
Succinct Counting and Progress

Measures for Solving Infinite Games

Katrin Martine Dannert

September 2017

Masterarbeit im Fach Mathematik

vorgelegt der

Fakultät für Mathematik, Informatik und Naturwissenschaften

der Rheinisch-Westfälischen Technischen Hochschule Aachen

1. Gutachter: Prof. Dr. Erich Grädel

2. Gutachter: Prof. Dr. Martin Grohe

Eigenständigkeitserklärung

Hiermit versichere ich, die Arbeit selbstständig verfasst und keine anderen als die angegebenen

Quellen und Hilfsmittel benutzt zu haben, alle Stellen, die wörtlich oder sinngemäß aus anderen

Quellen übernommen wurden, als solche kenntlich gemacht zu haben und, dass die Arbeit in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegt wurde.

Aachen, den

Katrin Dannert

Contents

Introduction . 4

1 Basics and Conventions 5

1.1 Conventions and Notation . 5

1.2 Basics on Games and Complexity Theory . 6

1.3 Parity Games . 8

1.4 Muller Games . 18

1.5 Streett-Rabin Games . 24

1.6 Modal µ-Calculus . 33

2 Two Quasi-Polynomial Time Algorithms for Solving Parity Games 41

2.1 Succinct Counting . 41

2.2 Succinct Progress Measures . 52

2.3 Comparing the two methods . 71

3 Solving Streett-Rabin Games in FPT 80

3.1 Succinct Counting for Streett Rabin Games with Muller Conditions 80

3.2 Succinct Counting for Pair Conditions . 86

4 Applications to the Modal µ-Calculus 92

4.1 Solving the Model Checking Game with Succinct Counting 92

4.2 Solving the Model Checking Game with Succinct Progress Measures 94

Conclusion . 97

References . 98

Introduction

In this Master’s thesis we will take a look at infinite games and at methods for deciding their

winner. The first games we will consider are parity games. Parity games are games of the

form G = (V, V0, V1, E, val), where val : V → N is a function assigning a value to each node.

The winner of a play in a parity game is the one of whose parity the largest value occurring

infinitely often is. Deciding parity games has long been known to be in NP∩Co-NP but it is not

known, whether they are decidable in polynomial time. The best previously known bound was

nm/3+O(1) [Sch07], where n denotes the number of nodes and m the largest occurring value. In

2016, Calude, Jain, Khoussainov, Li and Stephan published a preprint of their paper Deciding

Parity Games in Quasipolynomial Time [Cal17], the final version of which was published in

2017. In this paper, Calude et al. present a method which, as the title suggests, solves parity

games in quasipolynomial time and space, i.e. in 2O(log(n)
c) for some constant c. It uses a very

succinct way of tracking winning statistics for one player, which allows for an alternating poly-

logarithmic space algorithm, which can be translated into a quasipolynomial time algorithm as

well as an FPT-algorithm using a reachability game.

That paper was quickly followed by a paper called Succinct progress measures for solving parity

games [JL17] by authors Jurdziński and Lazić. They employ a different method, using progress

measures and a lifting algorithm to solve parity games in quasipolynomial time using only quasi-

linear space. In presenting a very succinct way to code ordered trees, they are able to define

their highly succinct progress measures. By now, Fearnley et al. [Fea17] have shown that the

method by Calude et al. can be adapted to use only quasilinear space as well.

In this thesis we will present both methods as well as the adaptation by Fearnley et al. and

use these methods for two further purposes. First, we will give two algorithms, based on the

algorithm developed by Calude et al., that solve Streett-Rabin games in FPT, a time bound

which follows from the fact that their method can solve parity games in FPT. Then we consider

model checking games of the modal µ-calculus, which are parity games, and see what results we

can derive by applying the methods by Calude et al. and by Jurdziński and Lazić.

In the first chapter of this thesis we will summarise the main basic results about the games

and the logic considered, for instance the positional determinacy of parity games, the latest ap-

pearence record for Muller games and Streett-Rabin games and the fact that the model checking

games for the modal µ-calculus are parity games.

In the second chapter, we will present in detail the results both of Calude et al. and of Jurdziński

and Lazić and we will use the adaptation by Fearnley et al. to compare the two.

In the third chapter we will develop algorithms that decide Streett-Rabin games in FPT, both

for winning conditions given as Muller conditions, where the parameter is the number of colours,

and for pair conditions, where the parameter is the number of pairs.

In the last chapter, we will take a look at how to apply the methods for solving parity games to

model checking games for the modal µ-calculus.

Chapter 1

Basics and Conventions

In the first two subsections of this section we will document the notations and conventions used

in this thesis and define a few of the basic notions that appear throughout it. The following four

sections cover three different but related types of games, namely parity games, Muller games

and Streett-Rabin games, and the modal µ-calculus, a logic whose model checking games are

parity games. As mentioned, the aim of this thesis is to present in detail new methods for solving

parity games and to try and apply them to Streett-Rabin games and to the modal µ-calculus.

In order to do this, we need a basic understanding of the games and the logic in question, so

these sections will cover the definitions and main results about them, most of which will be used

in later chapters.

1.1 Conventions and Notation

In this thesis we write N for the natural numbers {0, 1, 2, 3, . . . } and N>0 for the set {1, 2, 3, . . . }.
When we write log(n) for some number n, we mean the logarithm with base 2. We use standard

Notation for sets and functions. Let V,W be sets. We write V \W for the set {v ∈ V : v /∈ W}
and P(V) for the power set of a set V .

When we speak of graphs, we mean finite directed graphs, i.e. graphs of the form G = (V,E),

where V with |V | <∞ is the set of nodes and E ⊆ V × V is the set of edges. We allow edges of

the form (v, v) and we allow (v, w) ∈ E and (w, v) ∈ E for two nodes v, w ∈ V , but we do not

allow multiple identical edges (v, w) from a node v to a node w. We will usually use the letter

n for the number of nodes in a graph.

For a given function f : V →W, v 7→ f(v) and a subset V ′ ⊆ V we write f |V ′ for the restriction

f |V ′ : V ′ →W, v 7→ f(v) of f to V ′. We write f(V) for the image of V under f .

When we speak of a partial function p : V → W we mean a set p ⊆ V ×W such that for each

v ∈ V there is at most one w ∈W such that (v, w) ∈ p. When we do not specify that we speak

of a partial function, we mean a total function, i.e. a function in the usual sense.

5

6

1.2 Basics on Games and Complexity Theory

In this section we will give a few basic terms about games and complexity theory. The reader

will probably be familiar with most of them.

1.2.1 Games

In this thesis we will consider several different games. A game in our sense is usually played by

two players, 0 and 1, on a game graph G = (V, V0, V1, E), where V is the set of nodes, E ⊆ V ×V
the set of edges and V = V0 ∪V1 is a partition, i.e. V0 ∩V1 = ∅, of V into the set V0 of positions

where Player 0 moves and the set V1 of positions, where it is Player 1’s move. Sometimes, the

game graph is not given explicitly but the game is for instance played on a formula’, in which

case the game graph is given implicitly by giving a set of positions and giving the legal moves

for Player 1 and Player 2. This specifies the nodes, the partition into V0 and V1 and the edges,

which represent the legal moves.

A play π in a game G with game graph G = (V, V0, V1, E) is a sequence π = v1v2v3 · · · of nodes

in V or rather of positions in the game, such that (vi, vi+1) ∈ E for all i, i.e. the move from

vi to vi+1 is a legal move for all i. To complete the definition of the game, winning conditions

for both players have to be specified. The winning conditions determine for each play π, which

player wins it.

One example of a game is a reachability game. It is played by two players, 0 and 1, on a game

graph G = (V, V0, V1, E). The winning conditions are the following: A set W ⊆ V is specified

and Player 0 wins a play π = v1v2v3 · · · , if at some point vi in π we have vi ∈W . Player 1 wins

otherwise. This winning condition for Player 1 is called a safety condition, since it is to stay in

the safe’ region V \W .

A strategy for Player i is a partial function f : {vlvl+1 · · · vl+k ∈ V k : l, k ∈ N, vk ∈ Vi} → V

such that (vl+k, f(vl · · · vl+k)) ∈ E for all (vl · · · vl+k, f(vl · · · vl+k)) ∈ f , i.e. each move from vl+k

to f(vl · · · vl+k), if defined, has to be a legal move. In most circumstances, but not all, we will

be considering positional strategies. A positional strategy for Player i is a strategy that only

depends on the current node, i.e. a strategy of the form f : Vi → V . In a reachability game for

instance, all strategies can without loss of generality be assumed to be positional.

A play π = v1v2v3 . . . is consistent with or played according to a strategy f for Player i,

i ∈ {0, 1}, if for each subsequence vlvl+1 · · · vl+k of π with (vlvl+1 · · · vl+k, f(vlvl+1 · · · vl+k)) ∈ f
we have vl+k+1 = f(vlvl+1 · · · vl+k).
A strategy f for Player i, i ∈ {0, 1}, is a winning strategy or winning from node v ∈ V , if every

play in the game with first node v that is consistent with f is won by Player i. If Player i has a

winning strategy from node v ∈ V , we say that she wins the game from starting node v or that

she is the winner of the game with starting node v. The set Wi of nodes v ∈ V such that Player

i wins the game from node v is called the winning region of Player i. A game is determined, if

W0 ∪W1 = V and W0 ∩W1 = ∅.

7

1.2.2 Complexity

Here we will briefly summarize some complexity classes which are relevant in this thesis. It is

assumed, that the reader is familiar with the classes P and NP.

The most important class considered in this thesis is quasipolynomial time. A problem can be

decided in quasipolynomial time, if it can be decided in time 2O(log(n)
c) for some constant c,

where n is the size of the instance of the problem.

A problem can be solved in quasilinear time, if it can be solved in time O(n logk(n)) for some

k > 0.

Another class, briefly mentioned in a later chapter, is the class UP of problems solvable in unam-

biguous non-deterministic polynomial time, i.e. solvable in polynomial time by an unambiguous

Turing machine. For more details, see [HR97].

The last important complexity class discussed in this thesis is that of fixed parameter tractable

problems (FPT). A problem is fixed parameter tractable with parameter k, if it can be solved in

time f(k) ·nO(1), where f is a computable function and n the size of the instance of the problem.

8

1.3 Parity Games

Parity games form a very important class of games that has been intensely studied and is still

the focus of many studies today. One reason is that they are, as mentioned, the model checking

games for the modal µ-calculus, which is an immensely useful logic. But parity games are also

interesting in themselves, mainly because of their complexity or rather our uncertainty about

said complexity. It is known that parity games are in NP∩Co-NP and they can be shown to by

solvable in quasipolynomial time, a result which is the main focus of this thesis. But it is not

known, whether parity games can be decided in polynomial time and so this is one of very few

common problems that are known to be both in NP and in Co-NP but not known to be in P.

But before we tackle the complexity of parity games, let us start with the definition.

1.3.1 Definition: A parity game is an infinite game G = (V, V0, V1, E, val : V → N>0) on a

graph (V,E) with |V | = n < ∞, V0 ∩ V1 = ∅, V0 ∪ V1 = V , and E ⊆ V × V . Additionally we

have | val(V)| = m <∞. For v ∈ V we call val(v) the value or priority of v.

There are two players, namely 0 and 1. From a node v ∈ Vi, i ∈ {0, 1}, Player i moves to any

node w ∈ V of her choice, such that (v, w) ∈ E.

The winner is determined in the following way: If a player cannot move, she loses and her

opponent wins. An infinite play π is won by Player 0 if the largest value a ∈ val(V) occurring

infinitely often in π is even. Otherwise the play is won by Player 1.

1.3.2 Remark: Since the number of nodes and the number of different values will play an

important role in large parts of this paper, we will reserve the letters n and m, respectively, for

them. So from now on, in any given parity game, n refers to the number of nodes and m to the

number of different values (or the largest occurring value, as we will see later), unless it is said

otherwise.

The following simple example will make the definition of a parity game clearer.

1.3.3 Example: Consider the following game graph with V0 = {v2}, V1 = {v1, v3}, val(v1) = 2,

val(v2) = 1 and val(v3) = 3:

2 1 3

v1 v2 v3

Player 0 can win from any starting node, by always moving to v1, when the game arrives at v2.

A winning play with v3 as the starting node played according to that strategy would look as

follows:

π = v3 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 ...

9

The highest value appearing infinitely often in π is val(v1) = 2, so Player 0 wins π.

Note that in a parity game different nodes do not have to have different values as in the example.

We can make a few assumptions on the game graphs that do not alter the parity games on them

in any relevant way. For one, we can assume that all plays are infinite, which is a result of the

next lemma. Also, using the lemma after that, we can assume that if the number of different

values is m then the set of values is {1, . . . ,m}.

1.3.4 Lemma: Let G = (V, V0, V1, E, val : V → N>0) be a parity game. If there is a node in

v ∈ V such that {w ∈ V : (v, w) ∈ E} = ∅ we can add a new node z with val(z) := val(v) + 1 to

V (without loss of generality to V0) and edges (v, z), (z, v) to E. Then for all w ∈ V , Player 0

wins G′ = (V ∪ {z}, V0 ∪ {z}, V1, E ∪ {(v, z), (z, v)}, val : V ∪ {z} → N>0) from starting node w

if and only if she wins G from starting node w. Additionally, if v ∈ Vi, i ∈ {0, 1}, then Player

1− i wins G′ from starting node z.

Proof. Let v ∈ Vi, i ∈ {0, 1}. Then Player 1− i wins any play in G that reaches v. The plays in

G that do not reach v are plays in G′ that do not reach v, since the induced subgraphs of V \{v}
in G and V ′\{v, z} are identical and we can map a play π to the identical play π′ in G′.
Assume without loss of generality that v ∈ V0. Otherwise just flip the roles of Player 0 and

Player 1. Suppose that Player 0 has a winning strategy f from node w ∈ V . Then any play

π in G with starting node w played according to f will not reach v and therefore f ′ : V ′0 → V ′,

where f ′(x) = f(x) for all x ∈ V \{v} and f ′(z) = v (if z ∈ V0), is a winning strategy for Player

0 in G′ from starting node w.

Suppose now that Player 1 has a winning strategy f from node w in G. Define f ′ : V ′1 → V ′

analogous to the definition above and let π′ be a play in G′ played according to f ′. If π′ does

not reach v then there is a corresponding play π in G consistent with f and therefore Player 1

wins π′. If π′ reaches v ∈ V ′, then at this point the play enters an infinite loop containing only

the nodes v and z, since these are the only remaining legal moves. Since val(z) = val(v) + 1 is

odd, Player 1 wins π′. (This also proves the additional claim.) It follows that f ′ is a winning

strategy for Player 1 from w.

If Player i, i ∈ {0, 1}, has a winning strategy f ′ in G′ from node w ∈ V ′\{z}, then define

f : Vi → V, x 7→ f ′(x). Let π be a play in G consistent with f . If π does not contain v, then

Player i wins π since it is identical to a play π′ in G′ consistent with f ′. If π contains v, Player 1

wins π and π ends at the first occurrence of v. Let π′ be the play in G′ with π′ = πwvwvw · · · .
Then π′ is consistent with f ′ and won by Player 1 (in particular, this case arises only if i = 1).

Note that one could alternatively add an edge (v, v) to each node v without successors and

change the value to 1, if v ∈ V1 and to 2, if v ∈ V0.

1.3.5 Remark: Using Lemma 1.3.4, we will assume from now on, without loss of generality,

10

that all plays in our parity games are infinite.

1.3.6 Lemma: Let G = (V, V0, V1, E, val : V → N>0) be a parity game with | val(V)| = m.

Then there is a parity game G′ = (V, V0, V1, E, val′ : V → {1, . . . ,m}) such that for all plays π in

G Player 0 wins π if and only if she wins the identical play π′ in G′ or for all plays π in G Player

0 wins π if and only if Player 1 wins the identical play π′ in G′.

Proof. We define G′ in the following way. Let m1 + 1 < m2 be values of nodes in G such that

there is no node in G with a value m3 and m1 < m3 < m2 (skip this step if no such values exist).

If m1 and m2 both have the same parity then we label all nodes in G′ whose corresponding

nodes in G have value m1 or m2 with the value m1. If m1 and m2 are not of the same parity

then m1 + 2k < m2 < m1 + 2(k + 1) for some k > 0. In this case label all nodes G′ whose

corresponding nodes in G have value m2 with the value m1 + 1.

Repeat this process as long as there exist pairs of values with the above properties. Since there

are only finitely many values occurring in G and with each application of the above paragraph

all nodes of a certain value get a smaller value, this process will terminate. When that happens,

all occurring values will be consecutive. Let m′ be the smallest occurring value. If m′ = 2k + 1

is odd, reduce the value of each node by 2k to obtain the game G′. If m′ = 2k is even, reduce

the value of each node by 2k − 1. We claim that in the first of these two cases, for all plays π

in G Player 0 wins π if and only if she wins the identical play π′ in G′, and in the second, for all

plays π in G Player 0 wins π if and only if Player 1 wins the identical play π′ in G′.
Consider the first case and let π be a play in G′ won by Player 0. Let π′ be the play along the

corresponding nodes in G′. Let a be the largest value in π that occurs infinitely often and let v

be a node with val(v) = a. By construction of G′, the value a′ of v in G′ is a−2k for some k ∈ N,

since the value is reduced by an even number in every step. Thus a′ is even. Additionally, let

w be a node in G with val(w) < a. Then a′ is larger than or equal to the value of w in G′, since

no value is ever reduced below the next occurring value in that step which is smaller. Hence a′

is the largest value occurring infinitely often in π′ and Player 0 wins π′.

Now let π′ be a play in G′ won by Player 0 and a′ the largest value occurring infinitely often in

π′. Let v be a node with value a′ in G′ and let a be the value of v in G. Since as seen above the

difference between a and a′ is even, a is even. Additionally, let w be a node in G with val(w) > a.

Then a′ is smaller than or equal to the value of w in G′, since no value is ever reduced below

the next occurring value which is smaller. Hence no nodes with a value larger than a in G occur

infinitely often in π′ and π and therefore Player 0 wins π.

Now consider the second case and let π be a play in G′ won by Player 0. Let π′ be the play along

the corresponding nodes in G′. Let a be the largest value in π that occurs infinitely often and

let v be a node with val(v) = a. By construction of G′, the value a′ of v in G′ is a− (2k− 1) for

some k ∈ N, since the value is reduced by an even number in every step from the first paragraph

of this proof and by an odd number in the last step. Thus a′ is odd. Additionally, let w be a

node in G with val(w) < a. Then a′ is larger than or equal to the value of w in G′, since no

11

value is ever reduced below the next occurring value which is smaller. Hence a′ is the largest

value occurring infinitely often in π′ and Player 1 wins π′.

Now let π′ be a play in G′ won by Player 1 and a′ the largest value occurring infinitely often in

π′. Let v be a node with value a′ in G′ and let a be the value of v in G. Since as seen above the

difference between a and a′ is odd, a is even. Additionally, let w be a node in G with val(w) > a.

Then a′ is smaller than or equal to the value of w in G′, since no value is ever reduced below

the next occurring value which is smaller. Hence no nodes with a value larger than a in G occur

infinitely often in π′ and π and therefore Player 0 wins π.

1.3.7 Remark: Making use of Lemma 1.3.6 we will from now on assume, that for every parity

game G = (V, V0, V1, E, val : V → N>0) with | val(V)| = m we have val(V) = {1, . . . ,m}.

It is not completely obvious that from any given node one of the two players has a winning

strategy. But this is actually the case and follows from a more general result by Martin (see

[Mar75]) which states that Borel games are determined.

1.3.8 Proposition: Parity games are determined.

1.3.1 Positional determinacy

Not only are parity games determined, but they are positionally determined, meaning that the

winner has a winning strategy that only depends on the current node and not on the previous

path of the play. This property is extremely important for complexity results about parity

games and will be used extensively in proofs in later chapters. It also separates parity games

from Muller games and Streett-Rabin games, as we will see in the next two sections.

This subsection, largely based on [Küs02], is aimed at proving the positional determinacy. For-

mally, it is defined as follows.

1.3.9 Definition: A game G with players 0 and 1, where Wi, i ∈ {0, 1}, denotes the winning

region of player i, is called positionally determined, if it is determined and for each w ∈ Wi,

i ∈ {0, 1}, Player i has a positional winning strategy from node w.

As already mentioned, this applies to parity games so the aim of this subsection will be to prove

the following theorem.

1.3.10 Theorem: Parity games are positionally determined.

The proof is relatively long and we will therefore split it into several smaller proofs. But first we

12

need two important notions when talking about finding winning strategies for games on graphs.

Those notions are attractors and traps. The results and proofs concerning attractors and traps

can also be found in [Grä16]

1.3.11 Definition: Let G = (V, V0, V1, E) be a graph, i ∈ {0, 1} and X ⊆ V . The i-attractor

of X is defined as

Attri(X) = {v ∈ V : Player i has a strategy to reach X from v}.

This abstract definition can be made a little more concrete by the following remark which gives

us an actual construction of the attractor for a set X. Note that as we are now considering

the graph in the context of a reachability game, all strategies can and will be assumed to be

positional strategies.

1.3.12 Remark: For v ∈ V let vE = {w ∈ V : (v, w) ∈ E} denote the set of successors of v.

The i-attractor of a set X can be computed by defining X0 = X and

Xj+1 = Xj ∪ {v ∈ Vi : vE ∩Xj 6= ∅} ∪ {v ∈ V1−i : vE ⊆ Xj}

for all j ∈ N. Then Attri(X) =
⋃
j∈NXj .

