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The problem whether winning regions and wining strategies for parity games can be
computed in polynomial time is a major open problem in the field of infinite games,
which is relevant for many applications in logic and formal verification. For some time
the discrete strategy improvement algorithm due to Jurdziński and Vöge had been
considered to be a candidate for solving parity games in polynomial time. However, it has
recently been proved by Oliver Friedmann that this algorithm requires super-polynomially
many iteration steps, for all popular local improvements rules, including switch-all (also
with Fearnley’s snare memorisation), switch-best, random-facet, random-edge, switch-half,
least-recently-considered, and Zadeh’s Pivoting rule.
We analyse the examples provided by Friedmann in terms of complexity measures
for directed graphs such as treewidth, DAG-width, Kelly-width, entanglement, directed
pathwidth, and cliquewidth. It is known that for every class of parity games on which
one of these parameters is bounded, the winning regions can be efficiently computed. It
turns out that with respect to almost all of these measures, the complexity of Friedmann’s
counterexamples is bounded, and indeed in most cases by very small numbers. This
analysis strengthens in some sense Friedmann’s results and shows that the discrete strategy
improvement algorithm is even more limited than one might have thought. Not only
does it require super-polynomial running time in the general case, where the problem
of polynomial-time solvability is open, it even has super-polynomial time lower bounds on
natural classes of parity games on which efficient algorithms are known.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Parity games are a family of infinite games on directed graphs. They are played by two players, player 0 and player 1,
whose moves consist in shifting a pebble from a vertex to a vertex along edges. Vertices have marks indicating the player
to move, and priorities (colours) from a finite set of natural numbers. A player wins a finite play if it ends in a vertex that
belongs to the opponent and has no outgoing edges. Otherwise the players construct an infinite play and thus an infinite
sequence of colours. If the greatest infinitely often appearing colour is even, player 0 wins, otherwise player 1 wins.

Parity games are important for several reasons. Many classes of games arising in practical applications admit reductions
to parity games (over larger game graphs). This is not only the case for games modelling reactive systems, with winning
conditions specified in some temporal logic or in monadic second-order logic over infinite paths (S1S), for Muller games,
but also for games with partial information appearing in the synthesis of distributed controllers. Further, parity games arise
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as the model-checking games for fixed-point logics such as the modal μ-calculus or LFP, the extension of first-order logic
by least and greatest fixed-points. Conversely, winning regions of parity games (with a bounded number of priorities) are
definable in both LFP and the μ-calculus. Parity games are also of crucial importance in the analysis of structural properties
of fixed-point logics.

From an algorithmic point of view parity games are highly intriguing as well. It is an immediate consequence of the
positional determinacy of parity games, that their winning regions can be decided in NP ∩ Co-NP. In fact, it was proved in
[13] that the problem is in UP ∩ Co-UP, where UP denotes the class of NP-problems with unique witnesses. The best known
deterministic algorithm has complexity nO (

√
n) [15]. For parity games with a number d of priorities the progress measure

lifting algorithm by Jurdziński [14] computes winning regions in time O (dm · (2n/(d/2))d/2) = O (nd/2+O (1)), where m is the
number of edges, giving a polynomial-time algorithm when d is bounded. The two approaches can be combined to achieve
a worst-case running time of O (nd/3+O (1)) for solving parity games with d priorities, with d = √

n (see [1, Chapter 3]).
Although the question whether parity games are in general solvable in Ptime is still open, there are efficient algorithms

that solve parity games in special cases, where the structural complexity of the underlying directed graphs, measured by
numerical graph parameters, is low. These include parity games of bounded treewidth [18], bounded entanglement [3,4],
bounded DAG-width [2], bounded Kelly-width [12], or bounded cliquewidth [19].

One algorithm that, for a long time, had been considered as a candidate for solving parity games in polynomial time
is the discrete strategy improvement algorithm by Jurdziński and Vöge [16]. The basic idea behind the algorithm is to take
an arbitrary initial strategy for Player 0 and improve it step by step until an optimal strategy is found. The algorithm is
parametrised by an improvement rule. Indeed, there are many possibilities to improve the current strategy at any iteration
step, and the improvement rule determines the choice that is made. Popular improvement rules are switch-all, switch-best,
random-facet, random-edge, switch-half and Zadeh’s Pivoting rule. Although it is open whether there is an improvement
rule that results in a polynomial worst-case runtime of the strategy improvement algorithm, Friedmann [8] was able to show
that there are super-polynomial lower bounds for all popular improvement rules mentioned above. For each of these rules,
Friedmann constructed a family of parity games on which the strategy improvement algorithm requires super-polynomial
running time.

In this paper we analyse the examples provided by Friedmann in terms of complexity measures for directed graphs. It
turns out that with respect to most of these measures, the complexity of Friedmann’s counterexamples is bounded, and
indeed in most cases by very small numbers. This analysis strengthens in some sense Friedmann’s results and shows that
the discrete strategy improvement algorithm is even more limited than one might have thought. Not only does it require
super-polynomial running time in the general case, where the problem of polynomial-time solvability is open, it even has
super-polynomial lower time bounds on natural classes of parity games on which efficient algorithms are known.

2. The strategy improvement algorithm

We assume that the reader is familiar with basic notions and terminology on parity games. We shall now briefly discuss
the discrete strategy improvement algorithm and the different improvement rules that parametrise it. For the purpose of
this paper a precise understanding of the algorithm is not needed. The idea of the strategy improvement algorithm is that
one can compute an optimal strategy of a player by starting with an arbitrary initial strategy and improve it step by step,
depending on a discrete valuation of plays and strategies, and on a rule that governs the choices of local changes (switches)
of the current strategy.

It is well-known that parity games are determined by positional strategies, i.e. strategies which at each position just
select one of the outgoing edges, independent of the history of a play. The discrete valuation defined by Jurdziński and
Vöge [16] measures how good a play is for Player 0 in a more refined way than just winning or losing. Given a current
strategy one can then, at each position of Player 0, consider the possible local changes, i.e. the switches of the outgoing
edges, and select a locally best possibility. Rules that describe how to combine such switches in one improvement step are
called improvement rules and parametrise the algorithm.

The switch-all or locally optimising rule [16] regards each vertex independently and performs the best possible switch for
every vertex. In other words, for every vertex, it computes the best improvement of the strategy at that vertex assuming that
the strategy remains unchanged at other vertices. However, the switch is done simultaneously at each vertex. The switch-best
or the globally optimising rule takes cross-effects of improving switches into account and applies in every iteration step a
best possible combination of switches.

