over V with marked
leaves and T ⊆ Tj(V, V) a countable set of trees rooted at j. Then, with π, ϕ and
ψ given as above, we have

πJϕUψKt ·j
∑
t′∈T

πJϕUψKt′ =
∑
t′′∈T ′

πJϕUψKt′′

where T ′ is the set of trees that are obtained by inserting a combination of trees
from T into all marked j-leaves of t.

Proof. Since t is finite, there is a k ∈ N such that t contains exactly k marked

62

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

j-leaves. According to definition (4.22), we have

πJϕUψKt =

∏
x∈i(t)

πJϕKLt(x)

 ·
 ∏

(x,y)∈e(t)

π(ELt(x)Lt(y))

 ·
 ∏
x∈l(t)\m(t)

πJψKLt(x)


·

 ∏
y∈m(t),Lt(y)6=j

xLt(y)

 · xkj .
So, we can write πJϕUψKt = p · xkj for some p ∈ KJX \ {xj}K. Since p does not
contain xj, it follows that

πJϕUψKt ·j
∑
t′∈T

πJϕUψKt′ = (p · xkj) ·j
∑
t′∈T

πJϕUψKt′

= p ·

(∑
t′∈T

πJϕUψKt′

)k

= p ·

(∑
t1∈T

πJϕUψKt1

)
· ... ·

(∑
tk∈T

πJϕUψKtk

)

= p ·

(∑
tk∈T

...
∑
t1∈T

πJϕUψKt1 · ... · πJϕUψKtk

)
= p ·

∑
(t1,...,tk)∈Tk

πJϕUψKt1 · ... · πJϕUψKtk

=
∑

(t1,...,tk)∈Tk

p · πJϕUψKt1 · ... · πJϕUψKtk

We used the partition-invariance of possibly infinite sums and the distributivity of
multiplication over sums from proposition (2.5). Now, to close the proof, it remains
to show that ∑

(t1,...,tk)∈Tk

p · πJϕUψKt1 · ... · πJϕUψKtk =
∑
t′′∈T ′

πJϕUψKt′′ .

We observe that there is a bijection between T k and T ′. Fix an arbitrary enumeration
of the k marked j-leaves in t. Every tuple (t1, ..., tk) ∈ T k can be mapped to the
element t′′ of T ′ that is obtained by inserting ti for the i-th marked j-leaf in t with
1 ≤ i ≤ k. Clearly, we have

πJϕUψKt′′ = p · πJϕUψKt1 · ... · πJϕUψKtk

when t′′ is constructed from (t1, ..., tk) like this. To see that this is a one-to-one
correspondence, observe that any t′′ ∈ T ′ is built by taking some t1, ..., tk ∈ T k and
inserting them for the marked j-leaves in t. This ends the proof of the lemma, since
the two sums above contain exactly the same elements. �

Now, we return to proving the original claim that

C(i, j, L) =

{
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j if j ∈ L
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j ·j 0 otherwise.

63

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

We start by evaluating the iteration C(j, j − 1, L ∪ {j})∗j . Let T ′(j, j, L ∪ {j}) be
the set T (j, j, L ∪ {j}) adjoined with the trivial tree (j∗) that consists of only one
marked leaf j. We claim that

C(j, j − 1, L ∪ {j})∗j =
∑

t∈T ′(j,j,L∪{j})

πJϕUψKt.

In order to prove that, we partition T ′(j, j, L∪{j}) by the j-height of the trees that
it contains. Define T ′=h(j, j, L∪ {j}) = {t ∈ T ′(j, j, L∪ {j}) | t has the j-height h}
for h ∈ ω. T ′<h(j, j, L ∪ {j}) and T ′≤h(j, j, L ∪ {j}) for h ∈ ω have the obvious
meanings. Then, we obtain

∑
t∈T ′(j,j,L∪{j})

πJϕUψKt =
∑
h∈ω

 ∑
t∈T ′=h(j,j,L∪{j})

πJϕUψKt


= sup

h∈ω

 h∑
k=0

∑
t∈T ′=k(j,j,L∪{j})

πJϕUψKt


= sup

h∈ω

∑
t∈T ′≤h(j,j,L∪{j})

πJϕUψKt.

On the other side, we have

C(j, j − 1, L ∪ {j})∗j = sup
h∈ω

C(j, j − 1, L ∪ {j})h,j.

It remains to show by induction on h that

C(j, j − 1, L ∪ {j})h,j =
∑

t∈T ′≤h(j,j,L∪{j})

πJϕUψKt.

In the base case h = 0, we have C(j, j − 1, L ∪ {j})0,j = xj and indeed, the only
tree rooted at j with a j-height of 0 or less is the tree (j∗) that consists of a single
marked leaf j, and therefore has cost xj.

For h + 1, we look at the inductive definition of C(j, j − 1, L ∪ {j})h+1,j. Using
the induction hypothesis for (1), the properties of ·j from lemma (4.23) for (2) and
lemma (4.25) for (3), we obtain

C(j, j − 1, L ∪ {j})h+1,j

= xj + C(j, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})h,j

(1)
= xj +

 ∑
t∈T (j,j−1,L∪{j})

πJϕUψKt

 ·j
 ∑
t′∈T ′≤h(j,j,L∪{j})

πJϕUψKt′


(2)
= xj +

∑
t∈T (j,j−1,L∪{j})

πJϕUψKt ·j

 ∑
t′∈T ′≤h(j,j,L∪{j})

πJϕUψKt′


(3)
= xj +

∑
t∈T (j,j−1,L∪{j})

 ∑
t′∈T ′≤h

t (j,j,L∪{j})

πJϕUψKt′

 ,

64

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

where T ′≤ht (j, j, L ∪ {j}) is the set of trees that are built by inserting trees from
T ′≤h(j, j, L ∪ {j}) into all the marked j-leaves of t. It remains to show that

∑
t∈T ′≤h+1(j,j,L∪{j})

πJϕUψKt = xj +
∑

t∈T (j,j−1,L∪{j})

 ∑
t′∈T ′≤h

t (j,j,L∪{j})

πJϕUψKt′

 .

Let Rj : T ′≤h+1(j, j, L∪{j}) \ {(j∗)} → T (j, j− 1, L∪{j}) be the top-down cutting
function. For a given t ∈ T ′≤h+1(j, j, L∪{j})\{(j∗)}, Rj(t) is the tree that we obtain
by cutting off t at all the first occurrences of j viewed from the top-down direction,
excluding the root itself. The subtrees that are cut off are replaced with marked
j-leaves. For example, in figure (4.24), the top-down cutting operation would return
the root layer of the depicted tree.

Notice that we have excluded the trivial tree (j∗) from the definition of Rj, since it
would be mapped to itself, but T (j, j−1, L∪{j}) does not contain (j∗) by definition.
The fibers R−1

j ({t}) for t ∈ T (j, j − 1, L ∪ {j}) along with (j∗) form a partition of
T ′≤h+1(j, j, L ∪ {j}), therefore, we have

∑
t∈T ′≤h+1(j,j,L∪{j})

πJϕUψKt = xj +
∑

t∈T (j,j−1,L∪{j})

 ∑
t′∈R−1

j ({t})

πJϕUψKt′

 .

Since by definition, R−1
j ({t}) for t ∈ T (j, j − 1, L ∪ {j}) is the set of all trees in

T ′≤h+1(j, j, L ∪ {j}) \ {(j∗)} that Rj maps to t, we have

R−1
j ({t}) = T ′≤ht (j, j, L ∪ {j}),

or in words, the trees that Rj maps to t are exactly the trees obtained by inserting
arbitrary trees from T ′≤h(j, j, L ∪ {j}) into all marked j-leaves of t. We will prove
that both sets contain each other.

“⊆”: Let t′ be an element of R−1
j ({t}) ⊆ T ′≤h+1(j, j, L ∪ {j}) \ {(j∗)}. Then,

Rj(t
′) = t and t can be obtained from t′ by cutting off some subtrees that are rooted

at j. Since t′ had a j-height that did not exceed h + 1 and t still has j as an
unmarked root node, the subtrees that were cut off have a j-height that does not
exceed h, therefore they are elements of T ′≤h(j, j, L ∪ {j}). This implies that t′ can
be obtained from t by inserting trees from T ′≤h(j, j, L ∪ {j}) into the j-leaves of t,
therefore we have t′ ∈ T ′≤ht (j, j, L ∪ {j}).
“⊇”: Now, let t′ be an element of T ′≤ht (j, j, L∪{j}). Since t′ is obtained by inserting
trees from T ′≤ht (j, j, L ∪ {j}) into the marked j-leaves of t, applying Rj to t′ will
reverse this and yield t, as t itself does not contain any unmarked j-nodes outside
of the root. Thereby, we conclude Rj(t

′) = t and t′ ∈ R−1
j ({t}).

This immediately implies

C(j, j − 1, L ∪ {j})h+1,j =
∑

t∈T ′≤h+1(j,j,L∪{j})

πJϕUψKt,

which ends the induction. It also proves that

C(j, j − 1, L ∪ {j})∗j =
∑

t∈T ′(j,j,L∪{j})

πJϕUψKt.

65

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Next, we want to use this to show

C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j =
∑

t∈T (i,j,L∪{j})

πJϕUψKt.

The left side can be transformed using lemma (4.23) for (1) and lemma (4.25) for
(2), which yields

C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j

=

 ∑
t∈T (i,j−1,L∪{j})

πJϕUψKt

 ·j
 ∑
t′∈T ′(j,j,L∪{j})

πJϕUψKt′


(1)
=

∑
t∈T (i,j−1,L∪{j})

πJϕUψKt ·j

 ∑
t′∈T ′(j,j,L∪{j})

πJϕUψKt′


(2)
=

∑
t∈T (i,j−1,L∪{j})

 ∑
t′∈T ′t (j,j,L∪{j})

πJϕUψKt′

 ,

where T ′t(j, j, L ∪ {j}) for t ∈ T (i, j − 1, L ∪ {j}) is the set of trees that can be
obtained by inserting an arbitrary combination of trees from T ′(j, j, L ∪ {j}) into
all the marked j-leaves of t. Now, to show that

∑
t∈T (i,j,L∪{j})

πJϕUψKt =
∑

t∈T (i,j−1,L∪{j})

 ∑
t′∈T ′t (j,j,L∪{j})

πJϕUψKt′

 ,

we can use the same approach as above. Let R′j : T (i, j, L∪{j})→ T (i, j−1, L∪{j})
be the same top-down cutting function as above, defined for a different domain
T (i, j, L∪{j}). Notice that even if i = j, the sets T (i, j, L∪{j}) and T (i, j−1, L∪{j})
by definition do not contain the trivial tree (j∗) and the function R′j never cuts trees
off at the root. Clearly, applying R′j to a tree in T (i, j, L ∪ {j}) yields a tree in
T (i, j−1, L∪{j}), even if i = j, since the resulting tree can only contain j as a root
node or a marked leaf. Therefore, the fibers R′−1

j ({t}) for t ∈ T (i, j− 1, L∪{j}) are
a partition of T (i, j, L ∪ {j}). This yields

∑
t∈T (i,j,L∪{j})

πJϕUψKt =
∑

t∈T (i,j−1,L∪{j})

 ∑
t′∈R′−1

j ({t})

πJϕUψKt′

 .

We observe that R′−1
j ({t}) = T ′t(j, j, L ∪ {j}) for t ∈ T (i, j − 1, L ∪ {j}).

“⊆”: If t′ is an element of R′−1
j ({t}), then we have t′ ∈ T (i, j, L∪{j}) and R′j(t

′) = t.
We know that t is obtained by cutting off some subtrees from t′, and those subtrees
are rooted at j, so they are elements of T ′(j, j, L ∪ {j}). Therefore, t′ can be built
by inserting trees from T ′(j, j, L ∪ {j}) into the marked j-leaves of t, so we have
t′ ∈ T ′t(j, j, L ∪ {j}).
“⊇”: For any t′ ∈ T ′t(j, j, L ∪ {j}), we clearly have R′j(t

′) = t and t′ ∈ R′−1
j ({t}).

66

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Thereby, we have shown

C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j =
∑

t∈T (i,j,L∪{j})

πJϕUψKt

= C(i, j, L ∪ {j}).

In case that j ∈ L, we have

C(i, j, L) = C(i, j, L ∪ {j}) = C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j .

Otherwise, we have j /∈ L and claim that

C(i, j, L) = C(i, j, L ∪ {j}) ·j 0 = C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j ·j 0.

The first equality is proven by

C(i, j, L ∪ {j}) ·j 0 =

 ∑
t∈T (i,j,L∪{j})

πJϕUψKt

 ·j 0

=
∑

t∈T (i,j,L∪{j})

πJϕUψKt ·j 0.

Now, if t ∈ T (i, j, L), then t does not contain a marked j-leaf, since j /∈ L, so
πJϕUψKt ·j 0 = πJϕUψKt. Otherwise, t must contain a marked j-leaf, but then we
have πJϕUψKt ·j 0 = 0. Thus, we conclude

C(i, j, L ∪ {j}) ·j 0 =
∑

t∈T (i,j,L∪{j})

πJϕUψKt ·j 0

=
∑

t∈T (i,j,L)

πJϕUψKt

= C(i, j, L),

which ends the proof of the claim

C(i, j, L) =

{
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j if j ∈ L
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j ·j 0 otherwise.