Proof. Let v ∈ Attri(X). Then there is a k ∈ N such that Player i has a strategy to reach X

in at most k steps. We prove that v ∈
⋃
j∈NXj by induction over k. If k = 0 then v ∈ X and

therefore v ∈ X0 ⊆
⋃
j∈NXj . Now suppose k > 0 and let f be a strategy to reach X from v in at

most k steps for Player i. If v ∈ Vi, Player i has a strategy to reach X from f(v) in at most k−1

steps. It follows that f(v) ∈
⋃
j∈NXj by induction hypothesis. Then there is a unique j ∈ N

such that f(v) ∈ Xj\Xj−1 or f(v) ∈ X = X0, in which case we set j = 0. Hence, vE ∩Xj 6= ∅
and v ∈ Xj+1 ⊆

⋃
j∈NXj . If on the other hand v ∈ V1−i, Player i has a strategy to reach X

from any w ∈ vE in at most k − 1 steps. It follows by induction hypothesis that w ∈
⋃
j∈NXj

for all w ∈ vE. Then there exists j ∈ N such that w ∈ Xj\Xj−1 for all w ∈ vE or w ∈ Xj := X0

for all w ∈ vE, since vE is finite. Hence, vE ⊆ Xj and therefore v ∈ Xj+1 ⊆
⋃
j∈NXj .

Conversely, let v ∈
⋃
j∈NXj . Then by construction there is k ∈ N such that v ∈ Xk\Xk−1 or

v ∈ Xk := X0. We prove v ∈ Attri(X) by induction over k. If k = 0 then v ∈ X0 = X and the

strategy to reach X is trivial. Now suppose k > 0. If k ∈ Vi, then by definition of Xk there exists

w ∈ vE ∩Xk−1 and by induction hypothesis Player i has a strategy f : Vi ∩Xk−1 → V to reach

X from w. Define a new strategy f ′ : Vi ∩ Xk → V by setting f ′(x) = f(x) for all x ∈ Xk−1,

f ′(v) = w and f ′(x) as an arbitrary successor of x for all x ∈ Vi ∩ (Xk\(Xk−1 ∪ {v})). Then f ′

is a strategy for Player i to reach X from v. If on the other hand v ∈ V1−i, then by definition of

Xk, vE ⊆ Xk−1 and therefore Player i has a strategy to reach X from any w ∈ vE by induction

hypothesis. Then obviously such a strategy, arbitrarily extended to any x ∈ Vi∩Xk, is a strategy

13

for Player i to reach X from v.

The strategy to reach X from any node in Attri(X) will be important to prove the positional

determinacy of parity games, so we give it a name.

1.3.13 Definition: Player i always has a positional strategy to reach X from v ∈ Attri(X).

We call such a strategy an attractor strategy.

A somewhat complementary idea to the notion of an attractor is that of a trap. A trap is a set

where one of the players can prevent the other from ever leaving. This of course also happens

by a positional strategy, as stated in the next remark.

1.3.14 Definition: Let G = (V, V0, V1, E) be a graph and i ∈ {0, 1}. An i-trap is a set Y ∈ V
such that vE ⊆ Y for all v ∈ Y ∩ Vi and vE ∩ Y 6= ∅ for all v ∈ V1−i ∩ Y .

1.3.15 Remark: On an i-trap Y , Player 1 − i has a positional strategy to keep any play

beginning in Y in Y .

Proof. Define a positional strategy f : Y ∩ V1−i → Y by defining f(v) as some w ∈ vE ∩ Y for

all v ∈ Y ∩ V1−i, which exists by definition of Y .

We already mentioned that attractors and traps are complementary ideas. In particular, the

complement of an attractor is a trap.

1.3.16 Remark: The complement of an i-attractor for some set X ⊆ V is an i-trap.

Proof. Let A = Attri(X) and v ∈ V \A. Then v /∈ Xj for any j ∈ N. If v ∈ Vi it follows that

vE ∩Xj = ∅ for all j ∈ N, since otherwise v ∈ Xj+1, and therefore vE ⊆ V \
⋃
j∈NXj = V \A.

If v ∈ V1−i, it follows that vE * Xj for all j ∈ N, since otherwise v ∈ Xj+1. Hence there is

w ∈ vE such that w /∈ Xj for all j ∈ N by construction of the sequence of the Xj . It follows

that w /∈
⋃
j∈NXj = A and thus vE ∩ V \A 6= ∅.

Now we go back to parity games. The following definition, again taken from [Küs02], describes a

subset of the winning region of Player i, which is also a trap. It is fittingly called a paradise, since

a set of winning positions where one can remain with a positional strategy might be considered

the best one can hope for, if one tries to win a game.

1.3.17 Definition: Let G = (V, V0, V1, E, val) be a parity game and i ∈ {0, 1}. A set U ⊆ V is

an i-paradise if

• U is a (1− i)-trap and

14

• Player i has a positional strategy fi on U to win any play consistent with fi that stays in

U .

To answer the question of how we can use this to prove our positional determinacy theorem,

consider the following: If we can prove that there is a partition of the set of all nodes into such a

paradise for each of the two players, then obviously those would have to be the winning regions.

But by definition, the respective player has a positional winning strategy on her paradise. Thus,

there would be a positional winning strategy for either winning region and therefore for any

given node (for one of the two players).

So let us prove this statement.

1.3.18 Theorem: Let G = (V, V0, V1, E, val) be a parity game. Then V is partitioned into a

0-paradise and a 1-paradise.

Proof. Let m be the maximal value that occurs in G. First, assume m = 1. Then Player 1 wins

from any node with any strategy, in particular with a positional one. Thus we have that V is a

1-paradise and ∅ is a 0-paradise.

Now assume m > 1. Without loss of generality let m be even (otherwise switch the roles of

Players 0 and 1). Using transfinite induction we will define a sequence of 1-paradises W ξ
1 with

corresponding positional winning strategies f ξ1 on those 1-paradises. For ν < ξ we will have

W ν
1 ⊆W

ξ
1 and f ξ1 will be an extension of fν1 .

As the first set we simply choose the empty set W 0
1 = ∅ and for a limit ordinal ν we define

W ν
1 =

⋃
ξ<νW

ξ
1 .

Claim: W ν
1 as defined above is a 1-paradise if W ξ

1 are 1-paradises for all ξ < ν.

Obviously if W ξ
1 for all ξ < ν are 0-traps, then so is W ν

1 because if for all ξ < ν we have

vE ⊆ W ξ
1 for all v ∈ W ξ

1 ∩ Vi and vE ∩W ξ
1 6= ∅ for all v ∈ V1−i ∩W ξ

1 , then vE ⊆
⋃
ξ<νW

ξ
1 for

all v ∈
⋃
ξ<νW

ξ
1 ∩ Vi and vE ∩

⋃
ξ<νW

ξ
1 6= ∅ for all v ∈ V1−i ∩

⋃
ξ<νW

ξ
1 . Let fξ be a positional

winning strategy for Player 1 on W ξ
1 that keeps the game in W ξ

1 for all ξ < ν. Define a positional

strategy fν on W ν
1 by fν(v) = fχ(v), where χ is the smallest ordinal such that v ∈ Wχ

1 , for

all v ∈ W ν
1 ∩ V1. Let π = v1v2v3 · · · be a play consistent with fν and v1 ∈ W ν

1 . We need to

show that vk ∈ W ν
1 for all k ∈ N>0 and that Player 1 wins π. We show the first claim by a

simple induction over k. The case k = 1 follows from the assumption that v1 ∈ W ν
1 . So let

k > 1. Then there exists a minimal χ < ν such that vk−1 ∈ Wχ
1 , since by induction hypothesis

vk−1 ∈ W ν
1 . If vk−1 ∈ V0 then vk ∈ vE ⊆ Wχ

1 ⊆ W ν
1 , since Wχ

1 is a 0-trap. If vk−1 ∈ V1, then

vk = fν(vk−1) = fχ(vk−1) ∈ Wχ
1 ⊆ W ν

1 . This proves the first claim. To see that π is won by

Player 1 note that π will at some point be played exclusively consistent with fξ for some ξ < ν,

since for any vk ∈Wχ
1 , vk+1 ∈W η

1 for η ≤ χ, and therefore Player 1 wins π.

By induction hypothesis, f ξ1 is an extension of fχ1 if χ < ξ. Therefore we can define for a limit

ordinal ν the strategy fν1 as the union of the strategies f ξ1 for ξ < ν. By the exact same argument

as in the proof of the claim it follows that fν1 is a positional winning strategy on W ν
1 that keeps

15

the play in W ν
1 .

Now let ξ+1 be a successor ordinal. Define Xξ = Attr1(W
ξ
1). Then obviously Xξ is a 1-paradise,

since Attr1(W
ξ
1) is a 0-trap by definition and the positional attractor strategy on Attr1(W

ξ
1)\W ξ

1

combined with f ξ1 on W ξ
1 yields the desired positional winning strategy that stays in Xξ. This

strategy that we will call gξ1 extends f ξ1 . By Remark 1.3.16, Y = V \Xξ is a 1-trap.

Now define M = {v ∈ Y : val(v) = m} and Zξ1 = Y \ ˜Attr0(M), where ˜Attr0(M) denotes the 0-

attractor of M in the subgame of G induced by Y . Since Zξ1 is the complement of a 0-attractor, it

is a 0-trap in this subgame. Additionally, Zξ1 does not contain any nodes v with val(v) = m and

therefore, by induction hypothesis, Zξ1 can be partitioned into a 0-paradise Zξ1,0 and a 1-paradise

Zξ1,1 with positional winning strategies zξ1 and zξ2, respectively, that stay in the respective sets.

Since Zξ1,1 is a 0-trap in the game restricted to Zξ1 and Zξ1 is a 0-trap in the game restricted to

Y , W ξ+1
1 := Xξ ∪ Zξ1,1 is a 0-trap in G.

Let zξ1 denote a positional winning strategy for Player 1 that stays in Zξ1,1 in the subgame

induced by Y . Then define f ξ+1
1 : W ξ+1

1 ∩ V1 → W ξ+1
1 by f ξ+1

1 (v) = gξ1(v) for all v ∈ Xξ and

f ξ+1
1 (v) = zξ1(v) for all v ∈ Zξ1,1. It follows that any play π beginning in W ξ+1

1 consistent with

f ξ+1
1 will stay in W ξ+1

1 and is winning for Player 1: Either the play stays forever in Zξ1,1 ⊆W
ξ+1
1

and π is from some point onwards consistent with zξ1 and therefore winning for Player 1, the

play starts in Xξ, in which case it will stay there forever by definition of gξ1 and is winning for

Player 1, or the play starts in Zξ1,1 and then moves out of it. But since Zξ1,1 is a trap in the

game induced by Y = V \Xξ and zξ1 is the according strategy, the game then moves to Xξ and

stays there forever, again by definition of gξ1, and is therefore winning for Player 1. It follows

that W ξ+1
1 is a 1-paradise with strategy f ξ+1

1 .

Let σ be the smallest ordinal such that W σ
1 = W σ+1

1 . Define W1 = W σ
1 . We have just shown

that W1 is a 1-paradise. What remains to be shown is that W0 := V \W1 is a 0-paradise. To

show this, note first that since

W1 ⊆ Xσ = Attr1(W
σ
1) ⊆W σ+1

1 = W1,

W1 = Attr1(W
σ
1) is an i-attractor and therefore W0 is an i-trap. Additionally, we can employ the

exact same reasoning as above by replacing Xξ with W1 and Y with W0 to see that W1∪Zσ1,1 =

W σ+1
1 = W1 is a 1-paradise. Since W1 ∩ Zσ1,1 = ∅, Zσ1,1 = ∅. From this we can show that W0 is

a 0-paradise in the following way.

Let zσ0 denote a positional winning strategy for Player 0 that stays in Zξ1,0 in the subgame

induced by Zσ1 and let gσ0 be an attractor strategy for Player 0 on ˜Attr0(M) in the subgame

induced by W0. Define a strategy f0 : W0 ∩ V0 →W0 on W0 by

f0(v) =


zσ0 (v), v ∈ Zσ1
gσ0 (v), v ∈ ˜Attr0(M)\M

v′, v ∈M and v′ ∈ vE ∩W0

16

for all v ∈W0∩V0. By definition of Zσ1 as W0\ ˜Attr0(M), this definition covers all possible cases

and for the last case, such a node v′ always exists, since W0 is a 1-trap.

Let π be a play in G consistent with f0. If from some point on, π stays forever in Zσ1,0, Player 0

wins since Zσ1,0 is a 0-paradise in Zσ1,0. If the play moves infinitely often out of Zσ1,0, then there

are infinitely many nodes in ˜Attr0(M) visited since W0 is a 1-trap and therefore infinitely many

nodes in M . It follows that the largest value occurring infinitely often in π is m, which is even,

and therefore Player 0 wins π.

As already explained, this implies the positional determinacy of parity games.

1.3.2 Complexity

As mentioned in the beginning of this section, the complexity of solving parity games is a very

interesting question. We will see later on that parity games are decidable in quasipolynomial

time. Whether they are solvable in polynomial time is still unknown.

In this subsection we prove that parity games are in NP∩Co-NP, following [Grä16], and mention

the complexity bounds that were known before parity games were shown to be decidable in

quasipolynomial time. Let us begin with the former.

1.3.19 Theorem: The problem of deciding whether Player 0 wins a given parity game G from

a starting node v is in NP∩Co-NP.

Proof. We begin by proving that deciding whether Player 0 wins G = (V, V0, V1, E, val) from v

is in NP. In order to do so, we guess a positional strategy f for Player 0 from v and check,

whether f is a winning strategy for Player 0. All that needs to be shown is that we can do so

in polynomial time.

Let G′ = (V, V0, V1, E
′) be the subgraph of G = (V, V0, V1, E) obtained by deleting any edge

(v, w) from E, where v ∈ V0 and w 6= f(v). Now we need to check if there is a node v′ reachable

from v for Player 1 such that val(v′) is odd and v′ lies on a cycle where val(v′) is the largest

value. This can be done in polynomial time.

In order to show that the problem also lies in Co-NP it suffices to realise that showing that

Player 0 does not have a winning strategy for G from v can be done by showing that Player 1

has such a strategy. By the same argument as above, this problem is in NP and therefore, the

original problem is in Co-NP.

It was proven by Jurdziński [Jur98] that parity games are in UP ∩ Co-UP. UP denotes unam-

biguous non-deterministic polynomial time. It contains P and is itself contained in NP, making

the bound possibly better than NP ∩ Co-NP.

Also, it was previously known that parity games can be solved in time nm/3+O(1) [Sch07], where

17

n denotes the number of nodes and m the largest occurring value. However, since m can be as

large as n, this can still be exponential time.

In this thesis we will present two different approaches that improve this runtime to quasipolyno-

mial time, i.e. to time 2O(log(n)
c) for some constant c. In their paper Deciding Parity Games in

Quasipolynomial Time [Cal17], Calude, Jain, Khoussainov, Li and Stephan showed that parity

games can be solved in time O(nlog(m)+6). Using a different method, Jurdziński and Lazić pre-

sented an algorithm running in time O(knlog(m)−log(log(n))+4,03), where k is the number of edges

in the graph, in their paper Succinct progress measures for solving parity games [JL17]. We will

discuss both methods in detail in the next chapter.

18

1.4 Muller Games

In this section we will get to know Muller games as preparation for the next section, were we

will consider particular Muller games, namely Streett-Rabin games. Here we are only interested

in coloured Muller games, meaning that all games we consider will have a value function, just as

the parity games. Another similarity to parity games is that in Muller games, too, we consider

the set of values occurring infinitely often, only now we look at the whole set, not just the largest

value in it.

The definitions and results in this section are based on [Grä16].

1.4.1 Definition: A Muller game G = (V, V0, V1, E, val : V → N>0) is defined as follows: V is

a finite set of n <∞ nodes and V0 ∪ V1 = V , V0 ∩ V1 = ∅. E ⊆ V × V is the set of edges of the

game graph and val is the value function with | val(V)| = m <∞.

The winning condition is given by the sets F0,F1 ⊆ P(val(V)), where F0 ∪F1 = P(val(V)) and

F0 ∩ F1 = ∅.
The moves are the same as in parity games, meaning that from a node v ∈ Vi, i ∈ {0, 1}, Player

i moves to a node w ∈ V with (v, w) ∈ E.

Player i ∈ {0, 1} wins a play π = v1 v2 v3 . . . in G if the set

inf(π) = {j ∈ N>0 : there are infinitely many vk in π with val(vk) = j}

is in Fi.

1.4.2 Remark: Without loss of generality we can assume in the context above, that val(V) =

{1, . . . ,m}, since we can simply replace each different value by a distinct number between 1 and

m, both in the definition of val and in the definitions of F0 and F1.

Let us consider the example from the previous chapter. We had three nodes with values 1, 2,

and 3 and Player 0 was the winner if the largest value occurring infinitely often was 2. We can

reformulate this parity game into a Muller game as follows.

1.4.3 Example: Consider the game graph below with V0 = {v2}, V1 = {v1, v3}, val(v1) = 2,

val(v2) = 1 and val(v3) = 3.

2 1 3

v1 v2 v3

We define the winning conditions as follows:

F0 = {∅, {2}, {1, 2}}, F1 = {{1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}}.

19

Note that F0 contains precisely the subsets of {1, 2, 3} where the largest number is even (and

the empty set). Therefore Player 0 can win the game by always moving from v2 to v1, forcing

for any play π played according to that strategy that inf(π) = {1, 2} ∈ F0.

In fact any parity game can be stated as a Muller game by including in F0 precisely those subsets

of the set of values {1, . . . ,m} where the largest value is even.

The reverse however is not true. Not every Muller game can be stated as a parity game. Consider

again the graph from the previous example, but this time with different winning conditions.

1.4.4 Example: Again V0 = {v2}, V1 = {v1, v3}, val(v1) = 2, val(v2) = 1 and val(v3) = 3.

2 1 3

v1 v2 v3

We now define the winning conditions as

F0 = {∅, {1}, {2}, {1, 2, 3}}, F1 = {{3}, {1, 3}, {2, 3}, {1, 2}}.

Player 0 can win this Muller game, too, from any position. A winning strategy is to alternate

between moving to v1 and to v3 from v2. Any play π consistent with this strategy will satisfy

inf(π) = {1, 2, 3} ∈ F0. This however is not a positional winning strategy. In fact there does

not exist a positional winning strategy for Player 0: If she always moves from v2 to v1, we will

have inf(π) = {1, 2} ∈ F1 for every π played with this strategy. Similarly for each π where she

always moved from v2 to v3 we have inf(π) = {1, 3} ∈ F1.

Just as for parity games, it follows from the result by Martin (see [Mar75]) that Muller games

are determined.

We have seen in the previous chapter that if a player in a parity game has a winning strategy,

she has a positional winning strategy. Therefore the Muller game in the example cannot be a

parity game.

If we cannot guarantee that the winning player in a Muller game (from a certain starting node)

has a positional winning strategy, we can at least ask ourselves, how far she has to look back

in the play in order to decide where to move from the current node. Or, put differently, what

space is needed for her winning strategy. We will see that that space is indeed finite and we can

give an upper bound for it.

To see this, we will translate Muller games into parity games. Note that this does not mean

a direct translation of the winning conditions as we have shown in the example that this is

impossible. Instead we will construct a parity game from a given Muller game on a different

game graph, using the so called latest appearance record.

20

1.4.5 Definition: Let G = (V, V0, V1, E, val : V → {1, . . . ,m}) be a Muller game. We define

the latest appearance record (LAR) as a triple (LAR(m), init, update) with

LAR(m) = {c1 · · · ck#ck+1 · · · cl ∈ ({1, . . . ,m} ∪ {#})l : l ≤ m, each ci ∈ {1, . . . ,m}

appears at most once and # exactly once}

and

• init(v) = # val(v)

• update(c1 · · · ck#ck+1 · · · cl, v) =

c1 · · · ck#ck+1 · · · cl val(v), val(v) /∈ {c1, . . . , cl}

c1 · · · cj−1#cj+1 · · · clcj , val(v) = cj
.

For m′ = c1 · · · ck#ck+1 · · · cl we define the hitset hit(m′) : = {ck+1, . . . , cl}.

The LAR keeps record of values that occurred recently and the hitset is the set of values that

occurred since the last appearance of the current value. We will see that the hitset helps us

identify the nodes that occur infinitely often. But first let us get more familiar with the definition

by considering the following example.

1.4.6 Example: We can apply the LAR to an arbitrary (initial part of a) play. Let

π = v4 v1 v3 v3 v2 v3 v4 v2 v4 · · ·

To simplify matters let us suppose that val(vi) = i for each 1 ≤ i ≤ 4. We can see the respective

state of the LAR at each position in π in the following table:

Position LAR

v4 # 4

v1 # 4 1

v3 # 4 1 3

v3 4 1 # 3

v2 4 1 # 3 2

v3 4 1 # 2 3

v4 # 1 2 3 4

v2 1 # 3 4 2

v4 1 3 # 2 4

Every time a new value is introduced, it is appended to the previous state of the LAR. Whenever

a value occurs that was already there, it is moved from its place in the previous state to the end

and to its previous position we move #.

21

We already mentioned that the hitset will help us identify the set of values occurring infinitely

often in a play. The following lemma will make clearer how.

1.4.7 Lemma: Let G be a Muller game with latest appearance record LAR and π = v1v2v3 · · ·
a play in G. Let mn denote the state of the update function at position vn in the play. Then

there exists n0 such that for all n > n0

1. hit(mn) ⊆ inf(π) and

2. hit(mn) = inf(π) infinitely often.

Proof. 1. There exists n′0 such that for all n > n′0 we have val(vn) ∈ inf(π). From that point

on, no value outside inf(π) will occur in π and therefore, no such value will be appended

to the hitset by the update function. Additionally, by the time a value a ∈ inf(π) is visited

for the second time after n′0, say at vn0 , there cannot be any value outside of inf(π) in

the hitset, because it then contains only values that were visited between the first and

second appearance of a after n′0. It follows that from n0 on, we have hit(mn) ⊆ inf(π)

for all n > n0. Also, once every a ∈ inf(π) has been visited at least once after n0, for

all n from this point onwards mn will be of the form c1 · · · cjcj+1 · · · ck#ck+1 · · · cl, where

{cj+1, . . . , cl} = inf(π) and c1 · · · cj remains unchanged.

2. Let n0 be large enough such that all mn for n > n0 are of the form just described and let

mn = c1 · · · cjcj+1 · · · ck#ck+1 · · · cl, where {cj+1, . . . , cl} = inf(π), for some n > n0. Then

c1 · · · cjcj+1 remains unchanged after vn until a node with value cj+1 is visited at some node

vn+r. At that point we have mn+r = c1 · · · cj#cj+1 · · · cl and therefore hit(mn+r) = inf(π).

