
Chapter 1
The Freedoms of (Guarded) Bisimulation

Erich Grädel and Martin Otto

Abstract We survey different notions of bisimulation equivalence that provide
flexible and powerful concepts for understanding the expressive power as well as
the model-theoretic and algorithmic properties of modal logics and of more and
more powerful variants of guarded logics. An appropriate notion of bisimulation
for a logic allows us to study the expressive power of that logic in terms of seman-
tic invariance and logical indistinguishability. As bisimilar nodes or tuples in two
structures cannot be distinguished by formulae of the logic, bisimulations may be
used to control the complexity of the models under consideration. In this man-
ner, bisimulation-respecting model constructions and transformations lead to results
about model-theoretic properties of modal and guarded logics, such as the tree model
property of modal logics and the fact that satisfiable guarded formulae have mod-
els of bounded tree width. A highlight of the bisimulation-based analysis are the
characterisation theorems: inside a classical level of logical expressiveness such as
first-order or monadic second-order definability, these provide a tight match between
bisimulation invariance and logical definability. Typically such characterisation the-
orems state that a modal or guarded logic is not only invariant under bisimulation
but, conversely, also expressively complete for the class of all bisimulation invari-
ant properties at that level. Finally, the bisimulation-based analysis of modal and
guarded logics also leads to important insights concerning their algorithmic prop-
erties. Since satisfiable formulae always admit simple models, for instance tree-like
ones, and since modal and guarded logics can be embedded or interpreted in monadic
second-order logic on trees, powerful automata theoretic methods become available
for checking satisfiability and for evaluating formulae.
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1.1 Introduction

Bisimulation equivalence is one of the leading themes in modal logic. As the
quintessential back-and-forth notion for two-player combinatorial games it may
not only be regarded as a special case in the model-theoretic tradition of Ehren-
feucht–Fraïssé games but may also be seen as their common backbone. Bisimulation
equivalence (of game graphs or transition systems) grasps the complex equivalence
between dynamic behaviours as a natural structural equivalence. The generalisation
of this graph-based bisimulation concept to higher dimensions in the form of guarded
bisimulation opened up one further branch in the rich world of model-theoretic
games; the study of guarded bisimulation in the wake of the inception of the guarded
fragment of first-order logic in [1] has led to a new conceptual understanding of well-
behaved logics that are ‘modal’ in a more general sense. Guarded logics far transcend
basic modal logics while retaining some of the key features of modal model theory
precisely through the parallelism between the underlying notions of bisimulation
equivalence. Guarded bisimulation can be seen as derived from a hypergraph ver-
sion of ordinary (modal, graph-based) bisimulation. And just as preservation under
ordinary bisimulation accounts for much of the good model-theoretic behaviour of
modal logics, so hypergraph bisimulation and guarded bisimulation are the keys to
understanding the model theory of guarded logics. Model constructions and transfor-
mations that are compatible with guarded bisimulation account for the malleability
of models and the tractability of the finite and algorithmic model theory of various
guarded logics. We here survey and summarise a number of model-theoretic tech-
niques and results, especially in the light of bisimulation respecting model construc-
tions, including some more recent developments. Results to be surveyed include
finite and small model properties, decidability results, complexity and expressive
completeness issues. Among the more recent developments are notions of guarded-
ness that focus on the role of negation rather than on just the quantification pattern.
Unary and guarded negation bisimulation and the corresponding unary and guarded
negation fragments of first-order logic from [10] and [3] have contributed yet another
aspect to our understanding of the good behaviour of ‘modal’ logics with a yet wider
scope.

1.2 Bisimulation: Behavioural and Structural Equivalence

1.2.1 Ehrenfeucht–Fraïssé, Back-and-forth, Zig-zag, Pebble
Games: Games Model-Theorists Play

Notions like ‘behaviour’ and ‘strategies’ seem to be quintessentially dynamic, while
the analysis of structure and structural comparisons are mostly construed as static
concerns. Yet modal logics, transition systems and game graphs bridge the apparent
gap in a natural manner and typically allow us to understand behavioural comparisons
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as structural comparisons, and behavioural equivalences as structural equivalences.
This is not even really surprising if we remind ourselves how, e.g., game graphs
can be regarded as extensional (and static) descriptions of the possible plays (hence
behaviours) of the game, so that, e.g., the existence of a winning strategy for one of the
players can be determined by structural analysis. The dynamics and intuitive appeal
of games can also be harnessed for the analysis of the semantics and expressive power
of logics: model checking games account for the evaluation of logical formulae over
structures, and model comparison games are used to account for distinctions and
degrees of indistinguishability between structures w.r.t. properties expressible in a
given logic. In the classical context of first-order logic the model comparison games
are at the centre of the Ehrenfeucht–Fraïssé technique.

In the world of modal logics, the essential model comparison game is the
bisimulation game. It is a typical model-theoretic back and forth game, played by
two players over the two structures at hand (Kripke structures or transition systems).
A position in the game is a pair of (similar) nodes, one from each of the two struc-
tures, marked by pebbles; players take turns to move the pebbles along available
transitions in the respective structure; in each new round the first player is free to
choose one of the structures and one of the available transitions to move the pebble
across that transition, and the second player must respond likewise in the opposite
structure. Overall, the game protocol ensures that the second player has a winning
strategy in a position precisely if—recursively—every transition in the one structure
can be matched by a transition in the opposite structure, ad infinitum. Bisimulation
relations and bisimulation equivalence capture this notion of game equivalence by
means of back&forth closure conditions on a (or the maximal) set of pairs that are
winning positions for the second player.

Definition 1.1 For structures A = (A, (RA
i ), (P

A
j )) and B = (B, (RB

i ), (P
B
j ))

with binary accessibility relations Ri and unary predicates Pj :
A binary relation Z ⊆ A × B between the nodes of A and nodes of B is a

bisimulation relation if for all (a, b) ∈ Z :

(i) (atom eq.): for each Pj , a ∈ PA
j iff b ∈ PB

j ;

(ii) (Ri -back): for every b′ with (b, b′) ∈ RB
i there is some a′ such that (a, a′) ∈ RA

i
and (a′, b′) ∈ Z ;

(iii) (Ri -forth): for every a′ with (a, a′) ∈ RA
i there is some b′ such that (b, b′) ∈ RB

i
and (a′, b′) ∈ Z .

As the union of bisimulation relations is again a bisimulation relation, there is a
well-defined ⊆-maximal largest bisimulation between A and B. Pointed structures
A, a and B, b are bisimilar, A, a ∼ B, b, if (a, b) is in some (hence in the largest)
bisimulation between A and B.

Clearly ∼ captures a strong form of behavioural equivalence, if we think of
‘behaviours’ not just as traces of actions, but rather as the complex interactive
and responsive patterns that can evolve in any step-wise alternating exploration of
potential transitions. The conditions (Ri -back) and (Ri -forth) capture the challenge-
response requirements posed for the second player by one additional round.
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Correspondingly, the largest bisimulation on A × B forms a greatest fixed point
w.r.t. the refinement operator induced by (atom eq.) and the (Ri -back) and (Ri -forth)
conditions:

Z �−→ F (Z),

where F (Z) consist of those pairs (a, b) ∈ Z that satisfy (atom eq.) and the
(Ri -back) and (Ri -forth) conditions w.r.t. Z . Locally, over every pair of structures,
the bisimulation relation ∼ is the greatest fixed point of this operation F (which is
guaranteed to exist since F is monotone w.r.t. ⊆).

This direct—more static—description of the target equivalence as a greatest fixed
point is typical for comparison games of this kind; in the case of bisimulation equiva-
lence the typical back and forth conditions were introduced in the modal world under
the name of zig-zag conditions by Johan van Benthem. The term bisimulation equiv-
alence, which points to an intuition based on the behaviour of transition systems,
was introduced by Milner and Park.

A more dynamic view is also extracted from the greatest fixed point
characterisation, if we look at the refinement process that recursively generates the
fixed point ∼ as a limit of relations ∼α:

∼ =
⋂

α

∼α, where

∼0 = atom equivalence,

∼α+1 = F (∼α),

∼λ =
⋂

α<λ

∼α for limit ordinals λ.

Formally, the intersection in the above definition of ∼ is over all ordinal levels
α, but in restriction to any two concrete structures can be bounded by any infinite
ordinal that is of cardinality greater than the structures at hand. Over all finite, and
indeed over finitely branching structures and also over the class of all ω-saturated
or the class of all modally saturated structures, the limit is reached by stage ω, i.e.,
coincides with the limit of the finite approximations ∼� for � ∈ N,

∼ω = ⋂
�∈ω ∼� .

Over finite A and B of sizes |A| and |B|, the natural game analysis even shows
that full bisimulation is reached no later than by level ∼�, where � = max(|A|, |B|).