We can close this subsection by summarizing the algorithm.

(4.26) Algorithm. Let K be an ω-continuous semiring. The input of the algo-
rithm is a formula A(ϕUψ) in CTL and a matching K-interpretation π over a finite
transition system V with |V | = n and a node v ∈ V . The output is a representa-
tion of πJA(ϕUψ)Kv using addition, multiplication and the operators ·j and ∗j for
1 ≤ j ≤ n.

1. Rename the elements of V arbitrarily to V = {1, ..., n}.

2. Compute C(i, 0, L) for 1 ≤ i ≤ n and L ⊆ V directly.

3. Repeat for j = 1, ..., n:

67

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

(a) Compute C(i, j, L) for 1 ≤ i ≤ n and L ⊆ V as

C(i, j, L) =

{
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j if j ∈ L
C(i, j − 1, L ∪ {j}) ·j C(j, j − 1, L ∪ {j})∗j ·j 0 otherwise.

4. The output is C(v, n, ∅).

Proof. We first observe that the algorithm terminates. In step 2, n · 2n values
have to be calculated, each C(i, 0, L) can be found by evaluating at most two trees
with up to n + 1 nodes, which yields a runtime in O(n2 · 2n). In step 3, a total
of n2 · 2n values is calculated, we assume that each of them can be calculated in
constant time, so the total runtime of the algorithm is in O(n2 · 2n).

The correctness of step 3 (a) has been shown above. The result is C(v, n, ∅), which
is equal to

C(v, n, ∅) =
∑

t∈T (v,n,∅)

πJϕUψKt.

Since T (v, n, ∅) = T fin
v (V), we can use theorem (4.14) to obtain

C(v, n, ∅) =
∑

t∈Tfin
v (V)

πJϕUψKt = πJA(ϕUψ)Kv.

This ends the proof of the correctness of the algorithm. �

We conclude that the universal until operator can be evaluated in exponential time.

4.3 Release Operators in CTL

Formulas with a release operator E(ϕRψ) or A(ϕRψ) in CTL have to be interpreted
in absorptive lattice semirings K. Looking at theorem (4.14) for until formulas, we
expect that a similar theorem can be shown for release formulas. Let π be a K-
interpretation over V and v ∈ V . The truth of E(ϕRψ) at node v can be witnessed
by any path p ∈ Pv(V) and the truth of A(ϕRψ) can be witnessed by any tree
t ∈ Tv(V). We have already introduced ϕRψ-costs for paths and trees to evaluate
them under π, so we can state the following theorem for release formulas.

(4.27) Theorem. Let K be an absorptive lattice semiring and V a finite set of
nodes. If π is a K-interpretation over V , v is an element of V and ϕ and ψ are
formulas in CTL, then

(1) πJE(ϕRψ)Kv =
∑

p∈Pv(V)

πJϕRψKp and

(2) πJA(ϕRψ)Kv =
∑

t∈Tv(V)

πJϕRψKt.

We will provide a proof for this theorem in the following subsections. First of all,
notice the difference to theorem (4.14), where only finite paths were included. For
release formulas, infinite paths have to be included as well. The sums in the above

68

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

theorem are therefore uncountable in the general case. Also, we are working with
absorptive lattice semirings K. Later, we will see that absorption will simplify the
above theorem and that we will not have to compute the sum of the ϕRψ-costs of
all the paths and trees over V , but instead, many of them will be absorbed by other
paths and trees.

4.3.1 Existential Release Operators

The goal of this subsection is to prove part (1) of theorem (4.27). LetK be an absorp-
tive lattice semiring and E(ϕUψ) a CTL formula with a matching K-interpretation
π over a finite set of nodes V . In order to illustrate how we can use absorption,
consider the paths p, p′ and p′′ from figure (4.28). The nodes and edges are labelled
with their contributions to the ϕRψ-cost of the respective path.

vp: π(Evw)

π⟦ψ⟧
v

π⟦ψ⟧
v
·π⟦φ⟧

v

w u w v

π⟦ψ⟧
w

π⟦ψ⟧
u

π⟦ψ⟧
w

π(Ewu) π(Euw) π(Ewv)

cycle (w, u, w)

vp': π(Evw)

π⟦ψ⟧
v

π⟦ψ⟧
v
·π⟦φ⟧

v

w v

π⟦ψ⟧
w

π(Ewv)

cycle (v, w, v)

p'':

π⟦ψ⟧
v
·π⟦φ⟧

v

v

Figure (4.28): Three paths p, p′ and p′′.

Observe that p is the longest path, p′ is obtained from p by removing the w-cycle
(w, u, w) in the middle of p and replacing it with w and p′′ is obtained from p′

by removing yet another cycle, that is, the v-cycle (v, w, v), from p′. Recall that
multiplication decreases elements in absorptive lattice semirings, and since we have

πJϕRψKp = πJϕRψKp′ · πJψKw · π(Ewu) · πJψKu · π(Euw) and

πJϕRψKp′ = πJϕRψKp′′ · πJψKv · π(Evw) · πJψKw · π(Ewv),

it follows that πJϕRψKp ≤ πJϕRψKp′ ≤ πJϕRψKp′′ . Absorption implies that

πJϕRψKp + πJϕRψKp′ + πJϕRψKp′′ = πJϕRψKp′′ ,

meaning that the costs of p′′ absorb the costs of p and p′. We will often simplify this
and say that p′′ absorbs p and p′, which refers to the ϕRψ-costs of the respective
paths. This observation shows us that removing cycles from paths yields paths with
greater costs, therefore, the “shortest” paths, or more precisely, the cycle-free paths
have the greatest ϕRψ-costs and absorb “longer” paths.

69

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Also, the above example motivates us to introduce ψ-costs for partial, incomplete
paths or cycles. If we set

πJψK(w,u,w) = πJψKw · π(Ewu) · πJψKu · π(Euw) and

πJψK(v,w,v) = πJψKv · π(Evw) · πJψKw · π(Ewv),

then we obtain

πJϕRψKp = πJϕRψKp′ · πJψK(w,u,w) and

πJϕRψKp′ = πJϕRψKp′′ · πJψK(v,w,v).

Notice that for the ψ-costs, we evaluate the edges and we evaluate ψ at the internal
nodes normally, we would do the same when computing the ϕRψ-costs for the re-
spective paths, but when computing ψ-costs, we do not evaluate the terminal node
at all. This is very useful if we define the appending operation for paths q1 ◦ q2,
where q1 and q2 are paths such that q1 ends at the starting node of q2. Then, q1 ◦ q2

is defined by replacing the last node of q1 with q2. If we now append the cycle
(w, u, w) to itself, we obtain (w, u, w) ◦ (w, u, w) = (w, u, w, u, w) and conveniently,
because we have defined ψ-costs to ignore the terminal node, we have

πJψK(w,u,w)◦(w,u,w) = πJψK(w,u,w) · πJψK(w,u,w).

We will now define ψ-costs formally and show some properties.

(4.29) Definition (ψ-Costs for Paths). Let K be an absorptive lattice semiring.
If π is a K-interpretation and p is a finite or infinite path over V and ϕ and ψ are
CTL formulas, the ψ-cost of p is defined as

πJψKp =

 ∏
x∈i(p)

πJψKLp(x)

 ·
 ∏

(x,y)∈e(p)

π(ELp(x)Lp(y))

 .

As argued above, for finite paths p and q where p ends at the starting node of q, we
generally have

πJψK(p◦q) = πJψKp · πJψKq.

Also, if c is a v-cycle for some v ∈ V , we can chain c with itself arbitrarily often.
We recursively define

c0 = (v) and

ck+1 = ck ◦ c for k ∈ ω.

Then, it follows that
πJψKck = πJψKkc for k ∈ ω.

Let c∞ be the infinite path obtained by appending c to itself infinitely often, then

πJψKc∞ = πJψK∞c .

It is also worth noticing the relationship of ϕRψ-costs and ψ-costs. For finite paths
p, we have

πJϕRψKp = πJψKp · πJψKLp(t(p)) · πJϕKLp(t(p)),

70

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

or in words, we can obtain the ϕRψ-costs of p by computing the ψ-costs of p and
evaluating the terminal node. If p is an infinite path, then we even have

πJϕRψKp = πJψKp,

since infinite paths only have internal nodes, and therefore n(p) = i(p).

Another interesting observation can be made by defining p|k for any path p over V
and any k ∈ ω as the path that consists of the first k nodes in p. If p is finite and
has less than k nodes, then p|k = p. For infinite paths p, we notice that

πJϕRψKp = πJψKp = inf
k∈ω

πJψKp|k .

This can be shown by using the partition-invariance of countable multiplication from
proposition (2.16) and rearranging the factors of πJψKp.

Crucially, we conclude that a finite or infinite path p that contains a v-cycle c for
some v ∈ V as a subpath can be transformed into a path p′ by removing c from p
and replacing it with v. The definitions and observations above allow us to infer
that

πJϕRψKp = πJϕRψKp′ · πJψKc,

so that p′ absorbs p. The observation that we can remove cycles while increasing
the paths’ ϕRψ-costs will be very useful when proving theorem (4.27).

Recall that we want to prove part (1) of theorem (4.27), which we can now restate
to

πJE(ϕRψ)Kv =
∑

p∈Pfin
v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp,

since we have shown that ϕRψ-costs of infinite paths correspond to their ψ-costs.

According to definition (3.11), we have

πJE(ϕRψ)Kv = gfp(fE(ϕRψ))v,

which can be computed by means of theorem (2.17), that is, we set X0 = 1 ∈ KV

and start a transfinite iteration of fE(ϕRψ). We define

Xi+1 = fE(ϕRψ)(Xi) for i ∈ ω and

Xω = inf
i∈ω

Xi.

As we will see, Xω is already a fixed point so there will be no need to iterate any
further.

(4.30) Lemma. With Xi for i ∈ ω defined as above, we have

(Xi)v =
∑

p∈P<i
v (V)

πJϕRψKp +
∑

p∈P=i
v (V)

πJψKp for v ∈ V.

Proof. We will prove the lemma by induction on i. For i = 0, P<0
v (V) is empty and

P=0
v (V) contains only the path (v). Since (v) does not have any edges or internal

nodes, we obtain πJψK(v) = 1 = (X0)v.

71

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

For i+ 1, we have (Xi+1)v

= fE(ϕRψ)
v (Xi)

= πJψKv ·

(
πJϕKv +

∑
w∈vE

π(Evw) · (Xi)w

)
= πJψKv · πJϕKv +

∑
w∈vE

πJψKv · π(Evw) · (Xi)w

= πJψKv · πJϕKv +
∑
w∈vE

πJψKv · π(Evw) ·

 ∑
p∈P<i

w (V)

πJϕRψKp +
∑

p∈P=i
w (V)

πJψKp


by induction hypothesis, which can be further simplified to (Xi+1)v

= πJψKv · πJϕKv +

∑
w∈vE

∑
p∈P<i

w (V)

πJϕRψK(v,p)

+

∑
w∈vE

∑
p∈P=i

w (V)

πJψK(v,p)


=

∑
p∈P=0

v (V)

πJϕRψKp +
∑

p∈
⋃

1≤j≤i P
=j
v (V)

πJϕRψKp +
∑

p∈P=i+1
v (V)

πJψKp

=
∑

p∈P<i+1
v (V)

πJϕRψKp +
∑

p∈P=i+1
v (V)

πJψKp,

where (v, p) is the path obtained by appending v to the beginning of p. Clearly, (v, p)
where p ∈ P<i

w (V) for w ∈ vE yields exactly all the paths starting at v with a length
between 1 and i, disregarding paths with cost zero, and (v, p) with p ∈ P=i

w (V) for
w ∈ vE yields exactly the paths starting at v with the length i+ 1, again omitting
zero-cost paths. This ends the induction and proves the lemma. �

The next step is to prove that

(Xω)v =
∑

p∈Pfin
v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp for v ∈ V.

Lemma (2.21) implies

(Xω)v =

(
inf
i∈ω

Xi

)
v

= inf
i∈ω

(Xi)v.

Using lemma (4.30), it remains to show

∑
p∈Pfin

v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp = inf
i∈ω

 ∑
p∈P<i

v (V)

πJϕRψKp +
∑

p∈P=i
v (V)

πJψKp


︸ ︷︷ ︸

(Xi)v

.

“≤”: In absorptive lattice semirings, summations are the same as suprema, so we
have to show that each summand s on the left side is a lower bound of

{(Xi)v | i ∈ ω} =

 ∑
p∈P<i

v (V)

πJϕRψKp +
∑

p∈P=i
v (V)

πJψKp | i ∈ ω

 ,

72

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

thereby showing that the infimum is greater than s. We distinguish two cases.

If s = πJϕRψKp for some p ∈ P fin
v (V), let k be the length of the path p. For i ≤ k,

consider p|i ∈ P=i
v (V). Clearly the ψ-cost of p|i is greater than the ϕRψ-cost of p,

since it is a subpath of p. So, we have s ≤ πJψKp|i ≤ (Xi)v. For i > k, we have
p ∈ P<i

v (V), which immediately implies s ≤ (Xi)v. Therefore, s is a lower bound of
{(Xi)v | i ∈ ω}.
The other possibility is that s = πJψKp for some p ∈ P inf

v (V). In that case, for
each i ∈ ω, we have p|i ∈ P=i

v (V) with πJψKp|i ≥ πJψKp = s, so s ≤ (Xi)v, which
makes s a lower bound of {(Xi)v | i ∈ ω}. This ends the direction “≤”, but before
proceeding to the other direction, notice that from this case, we get the corollary

(∗)
∑

p∈P inf
v (V)

πJψKp ≤ inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp

 .