It follows that for each n ∈ N>0 there is mn′ with n′ > n such that hit(n′) = inf(π) and

therefore this happens infinitely often.

Now we have all the tools necessary to construct a parity game for a given Muller game such

that Player 0 wins the parity game if and only if she wins the Muller game.

1.4.8 Theorem: Every Muller game can be reduced to a parity game, using the latest appear-

ance record.

Proof. Let G = (V, V0, V1, E, val : V → {1, . . . ,m}) be a Muller game with winning condition

(F0,F1) and let LAR = (LAR(m), init,update) be its latest appearance record. We will show

that there is a parity game G′ = (V ′, V ′0 , V
′
1 , E

′, val′ : V ′ → {1, . . . ,m}), where

• V ′ = V × LAR(m), V ′0 = V0 × LAR(m) and V ′1 = V1 × LAR(m)

• E′ = {((v,m), (v′,m′)) : (v, v′) ∈ E and m′ = update(m, v′)}

22

• val′((v, c1 · · · ck#ck+1 · · · cl)) =

2m+ 1− (2k + 1), {ck+1, . . . , cl} ∈ F0

2m+ 1− 2k, {ck+1, . . . , cl} ∈ F1

and Player 0 wins a play π = v1v2v3 · · · in G if and only if Player 0 wins the projected play

π′ = (v1,m1 = init(v1))(v2,m2 = update(m1))(v3,m3 = update(m2)) · · · in G′.
To prove this, let π = v1v2v3 · · · be a play in G and let n0 be a point in π such that any value

that occurs at or after vn0 in π occurs infinitely often and the state of the update function at vn

for n > n0 is of the form c1 · · · cjcj+1 · · · ck#ck+1 · · · cl, where {cj+1, . . . , cl} = inf(π). It follows

that in π′ = (v1,m1 = init(v1))(v2,m2 = update(m1))(v3,m3 = update(m2)) · · · all nodes

(vn,mn) for n > n0 in G′ have values val((vn,mn)) ≥ 2j. If Player i wins π then inf(π) ∈ Fi
and val((vn,mn)) with hit(mn) = inf(π) is even. Additionally, for any node (vn,mn) ∈ V ′

with mn = c1 · · · cjcj+1 · · · ck#ck+1 · · · cl and {ck+1 · · · cl} ⊆ inf(π) we have val((vn,mn)) =

2m + 1 − (2k + σ) ≤ 2m + 1 − (2j + i) = val((v′n, c1 · · · cj#cj+1 · · · cl)), where σ ∈ {0, 1} and

{cj+1 · · · cl} = inf(π). Since by Lemma 1.4.7 for all n > n0 we have hit(mn) ⊆ inf(π) and

hit(mn) = inf(π) infinitely often, it follows that Player i wins π′.

If on the other hand Player i wins π′, then the largest value in

This reduction to parity games also helps us to specify the space needed for a winning strategy.

In particular we are interested in the number of different moves consistent with her winning

strategy that a player can make from a fixed node, dependent on the state of the play at that

node. This will become very relevant in later chapters.

1.4.9 Corollary: Muller games are determined with finite space. The size of the memory is

bounded by (m+ 1)! with m the number of different values.

Proof. Let G be a Muller game and G′ the corresponding parity game defined as above. The

parity game is positionally determined, but the positions are of the form (v,m′), with m′ ∈
LAR(m). There size of LAR(m) is at most (m+ 1)! since each of the m+ 1 symbols 1, . . . ,m,#

can occur at most once in any element of LAR.

The last notion presented in this chapter is that of a Zielonka tree. The Zielonka tree is a

more succinct representation of the sets F0 and F1 in one tree. Each node of the Zielonka tree

represents a set in F0 or in F1 with each level (meaning all nodes with a set distance from the

root) being either entirely in F0 or entirely in F1. Additionally, the size of sets at the nodes

decreases along each path from the root. What makes the representation more succinct is that

not all sets in F0 ∪ F1 have to appear in the tree. Formally, we have the following definition.

1.4.10 Definition: Let G be a Muller game with winning condition (F0,F1). The Zielonka tree

Z(F0,F1) for (F0,F1) is defined inductively in the following way:

Let C ∈ Fi, i ∈ {0, 1}, where C = val(V), and let C0, . . . , Ck−1 be the maximal elements in the

23

set {X ⊆ C : X ∈ F1−i}. Then Z(F0,F1) has as its root the node ({1, . . . ,m}, i) with subtrees

Z(F0 ∩ P(C0),F1 ∩ P(C0)), . . . , Z(F0 ∩ P(Ck−1),F1 ∩ P(Ck−1)) attached to it.

As an example let us construct a Zielonka tree for a winning condition (F0,F1).

1.4.11 Example: Let the set C of values be C = {1, 2, 3} and define

F0 = {{2}, {1, 2}, {1, 3}}, F1 = {∅, {1}, {3}, {2, 3}, {1, 2, 3}}.

This gives us the following Zielonka tree:

{1, 2, 3}, 1

{1, 2}, 0 {1, 3}, 0

{1}, 1 {1}, 1 {3}, 1

One advantage of presenting the winning conditions in a Zielonka tree is that using the following

remark we can immediately see if the Muller game with these winning conditions is a parity

game.

1.4.12 Remark: If (F0,F1) is a parity condition, then the Zielonka tree is a single path.

Proof. For each set of values {1, . . . ,m} in Fi for i = 0 or i = 1 we have only one maximal

subset that is in F1−i, namely {1, . . . ,m − 1}. Therefore each node has a unique successor in

Z(F0,F1).

In the next section we will use Zielonka trees in the context of Streett-Rabin games.

24

1.5 Streett-Rabin Games

1.5.1 Two Characterizations

In this thesis we are particularly interested in a certain subclass of Muller games, namely the

Streett-Rabin games. In a way, they are in between’ Muller games and parity games in that one

of the two players has a positional winning strategy on her winning region, but not necessarily

the other.

The definitions and results in the first part of this section are again based on [Grä16]. Let us

begin with the formal definition of a Streett-Rabin game.

1.5.1 Definition: A Streett-Rabin game is a Muller game G = (V, V0, V1, E; val : V → {1, . . . ,m})
with winning condition (F0,F1), such that additionally F0 is closed under union, meaning that

X,X ′ ∈ F0 ⇒ X ∪X ′ ∈ F0.

Let us consider the examples from the previous section. We had the same game graph with

different winning conditions.

1.5.2 Example: Again let V0 = {v2}, V1 = {v1, v3}, val(v1) = 2, val(v2) = 1 and val(v3) = 3

and consider the following game graph.

2 1 3

v1 v2 v3

First the winning conditions were

F0 = {∅, {2}, {1, 2}}, F1 = {{1}, {3}, {1, 3}, {2, 3}, {1, 2, 3}},

representing a parity game. As we can easily see this is also a Streett-Rabin game since F0 is

closed under union. For the second example we had the winning conditions

F0 = {∅, {1}, {2}, {1, 2, 3}}, F1 = {{3}, {1, 3}, {2, 3}, {1, 2}}.

This game is not a Streett-Rabin game, since {1}∪{2} = {1, 2} /∈ F0. Now consider the winning

conditions

F0 = {∅, {2}, {3}, {2, 3}, {1, 2, 3}}, F1 = {{1}, {1, 3}, {1, 2}}.

This is a Streett-Rabin game but not a parity game, since the only way for Player 0 to win is as

in the previous example to alternate between going to v1 and v3 from v2. So she does not have

a positional winning strategy.

25

Not just the parity game in our example is a Streett-Rabin game, but every parity game is.

Consider a parity game whose winning condition is given as a Muller condition. Then F0

contains precisely those subsets of the set C of occurring values, whose maximal value is even.

But then the maximal value in the union of two such sets is also even. In fact we can give an

analogous argument for F1 and obtain that in the case of parity games, both F0 and F1 are

closed under union.

But now let us come back to arbitrary Streett-Rabin games. We have already mentioned that

one of the players has a positional winning strategy from her winning region. Now let us prove

it.

1.5.3 Proposition: Let G be a Streett-Rabin game with m different values in the set C of

occurring values and winning condition (F0,F1). Then

• G is determined.

• Player 1 has a positional winning strategy on his winning region W1.

• Player 0 has a winning strategy using finite space of size bounded by (m + 1)! on her

winning region W0.

Proof. Because G is also a Muller game, G is determined and Player 0 has a winning strategy

using finite space of size (m+ 1)! on W0 by Corollary 1.4.9. What remains to be shown is that

Player 1 has a positional winning strategy on W1.

We will prove this by induction over the height of the Zielonka tree.

Case 1: C ∈ F1

We know that W1 = V \W0 is a trap for Player 0, so there exists a positional strategy f

for Player 1 to remain in W1 from W1 (always choose a successor in W1, which exists by

definition). Let C ′ be the unique largest subset of C which is in F0. This exists, because if

there were two distinct largest subsets C1, C2 ⊆ C in F0 then because F0 is closed under

union, C1 ∪ C2 ∈ F0, which is larger than either C1 or C2. Define

Y = W1 ∩ val−1(C\C ′) and Z = Attr1(Y)\Y.

Then Player 1 has a positional attractor strategy a to move from Z to Y . Define a game

G′ = (V ′, V ′0 , V
′
1 , E

′, val |V ′) by V ′ = W1\(Y ∪Z), V ′0 = V ′∩V0, V ′1 = V ′∩V1 and (v, w) ∈ E′

if and only if (v, w) ∈ E and v, w ∈ V ′. The set of values occurring in G′ is now a subset

of C ′ and therefore the Zielonka tree of G′ has a height reduced by at least 1 compared to

that of G. By induction hypothesis, there exists a partition of V ′ into W ′0 and W ′1 such

that Player 0 has a winning strategy on W ′0 and Player 1 has a positional winning strategy

g′ on W ′1. Since however V ′ is a subset of W1, W
′
0 = ∅ and therefore W ′1 = V ′. The sets

V ′, Z and Y are a partition of W1, so we can define a positional strategy g : W1∩V1 →W1

26

for Player 1 on W1 by

g(v) =


g′(v), v ∈ V ′

a(v), v ∈ Z

f(v), v ∈ Y.

for all v ∈W1. Let π be a play in G consistent with g. If infinitely many positions of π are

in Y then there is a value in C\C ′ that occurs infinitely often in π. Since C ′ is the unique

maximal subset of C in F0, the set inf(π) of values occurring infinitely often in π cannot

be in F0. Therefore, Player 1 wins π. If on the other hand only finitely many positions of

π are in Y then Z is also visited only finitely many times, because it is the attractor of Y

and every visit of a node in Z leads to a visit of Y according to f . Thus at some point π

never leaves V ′ and is from then on consistent with g′ which is a winning strategy on V ′.

Therefore Player 1 wins π in this case as well.

Case 2: C ∈ F0

Let X1 = {v ∈ V : Player 1 has a positional winning strategy from v} and X0 = V \X1.

We need to show that Player 0 has a winning strategy on X0 in order to show that

X1 = W1.

Let C0, . . . , Ck−1 be the maximal subsets of C that are in F1. Note that if we have a set

D ⊆ C such that D ∩ (C\Ci) 6= ∅ for all 0 ≤ i ≤ k − 1 then D ∈ F0 since otherwise D

would also be a maximal subset in F1.

For all 0 ≤ i ≤ k − 1 define

Yi = X0 ∩ val−1(C\Ci) and Zi = Attr0(Yi)\Yi.

For all i < k let ai be an attractor strategy on Zi. Define games Gi = (Vi, V0i , V1i , Ei, val |Vi)
for all 0 ≤ i ≤ k − 1 by Vi = X0\(Yi ∪ Zi), V0i = Vi ∩ V0, V1i = Vi ∩ V1 and (v, w) ∈ Ei
if and only if (v, w) ∈ E and v, w ∈ Vi. Then the set of values occurring in Gi is a subset

of Ci for all i < k. Therefore the Zielonka tree has a height of at least one less than

the original Zielonke Tree. By induction hypothesis for all i < k there is a partition of

Vi in W0i and W1i auch that Player 0 has a winning strategy on W0i and Player 1 has

a positional winning strategy on W1i . This implies W1i = ∅ since W1i ⊆ X0 = V \X1.

Therefore Vi = W0i for all i < k. For all i < k let fi be a winning strategy for Player 0 on

Vi. Define f ′i : Vi ∪ Zi → X0 by

f ′i(v) =

fi(v), v ∈ Vi
ai(v), v ∈ Zi

for all v ∈ Vi ∪ Zi. We now define a strategy f for Player 0 on X0 in the following way:

In
⋂k−1
i=0 Yi play according to a trap strategy t to keep the play in X0. The first time the

27

play enters X0\
⋂k−1
i=0 Yi at some node v, take the smallest i < k such that v /∈ Yi and play

according to f ′i until entering Yi\
(⋂k−1

i=0 Yi

)
at some node w. Now start playing according

to fi+j(mod k), where j is the smallest natural number such that w /∈ Yi+j . Repeat this

upon entering Yi+j\
(⋂k−1

i=0 Yi

)
and so on.

What remains to be seen is that Player 0 wins any play π consistent with f . Let π be such

a play. We claim that either π stays in Vi for some i < k from some point onwards, in which

case the play will from then on be consistent with fi and therefore winning for Player 0,

or there are infinitely many positions of π in each Yi, meaning that inf(π) ∩ (C\Ci) 6= ∅
for all i < k which by the remark in the beginning of the proof implies inf(π) ∈ F0.

To prove the claim, assume first that Player 0 plays only according to t and f ′i for a fixed

i < k from some point onwards. Then either the play stays in Vi forever or there are

infinitely many positions outside Vi. If it is not in Vi, it will enter Yi either immediately

or as a result of the attractor strategy on Zi. But if at this point it left
⋂k−1
i=0 Yi, Player 0

would switch to f ′j for some j 6= i, which contradicts the assumption. Therefore
⋂k−1
i=0 Yi

is visited infinitely often.

If on the other hand Player 0 switches between the f ′i infinitely often, define

I = {i < k : Player 0 switches infinitely often to f ′i}

and J = {0, . . . , k − 1}\I. In particular, Player 0 also switches infinitely often away from

f ′i for all i ∈ I. Since this only happens at v ∈ Yi, Yi is visited infinitely often for all i ∈ I.

If Yj was visited only finitely many times for some j ∈ J , then at some point π would

always be outside Yj . But since j lies between i1 and i2 modulo k for some i1, i2 ∈ I which

have no i3 ∈ I between them modulo k, Player 0 would then switch to f ′j upon leaving Yi1

each time, which is a contradiction. Therefore, all Yi are visited infinitely many times.

The previous result is the main result about Streett-Rabin games that we will use in later

chapters. However, the way we have defined Streett-Rabin games in this section is only one of

two possible ways of characterising them, with the other option being the more common one.

Of course we will not neglect this second characterisation.

All the premises concerning the game graph, the players and the moves are the same as before,

but the winning condition will be stated in a different way.

1.5.4 Definition: Let G = (V, V0, V1, E, val) be a game graph with V0 ∪ V1 = V , V0 ∩ V1 = ∅
and val : V → {1, . . . ,m}. Let k ∈ N>0 and consider the pair condition (Gi, Fi)1≤i≤k with

Gi, Fi ⊆ {1, . . . ,m} for all i ≤ k. Player 0 wins a play π on G if inf(π) ∩ Gi 6= ∅ implies

inf(π) ∩ Fi 6= ∅ for all i ∈ {1, . . . , k} and Player 1 wins otherwise. This defines a Muller

28

condition (F0,F1) for G = (V, V0, V1, E, val : V → {1, . . . ,m}) in the following way:

F0 = {F ⊆ {1, . . . ,m} : (F ∩Gi 6= ∅ ⇒ F ∩ Fi 6= ∅) for all i = 1, . . . , k}

F1 = P({1, . . . ,m})\F0

At first glance, this winning condition looks very different from the one previously defined for

Streett-Rabin games. So let us make sure, they are indeed interchangeable. The proof of the

following result is based on [Zie98].

1.5.5 Theorem: A Muller game with winning conditions as in Definition 1.5.4 is a Streett-

Rabin game and every Streett-Rabin game is equivalent to a pair condition as in Definition

1.5.4.

Proof. To prove the first part of the statement, let (Gi, Fi)1≤i≤k be a pair condition. We need

to show that F0 = {F ⊆ {1, . . . ,m} : (F ∩Gi 6= ∅ ⇒ F ∩ Fi 6= ∅) for all i = 1, . . . , k} is closed

under union. So let F, F ′ ∈ F0 and let (F ∪ F ′) ∩ Gi 6= ∅ for some i ≤ k. Then F ∩ Gi 6= ∅ or

F ′ ∩Gi 6= ∅. In the first case F ∩ Fi 6= ∅ since F ∈ F0 and in the second case F ′ ∩ Fi 6= ∅ since

F ′ ∈ F0. In either case we have (F ∪ F ′) ∩ Fi 6= ∅ and since i was arbitrary, F ∪ F ′ ∈ F0.

It follows that F0 is closed under union and (F0,F1) is a Streett-Rabin condition. Obviously

inf(π) ∈ F0 if and only if inf(π)∩Gi 6= ∅ ⇒ inf(π)∩Fi 6= ∅ for all i ∈ {1, . . . , k} and therefore

Player 0 wins π according to the winning conditions (F0,F1) if and only if she wins π according

to the pair condition.

Now we show the second part of the statement. Let (F0,F1) be a Streett-Rabin condition, i.e.

a Muller condition where F0 is closed under union. If F1 = ∅ we can define a pair condition

with no pairs. Then any play is won by Player 0 according to (F0,F1) and for any play π we

have inf(π) ∩Gi 6= ∅ ⇒ inf(π) ∩ Fi 6= ∅ for all i ∈ {1, . . . , k} since there are no Gi. Therefore

Player 0 also wins any play according to the pair condition.

So let us suppose that F1 6= ∅. Let H1, . . . ,Hl ∈ F1 be all the sets such that there are nodes

in the Zielonka tree Z(F0,F1) labeled with (Hi, 1) for each 1 ≤ i ≤ l. Now define Qi ∈ F0 as

the set labelling the unique child of Hi for each 1 ≤ i ≤ l or set Qi = ∅ if Hi has no child. Note

that Y ∈ F1 if and only if Y ⊆ Hi and Y * Qi for some 1 ≤ i ≤ k: Let Y ∈ F1. If Y * Hi for

all 1 ≤ i ≤ k, then Y would itself be the set C of all occurring values, if C ∈ F1, or a maximal

subset of C, if C ∈ F0. But then Y would be one of the Hi which is a contradiction. Now

consider all Hi such that Y ⊆ Hi. If Y ⊆ Qi for all such i, Then at some point Y would be a

maximal subset of a Qi, since the Qi become ever smaller, the further we descend in the tree.

But then again Y would be one of the Hi, which is a contradiction. On the other hand assume

that Y ∈ F0 and that Y ⊆ Hi and Y * Qi for some 1 ≤ i ≤ k. Since Qi is the only child of Hi

and Y * Qi, Qi cannot be a maximal subset of Hi in F0, a contradiction.

But Y ⊆ Hi is equivalent to Y ∩ (C\Hi) = ∅ and Y * Qi is equivalent to Y ∩ (C\Qi) 6= ∅. Thus

define Gi = C\Qi and Fi = C\Hi for all 1 ≤ i ≤ k to obtain a pair condition (Gi, Fi)1≤i≤k

29

corresponding to the Muller condition (F0,F1).

We have already considered the winning strategies for both players in Streett-Rabin games given

with a Muller condition. However if we present a Streett-Rabin game with a pair condition, we

have another parameter, namely the number k of pairs. Naturally, we are interested in how this

parameter influences the winning strategies, or rather the size of the winning strategies of Player

0. For the Muller condition we got a statement depending on the parameter m using the latest

appearance record. We will now define a similar record for Streett-Rabin games given with a

pair condition, based on [Hor05] and [BLV96].

1.5.6 Definition: Let G be a Streett-Rabin game with pair condition (Gi, Fi)1≤i≤k. An index

of appearance record (IAR) is a tuple (S, e, f) with

• S ∈ Sk, which denotes the set of all permutations over {1, . . . , k} and

• e, f ∈ {1, . . . , k}.

Now we have the tools to prove the following statement.

1.5.7 Proposition: Let G = (V, V0, V1, E, val : V → {1, . . . ,m}) be a Streett-Rabin game with

m different colours and winning condition (Gi, Fi)1≤i≤k. Then

• G is determined.

• Player 1 has a positional winning strategy on his winning region W1.

• Player 0 has a winning strategy using space of size bounded by (k + 2)! on her winning

region W0.

Proof. That G is determined and that Player 1 has a positional winning strategy on W1 follow

directly from Theorem 1.5.5 and Proposition 1.5.3.

In order to prove the third statement, we show that we can reduce G to a parity game G′ using

the IAR, just as we have done with the LAR and the Muller conditions before. Define the parity

game G′ = (V ′, V ′0 , V
′
1 , E

′, val′) as follows:

• V ′ = V × Sk × {1, . . . , k} × {1, . . . , k},

• V ′0 = {(v, S, e, f) ∈ V ′ : v ∈ V0},

• V ′1 = {(v, S, e, f) ∈ V ′ : v ∈ V1},

• for (v, S, e, f), (v′, S′, e′, f ′) ∈ V ′ we have ((v, S, e, f), (v′, S′, e′, f ′)) ∈ E′ if all of the fol-

lowing hold

– (v, v′) ∈ E.

30

– Let I = {i ≤ k : val(v′) ∈ Fi}. Then S′ is obtained from S by shifting all i ∈ I

to the beginning of the permutation while keeping their order nad the order of the

remaining elements the same.

– e is the maximal position of an i ∈ I in S′.

– f is the maximal position in S′ of an i < k such that val(v′) ∈ Gi.

• val′ : V ′ → {1, . . . , 2m}, (v, S, e, f) 7→ max(2e, 2f − 1).