The random-edge rule applies a single improving switch at some vertex chosen randomly and the improvement rule
switch-half applies an improving switch at every vertex with probability 1/2. The random-facet rule chooses randomly an
edge e leaving a Player 0 vertex and computes recursively a winning strategy σ ∗ on the graph without e. If taking e is not
an improvement, σ ∗ is optimal, otherwise σ ∗ switched to e is the new initial strategy. The least-entered rule switches at a
vertex at that the least number of switches has been performed so far. Cunningham’s least-recently-considered or round-robin
rule fixes an initial ordering on all Player 0 vertices first, and then selects the next vertex to switch at in a round-robin
manner. Fearnley introduced snare memorisation in [7]. It can be seen as an extension of a basic improvement rule by a
snare rule that memorises certain structures of a game to avoid reoccurring patterns.

All local improvement rules discussed here can be computed in polynomial time [16,21]. Hence the running time of the
algorithm on a game depends primarily on the number of improvement steps. In a series of papers and in his dissertation,
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Friedmann has constructed, for each of the above mentioned improvement rules, a class of parity games on which the
strategy improvement algorithm requires super-polynomially many iteration steps, with respect to the size of the game
[8,10,9]. We shall analyse these games in terms of certain complexity measures for directed graphs which we describe in
the next section.

3. Complexity measures for directed graphs

For most of the complexity measures we shall work with a characterisation in terms of so-called graph searching games,
that allow us a more intuitive point of view on the measures and give us an easier way to analyse the graphs in question.
A graph searching game is played on a graph by a team of cops and a robber. In any position, the robber is on a vertex
of the graph and each cop either also occupies a vertex or is outside of the graph. The robber can move between vertices
along cop-free paths in the graph, i.e. paths whose vertices are not occupied by cops. The moves of the cops have typically
no restrictions. The aim of the cops is to capture the robber, i.e. to force him in a position where he has no legal moves.
Precise rules of moves characterise a complexity measure of the graph. The value of the measure is the minimal number of
cops needed to capture the robber (minus one in some cases). Hence, on simple graphs, few cops suffice to win whereas
complex graphs demand many cops to capture the robber.

In that way, treewidth, DAG-width, Kelly-width, directed pathwidth and entanglement can be described. Another measure
that we shall consider is cliquewidth, for which no characterisation by games is known. Recall that common definitions of
such measures are usually given by means of appropriate decompositions of the graph into small parts that are connected
in a simple way: as a directed path for directed pathwidth, as a tree for treewidth, as a DAG for DAG-width and Kelly-width,
or as a parse tree for cliquewidth. The maximal size of a part in a decomposition corresponds to the minimal number of
cops needed to capture the robber on the graph (except for entanglement, for which no corresponding decomposition is
known). Such decompositions can be used to provide efficient algorithms for problems that are difficult (e.g. NP-complete)
in general, on graph classes where the values of the respective measure are bounded. In particular, this is the case for
parity games. In a series of papers it has been shown that parity games can be solved in Ptime on graph classes with
bounded treewidth, directed pathwidth, DAG-width, Kelly-width, entanglement or cliquewidth. In the following, we define
all complexity measures discussed above by their characterisations in terms of graph searching games except cliquewidth,
for which we give an inductive definition.

Treewidth Treewidth is a classical measure of cyclicity on undirected graphs. It measures how close a graph is to being
a tree. The treewidth game twGk(G) is played on an undirected graph G = (V , E) by a team of k cops and a robber,
whereby k is a parameter of the game. Initially, there are no cops on the graph and the robber chooses an arbitrary vertex
and occupies it in the first move. The players move alternating. A cop position is a tuple (C, v) where C ⊆ V with |C | � k
is the set of vertices occupied by cops (if k > |C |, the remaining cops are considered to be outside of G ) and v /∈ C is the
vertex occupied by the robber. The cops can move to a position (C, C ′, v) with |C ′| � k. Intuitively, they announce their
next placement C ′ and take cops from C \ C ′ away from G . The robber positions are of the form (C, C ′, v). The robber
can run along paths on the graph whose vertices are not occupied by cops, i.e. the next (cop) position may be (C ′, w)

where w ∈ ReachG−(C∩C ′)(v) \ C ′ , i.e. w is reachable from v in G − (C ∩ C ′). Thus the cops are placed on the vertices they
announced in their previous move; furthermore, only those cops prevent the robber to run who are both in the previous
and in the next placements. However, the robber is not permitted to go to a vertex which will be occupied by a cop in the
next position.

The robber is captured in a position (C, C ′, v) if he has no legal move: all neighbours of v are in C ∩C ′ and a cop is about
to occupy his vertex, i.e. v ∈ C ′ . A play is monotone if the robber can never reach a vertex that has already been unavailable
for him. It suffices to demand that in any move, the robber is not able to reach a vertex that has just been left by a cop.
Formally, a play is monotone if, for every cop move (C, v) → (C, C ′, v) in the play, we have ReachG−(C∩C ′)(v) ∩ (C \ C ′) = ∅.

The cops win a monotone play if it ends in a position in that the robber is captured. Infinite or non-monotone plays are
won by the robber. A (positional) strategy for the cops is a partial function σ : 2V × V → 2V which prescribes, for every cop
position (C, v), the next placement σ(C, v). Similarly, a (positional) strategy for the robber is a function ρ : 2V ×2V × V → V
which maps a robber position (C, C ′, v) to a cop position (C ′, w) with w ∈ ReachG−(C∩C ′)(v) \ C ′ . A play π is consistent
with a strategy σ (or ρ) if every move in the play is made according to σ (or ρ). A strategy for a player is winning if
he wins every play consistent with that strategy. The winning condition for the cops is a reachability condition (in both
the treewidth and the pathwidth games). Indeed, the cops lose if the robber reaches a non-monotone position, regardless
whether they capture him later or not. Hence, we can assume without loss of generality that a play stops in a non-monotone
position and the robber wins. Then the winning condition for the cops is precisely to reach a position in which the robber
is captured. It follows that the game are determined and that positional strategies suffice for both players.

The minimal number k such that the cops have a winning strategy in twGk+1(G) is the treewidth tw(G) of G . If G =
(V , E) is a directed graph, then tw(G) is tw(G) where G = (V , E) and E is the symmetric closure of E .

DAG-width The DAG-width game dagwGk(G) [2] is played on a directed graph G in the same way as the treewidth game,
but the edge relation of the graph is not symmetrised. Note that the meaning of the reachability relation Reach on directed
graphs is, of course, different from the reachability relation on undirected graphs. In a DAG-width game, the robber is
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allowed to run only along directed paths. The DAG-width dagw(G) of a graph G is the minimal number k such that the
cops have a winning strategy in the game dagwGk(G). Note the difference to treewidth where the parameter of the game
is defined by k + 1 in order to make forests have treewidth 1.