“≥”: Instead of proving this direction directly, we will show

∑
p∈Pfin

v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp ≥ inf
i∈ω

 ∑
p∈Pfin

v (V)

πJϕRψKp +
∑

p∈P=i
v (V)

πJψKp


≥ inf

i∈ω

 ∑
p∈P<i

v (V)

πJϕRψKp +
∑

p∈P=i
v (V)

πJψKp

 .

Clearly, the second inequality is fulfilled, so we have to show that the first inequality

∑
p∈Pfin

v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp ≥ inf
i∈ω


∑

p∈Pfin
v (V)

πJϕRψKp︸ ︷︷ ︸
:=c

+
∑

p∈P=i
v (V)

πJψKp


is true as well. Since the term that we labelled with c does not depend on i, we can
use part (2) of lemma (2.11) to obtain

inf
i∈ω

c+
∑

p∈P=i
v (V)

πJψKp

 = c+ inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp


=

∑
p∈Pfin

v (V)

πJϕRψKp + inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp


Thanks to the monotonicity of addition, we only have to show

∑
p∈P inf

v (V)

πJψKp ≥ inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp


to complete the direction “≥”. We state this as a lemma.

(4.31) Lemma. In an absorptive lattice semiring K, for any CTL formula ψ and

73

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

any matching K-interpretation π over a finite set of nodes V , we have

∑
p∈P inf

v (V)

πJψKp = inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp


Proof. The direction “≤” is already shown above as a corollary (∗). We will now
prove the converse direction “≥”. First, we rewrite the sum on the left side as a
supremum and invoke the complete distributivity of K to obtain

inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp

 = inf
i∈ω

(
sup

p∈P=i
v (V)

πJψKp

)
= sup

f∈F
inf
i∈ω

πJψKf(i),

where F is the set of choice functions f : ω → P fin
v (V) such that f(i) ∈ P=i

v (V) for
each i ∈ ω. Our goal is to show that

sup
f∈F

inf
i∈ω

πJψKf(i) ≤
∑

p∈P inf
v (V)

πJψKp = sup
p∈P inf

v (V)

πJψKp.

For each f ∈ F , we will find a p ∈ P inf
v (V) such that

inf
i∈ω

πJψKf(i) ≤ πJψKp.

This will be sufficient to prove the claim. Therefore, we fix an arbitrary f ∈ F . We
can picture f as an infinite sequence of paths with increasing length. An example
is shown in figure (4.32).

vf(0):

vf(1): w

vf(2): w u

vf(3): u w w

vf(4): w u w w

Figure (4.32): An example for the first 5 values of a function f ∈ F .

The difficulty of this proof is that the paths chosen by f are generally unrelated.
In the example above, we see that f(1) is a continuation of f(0) and f(2) is a
continuation of f(1), however, f(3) is a completely unrelated path, whereas f(4)
is a continuation of f(2). Nevertheless, we will show that there must be repeating
patterns in f . In the above example, imagine that V = {v, w, u}. Since f(3) and
f(4) have a length greater than 2, there must be at least one node repetition in
those paths.

Returning from the example to the general case, we claim that there must be a node
w ∈ V that occurs arbitrarily often in f . Formally, this means that for any j ∈ ω,

74

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

there is an i ∈ ω such that f(i) contains at least j occurrences of w. If the opposite
were true, then for any w ∈ V , there would be an Mw ∈ ω such that no f(i) contains
Mw or more occurrences of w. This would be a contradiction, since

M =
∑
w∈V

Mw

would be an upper bound on the length of f(i) for all i ∈ ω, but this is impossible,
since f(M + 1) by definition has the length M + 1. Therefore, we can fix a w ∈ V
that occurs arbitrarily often in f .

Now, we define the w-reduction function Rw : P fin
v (V) → P fin

v (V). Suppose that p
is a path in P fin

v (V). Then, we can divide p into sections at each occurrence of w.
More precisely, the first section starts at the beginning of the path at the node v
and at each occurrence of w, a new section starts. So, each section is a path of the
form (w, ...) with the exception of the first section (v, ...) and each section contains
at most one occurrence of w. We now define Rw(p) as the path that is obtained
by removing all the cycles of p in each of its sections. Formally, removing a cycle
(u, ..., u) from p is done by replacing the subpath (u, ..., u) in p by a single occurrence
of u. As argued above, this increases the costs of paths, so we have

πJψKRw(p) ≥ πJψKp

for each p ∈ P fin
v (V), since Rw only removes cycles from p. Also, we notice that

Rw never removes any occurrences of w, since any section contains at most one
occurrence of w, so there cannot be any w-cycles in the sections of p. Figure (4.33)
illustrates how Rw is performed on a path p ∈ P fin

v (V).

v w w w w

v w w w w

p:

R
w
(p):

q c
1

c
2

c
3

Figure (4.33): Informal illustration of a path p and Rw(p).

We observe that Rw(p) starts with an initial segment q, which a path that starts at
v and ends at w, and multiple w-cycles c1, c2, ... are appended to q. Thanks to the
reduction Rw, neither q nor c1, c2, ... contain any node repetitions, aside from the
fact that the cycles start and end at w. Therefore, we consider the set P ′v→w(V) of
all paths over V without node repetitions that start at v and end at w and the set
C ′w(V) of all w-cycles over V without node repetitions aside from the two endpoints.
Clearly, both of those sets are finite.

Now, with the same argument as above, we claim that there is a c ∈ C ′w(V) that
occurs arbitrarily often in Rw ◦ f , that is, for each j ∈ ω, there is an i ∈ ω such that
Rw(f(i)) contains at least j occurrences of c. If the number of occurrences of each
cycle c ∈ C ′w(V) was bounded, then there would be a bound C on the number of
w-cycles that can occur in Rw(f(i)) for each i ∈ ω. However, such a bound C cannot
exist, since w occurs arbitrarily often in f , therefore, there would be an i such that
f(i) would contain at least C + 2 occurrences of w. Since Rw does not remove any
occurrences of w, Rw(f(i)) would then contain at least C + 1 w-cycles in C ′w(V)

75

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

between the C+ 2 occurrences of w, which would be a contradiction. Consequently,
we fix a c ∈ C ′w(V) that occurs arbitrarily often in Rw ◦ f .

Before concluding the proof, we also need a q ∈ P ′v→w(V) such that c occurs arbi-
trarily often in Rw ◦ f with the initial segment q. Formally, this means that for all
j ∈ ω, there is an i ∈ ω such that Rw(f(i)) starts with q and contains at least j
occurrences of c. Since P ′v→w(V) is finite, such a q ∈ P ′v→w(V) must exist, because
otherwise, the number of occurrences of c in Rw ◦f with the initial segment q would
be bounded by mq for each q ∈ P ′v→w(V), which is impossible, because

max {mq | q ∈ P ′v→w(V)} ∈ ω

would exist and be an upper bound on the occurrences of c in Rw ◦ f , contradicting
the choice of c. So, we also fix a q ∈ P ′v→w(V) such that c occurs arbitrarily often
in Rw ◦ f with the initial segment q.

Now, consider the infinite path p = q ◦ c∞ ∈ P inf
v (V), which is built by starting with

q and appending c infinitely many times. We know that

πJψKp = inf
k∈ω

πJψKp|k .

Let k ∈ ω be arbitrary, then we can extend p|k to the next occurrence of w in p
and obtain a path p′ of the form p′ = q ◦ cl for some l ∈ ω. Clearly, since p′ is an
extension of p|k, we have

πJψKp′ ≤ πJψKp|k .

By choice of q and c, we know that there is an i ∈ ω, such that Rw(f(i)) starts with
q and contains c at least l times, so we have

πJψKf(i) ≤ πJψKRw(f(i)) ≤ πJψKq◦cl = πJψKp′ ≤ πJψKp|k .

Since for each k ∈ ω, there is an i ∈ ω with

πJψKf(i) ≤ πJψKp|k ,

we conclude that
inf
i∈ω

πJψKf(i) ≤ inf
k∈ω

πJψKp|k = πJψKp.

This ends the proof. �

With lemma (4.31), we can conclude

(Xω)v =
∑

p∈Pfin
v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp for v ∈ V.

Before showing that this is a fixed point, we observe that the proof of the lemma
yields an interesting corollary for the infinite paths over V .

(4.34) Corollary. Let K be an absorptive lattice semiring, V a finite set of nodes,
ψ a formula in CTL and π matching K-interpretation over V . If we define P ′v→w(V)
and C ′w(V) for w ∈ V as above, we obtain∑

p∈P inf
v (V)

πJψKp =
∑
w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq · πJψK∞c .

76

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Proof sketch. In the direction “≥” of the proof of lemma (4.31) we have only used
infinite paths of the form q ◦ c∞ for q ∈ P ′v→w(V) and c ∈ C ′w(V) for some w ∈ V
instead of all infinite paths over V , we have actually shown that

∑
w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq◦c∞ ≥ inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp


Clearly, the paths q ◦ c∞ are a subset of all infinite paths starting at v, so we have∑

w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq◦c∞ ≤
∑

p∈P inf
v (V)

πJψKp.

Additionally, the direction “≤” of lemma (4.31) implies that

∑
p∈P inf

v (V)

πJψKp ≤ inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp

 ≤∑
w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq◦c∞ .

The circular inequality between these three values implies that they are all equal,
that is ∑

p∈P inf
v (V)

πJψKp = inf
i∈ω

 ∑
p∈P=i

v (V)

πJψKp

 =
∑
w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq◦c∞ .

Finally, the observation that

πJψKq◦c∞ = πJψKq · πJψK∞c

for any (q, c) ∈ P ′v→w(V)× C ′w(V) proves the corollary. �

We will use this corollary later. Now, it is still left to prove that (Xω) is a fixed
point of fE(ϕRψ). For any v ∈ V , we have

fE(ϕRψ)
v (Xω) = πJψKv ·

(
πJϕKv ·

∑
w∈vE

π(Evw) · (Xω)w

)
= πJψKv · πJϕKv ·

∑
w∈vE

πJψKv · π(Evw) · (Xω)w

We have calculated (Xω)w for w ∈ V above, so we obtain f
E(ϕRψ)
v (Xω)

= πJψKv · πJϕKv ·
∑
w∈vE

πJψKv · π(Evw) ·

 ∑
p∈Pfin

w (V)

πJϕRψKp +
∑

p∈P inf
w (V)

πJψKp


= πJψKv · πJϕKv ·

∑
w∈vE

∑
p∈Pfin

w (V)

πJϕRψK(v,p)

+

∑
w∈vE

∑
p∈P inf

w (V)

πJψK(v,p)


=

∑
p∈P=0

v (V)

πJϕRψKp +
∑

p∈
⋃

1≤j<ω P
=j
v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp

=
∑

p∈Pfin
v (V)

πJϕRψKp +
∑

p∈P inf
v (V)

πJψKp

= (Xω)v,

77

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

where (v, p) for a path p ∈ Pv(V) is the path obtained by appending v to the
start of the path p. Clearly, the paths (v, p) with p ∈ P fin

w (V) for some w ∈ vE
are exactly the finite paths starting at v of length at least 1 and the paths (v, p)
with p ∈ P inf

w (V) for a w ∈ vE are exactly the infinite paths starting at v, if we
disregard paths with cost 0. This is very similar to the inductive proof of lemma
(4.30). Since v was arbitrary, we conclude that fE(ϕRψ)(Xω) = Xω, therefore we
have gfp(fE(ϕRψ)) = Xω and

πJE(ϕRψ)Kv = gfp(fE(ϕRψ))v = (Xω)v =
∑

p∈Pfin
v (V)

πJϕRψKv +
∑

p∈P inf
v (V)

πJψKp

for any v ∈ V , which proves part (1) of theorem (4.27).

The question of how to compute πJE(ϕRψ)Kv is immediately answered by corollary
(4.34) and the following lemma.

(4.35) Lemma. Let K be an absorptive lattice semiring, E(ϕRψ) a formula in
CTL and π a matching K-interpretation over a finite set of nodes V , then for any
v ∈ V , we have ∑

p∈Pfin
v (V)

πJϕRψKp =
∑

p∈P ′v(V)

πJϕRψKp,

where P ′v(V) denotes the set of all paths over V without node repetition that start
at V .

Proof. For the direction “≤”, recall that removing cycles from paths increases their
costs. Therefore, any path p ∈ P fin

v (V) is absorbed by some path p′ ∈ P ′v(V), which
is obtained by removing all cycles from p, so we have πJϕRψKp ≤ πJϕRψKp′ . Since
sums and suprema are the same in absorptive lattice semirings, the direction “≤”
follows.

The converse direction “≥” is immediately clear, since P ′v(V) ⊆ P fin
v (V). �

Putting part (1) of theorem (4.27) together with lemma (4.35) and corollary (4.34)
yields

πJE(ϕRψ)Kv =
∑

p∈P ′v(V)

πJϕRψKp +
∑
w∈V

∑
(q,c)∈P ′v→w(V)×C′w(V)

πJψKq · πJψK∞c .