The game counterpart of ∼� for � ∈ N is the �-round bisimulation game, which is
won by the second player if she does not lose during the first � rounds. Bisimulation
equivalence and its infinite game, and especially its finite approximations ∼� for
� ∈ N in relation to the �-round game, can be viewed as a special adaptation to
the modal scenario of the classical back&forth games in the Ehrenfeucht–Fraïssé
tradition.
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We write A, a ≡�
ML B, b for the modal levels of elementary equivalence up to

quantifier rank (modal nesting depth) �: A, a ≡�
ML B, b if A, a |= ϕ ⇔ B, b |= ϕ

for all ϕ ∈ ML of nesting depth up to �. Similarly, A, a ≡ML B, b stands for full
modal equivalence, and A, a ≡∞

ML B, b for equivalence w.r.t. the infinitary variant
of modal logic which allows for infinite conjunctions and disjunctions.

Theorem 1.2 (Ehrenfeucht–Fraïssé and Karp theorems for ML) In restriction to
finite modal vocabularies, and for every � ∈ N:

A, a ∼� B, b if, and only if, A, a ≡�
ML B, b.

Consequently, in restriction to finite modal vocabularies A, a ∼ω B, b if, and only

if, A, a ≡ML B, b. Without any restriction on the size of the modal vocabulary,

A, a ∼ B, b if, and only if, A, a ≡∞
ML B, b.

Many other logics, and in particular other fragments of first-order logic besides
the modal fragment, can be analysed via specifically associated Ehrenfeucht–Fraïssé
games. The analysis of the guarded fragment GF of first-order logic in the light
of its invariance under guarded bisimulation equivalence is a prime example to be
discussed in Sect. 1.3. The very proposal of GF in [1] was inspired by consider-
ations concerning the taming of first-order logic through variations that involve a
generalised (or, depending on the point of view: restricted) semantics in ‘general
assignment models’ in the sense of [6]. Returning to our opening remarks about
‘behaviour’ in terms of logic and games, different logics with distinct semantics may
be obtained by admitting different observable configurations and different modes of
navigation between these. (For classical modal semantics, think of possible worlds
and accessibility relations.) It is in this view, that games and game graphs provide
yet another link to bisimulation as the quintessential notion of behavioural equiva-
lence. Bisimulation as the master game equivalence is adaptable to different logics if,
instead of the usual structures, we look at the game graphs induced by the semantic
games of those other logics. For suitable logics, the associated game graphs formalise
the notion of observable configurations (or admissible assignments) and transitions
between these (quantification patterns). Thus, levels of bisimulation equivalence
between the associated game graphs correspond to levels of Ehrenfeucht–Fraïssé
equivalence between the underlying structures, capturing the specific restrictions
embodied in the semantics of the logic in question. Some correspondences of this
kind are explored at first-order level in [20], and, with much greater generality in
mind, in [6], in the terminology of general assignment models. In the same vein,
suitable abstractions of the associated game graphs (intuitively akin to filtrations or
bisimulation quotients) may serve as concise descriptions of structures up to equiv-
alence, or as blue-prints for desired models (quasi-models) towards decidability and
complexity arguments.
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1.2.2 Bisimulation in Modal Model Theory

The essential observation for a view of bisimulation equivalences as specialisations of
corresponding classical first-order Ehrenfeucht–Fraïssé equivalences is the manner in
which its back&forth conditions precisely reflect the power of modal quantification.
The existential diamond modality ♦i , whose semantics in structure A is defined
in terms of the accessibility relation RA

i , precisely captures the available moves in
the game along Ri -transitions, and the back&forth clauses for Ri reflect potential
distinctions w.r.t. properties of nodes accessible from the current nodes through
Ri -edges in their respective structures.

On the other hand, the bisimulation games can be taken as the quintessential
template for a large class of model-theoretic Ehrenfeucht–Fraïssé style comparison
games: if we correctly abstract from the structures at hand a game graph that models
the relevant configurations and transitions between them, then levels of bisimula-
tion equivalence correspond to winning strategies for the second player in a game
that reflects the expressive power and quantification pattern of some other target
logic [20]. In some key examples, the relevant configurations correspond to the
admissible assignments to first-order variables, and the transitions to their relative
accessibility by means of basic quantification steps. In this vein, variations and espe-
cially restrictions to the admissible assignments in a first-order framework lead to
fragments that can be analysed and understood in terms of bisimulation equiva-
lences between derived game graphs. Among the most pertinent examples are the
k-variable fragments FOk of first-order logic, and the guarded fragment GF of first-
order logic. The finite variable fragments FOk work with a uniform restriction of
assignments to size k. This purely quantitative restriction is contrasted in the semi-
nal paper on the guarded fragment [1] by Andréka, van Benthem and Németi with
a qualitative restriction of assignments to clusters that are ‘guarded’ by some rela-
tional hyperedge. The new fragment is proposed with a view to a ‘dynamic’ bounding
of the available assignments—it is ‘dynamic’ in the sense of a position-dependent
restriction familiar from modal logics; yet static in the sense of structural analysis.
We shall discuss the guarded fragment and the associated ramification of bisimula-
tion in Sect. 1.3. Before that, let us summarise some key features and uses of ordinary,
modal bisimulation equivalence, which account for its pivotal role in modal model
theory.

The first is a direct corollary of the modal Ehrenfeucht–Fraïssé theorem. Ifϕ ∈ ML
has modal quantifier depth �, then its semantics is invariant under ∼�.

The essential feature of bisimulation invariance extends to more powerful logics
that share the underlying modal quantification pattern, like the modal μ-calculus.

Corollary 1.3 The semantics of basic modal logic ML is invariant under
bisimulation equivalence: for ϕ ∈ ML, A, a ∼ B, b =⇒ A, a |= ϕ ⇔ B, b |= ϕ.

Bisimulation invariance is the model-theoretic hallmark of modal logics; in fact
so much so, that modal model theory could be equated with model theory up to
bisimulation equivalence.
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1.2.3 Tree Models and Robust Decidability of Modal Logics

The familiar process of tree-unfolding takes a pointed structure A, a to a tree structure
A∗

a with root a, built on the tree of all Ri -labelled paths from a in A.

Definition 1.4 Let A = (A, (RA
i ), (P

A
j ), a) be a pointed structure (Kripke struc-

ture or transition system). Its tree unfolding from a is the tree-like structure
A∗

a = (A∗
a, (R

A∗
i ), (PA∗

j )) with root a, where A∗
a is the set of edge-labelled paths

of the form w = (a0, i0, a1, . . . , a�, i�, a�+1, . . . , an) where a0 = a, i� such that
e� = (a�, a�+1) ∈ RA

i�
, with the natural projection

π : A∗
a −→ A

(a0, . . . , an) �−→ an;

(w,w′) ∈ RA∗
i if w′ is an extension of w by one Ri -edge, w = w (̂i, a′); and

w ∈ PA∗
j if π(w) ∈ PA

j .

Clearly A∗, a ∼ A, a. It follows that any bisimulation invariant logic has the tree
model property. For the finite-depth approximation ∼� of ∼, even the truncation
A�a to paths of lengths n � � from a satisfies A�, a ∼� A, a. For finite vocabulary
(finitely many Ri and Pj ), the equivalence relation ∼� has finite index. Therefore,
A�a can be pruned so as to retain at most one sibling of each ∼�-type among the
immediate children of any node, without affecting ∼�-types. For basic modal logic,
this pruning yields finite tree models.

Corollary 1.5 Every satisfiable formula ϕ ∈ ML (of modal quantifier depth �) has
a finite tree model (of depth �).

These observations are essential for decidability and complexity results for the
satisfiability problem, and for what has been called the robust decidability of modal
logics. Indeed, it is not just the basic propositional modal logic ML that is decid-
able for satisfiability. This property is shared by many extensions of ML to much
stronger and practically more relevant logics, including linear or branching time tem-
poral logics such as LTL, CTL, CTL∗, dynamic logics of programs such as PDL,
Parikh’s game logic GL and the modal μ-calculus Lμ, the extension of ML by least
and greatest fixed points. While basic modal logic ML can be seen as a fragment
of first-order logic, this is not the case for these stronger logics; all of them can
express properties based on reachability and on other non-local properties that are
not first-order. However, it is easy to see that all these logics can be embedded into
monadic second-order logic MSO. Among the extensions of modal logics, the modal
μ-calculus occupies a special rôle. It encompasses the other logics mentioned (and
many more) and it has a clean and interesting model theory. The modal μ-calculus
remains decidable in the presence of backward modalities.