Example 1. We consider narrow long grids. Let Gmn = (V , E) be an undirected (m × n)-grid with additional shortcuts
from left to right, i.e. V = {1, . . . ,m} × {1, . . . ,n} and E = {((i, j), (k, l)) | |i − k| + 1 and j = l, or i = k and | j − l| = 1}
∪ {((i, j), (k, l)) | j < k}. Then dagw(Gm,n) = m + 1. Indeed, m + 1 cops win in the same way as on the undirected grid:
they occupy the leftmost column {i,1 | 1 � i � m}, place the remaining cop on (1,2), then move the cop from (1,1) to
(2,2), then the cop from (2,1) to (3,2) and so on until they occupy the whole column {(i,2)}. In this way they expel
the robber from every column. Note that the additional edges do not help the robber, as they induce no additional cycles.
On the other hand, it is well known that the treewidth of the grid even without the additional edges is at least n (which
corresponds to n + 1 cops).

Kelly-width The Kelly-width game KwGk(G) is played on a directed graph G in the same way as the DAG-width game,
but the robber is, first, invisible for the cops and, second, inert [12]. Invisibility means that a winning strategy for the cops
must not depend on the robber vertex and the cops can make assumptions about it only from their own moves. Inertness
of the robber means that the robber can change his vertex only if a cop has announced to occupy the robber vertex in
the next position. Formally, a cop position is a tuple (C, R) where C is as before and R ⊆ V is disjoint with C . The cops
can move to a robber position (C, C ′, R). The moves of the robber are determined by the current position, so, in fact, we
have a one-player game: the next position is (C ′, R ′) where R ′ = (R ∪ ReachG−(C∩C ′)(R ∩ C ′)) \ C ′ . The term Reach...(R ∩ C ′)
describes the inertness of the robber and the term R ∪ · · · means that the robber may still be on a previous vertex if no cop
is about to occupy it. Respecting the rules for the moves, Kelly-width is defined analogously to DAG-width.

Directed pathwidth The game is played as the Kelly-width game, but the robber is not inert. Formally, the position following
a robber position (C, C ′, R) is (C ′, R ′) where R ′ = ReachG−(C∩C ′)(R ∩C ′)\C ′ . Similar to the treewidth, the directed pathwidth
dpw(G) of G is the minimal number k such that the cops have a winning strategy in dpwk+1(G) where dpwk+1(G) is the
directed pathwidth game with k + 1 cops on G .

Entanglement The entanglement game entGk(G) [3] is slightly different from the games defined above. First, the robber
can move only along an edge rather than along a whole path. Second, he is obliged to leave his vertex, no matter if a cop
is about to occupy it or not (thus no cops are needed on an acyclic graph). Third, the cops are restricted in their moves as
well. In a cop position (C, v), one cop can go to the vertex v , other cops must remain on their vertices. Another possibility
for the cops is to stay idle. More formally, cop positions are of the form (C, v) and the cops can move to some position
(C ′, v) where C ′ = C , or C ′ = C ∪ {v} (if a new cop comes into the graph), or C ′ = (C ∪ {v}) \ {w} where w ∈ C is distinct
from v . From a position (C ′, v), the robber can move to a position (C ′, v ′) where (v, v ′) ∈ E and v ′ /∈ C ′ . Unlike all games
above, in the entanglement game, the cops do not need to play monotonically, so they win all finite plays and the robber
wins all infinite plays. Entanglement ent(G) of a graph G is the minimal number k such that the cops have a winning
strategy in entGk(G).

Example 2. We consider narrow long grids. Let Gmn be an (m × n)-grid where m < n + 3. We can see that, for n � 10,
ent(G2,n) = 4. Four cops have the following winning strategy. Two of them place themselves on (0, � n

2 �) and (1, � n
2 �) and

build a wall. We call the other cops chasers. Due to the symmetry, assume without loss of generality that the robber hides
in the right part of the grid (with larger second coordinate). The goal of the cops is to shift the wall to the right of two
cops on (0, � n

2 �) and (1, � n
2 �) such that the robber remains to the right of it. The new wall will consist of the chasers. When

it is constructed, the cops from the old wall become free from guarding the left part of the grid and the roles of the cops
change: the chasers guard the robber and the cops from the old wall become chasers.

The shift of the wall is done as follows. One of the chasers follows the robber until he moves vertically, i.e. from (i, j) to
(1 − i, j), for some i ∈ {0,1} and j ∈ {� n

2 �, . . . ,n − 1}. Then the second chaser goes to (1 − i, j). If the robber now makes a
move to the right, the wall is shifted. Otherwise, the chaser from (i, j) follows the robber. Both chasers continue to follow
the robber in a leap-frogging manner to the left until he moves vertically. That happens at the latest when the current wall
is reached. Then the rightmost chaser follows him. Again, if he goes to the right, the wall is shifted. He can go further to the
left followed by the cop, but this process can continue at most until the robber hits the wall. So finally he moves vertically
and then to the right.

The fact that the robber wins on G2,10 against 3 cops can be proven by inspecting all possible finite play prefixes that
have no repetitions of positions.

Cliquewidth Cliquewidth was introduced in [5]. Let C be a finite set of labels. A C-labelled graph is a tuple G = (V , E, γ )

where γ : V → C is a map that labels the vertices of G with colours from C . An a-port is a vertex with colour a. Let k
be a positive natural number and let |C | � k. The class Ck of graphs of cliquewidth at most k is defined inductively by the
following operations.
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(1) For every a ∈ C , a single a-port without edges is in Ck .
(2) If G1 = (V 1, E1, γ1) and G2 = (V 2, E2, γ2) are in Ck , then the disjoint union G1 ⊕ G2 = (V , E, γ ) of G1 and G2 is in Ck

where V = V 1 ∪̇ V 2, E = E1 ∪̇ E2, and γ (v) = γ1(v) if v ∈ V 1 and γ (v) = γ2(v) if v ∈ V 2.
(3) If G = (V , E, γ ) is in Ck , then the graph G ′ obtained by recolouring every a-port to a b-port is in Ck , i.e. G ′ = (V , E, γ ′)

where γ ′(v) = γ (v) if γ (v) �= a and γ ′(v) = b otherwise.
(4) If G = (V , E, γ ) is in Ck , then the graph G ′ obtained by connecting all a-ports to all b-ports is in Ck , i.e. G ′ = (V , E ′, γ )

where E ′ = E ∪ {(v, w) | γ (v) = a and γ (w) = b}.