We need to show that Player 0 wins a play π = v1v2v3 · · · in G if and only if Player 0 wins the

corresponding play π′ = (v1, S1, e1, f1)(v2, S2, e2, f2)(v3, S3, e3, f3) · · · in G′.
Suppose first that Player 0 wins π in G. Then inf(π) ∩ Gi 6= ∅ implies inf(π) ∩ Fi 6= ∅ for all

i ∈ {1, . . . , k}. Let n0 ∈ N be such that val(vn) ∈ inf(π) for all n > n0. Note that 2e > 2f − 1 if

and only if e ≥ f . Let a be the largest element in {1, . . . , k} such that a is the maximal position

in infinitely many Sn, n > n0, such that val(vn) ∈ Fi. Let b be an element in {1, . . . , k} such

that b is the maximal position in infinitely many Sn, n > n0, of an i < k such that val(vn) ∈ Gi.
Since Player 0 wins π, there also have to be infinitely many vn′ , n

′ > 0, such that val(vn′) ∈ Fi
and therefore b ≤ a. It follows that the largest en that occurs infinitely often is larger than or

equal to the largest fn that occurs infinitely often and therefore the largest value of val′ occurring

infinitely often is of the form 2e for some e, thus even. It follows that Player 0 wins π′.

Now suppose that Player 1 wins π. Then there is j ≤ k and a value c occurring infinitely often

such that c ∈ Gj but after n0 defined as above there are no such values in Fi. Since Sn for

n > 1 is obtained from Sn−1 by shifting all i ≤ k such that vn ∈ Fi to the beginning, all i such

that there is a value a ∈ Fi that occurs infinitely often in π will forever be at lower positions in

the permutations Sn for all n large enough such that all values occurring infinitely often have

been visited at least once after n0. Let us call this point vn′0 . At each of the infinitely many

occurrences of c at nodes vn after vn′0 we have fn ≥ j and j is larger than any i such that

val(vl) ∈ Fi for every vl with l > n′0. Thus, fn > el for this fn occurring infinitely often and

each el occurring after vn′0 and therefore the largest value occurring infinitely often in π′ is of

the form 2f − 1 for some f , hence odd. It follows that Player 1 wins π′.

We have shown that G can be reduced to the parity game G′ which is positionally determined,

but with respect to positions in V ×Sk×{1, . . . , k}×{1, . . . , k}. Thus for each v ∈ V0 there are

at most k! · k2 ≤ (k + 2)! different positions in G′ that correspond to v in G. Therefore, Player

0 has a winning strategy using space of size bounded by (k+ 2)! on her winning region W0.

1.5.2 Complexity

In the next chapter we will see that parity games can be solved in quasipolynomial time. In many

ways Streett-Rabin games are very similar to parity games but they are also a strictly larger

31

class of games. So we have to curb our enthusiasm a little bit when trying to find similar results

as for parity games. In fact solving Streett-Rabing games is NP-complete or Co-NP-complete,

depending on the player considered, as we can see in the following proposition, which can also

be found in [Grä16].

1.5.8 Proposition: Deciding whether Player 0 wins a Street-Rabin game G from starting po-

sition v is Co-NP-complete. Determining whether Player 1 wins is NP-complete.

Proof. We prove the statement for Player 1 using a reduction from SAT. Let ψ =
∧
i∈I Ci,

Ci =
∨
j∈J Yij , Yij literals, be a formula in conjunctive normal form with variables X1, . . . , Xk.

We define a Streett-Rabin game Gψ = (V, V0, V1, E, val) with winning conditions (F0,F1) as

follows:

• V is the set of clauses and literals in ψ.

• V0 is the set of literals X1, . . . , Xk,¬X1, . . . ,¬Xk in V .

• V1 is V \V0.

• E = {(φ, φ′) : φ = Ci and φ′ = Yij for some i ∈ I, j ∈ J} ∪ {(φ, φ′) : φ = Yij and φ′ =

Cl for some i, l ∈ I, j ∈ J}.

• val assigns to each literal and clause its own distinct value in {1, . . . , |I| · |J |} (and is not

relevant here).

• F0 = {Z ⊆ {1, . . . , |I| · |J |} : {val(Xl), val(¬Xl)} ∈ Z for some l ∈ {1, . . . , k}}.

• F1 = P({1, . . . , |I| · |J |})\F0.

Obviously, F0 is closed under union, so (F0,F1) is a Streett-Rabin condition.

What remains to be shown is that ψ is satisfiable if and only if Player 1 wins from any starting

position.

Suppose that ψ is satisfiable. Then there exists an interpretation Int : {X1, . . . , Xk} → {0, 1}
such that if we substitute Int(Xi) for each Xi in ψ we obtain 1. We define a strategy f for Player

1, where f(C) for a clause C is a literal Y in C with Int(Y) = 1. Such a Y exists, because of the

conjunctive normal form of ψ and the definition of Int. But then all literals Y (except possibly

the starting position) visited in any play consistent with f satisfy Int(Y) = 1 and therefore no

two literals of the form X,¬X can be visited infinitely often. It follows that Player 1 wins the

play in Gψ.

Now suppose that ψ is unsatisfiable. Assume that Player 1 has a positional winning strategy f

from any position in Gψ. Since ψ is unsatisfiable, there exist clauses C,C ′ such that f(C) = X

and f(C ′) = ¬X for some variable X: If this were not the case, define an interpretation

Int : {X1, . . . , Xk} → {0, 1} by defining Int(X) = 1 if f(C) = X for some clause C and Int(X) =

0 if f(C) = ¬X for some clause C, which would then be well defined. It follows that in each

32

clause there is at least some literal Y with Int(Y) = 1 and therefore if we substitute Int(Xi) for

each Xi in ψ we obtain 1. This contradicts the unsatisfiability of ψ.

Let C,C ′ and X be such that f(C) = X and f(C ′) = ¬X. Define a strategy g for Player 0 by

g(¬X) = C and g(Y) = C ′ for every literal Y 6= ¬X. Because Player 1 always moves from C

to X and from C ′ to ¬X, in any play consistent with f and g both X and ¬X will be visited

infinitely often and Player 0 wins.

This means that Player 1 cannot have a positional winning strategy for every position in Gψ and

by Proposition 1.5.3 does not have any winning strategy for every position in Gψ.

Since SAT is an NP-complete problem it follows that deciding whether Player 1 wins a Streett-

Rabin game from a given starting proition is NP-complete. By the determinacy of Streett-Rabin

games as Muller games we obtain the Co-NP-completeness for Player 0.

This does not mean, however, that there are no possible interesting complexity improvements

for Streett-Rabin games. In fact, using the methods for parity games presented in the next

chapter and applying them to Streett-Rabin games, we will see that they are decidable in FPT,

a result which was not known before the paper [Cal17] by Calude et al. was published.

33

1.6 Modal µ-Calculus

In this section we will introduce the modal µ-calculus. It is a fixed point logic based on modal

logic and we are particularly interested in it, because its model checking games are parity games.

The last chapter of this thesis will be dedicated to how the methods for solving parity games

in quasipolynomial time can best be implemented to solve model checking games for the modal

µ-calculus. But first, let us get to know this logic.

Most readers will be familiar with modal logic, but we will still include its definition for conve-

nience. Let us start with the syntax of modal logic ML and base upon it the modal µ-calculus

Lµ. This section is largely based on [?] and [Zap02].

1.6.1 Definition: Let (Pi)i∈I be atomic propositions and A a set of agents. The syntax of

modal logic ML is defined as follows.

• For all i ∈ I we have Pi ∈ ML and ¬Pi ∈ ML,

• if φ1, φ2 ∈ ML then φ1 ∧ φ2 ∈ ML,

• if φ1, φ2 ∈ ML then φ1 ∨ φ2 ∈ ML,

• for all a ∈ A if φ ∈ ML then 〈a〉φ ∈ ML,

• for all a ∈ A if φ ∈ ML then [a]φ ∈ ML.

If we allow the following additions to the syntax of ML, we obtain the modal µ-calculus Lµ:

• For all i ∈ I we have Pi ∈ Lµ and ¬Pi ∈ Lµ,

• if φ1, φ2 ∈ Lµ then φ1 ∧ φ2 ∈ Lµ,

• if φ1, φ2 ∈ Lµ then φ1 ∨ φ2 ∈ Lµ,

• for all a ∈ A if φ ∈ Lµ then 〈a〉φ ∈ Lµ,

• for all a ∈ A if φ ∈ Lµ then [a]φ ∈ Lµ.

• if φ ∈ Lµ with X appearing only positively then µX.φ ∈ Lµ and

• if φ ∈ Lµ with X appearing only positively then νX.φ ∈ Lµ.

1.6.2 Remark: If |A| = 1, we write �φ and �φ instead of 〈a〉φ and [a]φ.

The following well-known theorem by Knaster and Tarski gives us what we need in order to give

well-defined semantics fro the modal µ-calculus. A proof can be found in [Tar55].

34

1.6.3 Theorem (Knaster and Tarski): Let (L,�) be a complete lattice and g : L→ L a mono-

tonic function with respect to �. Then g has a least fixed point µg and a greatest fixed point νg

satisfying

µg =
⋂
{V ∈ L : g(V) � V }, and

νg =
⋃
{V ∈ L : V � g(V)}.

Before we give the semantics for Lµ let us briefly give the semantics for modal logic.

1.6.4 Definition: Let A and I be finite sets. A Kripke structure is K = (W, (Ea)a∈A, (Pi)i∈I)

with W a set of worlds, Ea ⊆W ×W for each a ∈ A and Pi ⊆W an atomic proposition for all

i ∈ I. The elements in A are called agents.

1.6.5 Definition: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure. We define for v ∈ W ,

φ1, φ2 ∈ ML, i ∈ I and a ∈ A

• K, v � Pi :⇔ v ∈ Pi,

• K, v � ¬Pi :⇔ v /∈ Pi,

• K, v � φ1 ∨ φ2 :⇔ K, v � φ1 or K, v � φ2,

• K, v � φ1 ∧ φ2 :⇔ K, v � φ1 and K, v � φ2,

• K, v � 〈a〉φ1 :⇔ there is (v, w) ∈ Ea such that K, w � φ1,

• K, v � [a]φ1 :⇔ for all (v, w) ∈ Ea we have K, w � φ1.

All that remains for the semantics of Lµ are the fixed point formulas µX.φ ∈ Lµ and νX.φ ∈ Lµ.

Calling them fixed point formulas already implies, that they are satisfied by some set of worlds

in the underlying Kripke structure that lies in a fixed point. But a fixed point of what? The

following definition hints at the answer to that question.

1.6.6 Definition: Let φ ∈ML with X appearing only positively in φ and let a Kripke structure

K = (W, (Ea)a∈A, (Pi)i∈I) be given. Then we define

gKφ : P(W)→ P(W), X 7→ {w ∈W : (K, X), w � φ}.

To apply the Knaster-Tarski Theorem we need monotony, but this is not a problem.

1.6.7 Remark: The function gKφ is monotone, since X appears only positively.

35

Now we can finally give the full semantics for Lµ.

1.6.8 Definition: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure. We define for i ∈ I,

a ∈ A, φ1, φ2 ∈ Lµ and v ∈W

• K, v � Pi :⇔ v ∈ Pi,

• K, v � ¬Pi :⇔ v /∈ Pi,

• K, v � φ1 ∨ φ2 :⇔ K, v � φ1 or K, v � φ2,

• K, v � φ1 ∧ φ2 :⇔ K, v � φ1 and K, v � φ2,

• K, v � 〈a〉φ1 :⇔ there is (v, w) ∈ Ea such that K, w � φ1,

• K, v � [a]φ1 :⇔ for all (v, w) ∈ Ea we have K, w � φ1,

just as in ML. Now let φ ∈ Lµ with X appearing only positively. Then

• K, v � µX.φ :⇔ v ∈ µgKφ ,

• K, v � νX.φ :⇔ v ∈ νgKφ

We can determine the least and the greatest fixed point of gKφ in the following way: For µgKφ
define X0 = ∅, Xα+1 = gKφ (Xα) for successor ordinals and Xλ =

⋃
α<λX

α for limit ordinals.

Since gKφ is monotone, we have Xα ⊆ Xα+1 by induction. It follows that for some ordinal α we

have Xβ = Xβ+1 for all β ≥ α. For this α we have Xα = µgKφ since obviously

µgKφ =
⋂
{V ∈ L : gKφ (V) ⊆ V } ⊆ Xα.

On the other hand induction shows that Xβ ⊆ µgKφ for all β.

For νgKφ define X0 = W , Xα+1 = gKφ (Xα) for successor ordinals and Xλ =
⋂
α<λX

α for limit

ordinals. By analogous arguments as for νgKφ we obtain that Xα = νgKφ for any α such that

Xβ = Xβ+1 for all β ≥ α.

1.6.9 Example: LetK be a Kripke structure, a ∈ A and consider the Lµ-formula µX.(X∨〈a〉P).

We have

X0 = ∅

X1 = {w ∈W : K, w � X0 ∨ 〈a〉P} = {w ∈W : v ∈ P for some (w, v) ∈ Ea}

X2 = {w ∈W : a world in P is reachable in at most 2 steps from w}

Xα = {w ∈W : a world in is P reachable in at most α steps from w}.

It follows that µX.(X ∨ 〈a〉P) is satisfied by precisely those w ∈W from which a world in P is

reachable.

36

Let us now come to the model checking game for Lµ, which was after all our main motivation

for looking at the modal µ-calculus. To obtain well-defined games, let us first make sure that

there can be no confusion in the naming of variables by introducing a normal form.

1.6.10 Definition: Let φ ∈ Lµ. We say that φ is in normal form if every variable X in φ occurs

at most once in a fixed point operator µX or νX and all occurrences of X are in the scope of

this quantification. Every Lµ-formula can be translated to an equivalent formula in normal form

by renaming variables.

This allows us to consider a new parameter for fixed point formulas, describing how many

alternations of fixed point operators occur.

1.6.11 Definition: Let φ ∈ Lµ be in normal form. The alternation depth ad of φ is defined by

• ad(Pi) = ad(¬Pi) = ad(X) = 0 for all i ∈ I and variables X,

• ad(ψ1 ∨ ψ2) = ad(ψ1 ∧ ψ2) = max{ad(ψ1), ad(ψ2)},

• ad(〈a〉ψ) = ad([a]ψ) = ad(ψ),

• ad(µX.ψ) = max{{1, ad(ψ)} ∪ {ad(νY.ψ′) + 1: νY.ψ′ subformula of ψ,X free in νY.ψ′}},

• ad(νX.ψ) = max{{1, ad(ψ)} ∪ {ad(µY.ψ′) + 1: µY.ψ′ subformula of ψ,X free in µY.ψ′}}

Before we come to the model checking game for the modal µ-calculus, let us remind ourselves

of the model checking game for modal logic without fixed points.

1.6.12 Definition: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure, φ ∈ML. We define

the model checking game GML(K, φ) in the following way.

The players 0 and 1 play on positions of the form (ψ, v), where v ∈W and ψ is a subformula of

φ. The moves are the following.

• Player 0 moves from (ψ1 ∨ ψ2, v) to (ψ1, v) or to (ψ2, v).

• Player 1 moves from (ψ1 ∧ ψ2, v) to (ψ1, v) or to (ψ2, v).

• Player 0 moves from (〈a〉ψ, v) to (ψ,w) for some (v, w) ∈ Ea.

• Player 1 moves from ([a]ψ, v) to (ψ,w) for some (v, w) ∈ Ea.

The terminal positions are positions of the form ((¬)Pi, v) for some v ∈ W . Player 0 wins if

K, v � (¬)Pi and Player 1 wins otherwise. Additionally, a player who cannot move when it is

her turn loses.

37

1.6.13 Proposition: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure, φ ∈ML and v ∈W .

Then K, v � φ if and only if Player 0 has a winning strategy in GML(K, v) from (φ, v).

Now let us extend the model checking for ML to model checking for Lµ. To do so, we need to

introduce a value function on the game graph.

1.6.14 Definition: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure, φ ∈ Lµ in normal

form. We define the game G(K, φ) as the game for ML with some additional moves and a value

function:

The players are again 0 and 1 and they play on positions of the form (ψ, v), where v ∈ W and

ψ ∈ Lµ is a subformula of φ. The moves are those from GML with some additions.

• Player 0 moves from (ψ1 ∨ ψ2, v) to (ψ1, v) or to (ψ2, v).

• Player 1 moves from (ψ1 ∧ ψ2, v) to (ψ1, v) or to (ψ2, v).

• Player 0 moves from (〈a〉ψ, v) to (ψ,w) for some (v, w) ∈ Ea.

• Player 1 moves from ([a]ψ, v) to (ψ,w) for some (v, w) ∈ Ea.

• From (µX.ψ, v) and from (νX.ψ, v) the game moves to (ψ, v) (deterministically).

• From (X, v) the game moves to (ψ(X), v) (deterministically).

Let V be the set of nodes in G(K, φ). We define a value function val : V → N such that

• val(X, v) is even if X is a ν-variable,

• val(X, v) is odd if X is a µ-variable,

• val(X, v) ≥ val(Y,w) if X appears as a free variable in µY.ψ(X,Y) or νY.ψ(X,Y) and

• val(ψ) = 1, if ψ has any other form.

Positions of the form ((¬)Pi, v) for some v ∈W are again terminal and the play is won by Player

0 if K, v � (¬)Pi and by Player 1 otherwise.

If π = v1v2v3 · · · is an infinite play in G(K, φ) then Player 0 wins π if the largest value occurring

infinitely often in π is even and Player 1 wins if it is odd. This makes G(K, v) a parity game.

We can make the definition of the value function constructive in the following way.

1.6.15 Remark: Let m denote the alternation depth of fixed points in φ. The value function

can be easily defined by defining val(X, v) ∈ {m,m+ 1} for all v ∈W , depending on whether m

is even and wether X appears in νX.ψ or µX.ψ, for the outermost fixed point variables, meaning

the ones such that Y does not occur freely in νX.ψ or µX.ψ for any fixed point variable Y .

Now let the values of fixed point variables X1, X2, . . . , Xk−1 be already defined. Let Xk be

38

a fixed point variable such that only X1, . . . , Xk−1 occur freely in νXk.ψ or µXk.ψ. Define

val(Xk, v) as the maximal k ≤ min{val(Xi, v) : 1 ≤ i < k} such that the parity of k satisfies the

previous definition for all v ∈W .

For all subformulas ψ not of the form X for some fixed point variable X define val(ψ, v) = 1 for

all v ∈W .

All that remains to be shown is that the parity game we just defined is actually the correct

model checking game. First we introduce so called unfoldings.

1.6.16 Definition: Let G = (V, V0, V1, E, val) be a parity game such that each v ∈ V with

val(V) maximal has a unique successor s(v) in G. Without loss of generality let the largest value

be odd. Otherwise just switch the players. Define T = {v ∈ V : val(v) maximal} and define a

new game G′ = (V, V0, V1, E
′, val) with E′ = E\(T × V). Then define for each ordinal α a game

Gα as follows:

For each α define a partition (Tα0 , T
α
1) of T inductively:

• T 0
1 = T ,

• Tα+1
1 = {v ∈ T : s(v) ∈Wα

1 } for α ordinal,

• T λ1 =
⋃
α<λ T

α
1 for λ limit ordinal,

• Tα1 = T\Tα1 for any ordinal α.

Player 1 wins at positions in Tα1 in Gα and Player 0 wins at positions Tα0 in Gα. Otherwise, Gα

is identical to G′.
This gives us W 0

1 ⊇ W 1
1 ⊇ W 2

1 ⊇ · · · ⊇ Wα
1 ⊇ Wα+1

1 ⊇ . . . and W 0
0 ⊆ W 1

0 ⊆ W 2
0 ⊆ · · · ⊆ Wα

0 ⊆
Wα+1

0 ⊆ Hence we have Wα
0 = Wα+1

0 and Wα
1 = Wα+1

1 for some α ≤ |V |. Call these sets

W∞0 and W∞1 .

1.6.17 Lemma: In the above context we have W0 = W∞0 and W1 = W∞1 .

Proof. Again suppose the largest value is odd. Let W∞1 = Wα
1 with fα a positional winning

strategy for Player 1 from Wα
1 in Gα. We define a strategy f for Player 1 in G as follows:

f : V1 → V, v 7→

fα(v), v ∈ V1\T

s(v), v ∈ V1 ∩ T.

Any play consistent with f never leaves W∞1 , once it is in it, since fα is a winning strategy and

all s(v) that are visited are in Wα
1 = W∞1 . Thus, Player 1 wins any play π in G consistent with

f : Either there are only finitely many positions of π in T , in which case the play will become

entirely consistent with fα from some point onwards, or T is visited infinitely often, but then

the largest value that occurs infinitely often in π is the largest value overall, which is odd, so

39

Player 1 wins.

On the other hand, let v ∈ W∞0 . Define ρ(v) = min{β : v ∈ W β
0 } and let gβ be a positional

winning strategy for Player 0 on W β
0 in Gβ. Define a strategy for Player 0 in G as follows:

g : V0 → V, v 7→


gρ(v)(v), v ∈ (W∞0 \T) ∩ V0
s(v), v ∈ T ∩ V0
arbitrary, otherwise.

Let π = v1v2v3 · · · be a play in G that is consistent with g and v0 ∈W∞0 . If vi ∈W∞0 it follows

that vi+1 ∈ W∞0 for all i. Additionally, we have ρ(vi+1) ≤ ρ(vi) for all i and if vi ∈ T , then

ρ(vi+1) < ρ(vi).

Since there does not exist an infinite descending chain of ordinals, there exists a β satisfying

ρ(vi) = ρ(vk) = β for all i ≥ k, which means that from some point on, π has to be consistent

with gβ and thus winning for Player 0.

Since V = W∞0 ∪W∞1 , this proves the statement.

1.6.18 Theorem: Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure, φ ∈ Lµ in normal form.

Player 0 has a winning strategy for the parity game G(K, φ) from (φ, v) if and only if K, v � φ.