The tree model property provides powerful tools for proving decidability and
complexity results and for constructing efficient decision procedures. For a quick
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proof of decidability one can translate formulae of these logics into monadic
second-order formulae and invoke Rabin’s famous theorem saying that SωS, the
monadic theory of the ω-branching tree, is decidable [27]. However, the complexity
of monadic logics on infinite trees (and words) is non-elementary. But recall that
the proof of Rabin’s Theorem is based on tree automata. A much more practical
approach for constructing decision procedures for modal logics avoids the detour
through monadic second-order logic and directly applies suitable variants of tree
automata to modal logics. The theory of finite automata on trees is very well devel-
oped, with many different automata models tailored for specific applications, with
efficient algorithms for manipulating automata and for reductions between different
models, a good understanding of the complexity of the common reasoning tasks for
automata (emptiness problems, word problems etc.), and sophisticated optimisation
techniques. The tree model property paves the way to make tree automata applicable
to the world of modal logics.

The typical complexity level of satisfiability problems for modal logics is
Exptime. An exception is the basic modal logic ML for which satisfiability is
Pspace-complete. But the addition of rather modest features to ML, for instance
a global modality, push up the complexity to Exptime; on the other hand, also
rather strong extensions of ML such as the modal μ-calculus and even the modal
μ-calculus with backward modalities remain Exptime-complete. Such results rely
on efficient translations of formulae into, say, alternating tree automata, and the
Exptime-completeness of the emptiness problem for such automata.

1.2.4 Expressive Completeness

As mentioned above, one of the highlights of modal model theory in this sense is
the characterisation of basic modal logic as the bisimulation-invariant fragment of
first-order logic.

Theorem 1.6 (van Benthem) For every first-order formula ϕ(x) in a vocabulary of
binary relations Ri and unary predicates Pj as above, the following are equivalent:

(i) ϕ is bisimulation invariant.
(ii) ϕ is logically equivalent to a formula of basic modal logic ML.

In shorthand notation, FO/∼ ≡ ML, where the left-hand side suggestively stands
for the (syntactically undecidable) collection of bisimulation invariant first-order
formulae.

By no means a direct consequence, not even via the finite model property, but
rather yet another striking feature of bisimulation equivalence and of modal logic,
the same characterisation holds also in the sense of finite model theory:

FO/∼ ≡ ML (FMT).
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In its basic form this result is due to Rosen [28]; alternative proofs that yield
strengthenings and lend themselves to further generalisations have been presented
in [19]. We state a few of these generalisations from [11, 18]. Global bisimulation
equivalence, A, a ∼∀ B, b, refers to a bisimulation relation in which every a ∈ A is
matched to some b ∈ B and vice versa; modal logic with a global modality, ML[∀],
is the extension of basic modal logic ML by a global modality, with the full binary
relation as its accessibility relation. A rooted structure is a structure A, a with a
single binary accessibility relation R such that every node is reachable on a directed
R-path from the root a. Equivalence structures are structures that interpret all the
binary relations Ri as equivalence relations (S5 models).

Theorem 1.7 Bisimulation invariant fragments of first-order logic are captured by
modal logics over some classes of structures, as follows.

(i) FO/∼ ≡ ML over the class of all (finite) structures.
(ii) FO/∼∀ ≡ ML[∀] over the class of all (finite) structures.

(iii) FO/∼ ≡ ML over the class of all (finite) equivalence structures.
(iv) FO/∼ ≡ ML[∀] over the class of all finite rooted structures.
(iv) FO/∼ ≡ ML over the class of all finite irreflexive transitive trees.

Here (i) is the van Benthem–Rosen characterisation from [5] and [28],
respectively; the rest are due to [11, 18].

Several of the finite model theory results above make use of finite unfold-
ings of finite structures that produce locally tree-like and fully bisimilar finite
models—which is not achievable by tree unfoldings since any globally acyclic bisim-
ilar companion of any cyclic structure is necessarily infinite. Simple combinatorial
constructions of finite locally acyclic bisimilar covers of finite graphs for this purpose
are presented in [18]. They play a crucial role in the analysis of the expressiveness
of first-order formulae that are bisimulation invariant over finite structures. Locally
acyclic behaviour suffices due to Gaifman’s locality theorem: the semantics of any
first-order formula ϕ(x) only depends on certain global multiplicities and the local
neighbourhood around x ; up to bisimulation, global multiplicities (Gaifman’s basic
local sentences) can be adjusted comparatively easily even when working in special
classes of finite models; what remains is the necessity to control the local neighbour-
hoods and this is where local tree-likeness is useful.

The van Benthem characterisation of bisimulation invariant first-order logic,
as FO/∼ ≡ ML, also has a an exciting extension to its monadic second-order
counterpart:

Theorem 1.8 (Janin–Walukiewicz) MSO/∼ ≡ Lμ, i.e., for every monadic second-
order formula ϕ(x) in a vocabulary of binary relations Ri and unary predicates Pj ,
the following are equivalent:

(i) ϕ is bisimulation invariant.
(ii) ϕ is logically equivalent to a formula of the μ-calculus Lμ.

Whether this characterisation holds in the sense of finite model theory, remains
one of the great challenges in modal model theory.
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1.3 Guarded Bisimulation: A Systematic Lifting
to Higher Dimension

The ‘dynamic’ behaviour of modal logics w.r.t. locally available transitions between
single-node assignments is vastly generalised in the setting of guarded logics.

The generalisation manifests itself on various levels: as a liberalisation in the
relational type of structures (from graph-like transition systems to relational struc-
tures with relations of any arity); a generalisation w.r.t. the restrictions on admissible
assignments and quantification patterns (from modal � and ♦ to universal and exis-
tential quantification over guarded tuples); a generalisation w.r.t. the relevant notion
of bisimulation (from modal to guarded bisimulation); and, in the wake of these
generalisations, a shift form graph theory to hypergraph theory as the underlying
combinatorial framework.

1.3.1 Guardedness and the Guarded Fragment

With a relational structure A = (A, (RA
i )i∈I ) with relation symbols Ri of arity ri ,

we associate a hypergraph of guarded sets, and a notion of guarded tuples as follows.
It will be convenient to use the notation [a] := {a1, . . . , ak} to denote the set of
components of the tuple a = (a1, . . . , ak) ∈ Ak .

Definition 1.9 A subset s ⊆ A is guarded in A if s is a singleton set or if there is
some tuple a ∈ RA

i for one of the Ri such that s ⊆ [a]. The hypergraph of guarded
sets of A is the hypergraph H(A) := (A, S[A]) with the set S of all guarded subsets
of A as the set of hyperedges. A tuple a ∈ Ak is a guarded tuple if [a] ∈ S(A).

The guarded fragment of first-order logic essentially restricts the relevant
assignments of first-order variables to guarded tuples. The actual definition is in
terms of the restriction of all quantification by means of an explicit relativisation to
some guarded tuples. It thus allows only outermost free variables to be instantiated
by unguarded assignments, but for many purposes this does not matter (since outer
boolean combinations could be treated separately).

Definition 1.10 For arbitrary relational vocabularies, the guarded fragment GF ⊆
FO is the syntactic fragment of FO generated from atomic formulae by the boolean
connectives and quantifications of the form

∀y
(
α(xy) → ϕ(xy)

)
, and, dually, ∃y

(
α(xy) ∧ ϕ(xy)

)
,

where ϕ(xy) ∈ GF has free variables among those listed in xy and α(xy) is an atomic
formula in which all the listed variables occur. The formula α is called the guard of
this quantification.1 The semantics of GF is that of FO.

1 If xy consists of a single variable symbol z, α can be the equality z = z.
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The definition generalises the relativised quantification of modal logic, so that it
is clear that, w.r.t. expressiveness, ML ⊆ GF ⊆ FO, and in fact even the extension
of basic modal logic by global and backward modalities is naturally covered by GF.

1.3.2 Guarded Bisimulation and Model Theory

Just as the model theory of modal logics is governed by (modal) bisimulation
equivalence, the nice model-theoretic properties of the guarded fragment are closely
related to its invariance under guarded bisimulation equivalence. Guarded bisimula-
tion equivalence ∼g and its finite approximations ∼�

g exactly cover the same station

for GF as do ∼ and ∼� for ML—also w.r.t. their nature as the appropriate specialisa-
tions of the first-order framework of back&forth games to the quantification pattern
of GF.

The positions of the guarded bisimulation game on structures A and B are partial
isomorphisms between A and B whose domain and image are guarded sets2; we
use a tuple-based notation p : a �→ b to indicate a partial map from A to B with
domain [a] and image [b] where bi = p(ai ). One may also think of a placement
of matched pebbles on a and b; the requirements are that a and b are guarded and
that p : A � [a] � B � [b] is an isomorphism of induced substructures (p a partial
isomorphism, a and b atom equivalent). Then the available moves for the first player,
e.g. on the A-side, are to guarded tuples a′ together with some specified sub-tuple
a0 of both a and a′ that stay put—and the response by the second player needs to
keep the sub-tuple b0 := p(a0) fixed and produce an extension b′ such that the new
p′ : a′ �→ b′ is again a partial isomorphism between A and B.