The cliquewidth cw(G) of a graph G = (V , E, γ ) is the least k such that the graph (V , E) is in Ck .
The following theorem is a combination of results proved in [2–4,12,18,19].

Theorem 3. Let C be any class of finite graphs on which at least one of the following measures is bounded: treewidth, directed path-
width, DAG-width, cliquewidth, Kelly-width, entanglement. Then the winning regions for both players in parity games on graphs from C
are computable in polynomial time.

It follows directly from the definitions that DAG-width and Kelly-width are bounded in directed pathwidth.

Theorem 4. For a graph G , we have dagw(G) � dpw(G) + 1 and Kw(G) � dpw(G) + 1.

4. Friedmann’s counterexamples

We now describe and analyse the graphs that underlie Friedmann’s counterexample games for different rules. Note that
the information about the priorities of the vertices and about which player they belong to is irrelevant for the analysis of
the complexity of the underlying graphs. For most of the rules, these graphs have a rather similar structure, which implies
similar proofs for out statements. We give detailed presentations only for the examples for the switch-all rule, Zadeh’s
Pivoting rule, and the random-edge rule. Our analysis of the examples for all rules we consider is summarised in Table 3.

4.1. The switch-all rule

For n ∈ N \ {0}, the graph Gn = (Vn, En) underlying Friedmann’s games against the switch-all rule can be defined as
follows. The set of vertices is

Vn := {x, s, c, r} ∪ {ti,ai | 1 � i � 2n} ∪ {di, ei, gi,ki, f i,hi | 1 � i � n}.
The set of edges and the graph G3 are given in Fig. 1. The graph Gn consists of cycle gadgets induced by {di, ei} each
encoding a bit which is considered to be set if the current strategy of Player 0 is to move from di to ei and unset otherwise.
Intuitively, the strategy improvement algorithm with the switch-all rule starts from the state where all bits are unset and
increases the bit counter by one in each round. The subgraph induced by all h j , k j , g j , and f j , for j � n guarantees the
algorithm to swap the least significant bit and the subgraph induced by a j and t j , for j � 2n ensures that the other bits to
change are swapped as well, see [8] for details.

Friedmann showed in [8] that, for every n > 0, there is a parity game of size O (n2) with underlying graph Gn such that
the strategy improvement algorithm with the switch-all rule requires at least 2n improvement steps on that game.

We shall now establish upper bounds for DAG-width, Kelly-width, directed pathwidth, entanglement, and cliquewidth
of the graphs Gn , which imply by Theorem 3, that Friedmann’s games belong to natural classes of parity games that can
be solved efficiently by other approaches than the strategy improvement algorithm. We start with an analysis of treewidth
of Gn and show that it is unbounded on the class of graphs Gn . Recall that treewidth of a directed graph G = (V , E) is
defined by the treewidth of G = (V , E) where E is the symmetrical closure of E . The reason for treewidth to be unbounded
is that it contains arbitrarily large complete bipartite graphs K n,n as subgraphs, whereby tw(K n,n) = n. Indeed, every
vertex has n neighbours, so if the robber is caught staying on a vertex v , all successors of v and v itself must be occupied
by cops. The following lemma shows that we can find an arbitrary complete bipartite graph as a subgraph of a graph of the
family Gn .

Lemma 1. For every k > 0, there is some n > 0 such that Gn has K k,k as a subgraph.

Proof. Choose n := � k
2 � + k − 1. The vertex d� k

2 � is the first of the vertices d1, . . . ,dn to be connected to the vertices

A := {a j: j � k}. The k − 1 vertices di , i = � k
2 � + 1, . . . , � k

2 � + k − 1 are connected to each vertex of A as well. Neither the

vertices of A are directly connected to one another, nor are the vertices of B := {di | i = � k
2 �, . . . , � k

2 �+k − 1}. It follows that
G[A ∪ B] is isomorphic to K k,k . �
Corollary 1. For every k > 0, there is some n > 0 such that tw(Gn) > k.
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Fig. 1. The graph Gn for the switch-all rule.

Remark 5. Although the treewidth of graphs Gn is unbounded, there is another class of graphs with bounded treewidth,
such that the strategy improvement algorithm with switch-all rule requires super-polynomial time. We shall see in Sec-
tion 4.4 that for the random-edge rule, Friedmann’s counterexample class has bounded treewidth. In fact, that class requires
super-polynomial time also for the switch-all rule, see [8] for details.

Now we prove that the directed pathwidth of graphs Gn is bounded, which leads to boundedness of DAG-width and
Kelly-width.

Theorem 6. For all n > 0, we have dpw(Gn) � 3.

Proof. We describe a monotone winning strategy for 4 cops in the directed pathwidth game. First, r and s are occupied by
two cops who will stay there until the robber is caught. In the next round, the two other cops expel the robber from all
vertices di , ei , f i , gi , hi , and ki (if he is there). For i = 1, . . . ,n, starting with i = 1 the cops place a cop on ei and then visit
with the last remaining cop vertices di , f i , gi , hi , and ki in that order.

The robber may be on vertex x, or in the part of the graph induced by ai , ti and c, for i ∈ {1, . . . ,2n}. The cop from kn

(one of those not on r or s) visits x and then an , tn , an−1, tn−1, . . . , a1, t1 in that order and finally c. Obviously, the described
strategy for 4 cops is monotone and guarantees that the robber is captured. �

By Theorem 4, we get the following corollary.
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Corollary 2. For all n > 0, we have dagw(Gn) � 4 and Kw(Gn) � 4.

We modify the strategy from the proof of Theorem 6 to obtain a winning strategy for 3 cops in the entanglement game.
That is necessary, as in the latter, the cops are not permitted to be placed on a vertex which is not occupied by the robber.
We first need a lemma from [3].

Lemma 2. The entanglement of a graph is one if, and only if, it is not acyclic and each of its strongly connected components contains a
vertex whose removal makes the component acyclic.

Theorem 7. For all n > 0, we have ent(Gn) � 3.