Since all the sets V , P ′v(V), P ′v→w(V) and C ′w(V) are finite and p, q and c are also
finite, we can directly compute this value. If |V | = n, we observe that P ′v(V),
P ′v→w(V) and C ′w(V) each have a cardinality in O(n!), which is also the time it
takes to enumerate their elements. Additionally, computing the costs of p, q and c
respectively can be done in O(n). So, the first sum can be calculated in O(n · n!)
and the second sum can be calculated in O(n2 · (n!)2) operations. We have thereby
defined a naive evaluation algorithm for πJE(ϕRψ)Kv with a runtime in O(n2 ·(n!)2).

The naive algorithm’s exponential runtime may be unsatisfactory, therefore it is
worth mentioning that it might be possible to adapt the state removal algorithm
(4.18) from subsection (4.2.1) to evaluate πJE(ϕRψ)Kv in polynomial time. However,
since K-automata only keep track of finite paths, whereas release formulas can be
witnessed by infinite paths, we would have to introduce a new variation of K-
automata where infinite paths are not ignored. Additionally, when performing state

78

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

removal, we would have to keep track of infinite paths. For example, when removing
the state w, we would have to modify the costs of the other edges to make up for
the loss of the infinite path (w,w, ...). Although we will not prove it here, we state
the following conjecture.

(4.36) Conjecture. The runtime for the evaluation of πJE(ϕRψ)Kv can be reduced
to O(n3) by using a modified version of the state removal algorithm.

We close this subsection by recalling the S∞[X]-interpretation π with X = {p, q, r, s}
for τ = {E,Q} which was given in example (3.15) and is shown again in figure (4.37).

v wp

Q → sQ → r

q

Figure (4.37): S∞[X]-interpretation π.

We computed πJE(GQ)Kv = πJE(0RQ)Kv = pr(qs)∞ with a fixed-point iteration.
Using the alternative approach yields

πJE(0RQ)Kv =
∑

p∈P ′v(V)

πJE(0RQ)Kp +
∑
u∈V

∑
(q,c)∈P ′v→u(V)×C′u(V)

πJQKq · πJQK∞c .

Clearly, we can disregard P ′v(V), since πJE(0RQ)Kp = 0 for any finite path p. We
also disregard paths and cycles with a Q-cost of 0, so we have C ′v(V) = ∅ and the
expression is simplified to

πJE(0RQ)Kv =
∑

(q,c)∈P ′v→w(V)×C′w(V)

πJQKq · πJQK∞c .

Again disregarding paths and cycles with a Q-cost of 0 yields C ′w(V) = {(w,w)}
and P ′v→w(V) = {(v, w)}, so we have

πJE(0RQ)Kv = πJQK(v,w) · πJQK∞(w,w) = pr(qs)∞,

which is the expected result.

4.3.2 Universal Release Operators

In this subsection, we will prove part (2) of theorem (4.27). In order to do that,
the ideas from the previous section have to be adapted to trees. First of all, recall
the concept of trees with marked leaves from definition (4.21). Trees with marked
leaves are useful when we want to split trees such that their costs are preserved. In
definition (4.22), we defined ϕUψ-costs for trees with marked leaves using formal
power series. Marked leaves v were evaluated as a variable xv. In this section,
we will define ϕRψ-costs for trees with marked leaves, but instead of evaluating
marked leaves with variables, we will simply ignore them. This yields the following
definition.

(4.38) Definition (Release-Costs for Trees with Marked Leaves). For an absorptive
lattice semiring K, a finite set of nodes V and a K-interpretation π, if ϕ and ψ are

79

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

formulas in CTL and t is a finite or infinite complete tree over V with marked leaves,
we define the ϕRψ-cost of t as

πJϕRψKt =

 ∏
x∈n(t)\m(t)

πJψKLt(x)

 ·
 ∏

(x,y)∈e(t)

π(ELt(x)Lt(y))


·

 ∏
x∈l(t)\m(t)

πJϕKLt(x)

 .

This definition is justified by figure (4.39), which shows a tree t split into t1 and
t2. The nodes are labelled with their contributions to the ϕRψ-costs of the corre-
sponding tree and the insertion point for t2 in t1 is marked with (∗). Edge costs are
ignored.

v

w u

v w

t:

π⟦ψ⟧
v

π⟦ψ⟧
u

π⟦ψ⟧
v
·π⟦φ⟧

v

splits
into

and

π⟦ψ⟧
w
·π⟦φ⟧

w

π⟦ψ⟧
w
·π⟦φ⟧

w

v

w u*

t
1
:

π⟦ψ⟧
v

π⟦ψ⟧
w
·π⟦φ⟧

w

u

v w

π⟦ψ⟧
u

π⟦ψ⟧
v
·π⟦φ⟧

v
π⟦ψ⟧

w
·π⟦φ⟧

w

t
2
:

Figure (4.39): A tree t split into t1 and t2.

Since we have decided to ignore marked leaves, we obtain the convenient equality

πJϕRψKt = πJϕRψKt1 · πJϕRψKt2 ,

which is generally true when splitting a tree t into t1 and t2 along at any node x.
The splitting operation can be formally defined. Recall that Tv(V,M) refers to the
set of trees with marked leaves where only nodes in M are allowed to be marked.

(4.40) Definition (Tree Split). Let t ∈ Tv(V,M) be a tree rooted at a node v ∈ V
for some finite set V and M ⊆ V . If x is a node in n(t) that is labelled with
Lt(x) = w, then t can be split at x into t1 and t2, where t2 ∈ Tw(V,M) is the
subtree of t rooted at x and t1 ∈ Tv(V,M ∪ {w}) is the tree obtained by replacing
t2 with a single marked w-leaf in t.

Aside from splitting trees, we can also cut trees off at a specific height h ∈ ω. A
node x in a tree t is said to be at height h if the distance of x to the root is exactly
h. This yields the following definition.

(4.41) Definition (Tree Cut). Let t ∈ Tv(V) for a node v ∈ V and a finite set V .
For h ∈ ω, the h-cut of t, denoted as t|h, is defined as the tree that is obtained by
cutting t off at any node at height h, that is, for any x ∈ n(t) at height h, we replace
the subtree rooted by x with a marked leaf that has the same label as x. t|h is a
finite tree in Tv(V, V) and its height does not exceed h. Notice that if the height of
t is less than h, t|h is still defined and t|h = t.

80

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

This definition can also be reversed. A tree t ∈ T (V,M) is said to be a h-cut tree
for h ∈ ω if any node x ∈ n(t) at height h is a marked leaf and there are no other
marked leaves. Notice that any tree with a height that is less than h without marked
leaves is also a h-cut tree.

Figure (4.42) illustrates this definition by showing the 1-cut t|1 of the tree t above.

v

w u

v w

t: v

w* u*

t|
1
:

cut at height 1

Figure (4.42): A tree t cut at height 1.

(4.43) Lemma. Let K be an absorptive lattice semiring, V a finite set of nodes,
ϕ and ψ CTL formulas and π a matching K-interpretation over V , then for any
t ∈ Tv(V), we have

πJϕRψKt = inf
h∈ω

πJϕRψKt|h .

Proof sketch. For finite trees, this is obvious because the sequence t|h for h ∈ ω
converges to t. For infinite trees t, we can partition the nodes and edges in t by
their distance to the root, which is finite for any given node and edge, and applying
partition-invariance of multiplication from proposition (2.16) and the definition of
countable multiplication via infima yields the above result. �

The observation from lemma (4.43) allows us to represent the costs of infinite trees
as the infimum of a sequence of costs of finite trees. Later, we will prove that the
converse is also true, but for now, we return to evaluating A(ϕRψ).

Fix an absorptive lattice semiring K, a finite set of nodes V , a CTL formula A(ϕUψ)
and a matching K-interpretation π. We would like to calculate πJA(ϕRψ)Kv for some
v ∈ V . According to definition (3.11), this is done by computing gfp(fA(ϕRψ)). We
use theorem (2.17) and start a fixed-point iteration at X0 = 1 ∈ KV and set

Xi+1 = fA(ϕRψ)(Xi) for i ∈ ω and

Xω = inf
i∈ω

Xi.

Just as we did for existential release formulas E(ϕRψ), we will first compute Xi for
any i ∈ ω and then compute Xω, which is already a fixed point of fA(ϕRψ) as we will
see later, so the iteration will end at Xω.

(4.44) Lemma. With Xi for i ∈ ω defined as above, we have

(Xi)v =
∑

t∈T |iv (V)

πJϕRψKt for v ∈ V,

where T
|h
v for h ∈ ω refers to the set of all h-cut trees over V rooted at v.

81

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Proof. We show this by induction on i. For i = 0, the only 0-cut tree over V rooted
at v is (v∗), since the root itself has to be a marked leaf. Since πJϕRψK(v∗) = 1 =
(X0)v, the hypothesis is true in this case.

For i+ 1, we use the definition and obtain

(Xi+1)v = fA(ϕRψ)
v (Xi)

= πJψKv ·

(
πJϕKv +

∏
w∈vE

π(Evw) · (Xi)w

)
= πJψKv · πJϕKv + πJψKv ·

∏
w∈vE

π(Evw) · (Xi)w.

Using the induction hypothesis yields

(Xi+1)v = πJψKv · πJϕKv + πJψKv ·
∏
w∈vE

π(Evw) ·

 ∑
t∈T |iw (V)

πJϕRψKt


= πJψKv · πJϕKv + πJψKv ·

∏
w∈vE

 ∑
t∈T |iw (V)

π(Evw) · πJϕRψKt

 .

Let vE = {w1, ..., wl} for some 1 ≤ l < ω. This is justified by the observation that
vE ⊆ V is finite and non-empty, because π describes a non-terminating transition
system. Then, the product of sums above can be expressed as a sum over all possible
combinations of summands, which yields

(Xi+1)v = πJψKv · πJϕKv + πJψKv ·
∑

(t1,...,tl)∈T
|i
w1

(V)×...×T |iwl
(V)

l∏
j=1

π(Evwj) · πJϕRψKtj

= πJψKv · πJϕKv +
∑

(t1,...,tl)∈T
|i
w1

(V)×...×T |iwl
(V)

πJψKv ·
l∏

j=1

π(Evwj) · πJϕRψKtj

=
∑

t∈T
|i+1
v (V)

πJϕRψKt.

The last transformation is verified by the observation that there is a bijection be-

tween T
|i
w1(V)× ...× T |iwl(V) and T

|i+1
v (V) \ {(v)}, where (v) is the tree that consists

of only one unmarked node v. Consider a tuple (t1, ..., tl) ∈ T |iw1(V) × ... × T |iwl(V),

connecting v to the root nodes of t1, ..., tl yields a tree t ∈ T |i+1
v (V) \ {(v)} with the

cost

πJϕRψKt = πJψKv ·
l∏

j=1

π(Evwj) · πJϕRψKtj .

This is due to the fact that the nodes that were at height i in t1, ..., tl are exactly

the nodes at height i+ 1 in t. Conversely, an arbitrary tree t ∈ T |i+1
v (V) \ {(v)} can

be mapped back to a tuple (t1, ..., tl) ∈ T |iw1(V) × ... × T |iwl(V), since t 6= (v) and t
is a compete tree, the root v of t has to be connected to the nodes (w1, ..., wl) and

82

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

(t1, ..., tl) are chosen as the subtrees rooted at (w1, ..., wl) of t. Clearly, the nodes at
height i+ 1 of t are exactly the nodes at height i in t1, ..., tl and we have

πJψKv ·
l∏

j=1

π(Evwj) · πJϕRψKtj = πJϕRψKt.

Finally, we observe that πJϕRψK(v) = πJψKv · πJϕKv, which completes the proof. �

To prove part (2) of theorem (4.27), it is left to show that

(∗) (Xω)v =
∑

t∈Tv(V)

πJϕRψKt for v ∈ V

and that this is already a fixed point of fA(ϕRψ). For now, we will assume that the
equation (∗) is true and prove it later. In that case, we can verify fA(ϕRψ)(Xω) = Xω

component-wise. We have f
A(ϕRψ)
v (Xω)

= πJψKv ·

(
πJϕKv ·

∏
w∈vE

π(Evw) · (Xω)w

)

(∗)
= πJψKv · πJϕKv + πJψKv ·

∏
w∈vE

π(Evw) ·

 ∑
t∈Tw(V)

πJϕRψKt


= πJψKv · πJϕKv + πJψKv ·

∏
w∈vE

 ∑
t∈Tw(V)

π(Evw) · πJϕRψKt


= πJψKv · πJϕKv + πJψKv ·

∑
(t1,...,tl)∈Tw1 (V)×...×Twl

(V)

l∏
j=1

π(Evwj) · πJϕRψKtj

= πJψKv · πJϕKv +
∑

(t1,...,tl)∈Tw1 (V)×...×Twl
(V)

πJψKv ·
l∏

j=1

π(Evwj) · πJϕRψKtj

(1)
=

∑
t∈Tv(V)

πJϕRψKt

(∗)
= (Xω)v

for all v ∈ V . As in the proof of lemma (4.44), we assumed that vE = {w1, ..., wl}
for some l ∈ ω and the transformation (1) is verified by a straightforward bijection
between Tv(V) \ {(v)} and Tw1(V)× ...× Twl

(V).