An alternative set-based view has partial isomorphisms between guarded
subsets as the positions; the moves correspond to transitions from one guarded sub-
set to another, with a specified (possible empty) subset of their intersection to be
respected by the second player’s response. This view highlights the hypergraph-
theoretic nature, and indeed can be cast as a notion of hypergraph bisimulation that
additionally needs to respect relational content.

Definition 1.11 For two relational structures A and B (of the same vocabulary), a
set of partial maps Z between A and B is a guarded bisimulation if it satisfies the
following, for every p : a �→ b in Z :

(i) (atom eq.): p : A�a � B�b is a partial isomorphism;
(ii) (back): for every guarded tuple b′ of B and b0 with [b0] ⊆ [b] ∩ [b′], there is

some guarded tuple a′ ofA and p′ : a′ �→ b′ in Z such that p′−1(b0) = p−1(b0);
(iii) (forth): for every guarded tuple a′ of A and a0 with [a0] ⊆ [a] ∩ [a′], there is

some guarded tuple b′ of B and p′ : a′ �→ b′ in Z such that p′(a0) = p(a0).

2 One should except the initial position from the guardedness requirement in order to match the
liberal treatment of (outermost) free variables in GF.
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We write A, a ∼g B,b if there is a guarded bisimulation Z containing p : a �→ b.
Finite approximations ∼�

g are introduced in complete analogy with the modal ∼ and

∼�, and similarly correspond to the existence of winning strategies for � rounds in the
guarded bisimulation game. As in the modal case, we introduce ∼ω

g as the common

refinement of the finite levels ∼�
g.

One obtains the natural variant of the first-order Ehrenfeucht–Fraïssé and Karp
theorems for GF. The equivalence relations ≡�

GF and ≡GF are introduced as levels
of elementary equivalence in GF, where the � in ≡�

GF refers to the nesting depth of
guarded quantification (which is typically lower than the first-order quantifier rank,
as guarded quantification may quantify over tuples in a single step). The relation
≡∞

GF similarly denotes equivalence w.r.t. the infinitary variant of GF, with infinite
disjunctions and conjunctions.

Theorem 1.12 (Ehrenfeucht–Fraïssé and Karp theorems for GF) In restriction to
finite relational vocabularies, and for every � ∈ N:

A, a ∼�
g B,b if, and only if, A, a ≡�

GF B,b.

Consequently, in restriction to finite vocabularies A, a ∼ω
g B,b if, and only if,

A, a ≡GF B,b. Without any restriction on the size of the vocabulary,

A, a ∼g B,b if, and only if, A, a ≡∞
GF B,b.

1.3.3 Guarded Bisimulation Invariance

The following is an immediate consequence of the guarded Ehrenfeucht–Fraïssé
theorem.

Corollary 1.13 The semantics of ϕ ∈ GF is invariant under ∼g.

The expressive completeness assertion in the following characterisation theorem
of Andréka–van Benthem–Németi rests on a non-trivial but canonical classical proof
by means of compactness and saturation. It provides a beautiful analogue and gen-
eralisation of van Benthem’s semantic characterisation of ML ⊆ FO, Theorem 1.6.

Theorem 1.14 (Andréka–van Benthem–Németi) The guarded fragment is semanti-
cally characterised as a fragment of first-order logic by its invariance under guarded
bisimulation equivalence: FO/∼g ≡ GF. In more detail, for every first-order formula
ϕ(x) in a relational vocabulary, the following are equivalent:

(i) ϕ is invariant under guarded bisimulation.
(ii) ϕ is logically equivalent to a formula of GF.
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Moreover, a guarded analogue of the Janin–Walukiewicz Theorem (Theorem 1.8)
can also be obtained via a natural translation between the guarded and modal worlds.
The logics involved are the following: guarded second-order logic GSO, which here
takes the place of MSO, is the natural restriction of second-order logic that allows
to quantify over sets of guarded tuples; guarded fixpoint logic μGF is the extension
of GF by constructors for least and greatest fixed points.

Theorem 1.15 (Grädel–Hirsch–Otto) GSO/∼g ≡ μGF, i.e., For every GSO-
formula ϕ(x), the following are equivalent:

(i) ϕ is invariant under guarded bisimulation equivalence.
(ii) ϕ is logically equivalent to a formula of μGF.

The translations in [14] that directly reduce this assertion to Theorem 1.8 involve
an interesting parallelism between modal and guarded tree unfoldings.

Guarded tree unfoldings of relational structures A = (A, (RA)) can be con-
structed from a tree unfolding of the associated transition system I (A) = (S[A] ∪
{∅}, E) where S[A] is the set of guarded subsets of A and E = {(s, s′) : s �= s′, s =
∅ or s ∩ s′ �= ∅}.3 From a tree unfolding I ∗ := I ∗

∅ of I (A) from the root node ∅,
with natural projection π : I ∗ → S(A) ∪ {∅} we reconstruct a relational structure

Â = ( Â, (RÂ))

as follows. The universe Â is the quotient of the disjoint union of copies of sets
π(ŝ) ⊆ A, ⋃

ŝ∈I ∗
{ŝ} × π(ŝ)

w.r.t. the equivalence relation that identifies a ∈ π(ŝ1) with a ∈ π(ŝ2) if, and only
if, ŝ2 and ŝ1 are connected in I ∗

∅ by a path whose π -projection involves just edges
e = (s, s′) ∈ E for which a ∈ s ∩ s′. We denote the equivalence class of (ŝ, a) for
a ∈ π(ŝ) by [ŝ, a], and the set {[ŝ, a] : a ∈ π(ŝ)} ⊆ Â by [ŝ]. The map that sends
the equivalence class [ŝ, a] of a ∈ ŝ to a ∈ A is the natural projection associated
with the unfolding, for simplicity also denoted π : Â → A. Locally, in restriction to
every [ŝ] ⊆ Â, this projection π is a bijection onto the corresponding guarded subset
s = π(ŝ) of A. Relations R are interpreted in Â such that precisely the sets [ŝ] ⊆ Â
are guarded subsets, and such that π : Â → A is a global relational homomorphism
and a local isomorphism in restriction to every subset [ŝ].
Definition 1.16 The guarded tree unfolding of a relational structure A = (A, (RA))

is the structure Â = ( Â, (RÂ)) as constructed from a tree unfolding of the intersection
graph I (A) above, together with the natural homomorphic projection π : Â → A,
which bijectively associates the guarded subsets [ŝ] ∈ S(Â) with their underlying
guarded subsets s = π(ŝ) ∈ S[A].

3 We attach the empty set as a root to I (A) and join it to every guarded set to obtain a natural tree
unfolding for our purposes, rather than a forest.
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It is straightforward to check that the restrictions of the projection homomorphism
π : Â → A to the guarded subsets of Â form a guarded bisimulation. Therefore, for
any guarded subset [ŝ] of Â above the guarded subset s = π(ŝ) of A,

Â, [ŝ] ∼g A, s,

where we allow ourselves to write just the guarded sets [ŝ] and s, instead of
π -compatible listings of their elements as tuples.

Tree unfoldings as just defined are tree-like also in the sense that their hypergraphs
of guarded subsets S[Â] are acyclic. There are several equivalent characterisations of
the relevant notion of hypergraph acyclicity (also called α-acyclicity in the literature,
cf. [4, 9]): in terms of tree decompositions that use guarded subsets (hyperedges) as
bags; in terms of reducibility by means of reduction steps that allow for

(i) removal of a vertex (from the universe and every hyperedge) provided it is
contained in at most one hyperedge, and

(ii) retraction of a hyperedge provided it is fully contained in some other hyperedge;

and in terms of the local criteria of conformality and chordality for the hypergraph
and its associated Gaifman graph.

Definition 1.17 For a hypergraph H = (A, S), define the associated Gaifman graph
G(H) to have vertex set A and an edge between distinct a, a′ ∈ A precisely if a and
a′ occur together in some hyperedge s ∈ S.

The hypergraph H = (A, S) is acyclic if it is both

(i) conformal: each clique in G(H) is contained in a single hyperedge, and
(ii) chordal: every cycle in G(H) of length greater than 3 has a chord, i.e., G(H)

has no induced subgraphs isomorphic to the k-cycle for k > 3.