Proof. Let G r,s
n be the graph which is obtained from Gn by deleting vertices r and s and all adjacent edges, i.e. G r,s

n =
Gn[Vn \ {r, s}]. The only strongly connected components of G r,s

n where the robber can remain are the one induced by x and
those induced by {di, ei}. All other components are singletons without self-loops, so the robber can stay there only for one
move. Each of the components induced by x or by {di, ei} have a vertex whose removal makes the component acyclic. By
Lemma 2, there is a strategy σ for one cop to catch the robber on G r,s

n . Thus it suffices to prove that the cops can occupy r
and s. They use one cop who moves according to σ until the robber is captured or visits r or s. Assume by the symmetry
of argumentation, that the robber visits r. A second cop follows him to r and remains there until the end of the play. Then
the first cop plays according to σ again. As r is occupied by a cop, the robber is either captured, or visits s. Then the last
cop follows him to s. Finally, the first cop plays according to σ for the last time and the robber loses the play. �

We show that the cliquewidth of Gn is bounded as well. Graph Gn can be decomposed into n layers, the i-th layer is
induced by vertices gi, f i, ei,di,hi,ki , t2i , t2i−1, a2i , and a2i−1. We construct Gn inductively over i = 1, . . . ,n connecting
the new layer to the previous ones. Simultaneously, we connect r, and s to the i-th layer. Then vertex x is connected to
the graph.

Theorem 8. For all n > 0, we have cw(Gn) � 10.

Proof. We consider graph Gn as consisting of layers Li , for i ∈ {1, . . . ,n} where each Li is induced by vertices di , ei , f i , hi ,
ki , gi , a2i , a2i−1, t2i , and t2i−1. The layers are produced for i = 1,2 . . . ,n by induction on i and connected to the previous
layers. Level 1 is constructed in the same way as further layers (up to vertex c, which is easy to produce), so we do not
describe the base case explicitly. Assume, all layers from L1 to Li are constructed with following labelling, which is an
invariant that holds after a layer is constructed, see the first picture in Fig. 2 (connections from ti to r and s are not shown).

• For j ∈ {1, . . . ,2i − 1}, all t j , and, for j ∈ {1, . . . , i}, all d j , e j , h j , and f j have colour Done.
• t2i has colour T .
• For j ∈ {1, . . . ,2i}, all a j , have colour A.
• For j ∈ {1, . . . , i}, all k j have colour K , and all g j , have colour G .
• r has colour R and s has colour S .

We construct layer i + 1 satisfying the invariant. First, create vertex a2i+1 with colour A and vertex t2i+1 with colour T ′
and connect A → T ′ . Then take the union of the previous layers and {a2i+1, t2i+1} and connect T ′ → T , T ′ → R and T ′ → S .
Relabel T ′ → T . Then repeat the same procedure with a2i+2 and t2i+2 instead of a2i+1 and t2i+1, see the second picture in
Fig. 2.

Now we construct the subgraph Ci+1 induced by di+1, ei+1, hi+1, gi+1, ki+1, and f i+1 using colours D , Done, G , T ′ , G ′ ,
and F . Note that colours Done and T ′ are reused. Produce di+1, ei+1, f i+1, gi+1, ki+1, and hi+1 with labels D , Done, F , G ′ ,
T ′ , and G , respectively, and connect them as needed, also to r and to s (see the third picture in Fig. 2).

Relabel G → Done. Build the disjoint union of Ci+1 and the already constructed graph. Connect K → G ′ (which connects
all k j , for j < i +1 to gi+1; dashed line in the figure), and relabel T ′ → K and G ′ → G . Connect D → A (which connects di+1
to all a j , for j � 2i, dotted lines in the figure) and relabel D → Done. This finishes the construction of layer Li+1. Note that
the properties from the invariant hold for Li+1. Finally, produce vertex x with colour T ′ and connect all ki to x and x to
itself. It remains to count the colours. We used Done, T , T ′ , A, F , G , G ′ , K , R , and S , which makes ten colours. �
4.2. Zadeh’s least-entered rule

As a second example we discuss the counterexample of Friedmann against Zadeh’s least-entered rule. The underlying
game graphs are denoted Zn . The set of vertices is

Vn := {
b0

i,0,b1
i,0,b0

i,1,b1
i,1,d0

i ,d1
i ,h0

i ,h1
i , c0

i , c1
i , A0

i , A1
i

∣∣ 1 � i � n
}

∪ {ki | 1 � i � n + 1} ∪ {t, s}.
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Fig. 2. Construction of Gn with ten colours.

Similar to Gn the graph Zn can be decomposed into n layers, see Fig. 3a for graph Z3 and Fig. 3b for the edge relation
of Zn . In Fig. 3b we denote for a sequence of vertices k1, . . . ,kn and two natural numbers l,m, l � m, by k[l,m] the set of
vertices {kl, . . . ,km}. Vertices ki , c0

i , A0
i , b0

i,1, b0
i,0, d0

i , h0
i , c1

i , A1
i , b1

i,1, b1
i,0, d1

i , and h1
i induce the i-th layer. The subgraphs

induced by c0
i , A0

i , b0
i,1, b0

i,0, d0
i , h0

i and c1
i , A1

i , b1
i,1, b1

i,0, d1
i , h1

i are isomorphic to each other.
A run of the strategy improvement algorithm on Zn simulates an n-bit counter with values from 0 to 2n − 1. The

difference to the switch-all rule is that the least-entered rule chooses an improving edge that has been switched least often.
Because the lower bits of an n-bit counter are switched more often, the higher bits would be switched before they should in
order to catch up with the lower bits. This means that the n-bit counter would not go through all the steps from 0 to 2n −1.
Friedmann solved this problem by representing each bit i by two bits, i0 and i1. The associated structures in Zn are the
gadgets induced by {A0

i ,b0
i,1,b0

i,0} and {A1
i ,b1

i,1,b1
i,0} respectively. The bit i j , j ∈ {0,1}, is considered to be set, if the current

Player 0 strategy chooses both edges (b j
i,0, A j

i ) and (b j
i,1, A j

i ), and unset otherwise. In a run of the algorithm, only one of
the bits i0 and i1 is active and is able to effect the rest of the counter at the time. The inactive bit can, in the meantime,
switch back and forth from 0 to 1 in order to catch up with the rest of the counter without having an effect on it.

The counterexample contains a vertex ki in each layer i such that all ki induce an n-clique in the graph. This makes all
values of measures that describe cyclicity (i.e., treewidth, directed pathwidth, DAG-width, and Kelly-width) unbounded on
the class of the counterexample graphs, but cliquewidth of the graphs is still small.

Theorem 9. For all n > 0, we have cw(Zn) � 9.

Proof. The proof is very similar to the proof of Theorem 8. We regard the graphs Zn as consisting of layers Li that are
induced by vertices ki , c0, A0, b j , b j , d j , and h j , for i ∈ {1, . . . ,n} and j ∈ {0,1}. The layers are constructed for i =
i i i,0 i,1 i i
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Fig. 3. The graph Zn for Zadeh’s least-entered rule.