Assuming that (∗) is true, we have shown that Xω is a fixed point of fA(ϕRψ), which
also implies that it is the greatest fixed point, therefore, we obtain

πJA(ϕRψ)Kv = gfp(fA(ϕRψ))v = (Xω)v =
∑

t∈Tv(V)

πJϕRψKt,

which ends the proof for part (2) of theorem (4.27).

However, we still have to show (∗). First, lemma (2.21) yields

(Xω)v =

(
inf
i∈ω

Xi

)
v

= inf
i∈ω

(Xi)v.

83

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Together with the results from lemma (4.44), we can transform (∗) to

∑
t∈Tv(V)

πJϕRψKt = inf
i∈ω

 ∑
t∈T |iv (V)

πJϕRψKt

 for v ∈ V.

Replacing the summation on the right side with a supremum and using complete
distributivity of the order on K, we conclude that this is equivalent to∑

t∈Tv(V)

πJϕRψKt = sup
f∈F

inf
i∈ω

πJϕRψKf(i),

where F refers to the set of choice functions f : ω → T fin
v (V, V) with f(i) ∈ T |iv (V)

for all i ∈ ω. In other words, for any i, f(i) is an i-cut tree rooted at v.

The direction “≤” follows immediately from lemma (4.43). For any t ∈ Tv(V), the

function f with f(i) = t|i ∈ T |iv (V) is in F , and we have

πJϕRψKt = inf
h∈ω

πJϕRψKt|h = inf
i∈ω

πJϕRψKf(i).

To prove the direction “≥”, we will show that for any f ∈ F , we can find a t ∈ Tv(V)
with

πJϕRψKt ≥ inf
i∈ω

πJϕRψKf(i).

Before we can do that, we will introduce some new definitions and concepts.

(4.45) Definition (Sequence of Trees). Let K be an absorptive lattice semiring,
V a finite set of nodes and π a K-interpretation over V . A sequence of v-trees is a
function f : ω → T fin

v (V, V) for some v ∈ V . f is called a cut sequence of v-trees
if for any i ∈ ω, f(i) is a h-cut tree for some h ≥ i. The ϕRψ-cost of f for CTL
formulas ϕ and ψ is defined as

πJϕRψKf = inf
i∈ω

πJϕRψKf(i).

We observe that F consists only of cut sequences of v-trees, since for any f ∈ F ,
f(i) is an i-cut tree. Next, we will define costs for multisets of trees.

(4.46) Definition (Multisets of Trees). Let m be a finite multiset of trees in
T fin(V, V) for some finite set of nodes V and a K-interpretation π, where K is an
absorptive lattice semiring. For CTL formulas ϕ and ψ, we define the ϕRψ-cost of
m as

πJϕRψKm =
∏

m(t)6=0

πJϕRψKm(t)
t ,

where m(t) for t ∈ T fin(V, V) denotes the multiplicity of t in m.

The set of multisets over T (V, V) is denoted as S(V, V). We will also identify trees
t ∈ T (V, V) with the multiset {t}, which is justified, because πJϕRψKt = πJϕRψK{t}.

Now, we can extend the splitting operation for trees that we have defined above.

(4.47) Definition (v-Split for Trees). For a finite tree t ∈ T (V, V) and a node
v ∈ V , the v-split of t, denoted as Spv(t) is the multiset of trees obtained by
splitting t at any occurrence of v except for roots and marked leaves.

84

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Figure (4.48) illustrates the v-split of a tree t.

v

w v

t:

w vu

uv

v

w v*

Sp
v
(t) = {t

1
, t

2
, t

3
, t

4
}

u

v*

v

w v*

uv vt
3
: t

4
:

t
2
:

t
1
:

Figure (4.48): A tree t and its v-split Spv(t).

Notice that v-splitting trees preserves their costs, since single splits do not change
the costs of trees as well. We have

πJϕRψKSpv(t) = πJϕRψKt.

Also, v-splitting can be performed algorithmically, since we only split finite trees and
there can only be finitely many occurrences of v. Each split removes one non-root
and non-marked occurrence of v. We observe that splitting trees at their root or at
marked leaves is pointless, because one of the resulting trees would be a trivial tree
that only consists of a marked leaf and has cost 1. Therefore, the multiset Spv(t)
depicted in figure (4.48) cannot be split any further along v-nodes.

We can also chain different split operations. Let t be a tree and v, w ∈ V . Since
Spv(t) is a multiset, it would be useful to define splits on multisets. For a finite
multiset of finite trees m, we define Spw(m) as the union of the w-splits of the
elements in m, which is again a finite multiset of finite trees. So, the expression
Spw ◦ Spv(t) is well-defined. A finite multiset multiset of finite trees m is called a
tree split if m = Spvk ◦ ... ◦ Spv1

(t) for some k ∈ ω, t ∈ T (V) and v1, ..., vk ∈ V .
Notice that k may be zero, so {t} is also a tree split. We also call t the original tree
of m. For any t′ ∈ m, we know that t′ is a subtree of t. We say that t′ is rooted at
height h if the root of t′ in t has a distance of h to the root of t. For example, in
figure (4.48), t1 is rooted at height 0, t2 is rooted at height 1, t3 is rooted at height
3 and t4 is rooted at height 2. Note that there is always exactly one t′ ∈ m that is
rooted at height 0, which contains the original root of t.

Splitting operations can be applied to sequences of trees f . For v ∈ V , Spv(f) is the
function Spv ◦ f . Note that (Spv(f))(i) = Spv(f(i)) is a multiset of trees for each
i ∈ ω. We call g : ω → S(V, V) a sequence of v-tree splits if g = Spvk ◦ ... ◦ Spv1

(f)
for some k ∈ ω, v1, ..., vk ∈ V and a sequence of v-trees f . If f was a cut sequence
of v-trees, then we call g a cut sequence of v-tree splits. Notice that for each i ∈ ω,
g(i) = Spvk ◦ ... ◦ Spv1

(f(i)) is a tree split whose original tree is f(i).

Note that since we identify t with {t} and {t} is a tree split, in the following, any

85

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

definition that refers to tree splits or cut sequences of v-tree splits also applies to
normal trees or sequences of v-trees respectively.

We can now return to proving the claim∑
t∈Tv(V)

πJϕRψKt = sup
f∈F

inf
i∈ω

πJϕRψKf(i)

from above. Recall that F was the set of choice functions f : ω → T fin
v (V, V) with

f(i) ∈ T |iv (V) for i ∈ ω and the direction “≥” was left to show. For each f ∈ F , we
have to find a t ∈ Tv(V) such that

πJϕRψKt ≥ πJϕRψKf = inf
i∈ω

πJϕRψKf(i).

We will state this as a proposition.

(4.49) Proposition. Let K be an absorptive lattice semiring, V a finite set of
nodes, ϕ and ψ CTL formulas, π a matching K-interpretation over V and v ∈ V .
For every cut sequence of v-trees f , there is a t ∈ Tv(V) such that

πJϕRψKt ≥ πJϕRψKf .

The following pages will be dedicated to the proof of proposition (4.49). Since any
f ∈ F is a cut sequence of v-trees, this will suffice to prove the claim above. First,
we define some properties of cut sequences of v-tree splits.

(4.50) Definition. Let f be a cut sequence of v-tree splits. We say that w occurs
arbitrarily often along a path in f if for every j ∈ ω, there is an i ∈ ω so that f(i)
contains a tree t ∈ f(i) such that t contains at least j occurrences of the node w
along a path from the root.

Figure (4.52) below provides an example of what the elements g(0) to g(5) of a cut
sequence of v-trees g could look like.

v

u

v*

g(0) g(5)

w

w

v

g(1)

w*

v

u*

g(2)

w

w*

uw

v

u

g(3)

w

w

u*w*

v

g(4)

uw

u*w*

Figure (4.52): 6 elements of a cut sequence of v-trees g.

86

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Clearly, all the trees except for g(4) follow the pattern of appending the subtree
w(w∗, u∗) to the w-leaf. Imagine that the remaining elements g(6), g(7), ... follow
the same pattern. In that case, w occurs arbitrarily often along a path in g, since
for every j ∈ ω \ {4}, g(j) contains a path starting at the root that contains j
occurrences of w. The exception of g(4) is not a problem, since for j = 4, we have
the element g(5) that contains at least 4 occurrences of w along a path from the
root. However, notice that even though the node u occurs arbitrarily often in the
trees g(i), u does not occur arbitrarily often along a path in g. In fact, any path
starting at the root in any tree g(i) contains at most one occurrence of u.

Returning to the general case, if w occurs arbitrarily often in a cut sequence of v-
tree splits f , we can “clean up” the sequence by only retaining those elements that
actually contain the desired occurrences of w. This yields the following definition.

(4.51) Definition. Let f be a cut sequence of v-tree splits and w a node that
occurs arbitrarily often along a path in f . We define the sequence Clw(f) for j ∈ ω
by setting

(Clw(f))(j) = f(i)

for the smallest i ≥ j such that there is a t ∈ f(i) that contains at least j unmarked
occurrences of w along a path from the root.

Obviously, if w did not occur arbitrarily often in f , then Clw(f) would not be well-
defined. However, if w does indeed occur arbitrarily often in f , then we know that
for each (j + 1) ∈ ω, we have an i′ ∈ ω such that f(i′) contains a tree t with at
least (j + 1) occurrences of w along a path from the root. Only the last of those
occurrences can be marked, so t contains at least j unmarked occurrences of w along
a path from the root. Additionally, we know that we can find an i ≥ j with this
property, because otherwise, only the elements f(0), ...f(j − 1) of f would contain
at least j occurrences of w along a path from the root, but since f(0), ..., f(j − 1)
are finitely many finite multisets of finite trees, this would be a contradiction, since
it would imply that the number of occurrences of w along a path from the root is
limited to

max{ml | 0 ≤ l < j},

where ml is the maximal number of occurrences of w along a path from the root in
any tree in f(l), because we would know that none of the elements f(j), f(j + 1), ...
could contain any more than j occurrences of w along a path from the root. This
would contradict the assertion that w occurs arbitrarily often in f .

Since any element (Clw(f))(j) for j ∈ ω of Clw(f) is equal to f(i) for some i ≥ j,
we can derive

πJϕRψKClw(f) = inf
j∈ω

πJϕRψK(Clw(f))(j) ≥ inf
i∈ω

πJϕRψKf(i) = πJϕRψKf .

We conclude that cleaning up a sequence increases its costs. Also, Clw(f) is still a
cut sequence of v-tree splits, because for each j ∈ ω, (Clw(f))(j) = g(i) is a tree
split of a t tree that is h-cut for some h ≥ i ≥ j.

Finally, we provide an example for cleaning up sequences. Consider Clw(g) for the

87

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

example from figure (4.52) above. We have

(Clw(g))(0) = g(0),

(Clw(g))(1) = g(2),

(Clw(g))(2) = g(3),

(Clw(g))(3) = g(5) and

(Clw(g))(4) = g(5).

Continuing the pattern, we would obtain (Clw(g))(j) = g(j+ 1) for j ≥ 5, the index
shift of 1 is due to the assertion that the occurrences of w in the cleaned sequence
must be unmarked and the irregularity at (Clw(g))(3) is caused by the irregularity
of g(4), which has to be skipped since it does not contain any w-node.

Having defined Clw, recall definition (4.47), where we have defined the w-split Spw.
Chaining these two operations together defines the w-reduction Rw(f) of a sequence.
If w occurs arbitrarily often along a path in g, we set

Rw(f) = Spw ◦ Clw(f).

Figure (4.53) below illustrates the first 3 values of Rw(g) for the example of g
provided above in figure (4.52).

v*

(R
w
(g))(0)

v

w*

v

u

w

w

u*w*

(R
w
(g))(1)

u*

w

w*

(R
w
(g))(2)

w*

w*

Figure (4.53): Values of Rw(g) for the sequence g in the above example.

Notice that for each j ∈ ω, (Rw(g))(j) contains at least j non-trivial trees with root
w, each of them rooted at a different height. This is easily explained by the fact that
(Clw(g))(j) contains a tree where a path from the root contains at least j unmarked
occurrences of w, when we w-split this tree, each of those occurrences of w forms the
root of a tree in (Rw(g))(j) = (Spw ◦Clw(g))(j) and all of these trees are non-trivial
and rooted at different heights.

The reason why Rw(g) is called the w-reduction of g is that we have effectively
removed w from g, since in Rw(g), the node w may only occur as a root node or a

88

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

marked leaf, but due to the w-splitting, other unmarked occurrences of w outside of
root nodes are not permitted. All of these observations are generally valid for any
cut sequence of v-tree splits f .

Additionally, we can see in the above example that no node occurs arbitrarily often
along a path in Rw(g) anymore. Unfortunately, this is not generally true. In figure
(4.54), a new cut sequence of v-trees h is given to illustrate this issue. Again, we
have only depicted the values h(1) to h(3) of h.

v

h(1)

wu*w*

v

h(2)

wuw

wu*w*

v

h(3)

wuw

wu*w*

wuw

Figure (4.54): 3 elements of a cut sequence of v-trees h.