Since every relational structure A is guarded bisimulation equivalent to its guarded
tree unfolding, and as GF is invariant under guarded bisimulation equivalence, we
find that every satisfiable formula of GF has an acyclic model. This was first stated
in [12] as the generalised tree model property of GF.

Corollary 1.18 (Grädel) Every logic that is invariant under guarded bisimulation
equivalence has this generalised tree model property: every satisfiable formula has
a model whose hypergraph of guarded subsets is acyclic, i.e., a model that admits a
tree-decomposition with guarded subsets as bags.

For a relational vocabulary of width w, this further entails that every satisfiable
formula of GF or μGF has a (countable) model of tree width w − 1.

1.3.4 Decidability and Complexity for GF and Its Extensions

As in the case of modal logics, the tree model property for guarded models paves
the way to decidability and automata based decision procedures. These do not only
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work for the guarded fragment GF in its basic form, but also for guarded fixed-point
logic μGF and for other variants of guarded logics based on more liberal notions of
guarded sets.

Indeed, structures of bounded tree width can be uniformly represented by standard
trees, in the graph-theoretic sense, with a bounded set of labels. More precisely, given
a tree decomposition of width k − 1 of a relational τ -structure D we fix a set K of
2k constants and assign to every element d ∈ D a constant ad ∈ K such that
distinct elements living at adjacent nodes in the tree decomposition are represented
by distinct constants. On the tree T underlying the decomposition of D we define
monadic predicates Oa (for a ∈ K ) and Ra (for m-ary R ∈ τ and a ∈ K m) where
Oa is true at those nodes of T where an element represented by a occurs, and Ra is
the set of nodes of T where a tuple (d1, . . . , dm) ∈ R occurs that is represented by
a. We thus obtain a tree structure T (D) which has (beyond the edge relation of the
tree) only monadic predicates and which carries all structural information about D
and its tree decomposition.

On the other hand, a tree T with such monadic relations Oa and Ra is indeed a
tree representation T (D) for some τ -structure D if, and only if, it satisfies certain
consistency axioms that turn out to be first-order definable.

There are several options to exploit this for proving decidability and complexity
results. The simplest way to prove decidability of guarded fixed-point logic μGF is
by an interpretation into SωS, the monadic logic of the countable branching tree.
That is, with every formula ϕ(x1, . . . xm) of μGF and every tuple a ∈ K m one can
associate a monadic second-order formula ψa(z) that describes on the tree structure
T (D) the same properties of guarded tuples that ϕ(x̄) does on D, in the following
sense: if d is a guarded tuple of D living at node v of the tree T , and if a represents
d at v, then

D |= ϕ(d) ⇐⇒ T (D) |= ψa(v).

On the basis of this translation and of the facts that the consistency axioms for
tree representations are first-order, that μGF (and least fixed point logic in general)
has the Löwenheim-Skolem property, and that the monadic theory of countable trees
is decidable, it is then not difficult to prove that the satisfiability problem for μGF is
decidable.

Instead of the reduction to the monadic second-order theory of trees, one can define
a similar reduction to the modal μ-calculus with backward modalities. The decid-
ability (and Exptime-complexity) of this logic has been established by Vardi [30]
by means of two-way alternating automata. To make such a reduction work, one has
to observe that the consistency axioms for tree representations can be formulated in
this logic (in fact, it is sufficient to use basic modal logic with a global modality and
backward modalities) and that least and greatest fixed points in μGF on D can be
encoded by simultaneous modal fixed-point formulae on T (D).

It should be pointed out that the usual modal μ-calculus, without backward
modalities, does not seem to be sufficient for such an approach. Indeed, besides
the tree model property, the modal μ-calculus also has the finite model property,
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while one easily obtains formulae that have only infinite models in μGF and in the
μ-calculus with backward modalities.

Finally, the satisfiability problem for guarded fixed-point logic can also be solved
by direct application of suitably tailored automata-theoretic methods. The general
idea is to associate with every sentence ψ ∈ μGF an alternating tree automaton
Aψ that accepts precisely the (tree descriptions of the) like-tree models of ψ . This
reduces the satisfiability problem of ψ to the emptiness problem of the automaton,
a problem that is solvable in exponential time with respect to the number of states
of the automaton. This was the approach taken in [15] where the decidability of
μGF had first been established. Instead of Vardi’s two-way automata, Grädel and
Walukiewicz use a different variant of alternating automata that work on trees of
arbitrary, finite or infinite, degree and do not make use of the orientation of edges.
The behaviour of such an automaton on a given tree structure is described by a parity
game, and by means of the positional determinacy of these games one can reduce the
input trees to trees of bounded branching (and the automata to those used by Vardi
for the decidability of the μ-calculus with backward modalities). The size of the
automaton Aψ is bounded by |ψ |2k log k where k is the width of ψ . For the following
see [15].

Theorem 1.19 (Grädel–Walukiewicz) The satisfiability problem for μGF is decid-
able, and complete for 2Exptime. For μGF-sentences of bounded width the satisfi-
ability problem is Exptime-complete.

It is worth pointing out that the same complexity bounds also hold for GF, the
guarded fragment without fixed points [12]. The double exponential complexity of
GF andμGF may seem high (and disappointing for practical applications). However,
it is not really surprising, since these logics admit predicates of unbounded arity
(whereas modal logics are evaluated on graph-like structures). Even a single predicate
of arity n on a universe with just two elements admits 22n

types already at the
atomic level, so one cannot really expect lower complexity bounds. In many practical
applications, the underlying vocabulary will be fixed and the arity therefore bounded.
In such cases the satisfiability problems for GF and μGF are in Exptime and thus
on the same level as for most modal logics.

Beyond GF and μGF the general approach outlined here also works for other,
more general, notions of guarded logics based on more liberal definitions of guard-
edness. This includes loosely guarded, packed, or clique-guarded logics. While
the classical notion of a guarded set means that the entire set is covered by one
atomic fact, the most liberal notion, of a clique-guarded set, just requires that any
two elements of the set coexist in some atomic fact, which means that the set is a
clique in the Gaifman graph of the structure. Most of the algorithmic results on GF
and μGF can be extended to the clique-guarded extensions CGF and μCGF (with
appropriate modifications, in particular for the notion of bisimulation). For details,
see [13].
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1.3.5 Guarded Model Constructions

Guarded tree unfoldings provide one example of a specific form of model construc-
tion, or in this case: model transformation, that is tailored for the model theoretic
analysis of guarded logics. The requirements of acyclicity and finiteness will in gen-
eral be incompatible; we shall return to the interesting question how much acyclicity
can in general be achieved in finite models further below. For a start, however, we
consider the finite model property for the guarded fragment, disregarding the issue of
acyclicity. The following proof idea stems from [12] and uses a nice combinatorial
result, about finite extension properties of partial isomorphisms due to Herwig [16].

Theorem 1.20 (Herwig) Any finite relational structure A admits a finite extension
Ā ⊇ A (A becomes an induced substructure of Ā) with the property that every
partial isomorphism p : A � dom(p) � A � image(p) extends to (is induced by) an
automorphism p̄ of Ā.

It is easy to see that any Herwig extension Ā of A can be thinned out so that each
RĀ is generated by the orbit of RA under the automorphism group. Let us call such
a Herwig extension special.

Special Herwig extensions of sufficiently rich finite substructures A ⊆ B are ∼�
g-

equivalent to B itself; this is the core of the finite model property for GF as proved
in [12], see Theorem 1.22.

Lemma 1.21 Let B be a relational structure, A = B� A an induced finite substruc-
ture on a subset A ⊆ B that is sufficiently rich to contain, for every guarded tuple b
of B, at least one realisation of that ∼�

g-type: there is a ∈ A such that B, a ∼�
g B,b.

Then any special Herwig extension Ā ⊇ A is ∼�
g-equivalent to B in the sense that

(i) Ā ∼�
g B;

(ii) for every guarded tuple a ∈ A: Ā, a ∼�
g B, a.

Proof Using the fact that every guarded tuple in Ā is in the orbit of some guarded
tuple a of A under an automorphism of Ā (because Ā is special), and that, up to
∼�

g, every guarded tuple of B is represented in A ⊆ B, claim (i) directly follows
from claim (ii). For claim (ii) it essentially suffices to observe that every back&forth
requirement for a that can be met in B can also be met in Ā, as follows.