1,2, . . . ,n by induction on i and connected to the previous layers. In the induction step, we build a new layer and connect
it to the previous ones. Finally, we add the vertex s and the top layer, that consists of t and kn+1, and establish the
connections to the other n layers.

As in the proof of Theorem 8, layer L1 is constructed in the same way as further layers. Assume, layers from L1 to Li
have been constructed with the following labelling, which is an invariant that holds after a new layer is constructed.

• For j ∈ {1, . . . , i} and s, s′ ∈ {1,2}, all k j have colour K , all As
j and cs

j have colour Done, all ds
j have colour D , and all bs

i,s′
have colour B .

• For j ∈ {1, . . . , i − 1}, all h0
j have colour H and all h1

j have colour Done.

• h0
i has colour Hl and h1

i has colour Hr .

We construct the layer Li+1 and connect it to the previous layers such that at the end of that process the invariant is
true. First, produce the vertex ki+1 with colour K ′ . Connect the vertices h0, . . . ,h0 and the vertex h1 to ki+1 by con-
1 i−1 i
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Table 1
The edge relation of Hn for the switch-best rule.

Vertex Successors Vertex Successors

t1 {s, r, c} yi { f i ,ki}
ti>1 {s, r, ti−1} gi {yi ,ki}
ai {ti} ki {x} ∪ {g j | i < j � n}
c {r} f i {ei}
d1

i {s, c,d2
i } ∪ {a3 j+3 | j � 2i − 2} hi {ki}

d2
i {d3

i } ∪ {a3 j+2 | j � 2i − 2} s {x} ∪ { f j | j � n}
d3

i {ei} ∪ {a3 j+1 | j � 2i − 1} r {x} ∪ {g j | j � n}
ei {d1

i ,hi} x {x}

necting H-ports and Hr -ports to K ′-ports, and relabelling Hl → H and Hr → Done. Extend the clique consisting of the
vertices k1, . . . ,ki by connecting K → K ′ and K ′ → K . Thus the connections between Li+1 and the previous layers have
been established.

Next, we construct the rest of Li+1 using colours C , Done, B , D , Hl and Hr . Create vertices c0
i+1, A0

i+1, b0
i+1,1, b0

i+1,0, d0
i+1

and h0
i+1 labelled with colours C , Done, B , B , D and Hl , respectively, and connect them as needed. Repeat this procedure

for vertices c1
i+1, A1

i+1, b1
i+1,1, b1

i+1,0, d1
i+1 and h1

i+1 with the difference that h1
i+1 obtains colour Hr . Build the disjoint union

of these two subgraphs and the already constructed graph. Connect ki+1 to c0
i+1 and c1

i+1 by K ′ → C . Relabel K ′ → K and
C → Done. This finishes the construction of Li+1. Note that the invariant for the vertex labels is satisfied.

After all n layers have been built, relabel Hl → H and create vertex s with colour K ′ (which is reused). Connect K ′ → K
and D → K ′ . Relabel D → Done. It remains to add vertices kn+1 and t to the graph. Create kn+1 and t with colours C and D .
Connect Hr → C , C → D , D → D , K → D , B → K , B → D and K ′ → D . This produces the top layer induced by ki+1 and t
and establishes the edges between the first n layers and the vertex s and the top layer. Note that we reused the colours D , C
and K ′ . It remains to count the colours. We used the nine colours Done, K , K ′ , C , B , D , Hr , Hl and H . Hence, our claim
holds. �
4.3. The switch-best rule

Switch-best is a deterministic memoryless improvement rule that computes in every step of the iteration the best im-
provement that is currently possible. We denote the graphs in the family of counterexamples by Hn , for n � 1. The lower
bound construction for discrete strategy improvement with the switch-best rule is almost the same as for the switch-all
rule. The differences in graphs Hn to Gn are the following.

• The cycles (di, ei) are substituted by cycles (d1
i ,d2

i ,d3
i , ei) where d1

i is also connected to the nodes s, c and a3 j+3, for
j � 2i − 2, d2

i to a3 j+2, for j � 2i − 2, and d3
i to a3 j+1, for j � 2i − 1.

• Every edge (gi, f i) is subdivided by an additional vertex yi with an outgoing edge (yi,ki).
• Vertex c has only r as a direct successor.

Formally, the graph Hn = (Vn, En) is given by the set of vertices

Vn := {x, s, c, r} ∪ {ai, ti: 0 < i � 6n − 2} ∪ {
d1

i ,d2
i ,d3

i , ei, f i,hi, gi, yi,ki: 0 < i � n
}

and the edge set shown in Table 1. One can show that the graph Hn has size O (n2) [8].
The values of the complexity measures for Hn we consider are very similar to those for Gn and so are the corresponding

proofs.
The treewidth of Hn is not bounded by any finite constant, because it contains arbitrary complete bipartite graphs as the

class Gn . For the directed pathwidth, consider the following monotone winning strategy for four cops, which is the same
for the DAG-width game and for the Kelly-width game. Two cops are placed on r and s and remain there for the rest of the
play. Then, for i = 1,2, . . . , one cop is placed on ei and the last cop visits d1

i , d2
i , d3

i , ai , hi , gi , yi , ki , f i in that order. After
visiting the n-th layer, the cops visit tn, tn−1, . . . , t1 and c and then x. It is clear that the strategy is winning and monotone.

In the entanglement game, two cops occupy r and s if the robber ever visits them and the remaining graph has entan-
glement one by Lemma 2. The construction of Hn for the cliquewidth is also very similar to the one of Gn . We build the
graph up layer by layer. However, we need four additional colours: two to distinguish three types of nodes ai , 0 < i � 6n−2,
and two more to distinguish the nodes d1

i ,d2
i and d3

i from each other.
Thus we obtain the following theorem.

Theorem 10. For all n � 1, we have tw(Hn) = ∞, dpw(Hn) = ent(Hn) = 3, dagw(Hn) = Kw(Hn) = 4 and cw(Hn) � 14.
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Fig. 4. The graph Gζ for the random-edge and switch-half rules.

4.4. The random-edge and switch-half rules

The counterexample graphs for the random-edge and the switch-half rules are parametrised by a tuple of natural num-
bers ζ = (n, (li)0�i�n,h, g). The game graph Gζ is composed of n isomorphic levels. Level i consists of vertices

{wi, xi, ui,di, yi, Ai, Bi,ai, j,bi,l, ci,k},
for 1 � j � h, 1 � l � li and 1 � k � g .

For 1 � i � n − 1, the i-th level is directly connected to the i + 1-th level. The n-th level is connected to an additional top
level that contains the vertices wn+1, un+1 and t . Furthermore, the graph has the two distinguished vertices r connected
to w1 and s connected to u1. From each level, there are edges that lead to r and s.