Proof. The proof goes by induction over the form of φ. It is easily checked that the statement

holds for all φ of the form Pi, ¬Pi, ψ1 ∧ψ2, ψ1 ∨ψ2, 〈a〉ψ1 and [a]ψ1, a ∈ A, i ∈ I, if it holds for

ψ1 and ψ2. So suppose that the statement holds for ψ and let φ = νX.ψ. The positions (X, v)

for v ∈ W have the maximal value in the parity game and they have the uniquely determined

successor (ψ, v). Thus, Lemma 1.6.17 can be applied. Consider the fixed point induction defined

earlier in the section: X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xα ⊆ Xα+1 ⊆ Then for v ∈W we have

(K, v) � φ ⇔ v ∈ νgKφ
⇔ v ∈ Xα for all α

⇔ v ∈ Xα+1 for all α

⇔ (K, v,Xα) � ψ for all α.

By induction hypothesis Player 0 has a winning strategy from (ψ, v) in G(K, X, ψ). By Lemma

1.6.17 Player 0 has a winning strategy for Gα(K, φ) if and only if Player 0 has a winning strategy

in G(K, φ) from (ψ, v). Since the only successor of (φ, v) is (ψ, v) this is the case if and only if

Player 0 has a winning strategy in G(K, φ) from (φ, v).

We claim that v ∈ Xα if and only if (X, v) ∈ Tα0 and prove it by induction over α:

If α = 0 we have X0 = W and T 0
0 = T = {(Y,w) : w ∈W}.

Now suppose the statement is true for β. We have v ∈ Xβ+1 if and only if (K, v,Xβ) � ψ, which

holds if Player 0 wins G((K, Xβ), ψ) from (ψ, v). But by induction hypothesis this is the case if

and only if Player 0 wins Gβ(K, φ) from (ψ, v), which is the case if and only if (X, v) ∈ T β+1
0 .

40

If we have a limit ordinal λ, it holds that v ∈ Xλ if and only if v ∈ Xβ for all β < λ. By

induction hypothesis this is the case if and only if (X, v) ∈ T β0 for all β < λ, so (X, v) ∈ T λ0 .

We have that Player 0 wins G((K, X), ψ) from (X, v) if and only if v ∈ X and Player 0 wins

Gα(K, φ) from (X, v) if and only if (X, v) ∈ Tα0 . Hence, Player 0 wins G((K, X), ψ) from (X, v)

if and only if Player 0 wins Gα(K, φ) from (X, v). It follows that Player 0 wins G(K, φ) form

(φ, v).

Analogously, Player 1 wins G(K, µX.ψ) from (µX.ψ, v) if and only if K, v � µX.ψ.

Chapter 2

Two Quasi-Polynomial Time

Algorithms for Solving Parity Games

In this chapter we will get to know two new methods for solving parity games. Both of them

allow deciding the winner of a parity game in quasipolynomial time, which is a better time

bound than any previous results for parity games were able to achieve.

The first method was presented by Calude et al. in their paper Deciding Parity Games in

Quasipolynomial Time [Cal17]. Here, we will call it the succinct counting method, for reasons

which will become clear when we discuss it in detail in the first section of this chapter. The

second method was published a few months later by Jurdziński and Lazić in their paper Suc-

cinct progress measures for solving parity games [JL17]. As the title suggests, it uses progress

measures in order to decide the winner of a parity game. This approach was already taken by

Jurdziński in an earlier paper called Small Progress Measures for solving Parity games[Jur00],

but the introduction of a succinct way for tree coding in the more recent paper allowed for an

improvement in the runtime of the algorithm devised in [JL17] to quasipolynomial time.

2.1 Succinct Counting

The algorithm presented in this section, which I will call the succinct counting method, was

developed by Calude, Jain, Khoussainov, Li and Stephan in their 2017 paper Deciding Parity

Games in Quasipolynomial Time [Cal17]. The idea is to consider a play π of the parity game

in question and decide the winner of π with an alternating algorithm that uses a succinct way

of counting needing only polylogarithmic space. Then one can use a reachability game to solve

the actual parity game.

41

42

2.1.1 The Alternating Polylogarithmic Space Algorithm

In this subsection we will see the alternating polylogarithmic space algorithm which constitutes

the main advancement made by Calude et al. in order to solve parity games in faster time.

The algorithm is based on the following ideas: Since we can assume that the players follow a

positional winning strategy, there will certainly be a loop in the play π that we are considering

after n + 1 moves. We can therefore maintain a winning statistics for one of the players, say

Player 0, that builds up favourable’ sequences (we will see what is meant by that shortly) whose

lengths are powers of two until reaching a length longer than n. If the latter is achieved, we will

know that Player 0 has won the play π. Let us illustrate this in an example:

2.1.1 Example: Consider the parity game from Example 1.3.3 with V0 = {v2}, V1 = {v1, v3},
val(v1) = 2, val(v2) = 1 and val(v3) = 3:

2 1 3

v1 v2 v3

Let π = v3 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 ... be the play we consider. Note, that both

players’ strategies are positional, i.e. memoryless. Let val(π) = 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 ...

be the sequence of values of the nodes in π. The algorithm we will get to know in this section

will run through val(π) from left to right and collect and build up sequences that are ’favourable’

to Player 0:

Position s2 s1 s0

v3

v2

v1 2

v2 2

v1 2 2

v2 2 2

v1 2 2 2

v2 2 2 2

v1 2 2 2 2

. . .

We will se shortly, how these sequences are chosen and built up. But note, that their lengths

are powers of two and that sequences of lengths 20, 21, 22, . . . , 2k together with one additional

element are connected to form a new sequence of length 2k+1.

43

Now let us see how it works exactly:

Let G be a parity game with n nodes and m values and let π be a play in G. The algorithm

tracks sequences s0, s1, . . . , sdlog(n)e+1 of positions in the play with |si| = 2i for all i with the

following properties:

1. The positions a1, . . . , a2i of π in a sequence si are in order, i.e. aj occurs in π before aj+1

for all j < 2i, but not necessarily consecutive.

2. If sequences si = (a1, . . . , a2i) and sj = (â1, . . . , â2j), i < j, are tracked, then â2j appears

before a1 in π.

3. For all 1 ≤ k ≤ 2i− 1 the largest value of a node in π occurring between the nodes ak and

ak+1 of a sequence si (including ak and ak+1) is of even parity.

To see why we call sequences of this form favourable’, consider the following remark.

2.1.2 Remark: If there exists a sequence as described above of length 2dlog(n)e+1 ≥ n+ 1, then

Player 0 wins the parity game.

Proof. If we have a sequence sdlog(n)e+1 = (a1, . . . , a2dlog(n)e+1) of more than n pairwise distinct

points in the play π appearing in order, then there have to be two points with the same corre-

sponding nodes and since we are assuming that both players follow a positional winning strategy,

the sequence has to contain a loop. Since for all 1 ≤ k ≤ 2dlog(n)e+1 − 1 the largest value of a

node in π occurring between ak and ak+1 is even, the largest value occurring in the loop is even.

The values occurring infinitely often in π are precisely the nodes occurring in a loop in π and

therefore Player 0 wins the parity game.

The reader might have noticed that storing a sequence of values which has length 2dlog(n)e+1 ≥
n+ 1 takes more than polylogarithmic space. However, the succinct counting method of Calude

et al. avoids this problem by only ever storing for each sequence si = (a1, . . . , a2i) the largest

value bi that occurred since a2i in the play (including a2i).

We will now see the update rules which allow the algorithm to start with short sequences and,

when possible, put together sequences of lengths 1, 2, 4, . . . , 2i−1 with one new node from π to

form a sequence of length 2i that satisfies the above criteria, all while only storing a single value

per sequence, as mentioned.

The algorithm tracks the values b0, . . . , bdlog(n)e+1 ∈ {0, . . . ,m} which are all initially set to 0.

Now let b be the value of the current node in the play.

1. If b is even or b > bi > 0 for some i, then one selects the largest i such that

a) either b is even and bi is odd or 0 but all bj with j < i are even and non-zero

b) or 0 < bi < b

and then one updates bi = b and bj = 0 for all j < i.

44

2. If bdlog(n)e+1 > 0, Player 0 is declared the winner.

If both a) and b) are applicable according to the rules, we use a).

First we note an important property of any tuple (b0, . . . , bdlog(n)e+1) obtained by these update

rules.

2.1.3 Remark: It follows from the update rules above, that if i < j and bi, bj > 0, then bi ≤ bj .

Proof. Let i < j and bi, bj > 0. Since only one bk is updated from 0 to a nonzero value at a

time, there has to have been a point at which bi was updated from 0 to a nonzero value while

bj was already nonzero. The other way around is not relevant because whenever a bk is updated

to b > 0, all bk′ with k′ < k are updated to zero. Let b be the value of the node at that point in

π. If b were larger than bj , than the largest i such that either b is even and bi is odd or 0 but

all bj with j < i are even and non-zero or 0 < bi < b would be at least j, since 0 < bj < b by

assumption. Thus, bi would not be updated at this point. It follows that b ≤ bj and since bi

is updated to b, bi ≤ bj at any point where they are both nonzero and were not both nonzero

before.

If bi, bj > 0 was already the case before and an update changed the value of one of them to

another b > 0, then either bj is updated, which sets bi to 0, or bi is updated to b > 0 which

again means bj ≥ b for the same reason as above.

2.1.4 Definition: Let π be a play of a parity game G. We call the tuple (b0, . . . , bdlog(n)e+1)

generated by the algorithm at each step of π the winning statistics of Player 0. We say that her

winning statistics matures if bdlog(n)e+1 > 0.

Now that we have the full update rules, let us consider two examples. First, let us take a new

look at Example 2.1.1.

2.1.5 Example: Again, let V0 = {v2}, V1 = {v1, v3}, val(v1) = 2, val(v2) = 1 and val(v3) = 3:

2 1 3

v1 v2 v3

Let π = v3 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 v2 v1 ... be the play we consider. This time,

let us see how the algorithm tracks the bi. The si are still added for convenience, but they are

not tracked by the actual algorithm.

45

Position b2 b1 b0 s2 s1 s0

v3 0 0 0

v2 0 0 0

v1 0 0 2 2

v2 0 0 2 2

v1 0 2 0 2 2

v2 0 2 0 2 2

v1 0 2 2 2 2 2

v2 0 2 2 2 2 2

v1 2 0 0 2 2 2 2

. . .

Of course this example is very simple, so let us consider an a little more complex one.

2.1.6 Example: The following table for the bi in the winning statistics for Player 0 is the result

of analysing the play and game graph on the next page.

Position b3 b2 b1 b0

v4 0 0 0 4

v2 0 0 2 0

v3 0 0 3 0

v4 0 0 4 0

v2 0 0 4 2

v3 0 0 4 3

v4 0 0 4 4

v2 0 2 0 0

v3 0 3 0 0

v4 0 4 0 0

v2 0 4 0 2

v3 0 4 0 3

v4 0 4 0 4

v2 0 4 2 0

v3 0 4 3 0

v4 0 4 4 0

v2 0 4 4 2

v3 0 4 4 3

v4 0 4 4 4

v2 2 0 0 0

46

The play and game graph are:

π = v4 v2 v3 v4 v2 v3 v4 v2 v3 v4 v2 v3 v4 v2 v3 v4 v2 v3 v4 v2 v3 v4 ...

v3

v4 v2v1

Again, val(vi) = i. Player 0 moves at node v2 and Player 1 at the other nodes.

Now that we have an idea of how the algorithm works, let us see that it is actually correct.

2.1.7 Proposition: If Player 0 is declared the winner by the rules given above, then Player 0

is the winner of the play π of the parity game.

Proof. To prove this it suffices to show that if Player 0’s winning statistics matures then there

exists a sequence sdlog(n)e+1 = (a1, . . . , a2dlog(n)e+1) such that the ai appear in order in π and for

all 1 ≤ k ≤ 2dlog(n)e+1 − 1 the largest value of a node in π occurring between the nodes ak and

ak+1 (including ak and ak+1) is of even parity. To prove this, we prove by induction, that if

bi > 0, then there exists a sequence si = (a1, . . . , a2i) such that the ak appear in order in π, for

all 1 ≤ k ≤ 2i − 1 the largest value of a node in π occurring between the nodes ak and ak+1

(including ak and ak+1) is of even parity and bi is the largest value that occurred in π since

(including) a2i . Additionally, if bi, bj > 0, i < j, then the first entry of the sequence si occurs

after the last entry of the sequence sj .

For i = 0, define s0 = (a) where a is the point in π at which b1 is updated according to rule a).

When b0 is updated according to rule b), keep s0 the same as before. Assume that there is a

value val(v) > b0 > 0 for some v that occurred in π after a. If val(v) is even, b0 and therefore s0

would have been updated according to rule a). If val(v) is odd, b0 would have been updated to

val(v) or 0 according to rule b).

Let i > 1 and consider a point a in the algorithm at which bi is updated from 0 to a value

b = val(a) > 0. This occurs only if at that point bj > 0 is even for all j < i and b is even.

By induction hypothesis, there exist sequences s0 = (a11), . . . , si−1 = (ai−11 , . . . , ai−1
2i−1) with the

above criteria. Define si = (a11, . . . , a
i−1
1 , . . . , ai−1

2i−1 , a). Since all bj for j < i are even, the largest

values that occurred since the end of each of the respective sequences is even. Additionally, none

of the bj were updated after the sequences sk, k < j as they appear here were tracked, since

otherwise bk would have been set to 0. Hence for each 1 ≤ k ≤ i− 2 the largest value occurring

in π between ak
2k

and ak+1
1 is even.

Assume that there is a point v between ai−1
2i−1 and a in π with val(v) > max{b, bi−1}. Without

loss of generality let val(v) be maximal with these properties. If val(v) is even, bi would have

been updated at v. If val(v) is odd, bi−1 would have been updated at v and bi would not have

47

been updated at a since bi−1 would have been odd.

Since the sequences s1, . . . , si−1 satisfy that if bk, bj > 0, k < j, then the first entry of the

sequence sk occurs after the last entry of the sequence sj , this continues to hold by construction.

Lastly, assume that bi was already nonzero and is updated again at a point a′ in π. If this

happens according to rule b), keep si the same. If this happens according to rule a), change

the last entry in si to a′. In the first case assume that bi is not the largest value occurring in π

since the end of si. Then there would be a point c after a with val(c) > bi. Assume that c was a

point after a such that val(c) > bi is maximal. Then bi would have been updated at c according

to rule b) and after c only according to rule a), if at all, so c would not appear after the end of

si. In the second case assume that the largest value between ai−1
2i−1 and a′ in π is odd. Then at

point a′, bi−1 would be odd and bi would not be updated.

Hence, we can apply Remark 2.1.2 and therefore prove the statement.

Now for the opposite direction.

2.1.8 Proposition: If Player 0 wins the play π of the parity game, she is declared the winner

by the algorithm using the update rules above.

Proof. Suppose that Player 0 wins the play π. Then the largest value occurring infinitely often

in π is even. Say this value is c. We will prove the statement by introducing a certain counter

to track the occurrences of c in relation to the occurrences of other values in the play. First,

number the steps of the algorithm, meaning the moments after each update, starting from the

first update of the winning statistics in π. For 0 ≤ k ≤ dlog(n)e + 1 and t ∈ N we define bk(t)

to mean the value of bk at the t-th step of the algorithm. Define

Bc(t) = {0 ≤ k ≤ dlog(n)e+ 1: bk(t) is of even parity and bk(t) ≥ c}

and

count(c, t) =
∑

k∈Bc(t)

2k.

Claim: Let t < t′ be steps at which a move to a node v with val(v) = c was made and there

is no move at any step t < t′′ < t′ to a node with a value larger than or equal to c. Then

count(c, t) < count(c, t′).

To prove this, suppose that t < t′ are as described in the claim and consider the largest 0 ≤ i ≤
dlog(n)e+1 such that bi is updated at some t < t′′ ≤ t′ and let t′′ be maximal with that property.

If bi(t) were even and larger than or equal to c, bi would not have been updated between t and

t′ according to either rule a) or b), so bi(t) < c or bi(t) is even. Additionally, the maximal value

bi can be updated to between t and t′ is c and since i is maximal such that bi is updated, bi is

not updated to zero, so 0 < bi(t
′′) ≤ c.

48

Assume that bi(t
′′) < c. Then t′′ 6= t′. But since at step t′ we move to a node with value c we

have 0 < bi(t
′′) < c and bi is updated to c or to 0 at t′ which is a contradiction to the maximality

of t′′. It follows that bi(t
′′) = bi(t

′) = c. Therefore i ∈ Bc(t′)\Bc(t) and since bj is not updated

between t and t′ for j > i

count(c, t′) ≥
∑

j∈Bc(t), j>i

2j + 2i >
∑

j∈Bc(t), j>i

2j +
∑

k∈Bc(t), k<i

2k = count(c.t).

This proves the claim.

Since c is the maximal value in π occurring infinitely often, there will be a point x in π after

which no value larger than c occurs but c still occurs infinitely often. Thus, the conditions of

the claim are met infinitely many times after x and therefore we can always find a step t such

that count(c, t) is arbitrarily large. So at some point we will have bi(t) ≥ c and 2i > 2n, so the

algorithm will eventually terminate and declare Player 0 the winner.

Let us sum up this subsection in one theorem.

2.1.9 Theorem: It is possible to decide the winner of a parity game G from starting node s in

polylogarithmic space.

Proof. The previous two propositions have shown that the algorithm can decide the winner

of the parity game. To store the winning statistics it needs space O(log(n) · log(m)), namely

dlog(n)e+ 2 slots for bi ∈ {1, . . . ,m} which can be represented with dlog(m)e bits.

It was shown by Chandra, Kozen and Stockmeyer [CKS81] that an alternating polylogarithmic

space algorithm can be translated into a deterministic algorithm with runtime O(nc·log(m)) for

some constant c, i.e. quasipolynomial time. In the next two subsections, still following [Cal17],

we will show how to achieve this runtime in this particular case and what complexity we get

exactly.

2.1.2 The Reachability Game

In order to obtain an algorithm for solving parity games, it is not enough to consider a single

play π. It does suffice however, to check whether Player 0 can or cannot choose her moves

in such a way that a play occurs that is found to be winning for her by the algorithm in the

previous subsection. This can be done via a reachability game.

2.1.10 Definition: Given a parity game G we define the reachability game G̃ in the following

way: The nodes are of the form (a, b̃) with

• a a node of the parity game and

49

• b̃ the winning statistics for Player 0.

The starting node is (s, (0, . . . , 0)) with s the starting node of the parity game.

Player 0 can move from (a, b̃) to (a′, b̃′) if a ∈ V0, if she can move from a to a′ in the parity

game and this causes her winning statistics to update from b̃ to b̃′. Player 1 can move from (a, b̃)

to (a′, b̃′) if a ∈ V1, if he can move from a to a′ in the parity game and this causes Player 0’s

winning statistics to update from b̃ to b̃′.

Player 0 is declared the winner of a play π̃ in the reachability game, if a node with a matured

winning statistic is reached.

2.1.11 Theorem: Player 0 wins the parity game G from starting node s if and only if she wins

the reachability game G̃ defined above from starting node (s, (0, . . . , 0)).

Proof. First suppose that Player 0 wins G from s. Then she has a positional winning strategy

f : V0 → V from s in G. Since she can move from each (a, b̃) for each (a, a′) ∈ E to (a′, b̃′) with

b̃′ the winning statistics updated accordingly, this gives us a strategy on G̃: From (a, b̃) move to

(f(a), b̃′), with b̃′ the accordingly updated winning statistics.

Let π̃ be a play in G̃ played according to this strategy. This gives us a play π played according

to f in G by considering the first component of each tuple in π̃. By Proposition 2.1.8, Player

0’s winning statistics matures on π. Therefore at some point in π̃ a point (a, b̃) will be reached,

where b̃ is a matured winning statistics.

Now suppose that Player 1 wins G from s. Then he has a positional winning strategy g : V1 → V

from s in G. Again this gives us a strategy on G̃ the same way as for Player 0. Consider a play π

consistent with g and the corresponding play π̃ in G̃. Since Player 0 cannot win π by assumption,

it follows from Proposition 2.1.7 that her winning statistics does not mature. Hence, Player 1

wins π̃.

2.1.3 Complexity

What remains to be seen is that this reachability game actually yields quasipolynomial time

complexity. But before we do that, let us show another time bound which was also unknown

to hold for parity games before the paper by Calude et al., namely that they can be solved in

FPT.

Let G be a parity game and G′ the corresponding reachability game. Let Q be the set of nodes in

the reachability game and F the set of edges. Then the game can be decided in time O(|Q|+ |F |)
(see for instance [KI16]). In this case, the number of edges is bounded by |Q| · n, since every

node in the reachability game has at most n successors. Thus, the reachability game can be

50

solved in time O(|Q| · n). What needs to be determined is the number of elements in Q.

Let (b0, . . . , bdlog(n)e+1) be a winning statistics. Define (b′0, . . . , b
′
dlog(n)e+1) by

• b′0 = max{1, b0}

• b′k+1 = max{b′k, bk+1}

Why we introduce these b′i will become obvious with the following remarks.

2.1.12 Remark: We have b′k 6= bk if and only if bk = 0. Thus, we can use dlog(n)e+2 additional

bits to reconstruct the bk from the b′k..

2.1.13 Remark: A winning statistics (b0, . . . , bdlog(n)e+1) can be uniquely represented by the

set {b′k + k : 0 ≤ k ≤ dlog(n)e+ 1} ⊆ {1, . . . ,m+ dlog(n)e+ 1}.

Combining these results leads to the following lemma.

2.1.14 Lemma: There are

• m+ 2dlog(n)e+ 3 bits needed to represent the winning statistics and

• dlog(n)e bits needed to represent the node of the parity game.

Proof. Follows from the previous two remarks.

Now we can conclude, that we can decide parity games in FPT.

2.1.15 Theorem: The reachability game can be decided in time O(2m · n4)

Proof. Each node in Q can be represented by m+ 3dlog(n)e+ 3 bits. Hence

|Q| ≤ 2m+3dlog(n)e+3 = 2m+3 · 23dlog(n)e ∈ O(2m · n4).