Let a ∈ A be guarded, b guarded in B, and c a tuple in the intersection [a] ∩ [b].
By the richness assumption on A, there is some a′ ∈ A such that B, a′ ∼�

g B,b.
This implies in particular that the tuple c′ in [a′] corresponding to c in [a] ∩ [b] is
linked to c by a partial isomorphism p of A. The automorphism p̄ of Ā then shows
that p̄(a′) overlaps with a in the tuple c in Ā (just as b overlaps with a in c in B).
By induction on � for claim (ii), i.e. assuming claim (ii) at level �− 1, we find

Ā, p̄(a′) � Ā, a′ ∼�−1
g B, a′ ∼�

g B,b.
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This, for all available b in B, shows that Ā, a ∼�
g B, a as required for (ii) at

level �. �

Claim (i) of the lemma directly yields the finite model property for GF, since any
ϕ ∈ GF of nesting depth � is preserved under ∼�

g, and since every B,b |= ϕ has a
finite substructure A ⊆ B that contains at least one realisation of each one of the
finitely many ∼�

g-types realised by guarded tuples of B.

Theorem 1.22 (Grädel) GF has the finite model property: every satisfiable ϕ ∈ GF
has a finite model.

Better bounds on the size of small models for a given satisfiable ϕ ∈ GF are
obtained by a more recent construction in [2], which builds a small model not directly
from a given (infinite) model, but from a complete abstract description of the required
∼�

g-type to be realised.

Proposition 1.23 (Bárány–Gottlob–Otto) Every satisfiable ϕ ∈ GF(σ ), where σ is
any relational vocabulary of width w, has a small finite model whose size can be
bounded exponentially in the length of ϕ, for fixed w; the dependence on w, on the
other hand, is doubly exponential.

The core construction of [2], of which the above really is a technical corollary,
yields finite guarded bisimilar covers that are weakly N -acyclic in the sense of the
following definitions.

Definition 1.24 A guarded bisimilar covering of a relational structure A is a
homomorphism π : Â → A from some relational structure Â (the cover) onto A,
such that the restrictions of π to guarded subsets of Â induce a guarded bisimulation.

Guarded tree unfoldings are natural examples in point; however, we are here
mostly interested in coverings of finite A by finite covers Â. The restrictions of
the cover homomorphism π to guarded subsets must in particular be partial iso-
morphisms. The forth-property is thus subsumed in the requirement that π is a
homomorphism. The back-property corresponds to a lifting property familiar from
topological or geometric notions of coverings.4

Guarded tree unfoldings provide fully acyclic coverings, albeit infinite ones.
One useful approximation to acyclicity in finite covers is the following from [2].

Definition 1.25 A covering π : Â → A is weakly N-acyclic if every induced sub-
structure of Â of size up to N is tree-decomposable with bags that project onto
guarded subsets of A under π .

Proposition 1.26 (Bárány–Gottlob–Otto) For every N ∈ N, each finite relational
A admits weakly N-acyclic coverings by finite structures.

4 It may be worth to point out that, unlike the finite bisimilar coverings obtained for graph-like
structures in [18], the bisimilar coverings of relational structures or of hypergraphs will necessarily
be branched coverings, and do not provide unique liftings.
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An analysis of homomorphisms h : C → Â, from structures C of size up to
N into a weakly acyclic cover π : Â → A, shows that A must satisfy one of a
finite list of potential GF-descriptions of all possible acyclic homomorphic images
of C.5 If A does not satisfy this GF-expressible finite ‘disjunction of acyclic con-
junctive queries’, then Â cannot even admit cyclic homomorphic images of C.
Together with existence of finite, weakly N -acyclic covers, this argument from
[2] yields a considerable strengthening of the finite model property for GF, as
well as natural applications to database issues regarding conjunctive queries under
GF-definable constraints.

For the following, a class C of σ -structures is said to be defined in terms of
finitely many forbidden homomorphisms if, for some finite list of finite σ -structures
C1, . . . ,Cm , the class C consists of precisely those σ -structures C that admit no
homomorphisms h : Ci → C for 1 � i � m.

Corollary 1.27 (Bárány–Gottlob–Otto) GF has the finite model property in
restriction to any class C of relational structures that is defined in terms of finitely
many forbidden homomorphisms: for any such class C , ϕ has a model in C if, and
only if, it has a finite model in C .

Interestingly, this strengthening of the finite model property for GF can also
be obtained from a corresponding strengthening of Herwig’s theorem. We briefly
present this new alternative proof from [24], which may be of independent systematic
interest.6 The Herwig–Lascar theorem [17] asserts a finite model property for the
extension task for partial isomorphisms over classes with finitely many forbidden
homomorphisms. An alternative proof of the Herwig–Lascar theorem itself, which
is inspired by hypergraph constructions related to the exploration of the finite model
theory of GF, see Sect. 1.3.6, can be found in [22, 24, 25].

Theorem 1.28 (Herwig–Lascar) Let the class of relational structures C be defined
in terms of finitely many forbidden homomorphisms. Suppose that a finite structure
A ∈ C has a possibly infinite extension B ⊇ A in C that extends every partial
isomorphism of A to an automorphism of B. Then A also possesses a finite extension
with this property in C .

Just as Lemma 1.21 links Herwig’s theorem to the basic finite model property
for GF, the following links the Herwig–Lascar theorem to the stronger finite model
property for GF expressed in Corollary 1.27.

A structure B is ∼�
g-homogeneous if any guarded tuples b,b′ in B such that

B,b ∼�
g B,b′ are related by an automorphism of B.

Lemma 1.29 Let C be a class of relational structures defined in terms of finitely
many forbidden homomorphisms. Let B ∈ C be ∼�

g-homogeneous. Let B′ be the

5 Caveat: π(h(C)) ⊆ A need not itself be acyclic.
6 It should be noted that this stand-alone argument does not support the complexity bounds that
flow from the more constructive proof of Corollary 1.27 in [2].
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expansion of B by a new relation for each one of the finitely many ∼�
g-types realised

in B. Let A′ = B′ � A be large enough to contain, for every guarded tuple b of B,
at least one realisation of that ∼�

g-type.

Then A′ has a special Herwig extension Ā′ ⊇ A′ in C that is ∼g-equivalent to
B′ in the sense that Ā′ ∼g B′ and Ā′, a ∼g B′, a for every guarded tuple a ∈ A.

Proof In view of Lemma 1.21 and Theorem 1.28 it suffices to show that the extension
task for A′ has some, possibly infinite, solution in C . But B′, being homogeneous,
is such an infinite solution. �

Proof (of Corollary1.27) Let C be defined by the condition that there are no homo-
morphic images of the finite structures C1, . . . ,Cm . The class C0 ⊇ C of structures
that admit no acyclically embedded homomorphic images of the Ci is definable in
GF by some γ ∈ GF of guarded nesting depth �, for some �. To find finite models
of ϕ ∈ GF in C , we moreover choose � greater or equal to the nesting depth of ϕ. If
ϕ has an infinite model in C , then a ∼�

g-homogeneous infinite model B of ϕ in C
can be obtained as a suitable regular tree-like model of ϕ ∧ γ (which in turn could
be obtained from an arbitrary finite model of ϕ ∧ γ ). An application of the lemma
then yields a finite model in C . �

Beside the notion of weakly N -acyclic coverings from [2], there is the stronger
notion of N -acyclic coverings from [21], which rules out any small cyclic sub-
structures in the cover. This yields an even stronger finite model property for GF
and is essential for an expressive completeness proof for GF in finite model the-
ory, as sketched in the next section. More canonical constructions of N -acyclic
coverings and related hypergraph constructions have recently been explored in
[22, 25]. But unlike the case of weakly N -acyclic covers, the known constructions
of fully N -acyclic finite covers do not provide feasible size bounds.

Definition 1.30 A guarded bisimilar covering π : Â → A is N -acyclic if every
induced substructure of size up to N of the cover Â is acyclic.

Proposition 1.31 (Otto) For every N ∈ N, each finite relational A admits
N-acyclic coverings by finite structures.

Corollary 1.32 (Otto) GF has the finite model property in restriction to any class
C of relational structures that is defined in terms of finitely many forbidden cyclic
substructures.

1.3.6 Expressive Completeness

The N -acyclic finite guarded bisimilar covers of Proposition 1.31 are also essential
for the proof of the finite model theory version of Theorem 1.14. The issue at stake is
the expressive completeness assertion, that a first-order definable property of guarded
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tuples in (finite) relational structures is expressible in GF (over all finite structures)
if it is closed under guarded bisimulation equivalence (among finite structures).
For both, the classical and the finite model theory reading, the Ehrenfeucht–Fraïssé
theorem for GF shows that it suffices to prove the following, which may be read as
a compactness property for (∼�

g)�∈N versus ∼g: for any ϕ(x) ∈ FO (in an explicitly
guarded tuple x of free variables),

(∗)
{
ϕ(x) invariant under ∼g ⇒
ϕ(x) invariant under ∼�

g for some � ∈ N.