Assuming that the same pattern continues for all h(i) with i ∈ ω, we can clearly see
that u occurs arbitrarily often along a path in Rw(h), because even after w-splitting,
the path (u, u, ..., u∗) stays in the same subtree. However, we can overcome this issue
by applying the u-reduction to Rw(h) to obtain Ru ◦ Rw(h). Figure (4.55) below
shows (Ru ◦ Rw(h))(1) and (Ru ◦ Rw(h))(2) for the sequence h from figure (4.54).

v

(R
u
○R

w
(h))(1)

wuw

wu*w*

v

wuw

wu*w*

wuw

wu*w* wu*w*

wu*w*

(R
u
○R

w
(h))(2)

Figure (4.55): Values of Ru ◦ Rw(h) for h from figure (4.54).

89

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

This resolves the issue for the example from figure (4.54), but in the general case,
if f is a cut sequence of v-tree splits, there may still be different nodes from w
and u that occur arbitrarily often along a path in Ru ◦ Rw(f). Therefore, we will
inductively apply reductions to f until there is no node left that occurs arbitrarily
often in the resulting sequence. First, we fix an arbitrary linear order < on V . This
enables us to chain reductions.

(4.56) Definition. Let W ⊆ V . The W -reduction RW (f) for cut sequences of
v-tree splits f is defined inductively over the cardinality of W .

For W = ∅, R∅(f) = f , so the ∅-reduction does nothing.

If |W | = k + 1 for some k ∈ ω, let w = max<(W), then W = W ′ ∪ {w} with
|W ′| = k. If RW ′(f) exists and w occurs arbitrarily often along a path in RW ′(f),
then define RW (f) as RW (f) = Rw ◦ RW ′(f). Otherwise, RW (f) does not exist.

As an example, if w1 < w2 < w3 are elements of V and W = {w1, w2, w3}, we have

RW (g) = Rw3 ◦ Rw2 ◦ Rw1(g),

provided that RW (g) exists at all. Now, we will prove a powerful lemma for RW (f).

(4.57) Lemma. Let f be a cut sequence of v-tree splits. With RW (f) defined as
above, we claim that if RW (f) exists, then the following conditions are met for all
j ∈ ω:

1. The trees in (RW (f))(j) may only contain marked leaves in W except for leaves
at the maximum cut-off height of the original tree,

2. there is at least one tree in (RW (f))(j) rooted at v at height 0 and

3. for every w ∈ W , there are at least j non-trivial trees in (RW (f))(j) with the
root w, each of them is rooted at a different height in the original tree.

Proof. The conditions (1.) and (2.) are met, because RW is a chain of w-splitting
and cleaning operations for w ∈ W . Therefore, each (RW (f))(j) is a tree split and
the original tree is a h-cut tree t ∈ Tv(V, V) for some h ≥ j. Since a h-cut tree
does not contain any marked leaves other than the leaves at height h, the trees in
(RW (f))(j) also do not have any other marked leaves than those at height h and
the marked leaves induced by w-splitting for w ∈ W , which proves condition (1.).
Also, since t is rooted at v, after splitting t, at least one of the resulting trees in
(RW (f))(j) retains the root v at height 0, so condition (2.) is true as well.

We prove condition (3.) by induction over the cardinality of W . For W = ∅, there is
nothing to show, so we assume |W | = k+1 for a k ∈ ω. Again, we pick u = max<(W)
and obtain W = W ′ ∪ {u} with u /∈ W ′. Since we assume that RW (f) exists, by
definition of RW , g := RW ′(f) must exist as well and we have RW (f) = Ru(g). We
have to show condition (3.) for all w ∈ W ′ and for u.

If w ∈ W ′, we have (RW (f))(j) = Spu(g(i)) for some i ≥ j. By induction, we know
that g(i) contained at least i non-trivial trees with the root w and each of them was
rooted at a different height. Clearly, after u-splitting g(i), there are still at least
i ≥ j non-trivial trees with the root w at different heights in (RW (f))(j).

90

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

For u, we know that (RW (f))(j) = Spu(Clu(g(j)) and Clu(g(j)) contains a tree t
with at least j unmarked u-nodes along a path from the root. Each of these nodes
is at a different height and after u-splitting, each of them becomes a root of its own
non-trivial subtree, which ends the proof. �

Notice that in order to use lemma (4.57) for some cut sequence of v-tree splits f and
W ⊆ V , we first need to make sure that RW (f) exists. We claim that RW (f) exists
if W occurs arbitrarily often along a path in g. This notion is defined inductively
over the cardinality of W .

For W = ∅, ∅ occurs arbitrarily often along a path in f for any cut sequence of
v-tree splits f . Notice that R∅(f) always exists.

For |W | = k + 1 and k ∈ ω, pick w = max<(W), so that W = W ′ ∪ {w} with
w /∈ W ′. We say that W occurs arbitrarily often along a path in f if W ′ occurs
arbitrarily often along a path in f and w is the minimal element of V such that
w occurs arbitrarily often along a path in RW ′(f). Notice that RW ′(f) exists by
induction, since |W ′| = k. Also, this implies that RW (f) exists.

The minimality condition for w allows us to prove the statement that for any cut
sequence of v-tree splits f , if W occurs arbitrarily often along a path in f and u
occurs arbitrarily often along a path in RW (f), then u > w for all w ∈ W . We prove
this by induction.

For W = ∅, there is nothing to show. Suppose now that W = k + 1 for a k ∈ ω,
set m = max<(W) and W = W ′ ∪ {m} with m /∈ W ′. Additionally, suppose that u
occurs arbitrarily often along a path in RW (f). We now have to show that u > m,
thereby showing that u > w for all w ∈ W . Since W ′ occurs arbitrarily often along
a path in f and u occurring arbitrarily often along a path in RW (f) implies that it
also occurs arbitrarily often along a path in RW ′(f), we conclude by induction that
u > w for all w ∈ W . Now, if u < m, then m would not be the minimal element
that occurs arbitrarily often along a path in RW ′(f), which is a contradiction. Also,
u = m is impossible, because m does not occur arbitrarily often along a path in
RW (f). Therefore, we have u > m and the claim is proven.

Now, we can prove proposition (4.49). Let f be an arbitrary cut sequence of v-trees.
The goal is to find a tree t ∈ Tv(V) such that πJϕRψKt ≥ πJϕRψKf . First, we pick
the maximal set W ⊆ V such that W occurs arbitrarily often along a path in f .
Such a set always exists, even if no node occurs arbitrarily often along a path in f ,
then we would have W = ∅.
We can infer that RW (f) exists and we have

πJϕRψKRW (f) ≥ πJϕRψKf ,

because RW is a chain of splitting and cleaning operations, and we have shown
that splitting operations preserve ϕRψ-costs and cleaning operations never decrease
ϕRψ-costs of sequences.

Additionally, we know that no node u ∈ V occurs arbitrarily often along a path in
RW (f). Otherwise, we would have u > w for all w ∈ W , but this would contradict
the maximality of W , since in that case, W ∪ {u′} would occur arbitrarily often
along a path in f for some u′ ≤ u with u′ > w for all w ∈ W .

Therefore, for every u ∈ V , there is a hu ∈ ω such that no tree in RW (f) contains

91

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

more than hu occurrences of u along a single path from the root. We can derive that

H =
∑
u∈V

hu

is an upper bound on the height of the trees in RW (f). Now, consider the sequence
g with g(i) = (RW (f))(i+H + 1). By condition (3.) of lemma (4.57), we conclude
that for each w ∈ W , g(i) contains at least i + H + 1 non-trivial trees rooted at w
at different heights. Also, since the height of those trees is bounded by H, at least
k of those trees are rooted so far away from the cut-off height of the original tree
that none of their leaves are cut off. This means by condition (1.) of lemma (4.57)
that they only contain marked leaves in W . Now, let T≤Hw (V,W) denote the set of
all non-trivial trees over V rooted at w with marked leaves in W . Since the height
is bounded, this set is finite.

Assume w.l.o.g. that W = {w1, ..., wk} for some k ∈ ω. The above argument yields
that g(i) contains at least i trees in T≤Hwj

(V,W) for each wj. If we group those trees
to tuples, we can rephrase this and claim that g(i) contains at least i tuples

(t1, ..., tk) ∈ T≤Hw1
(V,W)× ...× T≤Hwk

(V,W).

Since there are only finitely many such tuples, there must be one tuple (t1, ..., tk) ∈
T≤Hw1

(V,W) × ... × T≤Hwk
(V,W) that occurs arbitrarily often in g, that is, for each

j ∈ ω, there is an i ∈ ω such that g(i) contains (t1, ..., tk) at least j times. We
fix such a tuple (t1, ..., tk) and define a new sequence g′ with g′(j) = g(i) for the
smallest i such that g(i) contains (t1, ..., tk) at least j times.

Finally, we use condition (2.) of lemma (4.57), which states that each g′(j) contains
a tree t that is rooted at v at the height 0. Since g′(j) = g(i) = (RW (f))(i+H + 1)
for some i ∈ ω, none of the leaves of t can be cut off, since t is rooted at 0 and its
height is bounded by H. Therefore, the marked leaves of t can only be in W by
condition (1.) of lemma (4.57), which implies t ∈ T≤Hv (V,W). Again, T≤Hv (V,W)
being finite allows us to conclude that there is a t0 ∈ T≤Hv (V,W) that is contained
in infinitely many members g′(j) of g′. We fix such a t0 and define the sequence g′′

by g′′(l) = g′(j) for the smallest j such that g′(j) contains at least l occurrences of
(t1, ..., tk) and t0. Notice that our choice of t0 guarantees the existence of such a j
for each l ∈ ω.

Recall that all elements of g′′ are contained in g′, all elements of g′ are contained in
g and all elements of g are contained in RW (f), so we have

πJϕRψKg′′ ≥ πJϕRψKg′ ≥ πJϕRψKg ≥ πJϕRψKRW (f) ≥ πJϕRψKf .

We have also fixed a tuple

(t0, t1, ..., tk) ∈ T≤Hv (V,W)× T≤Hw1
(V,W)× ...× T≤Hwk

(V,W).

Now, consider the tree
t = t0 ◦ t∞1 ◦ ... ◦ t∞k .

This tree is constructed by starting at t0 and appending the trees t1, ..., tk to any
marked wj-leaves whenever they are needed. In other words, whenever there is a
marked wj-leaf for 1 ≤ j ≤ k, we append tj, which is rooted at wj, to this leaf.

92

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

We have t ∈ Tv(V), since t0 is rooted at v. Also, t has no marked leaves, because
the trees t0, t1, ..., tk only have marked leaves in W , but each marked leaf wj ∈ W
is eliminated by appending tj. Of course, t is generally an infinite tree, because
we have to append t1, ..., tk infinitely many times, but since t1, ..., tk are non-trivial
trees, this is not a problem.

We claim that

πJϕRψKt = inf
h∈ω

πJϕRψKt|h ≥ inf
l∈ω

πJϕRψKg′′(l) = πJϕRψKg′′ .

For an arbitrary h ∈ ω, t|h contains t0 and at most l full or partial occurrences of
t1, ..., tk for some l ∈ ω, since t|h is finite. Therefore, we have

πJϕRψKt|h ≥ πJϕRψKt0 · πJϕRψKlt1 · ... · πJϕRψKltk .

Also, since g′′(l) contains t0 and at least l occurrences of (t1, ..., tk), we have

πJϕRψKt|h ≥ πJϕRψKt0 · πJϕRψKlt1 · ... · πJϕRψKltk
≥ πJϕRψKg′′(l)
≥ inf

l∈ω
πJϕRψKg′′(l),

which proves the claim, because h ∈ ω was arbitrary.

This implies that

πJϕRψKt ≥ πJϕRψKf

and ends the proof for proposition (4.49), and with that, theorem (4.27) is also
proven and we have

πJA(ϕRψ)Kv =
∑

t∈Tv(V)

πJϕRψKt.

This raises the question of how to compute πJA(ϕRψ)Kv. For that, we can obtain
a useful corollary from the proof above. Rather than just showing that any cut
sequence of v-tree splits is absorbed by a tree t ∈ Tv(V), we have shown that for
every cut sequence of v-tree splits f , there is a W = {w1, ..., wk} ⊆ V , and a tuple

(t0, t1, ..., tk) ∈ T≤Hv (V,W)× T≤Hw1
(V,W)× ...× T≤Hwk

(V,W)

for some H ∈ ω such that t0 ◦ t∞1 ◦ ... ◦ t∞k absorbs f . It is important to notice that
t0, t1, ..., tk are thereby all finite.

For any w ∈ V , let T ′w(V,W) be the set of all trees over V without any node
repetitions along a path from the root that are rooted at w and may only have
marked leaves in W . Further, let TCYC

w (V,W) for w ∈ W be the set of all non-
trivial trees over V without any node repetitions along a path from the root, with
the exception that the node w appears in the root and may also appear as a marked
leaf and, like above, marked leaves must be in W .

We observe that node repetitions along paths from the root can be eliminated as
shown in figure (4.58) below, which shows a tree t with a node w repeating along a
path from the root and the reduced tree t′ obtained by eliminating the repetition.

93

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

v

w

w

v

w

t: t':

t
u
:

t
d
:

t
d
:

Figure (4.58): Elimination of a w-repetition in a tree t.

As shown in the picture, the subtree tu of t rooted at the occurrence of w that is
closer to the root simply has to be replaced with the subtree td that is rooted at the
other occurrence of w. Clearly, we have n(t′) ⊆ n(t), e(t′) ⊆ e(t) and l(t′) ⊆ l(t),
which implies that

πJϕRψKt′ ≥ πJϕRψKt.