Additionally, we get a corollary which is very interesting for practical applications. In most

cases, the number of values will be substantially smaller than the number of nodes in the graph,

which might allow us to solve the game in polynomial time.

2.1.16 Corollary: If m < log(n), the parity game can be decided in time O(n5).

51

Now let us look at the complexity from a different angle, by bounding |Q| differently.

2.1.17 Lemma: In G′ there are

• dlog(n)e bits needed to represent the node of the parity game and

• the winning statistics consists of

– dlog(n)e+ 2 ≤ log(n) + 3 numbers

– represented by dlog(m)e ≤ log(m) + 1 bits each.

This gives us the desired quasipolynomial runtime.

2.1.18 Theorem: The reachability game can be decided in time O(nlog(m)+6).

Proof. We have from the previous lemma and from log(m) ≤ log(n)

|Q| ≤ 2(log(n)+3)·(log(m)+1)+log(n)+1

≤ 2log(n)·log(m)+5 log(n)+4

= 24 · nlog(m)+5.

52

2.2 Succinct Progress Measures

In this section we will get to know a second method for solving parity games in quasipolynomial

time, published shortly after the Calude et al. paper [Cal17] by Jurdziński and Lazić in their

paper Succinct progress measures for solving parity games [JL17]. Their idea is based upon an

earlier paper by Jurdziński, titled Small Progress Measures for Solving Parity Games [Jur00],

which showed that one can define a progress measure on the game graph of the parity game

in order to determine its winner. We will start by presenting the results of this earlier paper,

before going into the refinements made in the more recent publication.

2.2.1 The Lifting Algorithm

In this section, we will get to know progress measures for parity games as introduced by Jur-

dziński in the paper Small Progress Measures for Solving Parity Games [Jur00]. To start, let us

give names to two concepts we have already come upon in the last section.

2.2.1 Definition: A parity graph is a tuple (V,E, val) consisting of a directed graph (V,E) and

a value function val : V → {1, . . . ,m} for some m ∈ N and | val(V)| = m.

2.2.2 Definition: Let G be a parity graph. A cycle in G is an i-cycle if i is the largest value

of a node in the cycle. It is called an even cycle if i is even and an odd cycle if i is odd.

Progress measures are based on the idea of assigning to each node a label from an ordered

set such that it is possible for Player 0 to increase this label monotonely along any play, until

reaching a top element. We will begin with labels in Nm, where m is, as usual, the number of

values in the parity game, as well as the largest value. Then, following the paper this section

is based on, we will introduce ‘small progress measures’, which are a little more succinct than

arbitrary tuples in Nm. As we will see, this does not yield quasipolynomial time. However, we

will see in the next subsection, based on the more recent paper [JL17] by Jurdziński and Lazić,

that it is possible to give even more succinct labels.

2.2.3 Definition: Let ≤ denote the lexicographical ordering from left to right on Nm. We

define ≤i for i ∈ {1, . . . ,m} as the lexicographical ordering on the tuple without the rightmost

i− 1 components, meaning that

(αm, . . . , α1) ≤i (βm, . . . , β1) if and only if (αm, . . . , αi) ≤ (βm, . . . , βi)

where ≤ is the lexicographical ordering on Nm−i+1.

53

2.2.4 Remark: Note that (αm, . . . , α1) ≤i (βm, . . . , β1) implies that (αm, . . . , α1) ≤j (βm, . . . , β1)

for all j > i.

Now let us define parity progress measures formally.

2.2.5 Definition: A function ρ : V → Nm on a parity graph G = (V,E, val) is called a parity

progress measure for G if

• ρ(v) ≥val(v) ρ(w) for all (v, w) ∈ E

• ρ(v) >val(v) ρ(w) for all (v, w) ∈ E, val(v) odd.

The first question to answer is in what way a progress measure helps us to determine the winner

of a parity game. Part of the answer is given by the next proposition.

2.2.6 Proposition: If there is a parity progress measure for a parity graph G, then all cycles

in G are even.

Proof. Assume that G has an i-cycle v1v2v3 · · · vk−1vkv1 where i is odd and a parity progress

measure ρ : V → Nm. Without loss of generality let val(v1) = i (otherwise shift the enumeration

of the cycle). Then we have

ρ(v1) >i ρ(v2) ≥i ρ(v3) ≥i · · · ≥i ρ(vk−1) ≥i ρ(vk) ≥i ρ(v1),

a contradiction.

As mentioned, the crucial point in achieving a good runtime for the algorithm that will be

presented later in this section is to give the labels in a form as succinct as possible. The first

step in this direction is made by the following definition.

2.2.7 Definition: Let G be a parity graph with values 1, . . . ,m. We define

MG = {rm0rm−20 · · · 0r1 : ri ∈ N and 0 ≤ ri ≤ |{v ∈ V : val(v) = i}| for all i}

if m is odd and

MG = {0rm−10rm−30 · · · 0r1 : ri ∈ N and 0 ≤ ri ≤ |{v ∈ V : val(v) = i}| for all i}

if m is even.

A small progress measure for G is a progress measure ρ : V →MG.

From this definition it is not yet clear, what the use of such a progress measure might be. To

begin with, we do not even know if and when such progress measures exist. Let us start by

54

clarifying this in a theorem.

2.2.8 Theorem: Let G be a parity graph. If all cycles in G are even, then there exists a small

progress measure ρ : V →MG.

Proof. We prove the theorem by induction over the number of nodes in G. Let m be the largest

value of a node in G. It is useful for the proof to add to the statement the additional condition

that ρ(v) >val(v) (0, . . . , 0) for all v ∈ V for which val(v) is odd.

If G consists only of a single vertex v, there are no edges and thus we can define a progress

measure by setting ρ(v) = (1, 0, . . . , 0) if val(v) = m is odd or ρ(v) = (0, . . . , 0) if val(v) = m is

even.

Now assume that the statement holds for all parity graphs with less than n nodes and let G be

a parity graph with n nodes. Let m be the largest value occurring in G. Suppose first that m is

even and let M denote the set of vertices in G with value m. Then by induction hypothesis we

can define a progress measure ρ′′ : (V \M) → MG�(V \M) on G � (V \M), denoting the induced

subgraph over (V \M), and extend it to a progress measure ρ′ : (V \M)→MG by adding a 0 at

the beginning of each tuple ρ′′(v), v ∈ V \M . Defining ρ by setting ρ(v) = ρ′(v) for all v ∈ V \M
and ρ(v) = (0, . . . , 0) for all v ∈M then gives us a progress measure on G.

Now suppose that m is odd and let u be a node with val(u) = m. We claim that we can provide

a partition of V into two disjoint sets W1 6= ∅ and W2 6= ∅ such that there is no edge from a

node in W1 to a node in W2. If u has no successors in G then we can simply define W1 = {u}
and W2 = V \{u}. Otherwise let U 6= ∅ be the set of nodes nontrivially reachable in G from

u. Define W1 = V \U and W2 = U . Obviously W2 6= ∅. But W1 6= ∅ as well, since u ∈ W1: If

u ∈ U , then there is a cycle in G containing u and since val(u) = m is the largest value occurring

in G and also odd, this would be an odd cycle which is a contradiction. Hence we have proven

the claim.

By induction hypothesis there exist progress measures ρ′1 : W1 →MG�W1 and ρ′2 : W2 →MG�W2

on G � W1 and G � W2, respectively. Again, by adding zeros to the beginning of the tuples if

necessary, we obtain progress measures ρ1 : W1 →MG and ρ2 : W1 →MG onG �W1 andG �W2.

For all i ≤ m we define n′i = |{v ∈ W1 : val(v) = i}|. Since there are no edges from W1 to W2

in G and since ρ1(v) >val(v) (0, . . . , 0) for all v ∈W1 with val(v) odd and ρ2(v) >val(v) (0, . . . , 0)

for all v ∈ W2 with val(v) odd, we can define a parity progress measure ρ on G by setting

ρ(v) = ρ1(v) for all v ∈W1 and ρ(v) = ρ2(v) + (. . . , 0, n′3, 0, n
′
1) for all v ∈W2.

From this and Lemma 2.2.6 we obtain that a small progress measure on a parity graph G exists

if and only if all cycles in G are even. Now let us make the transition from parity graphs to

parity games. Progress measures are defined in such a way that Player 0 can increase the labels

along any play. The aim will be to reach a fixed point before reaching a top element which is

introduced in the following definition.

55

2.2.9 Definition: Let G = (G,V0, V1) with G = (V,E, val) be a parity game with parity graph

G. Then we define M>G = MG ∪ {>} and extend the lexicographical ordering on MG to M>G by

setting > as being strictly larger than any other element. Additionally we prescribe that a <i >
and > =i > for all a ∈ MG and i ∈ {1, . . . ,m}, where m is, as usual, the largest value that

occurs in G.

For a function ρ : V → M>G and v, w ∈ V we define Prog(ρ, v, w) as the smallest a ∈ M>G such

that a ≥val(v) ρ(w) and if val(v) is odd then either a >val(v) ρ(w) or a = ρ(w) = >.

This gives us the tools to define a progress measure for a parity game, rather than only a parity

graph.

2.2.10 Definition: Let G = (G,V0, V1) be a parity game with parity graph G = (V,E, val) and

let ρ : V →M>G be a function. ρ is called a game parity progress measure if for any v ∈ V

1. if v ∈ V0 then ρ(v) ≥val(v) Prog(ρ, v, w) for some w ∈ V with (v, w) ∈ E and

2. if v ∈ V1 then ρ(v) ≥val(v) Prog(ρ, v, w) for all w ∈ V with (v, w) ∈ E.

2.2.11 Definition: Let G be a parity game and ρ : V → M>G a game parity progress measure

for G. Then we define

||ρ|| = {v ∈ V : ρ 6= >}.

Not only does the existence of a game parity progress measure give us a winning strategy for

Player 0 for certain starting nodes, but we can even find a progress measure such that we can

see the winning region for Player 0 immediately from its definition.

2.2.12 Proposition: Let G be a parity game with parity graph G = (V,E).

1. If ρ : V → M>G is a a game parity progress measure for G, then Player 0 has a winning

strategy from all v ∈ ||ρ||.

2. There exists a game parity progress measure ρ : V →M>G such that

ρ(v) 6= > ⇔ player 0 has a winning strategy from v

Proof. 1. Let ρ : V → M>G be a game parity progress measure for G and let v ∈ ||ρ||. Con-

sider the parity graph G′ = (V ′, E′) derived from G by deleting for each w ∈ V0 every

outgoing edge (w, u) ∈ E but one that satisfies ρ(w) ≥val(w) Prog(ρ, w, u), which exists by

assumption. Then delete all nodes that are not reachable from v.

Now G′ is a parity graph such that ρ(w) ≥val(w) ρ(u) for all w, u ∈ G′, (w, u) ∈ E′, and

therefore ρ(w) < > for all w ∈ G′ since ρ(v) < > and all v 6= w ∈ G′ are reachable

56

from v. Additionally, ρ(w) >val(w) ρ(u) for all w, u ∈ G′ with val(w) odd. It follows that

ρ′ : V ′ → MG, w 7→ ρ(w) is a parity progress measure for G′ and by Proposition 2.2.6 all

cycles in G′ are even. Hence, Player 0 wins any parity game with parity graph G′ and

since we deleted only edges and nodes from G that Player 0 can avoid, picking from each

node w ∈ V0 the one edge (w, u) ∈ E′ is a winning strategy for Player 0.

2. Let W0 be the winning region for Player 0. Then Player 0 has a winning strategy f on

all v ∈ W0. Define a parity graph G′ = (W0, E
′) by deleting from G � W0 all edges (v, w)

such that v ∈ V0 and w 6= f(v).

We claim that all cycles in G′ are even. To prove this, assume that v0v1 · · · vkv0 is an odd

cycle in G′. Then Player 1 can win a play π consistent with f starting from v0 in G by

choosing for vi ∈ V1 the edge (v, vi+1) (or (vk, v0) if i = k). This is a contradiction to f

being a winning strategy from v0 ∈W0.

Knowing that all cycles in G′ are even, we can conclude using Theorem 2.2.8 that there

exists a parity progress measure ρ′ : W0 →MG′ . Extending this to ρ : V →M>G by setting

ρ(v) = > for all v ∈ V \W0 and ρ(v) = ρ′(v) for all v ∈ W0 yields the desired game parity

progress measure for G.

The question that remains to be answered is how to find this progress measure from which

we can immediately determine the winning regions. This is done by a lifting algorithm which

makes use of the Knaster-Tarski Theorem. The following lifting operator forms the core of the

algorithm.

2.2.13 Definition: Let G be a parity game, ρ : V →M>G a function and v ∈ V . Then we define

Lift(ρ, v) : V →M>G by

Lift(ρ, v)(u) =


ρ(u) if u 6= v

min(v,w)∈E Prog(ρ, v, w) if u = v ∈ V0
max(v,w)∈E Prog(ρ, v, w) if u = v ∈ V1

.

To be able to apply the Knaster-Tarski Theorem, we need an ordering on the functions the

lifting operator is applied to.

2.2.14 Definition: Let G be a parity game. We define a partial ordering on the functions

V → M>G in the following way: Let ρ1 : V → M>G and ρ2 : V → M>G . We write ρ1 v ρ2 if

ρ1(v) ≤ ρ2(v) for all v ∈ V and ρ1 @ ρ2 if ρ1 v ρ2 and ρ1 6= ρ2.

What remains to be shown is that the operator is monotone with respect to the ordering given

in the previous definition.

57

2.2.15 Proposition: Let G be a parity game. For all v ∈ V the lifting operator Lift(·, v) is

v-monotone.

Proof. Let ρ1, ρ2 : V →M>G be functions, ρ1 v ρ2, and v ∈ V . We need to show that Lift(ρ1, v) v
Lift(ρ2, v). Since Lift(ρ1, v)(u) = ρ1(u) and Lift(ρ2, v)(u) = ρ2(u) for all v 6= u it suffices to

show that Lift(ρ1, v)(v) ≤ Lift(ρ2, v)(v).

Let w ∈ V with (v, w) ∈ E. Then for ρ : V → M>G , Prog(ρ, v, w) is defined as the smallest

a ∈ M>G such that a ≥val(v) ρ(w) and a >val(v) ρ(w) or a = ρ(w) = > if val(v) is odd. We

claim that Prog(ρ1, v, w) ≤ Prog(ρ2, v, w). Since ρ1 v ρ2 we know that ρ1(w) ≤ ρ2(w). By

definition of the lexicographical ordering it follows that ρ1(w) ≤i ρ2(w) for all i ∈ {1, . . . ,m}.
Hence, Prog(ρ2, v, w) ≥val(v) ρ2(w) ≥val(v) ρ1(w) and Prog(ρ2, v, w) > ρ2(w) ≥val(v) ρ1(w) or

Prog(ρ2, v, w) = ρ2(w) = > ≥val(v) ρ1(v) if val(v) is odd. In either case, since Prog(ρ1, v, w) is

minimal with these properties, Prog(ρ1, v, w) ≤ Prog(ρ2, v, w).

By definition of the Lift-operator via Prog it follows that Lift(ρ1, v)(v) ≤ Lift(ρ2, v)(v) and

therefore Lift(ρ1, v) v Lift(ρ2, v).

The Knaster-Tarski Theorem guarantees the existence of a fixed point for the lifting operator.

The following proposition shows why this is desirable.

2.2.16 Proposition: Let G be a parity game and ρ : V → M>G a function. Then ρ is a game

parity progress measure if and only if Lift(ρ, v) v ρ(v) for all v ∈ V .

Proof. Let ρ be a game parity progress measure and v ∈ V . Since Lift(ρ, v)(u) = ρ(u) for

all u 6= v it suffices to show that Lift(ρ, v)(v) ≤ ρ(v). Suppose first that v ∈ V0. Be-

cause ρ is a game parity progress measure we know that ρ(v) ≥val(v) Prog(ρ, v, w) for some

(v, w) ∈ E. Since Prog(ρ, v, w) is the minimal a ∈ M>G such that a ≥val(v) ρ(w) it follows that

Prog(ρ, v, w) only contains zeros after its val(v)’th entry or Prog(ρ, v, w) = > and therefore

ρ(v) ≥ min(v,w)∈E Prog(ρ, v, w) = Lift(ρ, v)(v).

If v ∈ V1 then ρ(v) ≥val(v) Prog(ρ, v, w) for all (v, w) ∈ E. Since Prog(ρ, v, w) is the min-

imal a ∈ M>G such that a >val(v) ρ(w) or a = ρ(w) = > it follows that for all (v, w) ∈ E

Prog(ρ, v, w) only contains zeros after its val(v)’th entry or ρ(v) ≥val(v) > and therefore we have

ρ(v) ≥ max(v,w)∈E Prog(ρ, v, w) = Lift(ρ, v)(v) since ρ(v) ≥val(v) > implies ρ(v) = >.

Conversely, let Lift(ρ, v) v ρ(v) for all v ∈ V . Let a fixed node v ∈ V be given. In particular,

Lift(ρ, v) v ρ implies that Lift(ρ, v)(v) ≤ ρ(v). If v ∈ V0, this means min(v,w)∈E Prog(ρ, v, w) ≤
ρ(v) and therefore there exists an edge (v, w) ∈ E with Prog(ρ, v, w) ≤val(v) ρ(v). If v ∈ V1 we

have max(v,w)∈E Prog(ρ, v, w) ≤ ρ(v) and therefore Prog(ρ, v, w) ≤val(v) ρ(v) for all w ∈ V with

(v, w) ∈ E. Hence ρ satisfies the defining conditions of a game parity progress measure.

Applying the Knaster-Tarski Theorem to the lifting operator for some parity game G gives us

the v-least game parity progress measure by the following simple algorithm.

58

2.2.17 Algorithm (ProgressMeasureLifting):

Initialize µ : V →M>G , v 7→ (0, . . . , 0)

while µ @ Lift(µ, v) for some v ∈ V do µ := Lift(µ, v).

Return W0 = {v ∈ V : µ(v) 6= >}, W1 = V \W0.

Let us illustrate this algorithm in a simple example.

2.2.18 Example: Consider the following game graph.

v3

v4 v2v1

The value of vi is i for each i ∈ {1, . . . , 4} and V0 = {v3, v4}, V1 = {v1, v2}. Let us see how

ProgressMeasureLifting works in a table.

µ(v1) µ(v2) µ(v3) µ(v4) Lift(µ, v1)(v1) Lift(µ, v2)(v2) Lift(µ, v3)(v3) Lift(µ, v4)(v4)

0000 0000 0000 0000 0001

0001 0000 0000 0000 0001 0000 0100

0001 0000 0100 0000 0001 0100

0001 0100 0100 0000 0001 0100 0100 0000

To calculate Lift(µ, v1)(v1) in the first step we need to calculate

max
(v1,w)∈E

Prog((µ0 : V → {0x0x : x ∈ {0, 1}}, v 7→ 0), v1, w),

hence in this case Prog(µ0, v1, v3) which is defined as the smallest a in {0x0x : x ∈ {0, 1}} such

that a >val(v1) µ0(v3) or a = µ0(v3) = >, since val(v1) = 1 is odd. Thus, Prog(µ0, v1, v3) is 0001,

since 0001 > 0000 and x ≤ 0000 for each x < 0001, x ∈ {0, 1}. The other instances of the lifting

operation can be calculated in the same way. Once we have found an instance that differs from

the current value of µ at that node, we can stop and update µ. The algorithm terminates when

we cannot update any more.

It follows that Player 0 wins from any position according to the algorithm.

To see that this algorithm indeed gives us the winning regions of both players, we need to

combine the previous lemmata and propositions in the proof of the following theorem, which

also gives us the runtime for this particular algorithm.

2.2.19 Theorem: Let G be a parity game. Then ProgressMeasureLifting computes the winning

sets for players 0 and 1 and a winning strategy for Player 0 from her winning set. The space

59

complexity is O(mn), where m is the largest occurring value and n the number of nodes in V .

Let k be the number of edges in the parity graph. Then the algorithm runs in time

O

(
mk ·

(
n

bm/2c

)bm/2c)
.

Proof. By the Knaster-Tarski Theorem ProgressMeasureLifting computes the least simultaneous

fixed point µ of the Lift-operators Lift(·, v) for all v ∈ V . By Proposition 2.2.16 µ is a game

parity progress measure. Proposition 2.2.12 gives us a winning strategy for the set ||µ|| which is

therefore a subset of her winning region. However the same proposition gives us equality here,

because if v ∈ W0\||µ||, then there exists a progress measure ρ : V → M>G such that ρ(v) 6= >
which contradicts µ being a v-least fixed point.

The space complexity stems from ProgressMeasureLifting only having to store an m-tuple of

integers or the top element, namely µ(v) ∈M>G for each v ∈ V .

The Lift-operator works in time O(d ·outdeg(v)) and every node in v can be lifted at most |MG|
many times. Hence the running time is in

O

(∑
v∈V

d · outdeg(v) · |MG|

)
= O(kn · |MG|).

Since we can assume as usual that the values in G lie in the set {1, . . . ,m} we have that∑bm/2c
i=1 (|{v ∈ V : val(v) = i}|+ 1) ≤ n. It follows that

|MG| =
bm/2c∏
i=1

(|{v ∈ V : val(v) = i}|+ 1) ≤
(

n

bm/2c

)bm/2c
.

This runtime is not quasipolynomial, but the next section will show how we can improve the

methods used, to achieve this time bound.

60

2.2.2 Improving the runtime to quasi-polynomial

This subsection is based on the paper Succinct progress measures for solving parity games by

Jurdziński and Lazić [JL17]. It will largely employ the same methods as the previous section

with one crucial refinement: The labels used by the progress measures will be significantly more

succinct. Jurdziński and Lazić call this refinement succinct tree coding. It takes an ordered tree

and encodes it using binary strings.

Let us begin by defining an ordering on such binary strings.

2.2.20 Definition: Consider the set of finite binary strings, i.e. finite strings containing only

the symbols 0, 1. We denote the empty word by ε. We define a linear ordering < on this set in

the following way. For all finite binary strings s and s′ and all b ∈ {0, 1} or b = ε

0s < ε, ε < 1s, bs < bs′ ⇔ s < s′.