The classical proof typically achieves this through

(i) a compactness argument that reduces (∗) to: invariance under ∼g implies
invariance under ∼ω

g (i.e., ≡GF); and
(ii) a proof of claim (i) through an upgrading argument involving saturated models:

for A ≡GF B there are A∗ ≡FO A and B∗ ≡FO B for which (by saturation)
A∗ ≡GF B∗ implies A∗ ∼g B∗; the claim is then apparent from this diagram:

For the finite model theory version, a passage through the necessarily infinite
companion structures, which are involved in both parts of this classical argument, is
not supported by the assumptions.

Instead, the upgrading needs to be based on a more constructive approach to
model transformations, and focuses on a concrete level � in (∗) that is determined
by the width of the vocabulary and the quantifier rank q of the given ϕ. It follows
this pattern:

Here Â and B̂ are obtained as (finite) guarded bisimilar covers of A and B,
respectively, that need to be sufficiently acyclic and finitely saturated w.r.t. multi-
plicities: a certain level of N -acyclicity is necessary because Â and B̂ may necessar-
ily have cycles, and differences w.r.t. short cycles would be FO-expressible at low
quantifier rank; similarly for differences w.r.t. small branching degrees between rela-
tional hyperedges, which can also not be controlled in GF.

Technically rather intricate arguments in [21] use Proposition 1.31 as a starting
point to provide companions Â and B̂ that support this proof idea.
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Theorem 1.33 (Otto) FO/∼g ≡ GF, also in the sense of finite model theory: For
every first-order formulaϕ(x) in a relational vocabulary, the follwong are equivalent:

(i) ϕ is invariant under guarded bisimulation among finite structures.
(ii) ϕ is logically equivalent over all finite structures to a formula of GF.

1.4 Guarded Negation Bisimulation

One natural decidable fragment of first-order logic that stands out because of its con-
siderable algorithmic importance, is the positive existential fragment: ∃posFO ⊆ FO
is generated from atomic formulae by conjunction, disjunction and existential quan-
tification. It is semantically characterised, as a fragment of FO, by preservation under
homomorphisms. This characterisation is known as the Lyndon–Tarski theorem in
classical model theory; for finite model theory, it was proved by Rossman in [29],
with characteristically different techniques that also shed new light on the classical
version. Any ∃posFO-formula can be equivalently re-written as a disjunction over
existentially quantified conjunctions of atoms—so that it corresponds, in database ter-
minology, to a union of conjunctive queries. And a conjunctive query asserts the exis-
tence of a homomorphism: consider a conjunctive query ϕ = ϕ(x) = ∃y

∧
i αi(zi)

with relational atoms αi (zi ) for tuples of variables zi from [xy]. With the template∧
i αi (zi ) associate a relational structure Cϕ whose universe is the set of variables

[xy], and whose relations are interpreted by putting zi into the relation involved in the
atom αi . Then A, a |= ϕ if, and only if, there is a homomorphism h : Cϕ → A that
maps x to a. Interestingly, ϕ can equivalently be expressed in GF (i.e., is invariant
under guarded bisimulation equivalence) if, and only if, Cϕ is acyclic.

∃posFO ⊆ FO or the formalism of (unions of) conjunctive queries are closed
under nesting, but closure under (unconstrained) negation generates all of relational
FO and becomes undecidable for satisfiability. The guarded fragment GF ⊆ FO, on
the other hand, is closed under negation, but not under (unconstrained) nesting.

The introduction of the guarded negation fragment GN ⊆ FO in [3] combines
the innocuous ingredients in GF and ∃posFO with the natural constraints to produce
a common extension of GF and ∃posFO that retains many of the good features, most
notably decidability.

We follow the pattern of the treatment so far and put the appropriate notions
of back&forth equivalence centre-stage. The characteristic feature is the interleav-
ing of (local, and possibly size-bounded) homomorphisms with modal or guarded
bisimulation.
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1.4.1 Homomorphisms and Bisimulation

We start with a back&forth equivalence that interleaves homomorphisms with modal
bisimulation; this will provide the Ehrenfeucht–Fraïssé notion and semantic charac-
terisation of the unary negation fragment UN ⊆ FO of [10], a modal precursor to
the guarded negation fragment GN ⊆ FO of [3].

A unary negation bisimulation relation between relational structures A and B is
a set Z ⊆ A × B of positions, which are just pairs of related vertices in A and B as
in modal bisimulation, subject to atom equivalence and more complex back&forth
conditions involving homomorphisms. For all (a, b) ∈ Z :

(i) (atom eq.): A�{a} � B�{b};
(ii) (hom-back): for every B0 ⊆ B there is a homomorphism h : B� B0 → A such

that (h(b), b) ∈ Z for all b ∈ B0, and h(b) = a if b ∈ B0;
(iii) (hom-forth): for every A0 ⊆ A there is a homomorphism h : A� A0 → B such

that (a, h(a)) ∈ Z for all a ∈ A0, and h(a) = b if a ∈ A0.

We write A, a ∼hom B, b if (a, b) ∈ Z for some unary negation bisimulation
relation Z between A and B; A, a ∼�

hom B, b for the finite approximation corre-
sponding to a strategy for the second player for � rounds in the natural bisimulation
game associated with this back&forth scenario.

A generalisation of this idea leads from an equivalence between individual ele-
ments (as in modal bisimulation) to an equivalence based on guarded tuples (as
in guarded bisimulation), similarly interleaving bisimulation with local homomor-
phisms: this is the notion of guarded negation bisimulation equivalence from [3].

A guarded negation bisimulation relation between relational structures A and B
is a set Z of partial isomorphisms ρ : a �→ b between guarded tuples or subsets, such
that, for all ρ : a �→ b in Z :

(i) (atom eq.): ρ : A�a � B�b (isomorphism of guarded substructures);
(ii) (hom-back): for all B0 ⊆ B there is a homomorphism h : B � B0 → A that is

compatible with the restriction of ρ−1 to B0, and such that ρ′ : h(b′) �→ b′ is
in Z for all guarded tuples b′ from B0;

(iii) (hom-forth): for all A0 ⊆ A there is a homomorphism h : A � A0 → B that is
compatible with the restriction of ρ to A0, and such that ρ′ : a′ �→ h(a′) is in
Z for all guarded tuples a′ from A0.

We write A, a ∼ghom B,b and A, a ∼�
ghom B,b to denote guarded bisimulation

equivalence and its finite approximations.
Simple size-bounded versions of ∼hom and ∼ghom and their finite

approximations are technically useful: we restrict conditions (hom-back) and
(hom-forth) to subsets B0 ⊆ B and A0 ⊆ A of size up to k, for some fixed
k ∈ N. We write e.g. A, a ∼ghom;k B,b and A, a ∼�

ghom;k B,b in connection
with this restricted notion of k-bounded guarded negation bisimulation, and simi-
larly, e.g., A, a ∼hom;k B, b for a corresponding notion of k-bounded unary negation
bisimulation.
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We discuss briefly the extensions of modal logic and the guarded fragment that
are obtained by closure of the existential positive fragment of FO under negation in
suitably restricted settings:

• negation of ‘unary’ formulae in a single free variable for the unary negation
fragment [10];

• negation of ‘guarded’ formulae in an explicitly guarded tuple of free variables for
the guarded negation fragment [3].

Definition 1.34 The formulae of the unary negation fragment UN ⊆ FO are
generated from the atomic formulae by positive boolean connectives, existential
quantification, and negation on formulae in at most one free variable.

It is obvious that, for suitable modal vocabularies, ML ⊆ UN and that generally
∃posFO ⊆ UN; both inclusions are easily seen to be strict (for non-trivial vocabular-
ies). It turns out that formulae of UN (in at most a single free variable) are preserved
under unary negation bisimulation, and in fact this property characterises the unary
negation fragment as a fragment of FO, classically. See [10] for this and many related
model-theoretic results, also regarding the fixpoint extension of UN and including
decidability for satisfiability and finite satisfiability.

Definition 1.35 The formulae of the guarded negation fragment GN ⊆ FO are
generated from the atomic formulae by positive boolean connectives, existential
quantification, and negation on formulae in an explicitly guarded tuple of free
variables.

It is not hard to see that UN ⊆ GN and GF ⊆ GN, and that these inclusions are
strict in general. Formulae of GN (in an explicitly guarded tuple of free variables)
are preserved under guarded negation bisimulation equivalence; this preservation
property also characterises GN as a fragment of FO, in the sense of classical model
theory, as shown in [3].

For useful Ehrenfeucht–Fraïssé correspondences, which rely on the natural notion
of nesting depth in GN and UN and induce equivalence relations of finite index, we
need to bound the size of the existential quantifications (conjunctive queries) by
some width parameter. For the games and bisimulation notions this restriction leads
to the size bounded equivalences like ∼�

ghom;k. For the logics, we correspondingly
let GN[k] ⊆ GN stand for those formulae that can be generated with existential
quantifications over up to k variables at a time. To avoid pathologies, we shall always
assume that k is no less than the width of the vocabulary.