More formally, for a tuple ζ = (n, (li)0�i�n,h, g), with n, li,h, g > 0, we define the graph Gζ = (V ζ , Eζ ) by

V ζ := {ai, j | 1 � i � n,1 � j � h} ∪ {bi,l | 1 � i � n,1 � l � li}
∪ {ci,k | 1 � i � n,1 � k � g} ∪ {di, yi, xi | 1 � i � n}
∪ {wi, ui | 1 � i � n + 1} ∪ {t, r, s} ∪ {Ai, Bi | 1 � i � n}

and Eζ as given in Fig. 4b. The graphs with two levels are illustrated in Fig. 4a. The octagons in the figure symbolise
the cycle gadgets, their interpretation is shown in Fig. 5. The vertex x represents s or r, V i represents Ai or Bi and ki, j

represents ai, j,bi,l or ci,k .

Theorem 11. For all ζ , tw(Gζ )� 5, dpw(Gζ ) = ent(Gζ ) = 3, dagw(Gζ ) = Kw(Gζ ) = 4 and cw(Gζ ) � 9.
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Fig. 5. Interpretation of the octagon.

Proof. Treewidth. Recall that we consider the undirected graph underlying Gζ . We give a monotone winning strategy for 6
cops. At the beginning, two cops occupy r and s and remain there until the robber is captured. Then, for i = 1, . . . ,n − 1,
the cops expel the robber from level i and simultaneously block paths to level i − 1 (for i > 1). By induction on i,
we show that the cops can expel the robber from level i such that, at the end of the round, they occupy r, s, wi

and ui .
The proof of the induction base is the same as for induction step, so assume some i � 1 and if i > 1, assume that the

cops occupy wi−1 and ui−1. Thus, we have two more cops free. Place them on wi and ui and remove the cops from wi−1
and ui−1. Then place a new cop on Ai . If the robber chooses the component induced by ai, j (for 1 � j � h) and f i , he is
captured by cops from r, wi and ui , so assume that the robber goes to di . The last free cop occupies di , then the cops
from Ai occupies Bi . If the robber chooses the component induced by ci,l or the component induced by bi,k , he is captured
there by the cops from wi and from di , so assume that he goes to yi . Then the cops from di go to yi too and the induction
is completed. Then the cops capture the robber on t .

For the other direction (that tw(Gζ ) � 6), note that the graph consists, in essence, of the path w1, . . . , wn , the
path u1, . . . , un and vertices r and s. Hereby, for each i, wi is connected to ui (via Ai and di ), all wi are connected to r and
all ui are connected to s. For n � 3, one needs 4 cops to capture the robber on the two paths [20]. Clearly, r and s must be
occupied during all the play in order to ensure monotonicity.

Directed pathwidth. Note that all paths from level i + 1 to level i lead through s or r. The strategy for 4 cops is as follows.
Two cops always occupy r and s. For level i, one cop stays on Ai and the remaining one visits wi ai,h, . . . ,ai,1, f i , di and Bi

in tat order. Then the cops from Ai visits ci,k, . . . , ci,1, bi,li , . . . ,bi,1 and hi in that order. Proceeding in that way, the cops
clear all levels and finally capture the robber on t .

For the other direction, note that two cops cannot clear any cycle alone. Let n > 1. Assume that there are only 3 cops.
Let i be the number of the level where the first cop is placed. Then one needs at least two cops to block paths from
another level to level i (via wi−1 and ui−1 or via r and s). Even if the two remaining cops are placed on wi and ui (i.e. in
the level), one cop is not able to expel the robber from level i. The proofs for DAG-width and for Kelly-width are, essentially,
the same.

Entanglement. The winning strategy for 3 cops is almost the same as for 4 cops in the directed pathwidth game. It
uses the rule that the robber must change his vertex in every move. Note that once r and s are occupied, every strongly
connected component of the remaining graph contains a vertex whose removal makes it acyclic. If there are only two cops
and n � 3, the robber has the following winning strategy. Note that every level contains a cycle, so the robber can stay in
a cop free level indefinitely. Furthermore, there are pairwise disjoint paths from each cycle to r and to s. As there are two
cops, one cycle contains no cops. The robber can hold the invariant that he can always reach a cop free cycle. Assume that
he is waiting in a cop free cycle. When a cop comes, r or s is not occupied by cops, so there is a cop free path to an other
cop free cycle.

Cliquewidth. Vertices r and s have there own colours. We construct the graph by induction on the number of levels.
Level 1 is constructed as all other levels. In general, assume that the graph is constructed up to level i such that r, s,
wi , ui and yi have unique colours and all other vertices have colour Old. Thus 3 colours are free for further use. We
refer to a recolouring of a vertex to Old as to forgetting its colour. First, create vertices wi+1 and ui+1 with a new colour
(1 free colour), connect wi and yi to wi+1 and ui to ui+1 and forget the colours of wi , yi and ui (4 colours are free).
Construct Ai+1 with a new colour (3 free colours) and the path ai+1,k, . . . ,ai+1,1 connecting Ai+1 to ai1,k at the beginning
and ai+1,1 to Ai+1 at the end using 3 more colours (0 free colours). After that, all ai+1, j have the same colour; one of
their three colours is used to create f i+1 and all ai+1, j are connected to f i+1, which is connected to s. Then the colours of
all ai1, j and f i+1 are forgotten (again 3 free colours).

Now, di+1 is created with a new colour, Ai+1 and ui+1 are connected to it and the colours of Ai+1 and ui+1 are forgotten
(4 free colours). Create Bi+1 with a new colour, connect di+1 to it and forget the colour of di+1. The octagons with Bi+1
are constructed as the octagon with Ai+1, and yi+1 is created with a new colour and the colours of Bi+1 and all bi+1, j
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and ci+1, j are forgotten. It is clear that now r, s, wi+1, ui+1 and yi+1 have unique colours and all other vertices have
colour Old, so the induction step is proved. �
4.5. The random-facet rule

The improvement rule random-facet is a randomised recursive optimisation rule. The rule maintains a set E0 of edges that
can be chosen by a player 0 strategy σ such that σ(v) = w implies (v, w) ∈ E0. Initially, an arbitrary strategy for player 0
is taken. Then the algorithm computes recursively which edges can be removed from E0 as follows. If E0 is deterministic
(i.e. for every vertex v exists only one vertex w with (v, w) ∈ E0), then σ is already optimal. Otherwise, let e = (v, w)

be some edge from E0 with w �= σ(v) chosen uniformly at random. Then, recursively, an optimal strategy σ ′ in the game
without the edge e is computed. If e is not an improving switch for σ ′ , then σ ′ is an optimal strategy in the original game.
Otherwise, the switch to e is performed. We refer to [17,8] for more details.