This is a general result. Whenever there are node repetitions along a path from
the root of a tree, we can simply eliminate them and obtain a tree with a higher
ϕRψ-cost. This procedure can be applied to the tuple (t0, t1, ..., tk) from above. For
t0, we remove all repetitions and since t0 is finite, we obtain a tree t′0 ∈ T ′v(V,W)
with πJϕRψKt′0 ≥ πJϕRψKt0 . For t1, ..., tk, we also remove all repetitions, except for
repetitions where w is the root node and appears as a marked leaf at the same time,
so we obtain

(t′1, ..., t
′
k) ∈ TCYC

w1
(V,W)× ...× TCYC

wk
(V,W)

with πJϕRψKt′j ≥ πJϕRψKtj for 1 ≤ j ≤ k. It is important to note that the trees

t′1, ..., t
′
k are not trivial. Therefore, we can use t′0, t

′
1, ..., t

′
k to build the new tree

t′0 ◦ (t′1)∞ ◦ ...◦ (t′k)
∞, which is a well-defined tree in Tv(V), using the same argument

as for t0 ◦ t∞1 ◦ ... ◦ t∞k . Clearly, we have

πJϕRψKt′0◦(t′1)∞◦...◦(t′k)∞ ≥ πJϕRψKt0◦t∞1 ◦...◦t∞k ≥ πJϕRψKf .

For any v ∈ V and W = {w1, ..., wk} ⊆ V , we define

Tupv(W) = T ′v(V,W)× TCYC
w1

(V,W)× ...× TCYC
wk

(V,W).

Also, let F be the set of all cut sequences of v-trees f . As a corollary from the proof
above, we obtain

sup
f∈F

πJϕRψKf ≤
∑
W⊆V

∑
(t0,t1,...,tk)∈Tupv(V)

πJϕRψKt0◦t∞1 ◦...◦t∞k ≤
∑

t∈Tv(V)

πJϕRψKt.

Since we already know that∑
t∈Tv(V)

πJϕRψKt ≤ sup
f∈F

πJϕRψKf

94

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

because of the sequence f ∈ F with f(i) = t|i which can be constructed for any t,
we conclude that all the values above are equal and obtain the following corollary.

(4.59) Corollary. With the definitions from above, we have

πJA(ϕRψ)Kv =
∑

t∈Tv(V)

πJϕRψKt =
∑
W⊆V

∑
(t0,t1,...,tk)∈Tupv(W)

πJϕRψKt0◦t∞1 ◦...◦t∞k .

However, this is still not sufficient to compute πJA(ϕRψ)Kv, even though Tupv(W)
is a finite set for each W ⊆ V . This is due to the fact that in general, we have

πJϕRψKt0◦t∞1 ◦...◦t∞k 6= πJϕRψKt0 · πJϕRψK∞t1 · ... · πJϕRψK∞tk

for (t0, t1, ..., tk) ∈ Tupv(W). Consider a case where k > 0. Since we have t0 ∈
T ′v(V,W), we know that t0 might contain marked leaves in W . However, this is not
necessarily the case. For example, we might have t0 = (v), so that t0 is a tree that
consists of a single unmarked node. In the definition of t0 ◦ t∞1 ◦ ... ◦ t∞k , we have
stated that the trees t1, ..., tk are only used if they are needed, that is, tj is only used
to fill a marked leaf wj. So in this case, we would obtain

t0 ◦ t∞1 ◦ ... ◦ t∞k = t0,

which implies
πJϕRψKt0◦t∞1 ◦...◦t∞k = πJϕRψKt0 .

Obviously, for k > 0, this witnesses the inequality from above. Therefore, we will
have to find a way to ensure that the trees t1, ..., tk are actually used infinitely many
times in t0 ◦ t∞1 ◦ ... ◦ t∞k .

(4.60) Definition (Dependency Graph). Let t = (t0, t1, ..., tk) ∈ Tupv(W) for some
v ∈ V and W ⊆ V . We define the dependency graph D(t) as follows. The nodes
of D(t) are t0, t1, ..., tk. There is a directed edge from ti to tj for 0 ≤ i ≤ k and
1 ≤ j ≤ k if, and only if ti contains at least one marked leaf wj. The node t0 has
no incoming edges.

The dependency graph can be used to determine whether all elements of a tuple
t ∈ Tupv(W) are actually necessary to construct a tree without marked leaves. The
first observation that we can make is the following.

(4.61) Lemma. For any t = (t0, t1, ..., tk) ∈ Tupv(W), if there is at least one ti
in D(t) that is not reachable from t0, then there is a tuple t′ = (t0, t

′
1, ..., t

′
k′) ∈

Tupv(W
′) for some W ′ (W such that every node in D(t′) is reachable from t0 and

πJϕRψKt0◦t∞1 ◦...◦t∞k = πJϕRψKt0◦(t′1)∞◦...◦(t′
k′)
∞ .

Proof sketch. This is very easy to see, since trees that are not reachable from t0
in D(t) are never actually used in the construction of t0 ◦ t∞1 ◦ ... ◦ t∞k , so we obtain
t′ = (t0, t

′
1, ..., t

′
k′) by leaving out all the trees that are unreachable from t0 in D(t).

Clearly, t′ ∈ Tupv(W
′) for a smaller set W ′ and we know that the trees in t′ do not

contain any marked leaves outside of W ′, because otherwise, some of the trees that
we left out would have been reachable from t0 in D(t). �

The lemma allows us to filter out some of the “bad” tuples, but even if all trees
from t are reachable in D(t), this does not guarantee that they have to be used

95

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

infinitely often. Figure (4.62) illustrates the dependency graphs D(p) and D(q) for
two different tuples p = (p0, p1, p2, p3) and q = (q0, q1, q2, q3) in Tupv(W).

q
1

q
2

p
0
q
0

p
0
q
3p

1
p
2

p
0
p
0

p
0
p
3

Figure (4.62): Dependency graphs of p, q ∈ Tupv(W).

We can derive from the dependency graphs that p is a “good” tuple, because p1, p2

and p3 are used infinitely often in tp = p0 ◦ p∞1 ◦ p∞2 ◦ p∞3 . This is due to the cycle
(p1, p2). Whenever p1 is appended, p2 has to be appended to its marked w2-leaves
and vice versa, leading to the conclusion that both p1 and p2 occur infinitely often
as subtrees of tp. Since any occurrence of p1 or p2 also requires an occurrence of p3,
because p1 and p2 have marked w3-leaves, p3 also occurs infinitely often in tp.

However, the situation is different in tq = q0◦q∞1 ◦q∞2 ◦q∞3 . With the same argument
as for tp, q1 and q2 occur infinitely often in tq. However, neither q1 nor q2 have any
marked w3-leaves, so q3 is only needed to fill the marked w3-leaves of q0, but there
are only finitely many of them. Since none of the other trees contains any w3-leaves,
q3 occurs only finitely often in tq. We conclude that q is a bad tuple, but we can
also see that it is possible to turn it into a good tuple r = (r0, q1, q2) ∈ Tupv(W

′)
with W ′ = W \ {w3}. r0 is obtained by merging q0 and q3 into a single tree, that
is, appending q3 to the w3-leaves of q0 and then removing repetitions along paths
that may possibly arise. Since none of the trees r0, q1 and q2 have any w3-leaves, r
is indeed an element of Tupv(W

′) and r0 ◦ q∞1 ◦ q∞2 uses q1 and q2 infinitely many
times. Now, we will generalize this approach.

Assume that t = (t0, t1, ..., tk) ∈ Tupv(W) is a tuple and all nodes of D(t) are
reachable from t0. We say that ti for 1 ≤ i ≤ k is active if, and only if ti lies on a
cycle in D(t) or is reachable from a node that lies on a cycle. The inactive graph
I(t) is obtained by removing all active nodes from D(t). We call t valid if, and only
if I(t) only contains t0. Let Tup∗v(W) be the set of all valid tuples in Tupv(W).

(4.63) Lemma. For any t = (t0, t1, ..., tk) ∈ Tupv(W), t is valid or there is a valid
t′ = (t′0, t

′
1, ..., t

′
k′) ∈ Tup∗v(W

′) for some W ′ (W such that

πJϕRψKt0◦t∞1 ◦...◦t∞k ≤ πJϕRψKt′0◦(t′1)∞◦...◦(t′
k′)
∞ .

Proof sketch. Thanks to lemma (4.61), we can assume that all nodes in D(t)
are reachable from t0. Now, suppose that t is invalid, that is, I(t) contains other
inactive trees than t0. By definition of I(t), it is a directed acyclic graph, which
implies we can merge the trees in I(t) into a finite tree tI , which can be turned
into t′0 by removing node repetitions along paths. Suppose w.l.o.g. that t1, ..., tk′
are the active nodes and W ′ = {1, ..., k′} (W . The tuple t′ = (t′0, t1, ..., tk′) is
then an element of Tupv(W

′), since neither t′0 nor any of the trees t1, ..., tk′ contain

96

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

any marked leaves in W \W ′, otherwise the inactive trees would be reachable from
t1, ..., tk′ in D(t), which is a contradiction. Also, since t1, ..., tk′ were all reachable
from t0, by construction of t′0, they are also reachable from t′0 and they are also
active in D(t′), which implies that I(t′) only contains t′0 and t′ is valid, so we have
t′ ∈ Tup∗v(W

′). The absorption

πJϕRψKt0◦t∞1 ◦...◦t∞k ≤ πJϕRψKt′0◦t∞1 ◦...◦t∞k′

is verified by observing that t′0 ◦ t∞1 ◦ ... ◦ t∞k′ can be obtained from t0 ◦ t∞1 ◦ ... ◦ t∞k
by removing node repetitions along paths, which increases ϕRψ-costs. �

The lemma implies that for calculating πJA(ϕRψ)Kv, we can leave out invalid tuples,
because they are absorbed by valid tuples anyway, so we have

πJA(ϕRψ)Kv =
∑
W⊆V

∑
(t0,t1,...,tk)∈Tupv(W)

πJϕRψKt0◦t∞1 ◦...◦t∞k

=
∑
W⊆V

∑
(t0,t1,...,tk)∈Tup∗v(W)

πJϕRψKt0◦t∞1 ◦...◦t∞k .

But for valid tuples t = (t0, t1, ..., tk) ∈ Tup∗v(W), we know that all nodes in D(t)
are reachable from t0 and, except for t0, all of them are active, which means that
they are on a cycle or reachable from a node on a cycle. This implies that t1, ..., tk
are used infinitely often in the construction of t0 ◦ t∞1 ◦ ... ◦ t∞k , so we have

πJϕRψKt0◦t∞1 ◦...◦t∞k = πJϕRψKt0 · πJϕRψK∞t1 · ... · πJϕRψK∞tk .

This yields the following proposition.

(4.64) Proposition. For an absorptive lattice semiring K, a finite set of nodes V ,
a formula A(ϕRψ) in CTL and a matching K-interpretation π over V , we have

πJA(ϕRψ)Kv =
∑
W⊆V

∑
(t0,t1,...,tk)∈Tup∗v(W)

πJϕRψKt0 · πJϕRψK∞t1 · ... · πJϕRψK∞tk

for any v ∈ V , where Tup∗v(W) for W ⊆ V is defined as above.

To close this subsection, we can derive an algorithm that computes πJA(ϕRψ)Kv
from this proposition.

(4.65) Algorithm. The input for the algorithm is a formula A(ϕRψ) with a
matching K-interpretation π over a finite set of nodes V , where K is an absorptive
lattice semiring and a node v ∈ V . The output πJA(ϕRψ)Kv is computed as follows.

1. Start with S := 0.

2. For any W = {w1, ..., wk} ⊆ V , repeat:

(a) Find all trees in T ′v(V,W) and TCYC
w1

(V,W), ..., TCYC
wk

(V,W).

(b) For every combination of those trees t = (t0, t1, ..., tk) ∈ Tupv(W), repeat:

i. Construct the dependency graph D(t).

ii. Check if every node in D(t) is reachable from t0.

• If the check fails, discard t.

97

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

iii. Find all active nodes in D(t).

• If a node other than t0 is inactive, discard t.

iv. If t was not discarded, then t ∈ Tup∗v(W).

v. Compute πJϕRψKt0 , πJϕRψKt1 , ... πJϕRψKtk .

vi. Update S := S + πJϕRψKt0 · πJϕRψK∞t1 · ... · πJϕRψK∞tk .

3. The output is

S =
∑
W⊆V

∑
(t0,t1,...,tk)∈Tup∗v(W)

πJϕRψKt0 ·πJϕRψK∞t1 · ... ·πJϕRψK∞tk = πJA(ϕRψ)Kv.

Proof. The correctness is implied by proposition (4.64). For the runtime, let
|V | = n > 0. Clearly, step (1) is repeated 2n times.