It is then not hard to see that equivalence w.r.t. GN[k] up to nesting depth � and
∼�

ghom;k are related in an Ehrenfeucht–Fraïssé correspondence. The theorem gives
an indicative example; its variants for UN and also for infinitary versions of UN and
GN in the style of Karp theorems are straightforward.

Theorem 1.36 (Ehrenfeucht–Fraïssé for GN[k]) In restriction to finite relational
vocabularies, fixed k ∈ N, and for every � ∈ N:

A, a ∼�
ghom;k B,b if, and only if, A, a ≡�

GN[k] B,b.
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1.4.2 Towards a (Finite) Model Theory of Guarded Negation

We summarise some key techniques and a few further results for the model theory of
GN and GN[k], especially pertaining to the finite model property and to the expressive
completeness concern in finite model theory. We concentrate on guarded negation
rather than unary negation, since this is the richer of the two settings; technically it
is, moreover, more directly related to one of our main themes, viz., to the interesting
passage from graph-like structures to general relational structures with an emphasis
on the hypergraph of guarded subsets.

Theorem 1.37 (Bárány–ten Cate–Segoufin) GN has the finite model property.

The argument from [3] is based on a reduction from GN-satisfiability to satis-
fiability of GF under constraints imposed by forbidden homomorphisms, and thus,
essentially, a reduction to Corollary 1.27.

The semantics of a formula ϕ(x) ∈ GN (in explicitly guarded free variables x)
can be translated into a collection of auxiliary specifications that subject certain
guarded tuples a in a prospective model A to positive or negative requirements w.r.t.
homomorphisms:

• (pos. hom.) requiring the existence of a homomorphism h : C, c → A, a, for
certain finite templates C, c;

• (neg. hom.) ruling out the existence of any homomorphism h : C, c → A, a, for
certain finite templates C, c.

In both cases, the templates C, c are abstracted from the underlying conjunctive
queries or positive existential parts (in a suitable normal form). A standard process
of relational Skolemisation thus translates ϕ(x) into a positive boolean combination
of requirements of the form (pos. hom.) and (neg. hom.) for all tuples in certain
(auxiliary) relations. A further crude Skolemisation step serves to provide realisations
of positive requirements in image substructures that are guarded as a whole by new
auxiliary relations; this puts all (pos. hom.) requirements into GF, and leaves just the
negative requirements of the form (neg. hom.) to cope with. But this is precisely the
situation in which Corollary 1.27 yields finite models whenever there are any models.

The requirements for an expressive completeness proof for GN[k] in relation to
all ∼ghom;k-invariant FO-definable properties (of guarded tuples), which is meant
to work in finite model theory, are considerable higher. The basic idea again is to
use an upgrading through ∼ghom;k-compatible model transformations that work in
finite structures. I.e., we want to follow this pattern, presented without the guarded
parameter tuples:
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More precisely, given some first-order ϕ of quantifier rank q that is invariant under
∼ghom;k, and finite structures A and B that are ∼�

ghom;k-equivalent for sufficiently

high level �, we need to provide finite ∼ghom;k-equivalent companion structures Â

and B̂ for which ∼�
ghom;k-equivalence implies ≡q

FO-equivalence, so that

Â |= ϕ iff B̂ |= ϕ.

If this can generally be achieved, for a uniform level � that only depends on ϕ, then
the diagram shows thatϕ is preserved under ∼�

ghom;k , and by the Ehrenfeucht–Fraïssé
theorem for GN[k], Theorem 1.36, is equivalently expressible in GN[k].

The crucial features with respect to which Â and B̂ need to agree, even though
these features are not GN-definable are

• presence of small cyclic configurations other than those explicitly ruled out by
(neg. hom.) assertions;

• multiplicities (up to a threshold) and isomorphism types of realisations of (pos.
hom.) assertions.

That A and B agree w.r.t. the relevant (pos. hom.) and (neg. hom.) assertions
follows from their ∼�

ghom;k-equivalence. Then agreement w.r.t. to the above features
is relatively easy to achieve in infinite tree unfoldings of A and B that are simulta-
neously saturated w.r.t. all admissible isomorphism types of the relevant (pos. hom.)
assertions. Relational Skolemisation and an application of the finite model property
for GN, Theorem 1.37, yield finite companions Â′

0 and B̂′
0. These further admit finite

coverings by suitable Â′ and B̂′ whose degree of acyclicity and saturation w.r.t. small
multiplicities show them to be equivalent in the sense of ≡q

FO (this last part of the
argument is as for Theorem 1.33). This yields the following result from [23].

Theorem 1.38 (Otto) FO/∼ghom;k ≡ GN[k], classically and in the sense of finite
model theory.

1.5 Summary

We have seen that bisimulation equivalence is a very flexible and powerful concept
for the analysis of many logics. In its classical form it is one of the crucial tools
in the study of modal logics, and its generalisations to various forms of guarded
bisimulation provide indispensable methods for understanding the expressive power
as well as the model-theoretic and algorithmic properties of more and more powerful
variants of guarded logics.

First of all, an appropriate notion of bisimulation for a logic L characterises
semantic invariance and logical indistinguishability: bisimilar nodes or tuples in
two structures cannot be distinguished by formulae of L . In this sense, bisim-
ulation is closely related to the characterisation of elementary equivalence via
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Ehrenfeucht-Fraïssé games, and bisimulation games can indeed be viewed as special
cases of these. The specific form of a bisimulation depends mostly on the nature
of the quantification patterns that the associated logic provides. In game theoretic
terms, the restrictions on the permitted forms of quantification are reflected by the
rules in the associated bisimulation game. In modal and guarded bisimulation games
the configurations at any position in a play are restricted in the sense that they may
only contain elements that are, in a sense, ‘close together’. As a consequence, bisim-
ulation permits us to control the complexity of model constructions and leads to
results about model-theoretic properties of modal and guarded logics such as the
tree model property of modal logics and the fact that satisfiable guarded formulae
have models of bounded tree width. While such results are usually not too difficult
to establish for infinite models, corresponding constructions for finite models may
be quite challenging and require intricate combinatorial arguments and sophisticated
mathematical techniques.

A further highlight of the bisimulation-based analysis of logics are the
characterisation theorems that provide, inside a classical level of logical expressive-
ness such as first-order or monadic second-order definability, a sort of converse of
bisimulation invariance. Typically such characterisation theorems state that a modal
or guarded logic is not only invariant under bisimulation, but is in fact (up to logical
equivalence) precisely the bisimulation invariant part of that level. Again such the-
orems are, by means of compactness and model-theoretic notions such as saturation
or by automata-theoretic methods, better understood and easier to prove for arbitrary
(i.e. finite or infinite) models, and much more challenging, and in some cases open,
on finite structures.

A related issue that we have not treated here concerns Lindström characterisations
of modal and guarded logics. It is shown in [7, 8] that no logic that is bisimulation
invariant, compact, and closed under relativisation can properly extend the basic
modal logic ML. In this proof, a crucial role is played by a locality criterion (which
is implied by compactness and relativisation for any bisimulation closed logic) saying
that the truth of a formula at a given node only depends on a neighbourhood of points
reachable in a bounded number of steps. For guarded logics, and even for modal log-
ics with a global modality no such locality criterion is available. To obtain Lindström
characterisations for GF and ML[∀], Otto and Piro [26] use instead the Tarski Union
Property saying that the union of any elementary chain is itself an elementary exten-
sion of each structure in the chain. They show that ML[∀] and GF are the maximal
compact logics that satisfy the Tarski Union Property and the corresponding bisim-
ulation invariance. It is open whether there are Lindström characterisations of these
logics that are not based on the Tarski Union Property but, say, on compactness and
relativisation.

Finally the bisimulation-based analysis of modal and guarded logics also leads
to important insights concerning their algorithmic properties. Since satisfiable for-
mulae always admit simple models, for instance tree-like ones, and since modal
and guarded logics, including the fixed-point variants such as the modal μ-calculus
and the guarded fixed-point logic μGF can be embedded or interpreted in monadic
second-order logic on trees, powerful automata theoretic methods become available



30 E. Grädel and M. Otto

for checking satisfiability and for evaluating formulae. It still remains to determine
where the limits are for fragments of first-order logic (and fixed-point logic or even
second-order logic) that are invariant under a suitable notion of (guarded) bisimula-
tion that is sufficient to ensure similar model-theoretic and algorithmic properties as
those that have been established for modal and guarded logic. In particular, can we
find in this way stronger decidable fragments of first-order logic, fixed-point logic
and second-order logic than those known so far?
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