The counterexample graphs are parametrised by triples (n, s, r) of natural numbers. The vertex set of the graph Gn,s,r =
(Vn,s,r, En,s,r) is given by

Vn,s,r := {
a j

i

∣∣ 1 � i � n,1 � j � sr
} ∪ {

b j
i

∣∣ 1 � i � n,1 � j � sr
}

∪ {Ci | 1 � i � n} ∪ {
A j

i

∣∣ 1 � i � n,1 � j � l
} ∪ {Bi | 1 � i � n}

∪ {Di | 1 � i � n} ∪ {T }.
Fig. 6b defines the edge relation En,s,r . The graph Gn,s,r contains n isomorphic levels. The i-th level is the subgraph that is

induced by the vertices a j
i , b j

i , ci , A j
i , Bi , Di . Level i is connected to level i + 1. Level n is connected to the vertex T .

Theorem 12. For all n > 1, and all s, r > 0, we have that tw(Gn,s,r) = 3, dpw(Gn,s,r) = 1, dagw(Gn,s,r) = Kw(Gn,s,r) = 2,
ent(Gn,s,r) = 1, cw(Gn,s,r) � 5.

Proof. The winning strategy for 2 cops in the directed pathwidth, the DAG-width and the Kelly-width games is, for all
layers i = 1,2, . . . ,n as follows. For j = 1,2, . . . , s, one cop occupies A j

i and the other cop all ak
i , for r · ( j − 1)+ 1 � k � r · j,

connected with the current Ai, j . Then one cop visits Di and after that Bi and the other one all b j
i . Finally, the robber is

captured in T . As the graph contains cycles, one cop is not able to capture the robber. For the entanglement, the proof is
similar. For the treewidth, note that two cops on Ci and b1

i+1 isolate level i; the two remaining cops catch the robber in a
level. On the other hand, it is easy to see that the robber can escape three cops. The proof for the cliquewidth is similar to
the proofs for other graphs and we leave it as an exercise for the reader. �
4.6. The least-recently-considered rule

Cunningham’s least-recently-considered or round-robin rule [6] is a deterministic, memorising improvement rule. It fixes
an initial ordering on all edges first, and then selects the improving switches in a round-robin fashion. We define the graph
Rn = (Vn, En) underlying the corresponding parity game. The set of vertices is given by

Vn := {bi, j | 1 � j � i � n} ∪ {yi,di | 1 � i � n} ∪ {ui, wi | 1 � i � n + 1}
∪ {t, s} ∪ {Bi | 1 � i � n}

and the set of edges is shown in Fig. 7b. See also Fig. 7a for an illustration.
The graph R n consists of n very similar levels. The i-th level is the subgraph induced by the vertices wi,di, ui, yi, Bi,

bi,1, . . . ,bi,i . The difference between the levels is the length of the cycle Bi,bi,1, . . . ,bi,i , which grows from level to level by
one. The i-th level is directly connected to the (i + 1)-th level by several edges. Each level is connected to a distinguished
vertex s, whose only successor is the vertex d1 in the first level.

Theorem 13. For all n � 3, tw(R n) = dpw(R n) = 3, dagw(R n) = Kw(R n) = 4, ent(R n) = 4, cw(R n) � 7.

Proof. A winning strategy for 5 cops in the treewidth game is to block s and u1, and to go from level n to level 1 finishing
level i with a cop on wi and a cop on ui . The step from level i to level i − 1 is to place a cop on ui−1, then move the cop
from ui to di−1. If the robber is in {Bi−1, yi−1,bi−1,1,bi−1,2}, move the cop from ui−1 to Bi1 and then either from di−1 to
yi−1 (if the robber is on yi−1) or from di−1 and wi to bi−1,1 and bi−1,2 (if the robber is there). On the other hand, its is
easy to see that on the minor induced by w3, u3, d3, w4 and u4 (i.e. where w3 is connected to u3, d3 and w4; w4 to d3
and u4; u4 to u3; u3 to d3) three cops are needed. As the degrees of s and u1 are at least 7, they must be occupied during
all the game. The statements about the other measures can be proven analogously to the previous cases. �
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Fig. 6. The graph G3,s,r for the random-facet rule.

4.7. Strategy improvement based on snare memorisation

The graph Un = (Vn, En) underlying Friedmann’s counterexample [9] for the snare memorisation technique of Fearnley [7]
has vertex set

Vn := {x, s, c, r} ∪ {ti,ai | 1 � i � 3n} ∪ {bi,di, ei, gi,ki, f i,hi | 1 � i � n}
∪ {qi,mi | 1 � i � n} ∪ {ui, j, vi, j, wi, j | 1 � i < j � n}

and the set of edges as shown in Table 2. The graph Un is similar to the graph Gn , the counterexample graph for the
switch-all rule. The basic structure is the same, but each level is extended in order to render the memorisation ineffective.
The treewidth of the graphs Un is not bounded, the other measures are the same for Un and Gn , and the same proofs apply.
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Fig. 7. The counterexamples for the least-recently-considered rule.

Table 2
Edges of Un (snare).

Vertex Successors Vertex Successors

t1 {s, r, c} hi {ki}
ti>1 {s, r, ti−1} s {x} ∪ { f j | j � n}
ai {ti} r {x} ∪ {g j | j � n}
c {s, r} x {x}
di {s, r, ui,n} ∪ {a j | j � 3i} ui, j {vi, j, wi, j}
ei {bi ,hi} vi, j {ui, j−1,m j}
gi { f i ,ki} wi, j {ui, j−1,q j}
ki {x} ∪ {g j | i < j � n} mi {ei}
f i {ei} qi {hi}
bi {s, r,di} ∪ {a j | j � 3i}
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Table 3
Upper bounds in different measures for the counterexample graph classes.

Rule Measure

Tree Directed path DAG Kelly Entanglement Clique

Switch-all ∞ 3 4 4 3 �10
Least-entered ∞ ∞ ∞ ∞ ∞ �9
Switch-best ∞ 3 4 4 3 �14
Random-edge 6 3 4 4 3 �9
Random-facet 3 1 2 2 1 �5
Least-considered 4 3 4 4 4 �7
Snare memory ∞ 3 4 4 4 ?

We conjecture that the cliquewidth of the graphs Un is not bounded. The new elements (compared to Gn) induce a
grid-similar structure and it should be possible to show the unboundedness similarly to the case of square grids [11].
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