The idea of the succinct tree coding is to have for each leaf a code in the form of a tuple

containing as few 0s and 1s as possible. Formally, these tuples have the following form.

2.2.21 Definition: The set Bl,h of l-bounded adaptive h-counters is the set of h-tuples of finite

binary strings where the tuple contains at most l zeros and ones in total.

We extend the ordering < to Bl,h lexicographically.

Let us introduce a few new terms to describe precisely, what we mean by an ordered tree and

by a tree coding.

2.2.22 Definition: An ordered tree is a prefix-closed set of sequences of elements of a linearly

ordered set. The sequences are called nodes and the maximal nodes with respect to the given

ordering are called leaves. The elements of the linearly ordered set are called branching directions

and the sequences of branching directions that uniquely identify the nodes are referred to as

navigation paths.

An ordered tree coding is an order preserving relabelling of the branching directions. The word

‘adaptive’, which appeared in the previous definition, stems from the fact that we allow the

labels of the same branching direction for different nodes to differ from one another.

Note that the sequence of branching directions for node v codes which edges lead to v from

the root: The branching direction from the root, meaning the first branching direction in the

navigation path, indicates the unique child of the root which lies on the path to v, the second

branching direction indicates the unique child of that node on the path to v and so on.

The aim is to take any ordered tree and rename the branching directions such that they still

fulfil the definition of branching directions, but the navigation paths are much more succinct.

For this, we use the adaptive counters defined earlier.

61

2.2.23 Lemma: Let T be an ordered tree of height h with at most n leaves. Then there is a

tree coding in which each navigation path is a dlog(n)e-bounded adaptive h-counter.

Proof. The proof is an induction over n and h.

If n = 1 and h = 0 take as branching direction the empty tuple ().

Now let T be an ordered tree of height h with at most n leaves and assume that the statement

of the lemma hold for all ordered trees T ′ of height < h with at most n leaves or of height h

with less than n leaves.

Let M be a branching direction from the root such that the sets of leaves L< whose branching

directions from the root are strictly smaller than M and L> whose branching directions from

the root are strictly larger both are of size at most n/2. The set of leaves whose branching

direction from the root is M is referred to as L=. Then we obtain the desired coding in the

following way:

• For L<, if it is nonempty, consider the subtree of T that has as its leaves the elements from

L<. This subtree has height at most h and at most n/2 < n leaves and we can therefore

apply the induction hypothesis. Now add a 0 to the beginning of all the binary strings

that code the branching directions from the root.

• For L>, if it is nonempty, consider the subtree of T that has as its leaves the elements from

L>. This subtree has height at most h and at most n/2 < n leaves and we can therefore

apply the induction hypothesis. Now add a 1 to the beginning of all the binary strings

that code the branching directions from the root.

• The code of the branching direction M from the root is set to ε. The subtree of T induced

by the child of the root with branching direction M as the new root has precisely the

nodes in L= as leaves and has height n− 1. Thus we can apply the induction hypothesis

to this subtree.

Let us illustrate this in an example.

2.2.24 Example: Consider the following ordered tree.

L1 L2 L4L3

1
2

12 23
2421

62

Application of the previous lemma yields:

L1 L2 L4L3

0
ε

ε ε
10

The navigation path for L1 is now (0, ε), for L2 it is (ε, ε), for L3 it is (ε, 0) and for L4 it is (ε, 1).

2.2.25 Definition: A succinctly coded tree is an ordered tree T such that the branching direc-

tions are given as finite binary strings with the ordering from Definition 2.2.20 and the sum of

lengths of binary strings in a navigation path is bounded by dlog(k)e, where k is the number of

leaves in T .

Note that by Lemma 2.2.23 every ordered tree can be presented as a succinctly coded tree.

Let us see how we can apply this succinct tree coding to progress measures. To do so, we need

to translate progress measures into ordered trees.

2.2.26 Remark: Let ρ : V → MG be a parity progress measure for a parity graph G. Then ρ

can be considered as an ordered tree of height dm/2e with n leaves by taking the nodes v ∈ V
as the leaves with branching direction rmrm−2rm−4 · · · r1 if m is odd or rm−1rm−3 · · · r1 if m is

even, where ρ(v) = rm0rm−20rm−40 · · · r1 or ρ(v) = 0rm−10rm−30 · · · r1, respectively.

For simplicity, from now on we will present all arguments only for odd m since the case for even

m is completely analogous.

Similarly to the use of ≤i in the previous section, we need to define an ordering on subsequences

as well. The subsequences we need to consider are the truncations defined in the following

definition. The ordering on these truncations is simply the lexicographical ordering from left to

right.

2.2.27 Definition: Let s = rmrm−2 · · · r1 be a sequence as described in the remark above and

let p ∈ N. We define the p-truncation of s as

rmrm−2 · · · r1|p = rmrm−2 · · · rk+2rk,

where k is the smallest odd number such that k ≥ p.

Now we can define succinct game progress measures using the succinct tree coding for the labels.

63

2.2.28 Definition: Let G be a parity game. A succinct game progress measure for G is a

function µ : V → T>, where T> is a succinctly coded tree T with an additional top element >.

> is defined to be larger than any t ∈ T and to satisfy >|p > t, >|p = >, for all p ∈ N, t ∈ T .

We require that

1. if v ∈ V0 then for some (v, w) ∈ E it holds that µ(v)|val(v) ≥ µ(w)|val(v) and µ(v)|val(v) >
µ(w)|val(v) or µ(v) = µ(w) = > if val(v) is odd and

2. if v ∈ V1 then for all (v, w) ∈ E it holds that µ(v)|val(v) ≥ µ(w)|val(v) and µ(v)|val(v) >
µ(w)|val(v) or µ(v) = µ(w) = > if val(v) is odd.

We define ||µ|| as the set of v ∈ V such that µ(v) 6= >.

To show that we can use these succinct game progress measures in the same way as we used

the parity progress measures in the previous subsection, we will have to prove very similar

propositions anew.

2.2.29 Proposition: Let G = (V,E, val) be a parity graph and let µ : V → T be such that for

all (v, w) ∈ E we have µ(v)|val(v) ≥ µ(w)|val(v) and the inequality is strict if val(v) is odd. Then

every cycle in G is even.

Proof. Assume that v1v2v3 · · · vk−1vkv1 is an odd cycle in G and without loss of generality let

v1 have the largest value in the cycle. Then

µ(v1)|val(v) > µ(v2)|val(v) ≥ µ(v3)|val(v) ≥ · · · ≥ µ(vk−1)|val(v) ≥ µ(vk)|val(v) ≥ µ(v1)|val(v).

This is a contradiction.

2.2.30 Proposition: Let G be a parity game.

1. If µ : V → T> is a a succinct game progress measure for G, then Player 0 has a winning

strategy from all v ∈ ||µ||.

2. There exists a succinct game progress measure µ : V → T> such that

µ(v) 6= > ⇔ player 0 has a winning strategy from v

Proof. 1. Let µ : V → T> be a succinct game progress measure for G and let v ∈ ||µ||.
Consider the parity graph G′ = (V ′, E′) derived from G by deleting for each w ∈ V0 every

outgoing edge (w, u) ∈ E but one that satisfies µ(v)|val(v) ≥ µ(w)|val(v) and µ(v)|val(v) >
µ(w)|val(v) or µ(v) = µ(w) = > if val(v) is odd, which exists by assumption. Then delete

all nodes that are not reachable from v.

Now G′ is a parity graph such that µ(w)|val(v) ≥ µ(u)val(v) for all w, u ∈ G′, (w, u) ∈

64

E′, and therefore µ(w) < > for all w ∈ G′ since µ(v) < > and all v 6= w ∈ G′ are

reachable from v. Additionally, µ(w)|val(v) > µ(u)|val(v) for all w, u ∈ G′ with val(w)

odd. It follows that µ′ : V ′ → T, w 7→ µ(w) is a succinct game progress measure for

G′ = (V ′, E′, val |V ′ , V0 ∩ V ′, V1 ∩ V ′) and by Proposition 2.2.29 all cycles in G′ are even.

Hence, Player 0 wins G′ and since we deleted only edges and nodes from G that Player 0

can avoid, picking from each node w ∈ V0 the one edge (w, u) ∈ E′ is a winning strategy

for Player 0.

2. By Proposition 2.2.12 there exists a game parity progress measure ρ : V →M>G such that

ρ(v) 6= > ⇔ player 0 has a winning strategy from v.

Let G′ = (V ′, E′) be the subgraph of G induced by the v ∈ ||ρ||. Using the coding of

ρ into an ordered tree T as described in Remark 2.2.26 and applying Lemma 2.2.23 we

obtain a function µ′ : V ′ → T by mapping each v ∈ V ′ to the corresponding leaf of T

in the translation. Now extend µ′ to a function µ : V → T> by defining µ(v) = µ′(v)

for all v ∈ V ′ and µ(v) = > for all v /∈ V ′. Since the translation and the application of

the lemma are both order preserving, it follows immediately from the definitions of parity

progress measures and succinct game progress measures, that µ is a succinct game progress

measure. Additionally, by Proposition 2.2.12

µ(v) 6= > ⇔ player 0 has a winning strategy from v.

Obviously, we do not want to consider just any ordered tree T in the progress measures, but

apply the succinct tree coding.

2.2.31 Remark: Since in Proposition 2.2.30 2. the succinct game progress measure maps every

v ∈ V to either a leaf of the succinctly coded tree T or to > we can consider ρ as a function

ρ : V → B>dlogne,dm/2e, where B>dlogne,dm/2e is defined as Bdlogne,dm/2e ∪ {>} with > defined as

above.

Again we can retrace the steps from the previous section and define a lifting operator via the

operator Prog.

2.2.32 Definition: Let G be a parity game and µ : V → B>dlogne,dm/2e a function. Let (v, w) ∈ E.

Then we define Prog(µ, v, w) as the smallest a ∈ B>dlogne,dm/2e such that a|val(v) ≥ µ(w)|val(v)
and if val(v) is odd then either a|val(v) > µ(w)|val(v) or a = µ(w) = >.

65

2.2.33 Definition: Let G be a parity game, µ : V → B>dlogne,dm/2e a function and v ∈ V . Then

we define a function Lift(µ, v) : V → B>dlogne,dm/2e by

Lift(µ, v)(u) =


µ(u) if u 6= v

min(v,w)∈E Prog(µ, v, w) if u = v ∈ V0
max(v,w)∈E Prog(µ, v, w) if u = v ∈ V1

.

Here, too, we want to apply the Knaster-Tarski Theorem, so we need an ordering on the functions

and we need to show monotony of the Lift operator with respect to this ordering.

2.2.34 Definition: Let G be a parity game. We define a partial ordering on the functions

V → B>dlogne,dm/2e in the following way: Let µ1 : V → B>dlogne,dm/2e and µ2 : V → B>dlogne,dm/2e.

We write µ1 v µ2 if µ1(v) ≤ µ2(v) for all v ∈ V and µ1 @ µ2 if µ1 v µ2 and µ1 6= µ2.

2.2.35 Proposition: Let G be a parity game. For all v ∈ V the Lift-operator Lift(·, v) is

v-monotone.

Proof. Let µ1, µ2 : V → B>dlogne,dm/2e be functions, µ1 v µ2, and v ∈ V . We need to show that

Lift(µ1, v) v Lift(µ2, v). Since Lift(µ1, v)(u) = µ1(u) and Lift(µ2, v)(u) = µ2(u) for all v 6= u it

suffices to show that Lift(µ1, v)(v) ≤ Lift(µ2, v)(v).

Let w ∈ V with (v, w) ∈ E. Then for µ : V → B>dlogne,dm/2e Prog(µ, v, w) is defined as the

smallest a ∈ B>dlogne,dm/2e such that a|val(v) ≥ µ(w)|val(v) and a|val(v) > µ(w)|val(v) or a =

µ(w) = > if val(v) is odd. We claim that Prog(µ1, v, w) ≤ Prog(µ2, v, w). Since µ1 v µ2

we know that µ1(w) ≤ µ2(w). By definition of the lexicographical ordering it follows that

µ1(w)|i ≤ µ2(w)|i for all i ∈ {1, . . . ,m}. Hence, Prog(µ2, v, w)|val(v) ≥ µ2(w)|val(v) ≥ µ1(w)|val(v)
and Prog(µ2, v, w) > µ2(w) and µ2(w)|val(v) ≥ µ1(w)|val(v) or Prog(µ2, v, w) = µ2(w) = > =

>|val(v) ≥ µ1(v)|val(v) if val(v) is odd. In either case, since Prog(µ1, v, w) is minimal with these

properties, Prog(µ1, v, w) ≤ Prog(µ2, v, w).

By definition of the Lift-operator via Prog it follows that Lift(µ1, v)(v) ≤ Lift(µ2, v)(v) and

therefore Lift(µ1, v) v Lift(µ2, v).

The fixed point the Knaster-Tarski Theorem will give us is as useful here as it was previously.

2.2.36 Proposition: Let G be a parity game and µ : V → B>dlogne,dm/2e a function. Then µ is

a succinct game progress measure if and only if Lift(µ, v) v µ(v) for all v ∈ V .

Proof. Let µ be a succinct game progress measure and v ∈ V . Since Lift(µ, v)(u) = µ(u) for

all u 6= v it suffices to show that Lift(µ, v)(v) ≤ µ(v). Suppose first that v ∈ V0. Because

µ is a succinct game progress measure we know that µ(v)|val(v) ≥ Prog(µ, v, w)|val(v) for some

(v, w) ∈ E. Since Prog(µ, v, w) is the minimal a ∈ B>dlogne,dm/2e such that a|val(v) ≥ µ(w)|val(v)

66

it follows that µ(v) ≥ min(v,w)∈E Prog(µ, v, w) = Lift(µ, v)(v).

If v ∈ V1 then µ(v)|val(v) ≥ Prog(µ, v, w)|val(v) for all (v, w) ∈ E. Since Prog(µ, v, w) is the

minimal a ∈ B>dlogne,dm/2e such that a|val(v) > µ(w)|val(v) or a = µ(w) = > it follows that

µ(v) ≥ max(v,w)∈E Prog(µ, v, w) = Lift(µ, v)(v) since µ(v)|val(v) ≥ > implies µ(v) = >.

Conversely, let Lift(µ, v) v µ(v) for all v ∈ V . Let a fixed node v ∈ V be given. Since Lift(µ, v) v
µ we have in particular Lift(µ, v)(v) ≤ µ(v). If v ∈ V0 this means min(v,w)∈E Prog(µ, v, w) ≤ µ(v)

and therefore there exists an edge (v, w) ∈ E with Prog(µ, v, w)|val(v) ≤ µ(v)|val(v). If v ∈ V1
we have max(v,w)∈E Prog(µ, v, w) ≤ µ(v) and therefore Prog(µ, v, w)|val(v) ≤ µ(v)|val(v) for all

w ∈ V with (v, w) ∈ E. Hence µ satisfies the defining conditions of a game parity progress

measure.

Applying the Knaster-Tarski Theorem to the Lift-operator for some parity game G gives us the

v-least succinct game progress measure by the following simple algorithm, which is very similar

to the old one, with the exception of the images of the progress measures.

2.2.37 Algorithm (SuccinctProgressMeasureLifting):

Initialize µ : V → B>dlogne,dm/2e, v 7→ (0 · · · 0, ε, . . . , ε)
while µ @ Lift(µ, v) for some v ∈ V do µ := Lift(µ, v).

Return W0 = {v ∈ V : µ(v) 6= >}, W1 = V \W0.

2.2.38 Example: Consider the game graph below with val(vi) = i for all i and V0 = {v3, v4},
V1 = {v1, v2}.

v3

v4 v2v1

The value of vi is i for each i ∈ {1, . . . , 4} and V0 = {v3, v4}, V1 = {v1, v2}. Let us see how

SuccinctProgressMeasureLifting works in a table.

Note that dlog ne = 2 and m/2 = 2.

µ(v1) µ(v2) µ(v3) µ(v4) Lift(µ, v1)(v1) Lift(µ, v2)(v2) Lift(µ, v3)(v3) Lift(µ, v4)(v4)

00,ε 00,ε 00,ε 00,ε 0,0

0,0 00,ε 00,ε 00,ε 0,0 00,ε 0,0

0,0 00,ε 0,0 00,ε 01,ε

01,ε 00,ε 0,0 00,ε 01,ε 00,ε 0,0 0,0

01,ε 00,ε 0,0 0,0 01,ε 0,0

01,ε 0,0 0,0 0,0 01,ε 0,0 0,1

01,ε 0,0 0,1 0,0 01,ε 0,0 0,1 0,1

01,ε 0,0 0,1 0,1 01,ε 0,0 0,1 0,1

67

To calculate Lift(µ, v1)(v1) in the first step we need to calculate

max
(v1,w)∈E

Prog((µ0 : V → B>dlogne,dm/2e, v 7→ (0 · · · 0, ε, . . . , ε)), v1, w),

hence in this case Prog(µ0, v1, v3) which is defined as the smallest a in B>dlogne,dm/2e such that

a|val(v1) > µ0(v3)|val(v1) or a = µ0(v3) = >, since val(v1) = 1 is odd. Thus, Prog(µ0, v1, v3) is

0,0, since 0 > 00 and x ≤ 00 for each x < 0, which is only 00. The other instances of the lifting

operation can be calculated in the same way. Once we have found an instance that differs from

the current value of µ at that node we can stop and update µ. The algorithm terminates when

we cannot update any more. It follows that Player 0 wins from any position according to the

algorithm.

The correctness of the algorithm follows immediately from the previous considerations:

2.2.39 Theorem: Let G be a parity game. Then SuccinctProgressMeasureLifting computes

the winning sets for players 0 and 1 and a winning strategy for Player 0 from her winning set.

Proof. By the Knaster-Tarski Theorem SuccinctProgressMeasureLifting computes the least si-

multaneous fixed point µ of the Lift-operators Lift(·, v) for all v ∈ V . By Proposition 2.2.36 µ is

a game parity progress measure. Proposition 2.2.30 gives us a winning strategy for the set ||µ||
which is therefore a subset of her winning region. However the same proposition gives us equality

here, because if v ∈ W0\||µ||, then there exists a progress measure µ′ : V → B>dlogne,dm/2e such

that µ′(v) 6= > which contradicts µ being a v-least fixed point.

Now let us take a look at the big difference to the previous subsection, the complexity. It is

largely dependent on the size of Bdlogne,dm/2e. So let us take a look at this size first.

2.2.40 Lemma: Let n,m ∈ N. Then

1. |Bdlogne,dm/2e| ≤ 2dlogne
(dlogne+m/2

m/2

)
.

2. If m = O(log n) then |Bdlogne,dm/2e| is bounded by a polynomial in n.

3. If m ≥ log(n) then |Bdlogne,dm/2e| = O(nlogm−log logn+4,03).

Proof. 1. The set Bdlogne,dm/2e is the set of dlog ne-bounded adaptive dm/2e-counters, mean-

ing the set of dm/2e-tuples of binary sequences with a total number of at most dlog ne
zeros and ones. For the sequences of zeros and ones of length exactly dlog ne there are

2dlogne possibilities. For a dm/2e-tuple with at most dlog ne zeros and ones in total there

68

are (
dlog ne+m/2

m/2

)
=

(
dlog ne+m/2

dlog ne

)
possibilities of distributing dlog ne numbers to m/2 + 1 components, one for the unused of

the dlog ne bits.

2. Let m = 2δ log n. Then one can obtain(
log n+m/2

log n

)
=

(
log n+ δ log n

δ log n

)
=

(
(δ + 1) log n

δ log n

)
.

This yields

|Bdlogne,dm/2e| = Θ

(
n(δ+1)H(δ

δ+1)+1

√
log n

)
,

where H(p) = −p log p− (1− p) log(1− p) for p ∈ [0, 1]. It is known that

(δ + 1)H

(
δ

δ + 1

)
= log(δ + 1) + log(eδ).

Since this second expression does not depend on n, we obtain the desired complexity result.

3. It holds that

log

((
dlog ne+m/2

dlog ne

))
≤ dlog ne · (log(dlog ne+m/2)− log(log n) + log e)

≤ dlog ne · (log n− logm− log(log n) + 2.03).

The first inequality is obtained by applying log to both sides of
(
l
k

)
≤ ((el)/k)k with the

binomial coefficient above substituted. The second inequality follows from m ≥ log(n) and

log(3/2) + log(e) ≈ 2.0277 < 2.03. It follows by m ≤ n that

|Bdlogne,dm/2e| ≤ 2dlogne·(logm−log(logn)+3.03) ≤ 2logn·(1+1/ log(n))·(logm−log(logn)+3.03)

= O
(
nlogm−log(logn)+4.03

)
.

To see how exactly the runtime depends on |Bdlogne,dm/2e|, consider the following lemma.

2.2.41 Lemma: Let G be a parity game with n nodes and k edges in the parity graph and m

69

the largest value occurring. The running time of SuccinctProgressMeasureLifting is bounded by

O

(∑
v∈V

outdeg(v) · log n · logm · |Bdlogne,dm/2e|

)
= O(k log n · logm · |Bdlogne,dm/2e|).

Proof. Note first that every node can be updated by the Lift operator at most |Bdlogne,dm/2e|
times. For each node v ∈ V there are at most outdeg(v) computations of Prog necessary to

compute Lift(µ, v)(v). Thus, it suffices to show that Prog(µ, v, w) can be computed in time

O(log n · logm) for all µ : V → Bdlogne,dm/2e, (v, w) ∈ E.

Obviously the computation of Prog(µ, v, w) requires the most steps if val(v) is odd and

µ(v)|val(v) < µ(w)|val(v) 6= >,

since this requires finding the smallest a ∈ B>dlogne,dm/2e such that a|val(v) > µ(w)|val(v). Let

µ(w) = (sm, sm−2, . . . , s1) and consider the following cases. (With the length of a string or

multiple strings we mean in this proof the number of zeros and ones occurring in it or all of

them concatenated, respectively.)

Case 1: The total length of the si with i ≥ val(v) is less than dlog ne.
In this case set a = (sm, sm−2, . . . , sval(v)+2, sval(v)10 · · · 0, ε, . . . , ε), using as many zeros as

needed to obtain length dlog ne.