Let N(n) be an upper bound for the cardinality of T ′v(V, V) for any given n ∈ ω.
We claim that N(n) ∈ O(2n!) and prove this by induction on n. For n = 1, there
are only two possible trees in T ′v(V, V), a tree with a single root (v) or a marked
leaf (v∗), so N(1) = 2. For n > 1, we have those same two trees (v) and (v∗) in
T ′v(V, V), but additionally, if v is not marked, it could have successors. In that case,
the successors of v are uniquely defined, since our trees must be complete, and there
are at most (n− 1) successors, since v may not repeat, and therefore v cannot be a
successor of v itself. Each of the successors w forms a subtree in T ′w(V \{v}, V \{v}),
so there are at most N(n− 1) possibilities for each successor, which yields

N(n) ≤ 2 +N(n− 1)(n−1) ≤ N(n− 1)n ≤ (2(n−1)!)n = 2n!,

since N(n− 1) ≥ 2. Therefore, we conclude that N(n) ∈ O(2n!).

Moreover, the cardinality of TCYC
w (V, V) for any w ∈ W is in O(2n·n!), because the

number of trees in TCYC
w (V, V) is bounded by 1+N(n)n, since all trees in TCYC

w (V, V)
consist of a root node w with at most n successors, and each successor u induces a
subtree in T ′u(V, V).

We conclude that step (a) of the algorithm requires at most O(n · 2n·n!) opera-
tions, since all elements of T ′v(V,W) ⊆ T ′v(V, V) and TCYC

w1
(V,W) ⊆ TCYC

w1
(V, V), ...,

TCYC
wk

(V,W) ⊆ TCYC
wk

(V, V) have to be enumerated.

Step (b) is repeated at most O(2n! · (2n·n!)n) times, which is the maximum number
of tuples in Tupv(W).

Finally, the inner loop (i) to (vi) can be performed in O(n3), the most expensive
operation is finding the active nodes in D(t), which can be done by running a
breadth-first search from all k ≤ n+ 1 nodes in D(t), which takes O(k2) operations
each time.

Therefore, we obtain a total runtime in O(2n ·2n! ·(2n·n!)n ·n3), which we can simplify
to

2n · 2n! · (2n·n!)n · n3 = 2n · 2n! · 2n2·n! · 23·log(n)

= 2(n2+1)·n!+n+3·log(n).

This shows that our algorithm terminates and ends the proof. With a runtime in
O(2(n2+1)·n!+n+3·log(n)), which is a double exponential runtime, the algorithm is only
relevant for theoretical purposes. �

98

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

We have now developed algorithms that are able to to evaluate all formulas in CTL
in their respective semirings.

4.4 Program Iterations in PDL

In this section, we will see that interpreting program iterations ρ∗ where ρ is a
program in PDL is similar to the interpretation of existential until formulas in CTL
from subsection (4.2.1). First of all, let K be an ω-continuous semiring and π a
K-interpretation over a finite set of nodes V . For all v, w ∈ V , let Pv→w(V) denote
the set of all paths over V from v to w. With the ρ-costs for paths from definition
(4.6), we can prove a theorem for PDL programs that is similar to theorem (4.14).

(4.66) Theorem. For any ω-continuous semiring K, PDL program ρ, finite set V ,
K-interpretation π over V and v, w ∈ V , we have

πJρ∗K(v,w) =
∑

p∈Pv→w(V)

πJρKp.

Proof. By definition (3.21), we have πJρ∗K(v,w) = lfp(fρ
∗
)(v,w). Theorem (2.23)

states that

lfp(fρ
∗
) = sup

i∈ω
(fρ

∗
)i(0).

Set Xi = (fρ
∗
)i(0). We will show by induction on i that

(Xi)(v,w) =
∑

p∈P<i
v→w(V)

πJρKp

for all v, w ∈ V where P<i
v→w(V) refers to the paths from v to w that are shorter

than i.

In the base case i = 0, there is nothing to show, since there are no paths that are
shorter than 0 and (X0)(v,w) = 0.

If we assume the hypothesis to be true for i, then for i+ 1, we have

(Xi+1)(v,w) = fρ
∗
(Xi)

= πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) · (Xi)(u,w).

99

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Using the induction hypothesis for (Xi)(u,w) yields

(Xi+1)(v,w) = πJ1?K(v,w) +
∑
u∈V

πJρK(v,u) ·

 ∑
p∈P<i

u→w(V)

πJρKp


= πJ1?K(v,w) +

∑
u∈V

∑
p∈P<i

u→w(V)

πJρK(v,u) · πJρKp

= πJ1?K(v,w) +
∑
u∈V

∑
p∈P<i

u→w(V)

πJρK(v,p)

(∗)
=

∑
p∈P=0

v→w(V)

πJρKp +
∑

p∈
⋃

1≤j≤i P
=j
v→w(V)

πJρKp

=
∑

p∈P<i+1
v→w (V)

πJρKp.

The transformation (∗) is verified by two observations. First, there is only a path
from v to w of length 0 if v = w. In that case, the ρ-cost of this path is πJ1?K(v,w) = 1,
since it does not have any edges. Otherwise, if v 6= w, then πJ1?K(v,w) = 0. The
second observation is that for p ∈ P<i

u→w(V) and u ∈ V , the paths (v, p) that are
formed by adding v to the start of p are exactly all the paths from v to w of length
1 to i, and the ρ-cost of (v, p) is clearly πJρK(v,u) · πJρKp. This ends the induction.

Next, we will show (
sup
i∈ω

Xi

)
(v,w)

=
∑

p∈Pv→w(V)

πJρKp

for all v, w ∈ V . We apply lemma (2.21) to obtain(
sup
i∈ω

Xi

)
(v,w)

= sup
i∈ω

(Xi)(v,w)

= sup
i∈ω

∑
p∈P<i

v→w(V)

πJρKp

= sup
i∈ω

∑
p∈P≤i

v→w(V)

πJρKp

=
∑
i∈ω

∑
p∈P=i

v→w(V)

πJρKp

=
∑

p∈Pv→w(V)

πJρKp.

Note that P=i
v→w(V) for i ∈ ω partitions the set Pv→w(V), since all paths from v to

w have some finite length i ∈ ω. We conclude

πJρ∗K(v,w) =

(
sup
i∈ω

(fρ
∗
)i(0)

)
(v,w)

=

(
sup
i∈ω

Xi

)
(v,w)

=
∑

p∈Pv→w(V)

πJρKp,

which ends the proof. �

100

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

Recall the definition (4.15) where we have defined K-automata. Existential until
formulas in CTL were evaluated under a K-interpretation π by transforming π into
a K-automaton and then applying state removal. We will do the same for PDL
programs. To calculate πJρ∗K(v,w), we will first build an appropriate K-automaton

Aρ
∗

(v,w)(π) and then calculate C(Aρ
∗

(v,w)(π)).

(4.67) Proposition. For an ω-continuous semiring K, a finite set of nodes V , a
K-interpretation π over V and a program ρ, we define the K-automaton Aρ

∗

(v,w)(π) =

(Q,C, s, t) for all v, w ∈ V by setting Q = V ∪ {s, t} and connecting s to v and w
to t. We assume s, t /∈ V . Formally, we set

C(q, s) = 0 for all q ∈ Q,
C(t, q) = 0 for all q ∈ Q,
C(s, v) = 1

C(s, q) = 0 for all q ∈ Q \ {v},
C(w, t) = 1

C(q, t) = 0 for all q ∈ Q \ {w} and

C(u1, u2) = πJρK(u1,u2) for all u1, u2 ∈ V.

With this construction, Aρ
∗

(v,w)(π) has the cost

C(Aρ
∗

(v,w)(π)) =
∑

p∈Pv→w(V)

πJρKp.

Proof sketch. Recall the definition of C(Aρ
∗

(v,w)(π)) as

C(Aρ
∗

(v,w)(π)) =
∑

p∈Ps→t(Q)

C(p).

We have to prove ∑
p∈Ps→t(Q)

C(p) =
∑

p′∈Pv→w(V)

πJρKp′ .

This is easy to see, because any path p ∈ Ps→t(Q) with nonzero costs must be a
path of the form

p = (s, v, ..., w, t).

Clearly, we can map p to p′ = (v, ..., w) ∈ Pv→w(V) by cutting off s and t. Since the
edges (u1, u2) in Aρ

∗

(v,w)(π) for u1, u2 ∈ V are defined to have the cost πJρK(u1,u2), we
conclude that

C(p) = πJρKp′ .

Therefore, we have a cost-preserving one-to-one correspondence between Ps→t(Q)
and Pv→w(V) if we disregard paths with cost 0, which proves the claim. �

Since we have already introduced the state removal algorithm (4.18) that computes
C(A) for a given K-automaton A, there is a straightforward way to interpret PDL
program iterations πJρ∗K(v,w).

1. Construct Aρ
∗

(v,w)(π).

101

CHAPTER 4. ALGORITHMS FOR SEMIRING INTERPRETATION

• Proposition (4.67) and theorem (4.66) yield

C(Aρ
∗

(v,w)(π)) =
∑

p∈Pv→w(V)

πJρKp = πJρ∗K(v,w).

2. Use the state removal algorithm (4.18) to compute C(Aρ
∗

(v,w)(π)).

• The output is the interpretation πJρ∗K(v,w).

Assuming that |V | = n, the automaton Aρ
∗

(v,w)(π) can be constructed in O(n2) and

state removal has a runtime on O(n3), which yields a total runtime in O(n3) to
interpret PDL program iterations.

We will close this section by calculating πJa∗K(v,w) for the N∞JXK-interpretation π
from example (3.22). Figure (4.68) below shows the N∞JXK-interpretation π and
the N∞JXK-automaton Aa∗(v,w)(π) that we will use to compute πJa∗K(v,w).

v wa → q

P → sP → r

a → p

v wq

p

s t

1
1

Figure (4.68): N∞JXK-interpretation π (above) transformed to Aa∗(v,w)(π) (below).

Now, we can apply state removal, as shown in figure (4.69) below.

v wq

p

s t

1
1

s tw
p*q 1

s t
p*q

Figure (4.69): State removal performed on Aa∗(v,w)(π).

The result is πJa∗K(v,w) = p∗q which is also what we obtained in example (3.22).

102

Chapter 5

Conclusion

We have defined semiring interpretations for LTL, CTL and positive PDL, and with
the algorithms from the previous section, we have also developed a way to compute
finite representations of the resulting semiring elements. However, there are still
open questions. For example, while we guarantee that the representations of the
semiring values that we compute in the previous section are finite, we do not provide
any guarantees for their readability. Also, it remains unknown whether the runtime
of the algorithms that we provided is optimal. As conjecture (4.36) suggests, there
might be more efficient algorithms for semiring interpretations.

Moreover, our entire work is based on ω-continuous semirings and absorptive lattice
semirings. In particular, we use absorptive lattice semirings to evaluate release
formulas in CTL. It is an open question whether there are any larger classes of
semirings that are suited to interpret release formulas in CTL. While we know that
the conditions that we asserted in definition (2.10) for absorptive lattice semirings
are sufficient to enable the interpretation of release formulas, it is not known whether
they are too strong. This is a topic that will be covered in future work.

Finally, we will mention some related topics. As pointed out in remark (3.24),
there are still issues left to overcome in order to extend our semiring interpretations
from positive PDL to full PDL. Moreover, the semiring interpretations for some
CTL formulas were inspired by their translation into the modal µ-calculus, which
is a stronger logic than LTL, CTL and PDL. This raises the question whether the
approaches that we used to define the semiring interpretations for CTL could be
generalized to the full modal µ-calculus.

103

Bibliography

[Bar91] Andrei Baranga. The contraction principle as a particular case of
Kleene’s fixed point theorem. Discrete Mathematics, 98(1):75–79, 1991.

[Ber05] Dietmar Berwanger. Games and Logical Expressiveness. PhD thesis,
RWTH Aachen, 2005.

[BLS10] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing
LTL Semantics for Runtime Verification. Journal of Logic and Compu-
tation, 20(3):651–674, 2010.

[CC79] Patrick Cousot and Radhia Cousot. Constructive versions of Tarski’s
fixed point theorems. Pacific Journal of Mathematics, 82(1):43–57, 1979.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez,
C. Löding, S. Tison, and M. Tommasi. Tree Automata Techniques
and Applications. Available on: http://www.grappa.univ-lille3.fr/
tata, 2007. release October, 12th 2007.

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance
Semirings. In Proceedings of the twenty-sixth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 31–40.
ACM, 2007.

[GT17] Erich Grädel and Val Tannen. Semiring Provenance for First-Order
Model Checking. arXiv:1712.01980 [cs.LO], 2017.

[GT18] Erich Grädel and Val Tannen. Provenance in Logic and Games. unpub-
lished, 2018.

[HR00] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge University Press, 2000.

[Neu05] Christoph Neumann. Converting Deterministic Finite Automata to Reg-
ular Expressions. 2005.

[Ran52] George N. Raney. Completely Distributive Complete Lattices. Proceed-
ings of the American Mathematical Society, 3(5):677–680, 1952.

105

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

	Introduction
	Semirings
	Omega-Continuous Semirings
	Absorptive Lattice Semirings
	Families over Semirings

	Semiring Interpretations for Logics
	Linear Temporal Logic (LTL)
	Computation Tree Logic (CTL)
	Propositional Dynamic Logic (PDL)

	Algorithms for Semiring Interpretation
	Paths and Complete Trees
	Until Operators in CTL
	Existential Until Operators
	Universal Until Operators

	Release Operators in CTL
	Existential Release Operators
	Universal Release Operators

	Program Iterations in PDL

	Conclusion
	Bibliography