Case 2: The total length of the si with i ≥ val(v) is equal to dlog ne, j ≥ val(v) is the smallest

odd value such that sj 6= ε and sj = s′01 · · · 1 with k ≥ 0 ones and s′ some binary string.

In this case set a = (sm, sm−2, . . . , sj+2, s
′, 0 . . . 0, ε, . . . , ε) with the number of zeros in the

entry after s′ being k + 1.

Case 3: The total length of the si with i ≥ val(v) is equal to dlog ne, m > j ≥ val(v) is the

smallest odd value such that sj 6= ε and sj = 1 · · · 1 with k ≥ 0 ones.

In this case set a = (sm, sm−2, . . . , , sj+4, sj+210 . . . 0, ε, . . . , ε) with the number of zeros

after sj+21 being k − 1.

Case 4: None of the cases 1-3 apply.

Then set a = >.

Note that each b ∈ Bdlogne,dm/2e can be represented using space O(log n · logm): indicate with at

most dlog ne bits each zero and one in Bdlogne,dm/2e, each followed by log(dm/2e) bits to denote

the respective position in the tuple. Thus, every case needs running time at most O(log n · logm)

for computing Prog(µ, v, w).

Now we can combine the previous two lemmas to obtain the overall complexity, which is, as

promised, quasipolynomial.

70

2.2.42 Theorem: Let G be a parity game with n nodes and k edges in the parity graph and

m the largest value occurring. The algorithm SuccinctProgressMeasureLifting has the following

running times.

1. If m ≤ dlog ne then the algorithm runs in time O(kn2.38).

2. If m ≥ dlog ne then the algorithm runs in time O(knlogm−log logn+4,03).

The algorithm needs space O(n log n · logm).

Proof. The space complexity stems from the fact that at most n · dlog ne · (dlog(m/2)e+ 1) bits

are needed to store a function µ : V → |Bdlogne,dm/2e|.
For the first statement of the theorem note that δ < 1/2 (δ as in Lemma 2.2.40) implies that if

m ≤ dlog ne then m/2 ≤ dδ log ne. Hence

log(δ + 1) + log(eδ) + 1 = 3/2 log 3 ≈ 2.3775 < 2.38.

The rest follows also from combining Lemma 2.2.40 and Lemma 2.2.41.

Just as for the succinct counting method by Calude et al, this method, too, gives us a runtime

in FPT.

2.2.43 Corollary: Solving parity games is in FPT with the number of values as the parameter.

Proof. The algorithm SuccintProgressMeasureLifting can solve parity games in time

2O(m logm) ≥ O(knlogm−log logn+4,03)

if m ≥ dlog ne and in time O(kn2.38) otherwise, where m is the number of values, n the number

of nodes and k ≤ n2 the number of edges in the parity game.

71

2.3 Comparing the two methods

At first glance, the succinct counting method and the method using succinct progress measures

look very different from one another. The first ist based upon analysing individual plays and

then constructing a reachability game from that, while the second updates a function again and

again until it is a progress measure which shows the winning regions of both players. The sim-

ilarity of both methods of course is the use of a very succinct encoding, of a winning statistics

for the succinct counting method and of functions as succinctly coded trees in the method by

Jurdziński and Lazić.

This second method has one large advantage in comparison to the method by Calude et al.,

namely the space complexity. For the latter, one has to construct the entire reachability game,

so the space complexity like the time complexity is quasipolynomial. Using succinct progress

measures, the space complexity is, as we have seen, O(n log n · logm), which is quasi-linear.

2.3.1 Progress Measure for the Succinct Counting Method

In this section we will present a method, developed by Fearnley et al. in their paper An Ordered

Approach to Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space [Fea17]

which shows that the succinct counting method can be adapted to incorporate progress measures

as well, making the construction of the reachability game obsolete. As the title of the paper

suggests, this also resolves the difference in space complexity between the two methods discussed

in the previous sections.

The first relatively minor change to the method of Calude et al. is that we will analyse the play

backwards, when building up the winning statistics.

2.3.1 Definition: Let G be a parity game and π = v1v2v3 · · · vk a partial play. We define the

backwards play
←
π as

←
π = vk · · · v3v2v1.

2.3.2 Definition: A backwards statistics for a partial play π for Player 0 is a winning statistics

for
←
π (or for an initial sequence of

←
π).

We now formulate the winning statistics as its own game, giving Player 0 an initial move in which

she my choose how long the partial play π should be that the backwards winning statistics is

build for.

2.3.3 Definition: We define the backwards update game using the algorithm defined in the first

section of this chapter:

72

The algorithm tracks the values b0, . . . , bdlog(n)e+1 ∈ {0, . . . ,m} which are all initially set to 0.

Now let b be the value of the current node in the play.

1. If b is even or b > bi > 0 for some i, then one selects the largest i such that

a) either b is even and bi is odd or 0 but all bj with j < i are even and non-zero

b) or 0 < bi < b

and then one updates bi = b and bj = 0 for all j < i.

The only difference to the previous update rules is that this time, for a play π = v1v2v3 · · · ,
instead of evaluating in each step the forwards partial play π = v1v2v3 · · · vk, where vk is the

current node in the play, Player 0 chooses some l ∈ N in the beginning of the game and we then

evaluate the backwards play vl · · · v3v2v1 from left to right. Player 0 wins the update game if

bdlog(n)e+1 > 0.

2.3.4 Corollary: Player 0 wins a play π of a parity game G if and only if she wins the backwards

update game.

Proof. In a play π of a parity game played according to positional strategies for both players

it does not matter in which order we go through the nodes to find a loop. Therefore the exact

same arguments as in the first section of this chapter hold here.

Based on this backwards update game we will define a so called antagonistic update game. The

purpose of this game is to build up winning statistics such that the update rules are order

preserving according to the ordering defined below, while still guaranteeing that Player 0 wins

the play if and only if her winning statistics matures. This will be necessary to define a progress

measure later.

2.3.5 Definition: We define an ordering v on the set

B = {(b0, . . . , bdlog(n)e+1) : bi ∈ {0, . . . ,m} for all i}

by first defining an ordering � on {0, . . . ,m} as follows:

Let b, c ∈ {0, . . . ,m}. Then c � b if one of the following holds:

• c = 0,

• b and c are both odd and b ≤ c,

• c is odd and b is even or

• b and c are both even and b ≥ c.

73

Then we define v on B, comparing x, y ∈ B lexicographically according to � from right to left.

The ordering � simply prefers everything over 0, even numbers over odd numbers, larger even

numbers over smaller ones and smaller odd numbers over larger ones. For instance the set

{0, 1, 2, 3, 4, 5} is ordered as 0, 5, 3, 1, 2, 4, where 0 is the smallest element with respect to � and

4 the largest.

2.3.6 Definition: Let x be the winning statistics at node v, where v is a node in the backwards

play π that we are tracking the winning statistics for (according to the algorithm just defined).

Then we define the antagonistic update

au(x, v) = min
v
{z ∈ B : z is the update of some y w x at v},

where by update we mean the normal update rules used in both algorithms defined so far in

this chapter.

The term antagonistic stems from the fact that in this game the ‘antagonist’, Player 1, basically

receives an additional move, being able to choose the smallest possible update (with respect to

v).

Note that the definition of au guarantees that if x v y, then au(x, v) v au(y, v) for all nodes v.

Thus, the antagonistic update is order preserving.

2.3.7 Definition: Let G be a parity game and π = v1v2v3 · · · a play in G. For the antagonistic

update game, Player 0 chooses l ∈ N and evaluates vl · · · v3v2v1 with initial winning statistics

xl = (0, . . . , 0) and update xi−1 = au(xi, vi−1) for all l ≥ i > 1. Player 0 wins the antagonistic

update game on π if xj is matured for some 1 ≤ j ≤ l.

Let us illustrate this with an example.

2.3.8 Example: Let us suppose that Player 0 has chosen a point in a play π with values

{1, . . . , 4} and we get the following sequence of values in the backwards initial play:

4 2 3 1 2 3 4 2 3 1 2 3 4 2 3 1 2 3 4 2 3 1 2 3 4 2 3 1 2 3 · · · 4 2 3 1 2 3.

We can track the updates according to the rules for the antagonistic update game in a table

and compare it to the backwards update game. The antagonistic update game is on the left and

the backwards update game on the right (note that more bi may be necessary to determine the

winner but are omitted here because we only look at the first few updates):

74

Current value b2 b1 b0 b2 b1 b0

4 0 0 4 0 0 4

2 0 3 2 0 2 0

3 0 3 3 0 3 0

1 0 3 3 0 3 0

2 0 3 2 0 3 2

3 0 3 3 0 3 3

4 0 4 3 0 4 3

2 0 4 2 0 4 2

3 0 4 3 0 4 3

1 0 4 3 0 4 3

2 0 4 2 0 4 2

3 0 4 3 0 4 3

4 0 4 4 0 4 4

2 3 0 2 2 0 0

. . .

The antagonistic updates differ slightly from the normal backwards update game. For instance

in the second step, (0, 3, 0) w (0, 0, 4) and (0, 3, 0) is updated to (0, 3, 2) @ (0, 2, 0), which is the

update of (0, 0, 4). So the antagonistic update is (0, 3, 2).

Now we need to show that the antagonistic update game preserves the properties of our original

update game, which guaranteed that Player 0 wins a play if and only if her winning statistics

matures.

2.3.9 Theorem: Let G be a parity game and π = v1v2v3 · · · a play in G. If Player 0 has a

winning strategy for the antagonistic update game on π, she wins π.

Proof. Let l ∈ N be the point that Player 0 chooses and consider vl · · · v3v2v1. The backwards

update game gives us a sequence x0 = (0, . . . , 0), x1, x2, . . . , xl of winning statistics in B such

that xi is the update of xi−1 for all 1 ≤ i ≤ l and the antagonistic update game yields another

such sequence y0 = (0, . . . , 0), y1, y2, . . . , yl. We claim that xi w yi for all 0 ≤ i ≤ l and prove it

by induction over i.

Obviously, x0 w y0, since the two are equal.

Now suppose that xi w yi for some i < l. Let x define the update of yi at vi+1 according to the

update rules in the backwards update game. Then

yi+1 = au(yi, vl−i)

= min
v
{z ∈ B : z is the update in the backwards update game of some y w yi at vl−i}

v xi+1.

75

The last inequality is by induction hypothesis, since xi w yi and we take a minimum.

Since a matured winning statistics is larger with respect to v than a non-matured one, Player

0 also wins the backwards update game with the same strategy as for the antagonistic update

game. Therefore, she wins π in G.

To prove the opposite direction, we need a few preliminary considerations, which are a bit more

technical.

2.3.10 Definition: Let G be a parity game, x = (b0, . . . , bdlog(n)e+1) ∈ B a winning statistics

and q ≤ m an even number. We define x ↓q in the following way:

• If for all i ≤ dlog(n)e+ 1 we have bi = 0 or bi ≥ q then x ↓q= x.

• Otherwise let j be the largest index in {0, . . . , dlog(n)e + 1} such that bj 6= 0 and bj <

q. Define b′i = bi for all i > j, b′j = q − 1 and b′i = 0 for all i < j. Then x ↓q=
(b′0, . . . , b

′
dlog(n)e+1).

This gives us some useful properties.

2.3.11 Lemma: Let G be a parity game, x = (b0, . . . , bdlog(n)e+1), y = (b′0, . . . , b
′
dlog(n)e+1) ∈ B

not matured, q ≤ m an even number and v a node in G.

1. If x w y then x ↓q w y ↓q.

2. If val(v) < q and z denotes the update of x at node v in the backwards update game then

z ↓q w x ↓q.

3. If val(v) < q and z denotes the update of x at node v in the antagonistic update game

then z ↓q w x ↓q.

4. If val(v) = q and z denotes the update of x at node v in the backwards update game then

z ↓q A x ↓q.

5. If val(v) = q and z denotes the update of x at node v in the antagonistic update game

then z ↓q A x ↓q.

Proof. 1. If x = y the claim is obvious. Suppose therefore x A y and let i ≤ dlog(n)e+ 1 be

the maximal index such that bi 6= b′i. By definition of v it follows that b′i ≺ bi. If there is

an index k > i such that b′k = bk 6= 0 and b′k = bk < q then

x ↓q = (0, . . . , 0, q − 1, bk+1, . . . , bdlog(n)e+1)

= (0, . . . , 0, q − 1, b′k+1, . . . , b
′
dlog(n)e+1)

= y ↓q .

76

So from now on suppose b′j = bj = 0 or b′j = bj ≥ q for all j ≥ i.
If q � bi then q ≤ bi and bi is even since q is even. Then we have (x ↓q)j = bj and

(y ↓q)j = b′j = bj for all j > i and (y ↓q)i ∈ {yi, q− 1}, so (y ↓q)i ≺ bi, since bi is even, and

therefore x ↓q A x ↓q.
If b′i � q + 1 then b′i is an odd number ≥ q + 1. Thus, (y ↓q)j = b′j = bj = (x ↓q)j for all

j > i and (y ↓q)i = b′i. The only two possibilities for x ↓q are bi and q − 1. If (x ↓q)i = bi

then x ↓q A y ↓q. If (x ↓q)i = q − 1 then y ↓qi = b′i > q − 1. Thus, (y ↓q)i ≺ (x ↓q)i and

x ↓q A y ↓q.
So the only remaining option is q + 1 ≺ bi ≺ b′i ≺ q. In this case it is impossible that

bi ≥ q or b′i ≥ q by definition of �, since q is even, and therefore (x ↓q)i = q − 1 = (y ↓q)i,
(x ↓q)i = bj = b′j = (y ↓q)i for all j > i and (x ↓q)i = 0 = (y ↓q)i for all j < i.

2. If z = x the claim is obvious. So assume z 6= x and let z = (a0, . . . , adlog(n)e+1) and

i be the largest index such that bi 6= ai. As in 1. if there is an index k > i such

that ak = bk 6= 0 and ak = bk < q, then x ↓q= (0, . . . , 0, q − 1, bk+1, . . . , bdlog(n)e+1) =

(0, . . . , 0, q − 1, b′k+1, . . . , b
′
dlog(n)e+1) = z ↓q. So suppose this is not the case.

Since ai = val(v) we have ai < q and since bi was updated in the backwards update game

at v we have bi ≺ q by definition of ≺. Assume bi � q + 1. Then bi is a larger odd

number than q + 1 or equal to q + 1. Hence (x ↓q)i = bi � q + 1 ≺ q − 1 ≤ (z ↓q)i and

thus z ↓q A x ↓q. If on the other hand q + 1 ≺ bi then bi is an odd number smaller than

q + 1 or an even number smaller than q, since bi ≺ q. In either case bi < q and therefore

x ↓q= (0, . . . , 0, q − 1, bi+1, . . . , bdlog(n)e+1) = (0, . . . , 0, q − 1, b′i+1, . . . , b
′
dlog(n)e+1) = z ↓q.

3. This follows from 1. and 2..

4. Since q is even and x is not matured we have z 6= x. Let z = (a0, . . . , adlog(n)e+1) and i

be the largest index such that bi 6= ai. By definition of the update rules in the backwards

update game we have bi ≺ ai = q. If there was a maximal index k > i such that ak = bk 6= 0

and ak = bk < q then bk would have been updated to q. It follows that (z ↓q)i = ai = q.

In both possible cases, namely (x ↓q)i = q − 1 and (x ↓q)i = bi, we have (x ↓q)i ≺ (z ↓q)i
and therefore z ↓q A x ↓q.

5. This follows from 1. and 4..

Now we can easily prove the missing direction of the equivalence.

2.3.12 Theorem: Let G be a parity game and π a play in G. If Player 0 wins π then she has

a winning strategy for the antagonistic update game on π.

Proof. Since the highest value m occurring infinitely often in π is even, there will be a point in π

at which an even value q has occurred more often than the size of the image of ↓q : B → B after

77

the last value c > q has occurred. Application of the previous lemma shows that Player 0 can

then win the antagonistic update game since the fifth case occurs |B| times with only the third

case in between. Thus, the winning statistics in the antagonistic update game matures.

Until now, we have only considered single plays and not the whole parity game. Calude et al.

constructed a reachability game to get from single plays to the parity game. But Fearnley et al.

now have all the tools necessary to give a lifting operator on functions of the from ι : V → B.

2.3.13 Definition: Let G = (V, V0, V1, E, val) be a parity game. For v ∈ V and ι : V → B we

define

Lift(ι, v)(v′) =


ι(v′), v′ 6= v

maxv{au(ι(w), v) : (v, w) ∈ E}, v = v′ ∈ V0
minv{au(ι(w), v) : (v, w) ∈ E}, v = v′ ∈ V1.

To apply the Knaster-Tarski Theorem and get a fixed point, we need an ordering on the functions

such that the lifting operator is monotone.

2.3.14 Remark: Let G be a parity game. Define an ordering v∗ on the set of functions V → B

by ι1 v∗ ι2 if and only if ι1(v) v ι2(v) for all v ∈ V and ι1 @∗ ι2 if ι1 v∗ ι2 and ι1 6= ι2. Then

the operator Lift(·, v) is v∗-monotone for all v ∈ V .

Proof. Let ι1 v∗ ι2. We need to show that Lift(ι1, v) v∗ Lift(ι2, v) or, since

Lift(ι1, v)(v′) = ι1(v
′) v ι2(v′) = Lift(ι2, v)(v′)

for all v′ 6= v, that Lift(ι1, v)(v) v∗ Lift(ι2, v)(v). From the proof of Theorem 2.3.9 and from the

definition of v via � it follows that au(ι1(w), v) v au(ι2(w), v) for all (v, w) ∈ E. In particular

this holds for the maximum and the minimum over such (v, w).

By the Knaster-Tarski Theorem the following algorithm yields a least fixed point with respect

to v∗:

2.3.15 Algorithm (SuccinctCountingLifting):

Initialize ι : V → B, v 7→ (0, . . . , 0,).

While ι(v′) @ Lift(ι, v)(v′) for some v, v′ ∈ V do ι := Lift(ι, v).

Return W0 = {v ∈ V : ι(v) is matured}, W1 = V \W0.

What remains to be shown is the correctness of the algorithm.

2.3.16 Theorem: Let G be a parity game and v ∈ V . Let ι : V → B be the function resulting

78

from SuccinctCountingLifting. If ι(v) is matured, then Player 0 has a winning strategy from v

in G.

Proof. Let ιi denote the state of the function in SuccinctCountingLifting after i applications

of the Lift-operator. Let k denote the least index at which ιk = ι. Define vk = v and for

each vj ∈ V0 let Player 0 select a neighbour vj−1 such that ιj(vj) v au(ιj−1(vj−1), vj). Such a

successor exists because otherwise ιj−1 would not have been lifted. Similarly for all vj ∈ V1 we

have ιj(vj) v au(ιj−1(w), vj) for all (vj , w) ∈ E. Let π = vk · · · v0 be the initial part of a play

played according to this strategy for Player 0.

Consider the antagonistic update game on π. Player 0 chooses to start at v0 and we evaluate the

play backwards. For each 0 ≤ i ≤ k let xi ∈ B be the winning statistic just before position vi

in the play. In particular x0 = (0, . . . , 0). By definition of π we have ιj(vj) v au(ιj−1(vj−1), vj)

for all 1 ≤ j ≤ k. We will show by induction over j that ιj(vj) v xj for all 0 ≤ j ≤ k.

Since ι0(w) = (0 · · · 0) for all w ∈ V we have ι0(v0) = x0. Now let ιj(vj) v xj for some j < k.

Then

ιj+1(vj+1) v au(ιj(vj), vj+1) v au(xj , vj+1) = xj+1.

Since ι(v) = ιk(v) is matured, so is xk and Player 0 wins the antagonistic update game. It

follows from Theorem 2.3.9 that Player 0 wins π. Since the strategy for Player 1 on π was

unspecified, Player 0 wins G from v.

For the opposite direction, consider the following theorem.

2.3.17 Theorem: Let G be a parity game and v ∈ V . Let ι : V → B be the function resulting

from SuccinctCountingLifting. If ι(v) is not matured, Player 1 has a winning strategy from v in

G.

Proof. For each z ∈ V1 let Player 1 choose w ∈ V with (z, w) ∈ E and ι(z) v au(ι(w), z). This

exists by assumption since otherwise ι would not be a fixed point.

Let vk = v and let π = vkvk−1 · · · v0 be the initial part of a play played according to this strategy

by Player 1. The length k is arbitrarily chosen by Player 0 at the beginning of the antagonistic

update game. If vj ∈ V0 for some 1 ≤ j ≤ k we have

ι(vj+1) w max
v
{au(ι(w), vj+1) : (vj+1, w) ∈ E} w au(ι(vj), vj+1),

since otherwise ι would not be a least fixed point. Since ι(vk) = ι(v) is not matured it follows

that neither is ι(vj) for any j < k.

Now consider the antagonistic update game on π. Player 0 chooses to start at v0 and we evaluate

the play backwards. For each 0 ≤ i ≤ k let xi ∈ B be the winning statistic just before position

vi in the play. In particular x0 = (0, . . . , 0). Then x0 v ι(v0) and since au is monotonous in

79

the first element we have xj v ι(vj) for all 0 ≤ j ≤ k. Therefore, Player 0 does not win the

antagonistic update game and by Theorem 2.3.12 does not win π. Since the strategy for Player

0 on π was unspecified, Player 1 wins G from v.

Now that we have seen the correctness of the algorithm, let us come to the complexity.

2.3.18 Theorem: Let G be a parity game with k edges and n nodes. Then the algorithm

SuccinctCountingLifting runs in time O(k · |B|) and space O(n · log(|B|) + k · log(log(|B|))).

Proof. For the space complexity we need n · log(|B|) bits to store the current state of the

function ι. Additionally we store for each node v for each incoming edge the position and bit

whose increase would result in a lifting operation on this node. This gives us the stated space

complexity.

For each vertex we can have at most |B| lifting operations. The same goes for every edge: For

every edge (v, w) ∈ E, the maximal number of lifting operations that take place on v or w is at

most |B|. This gives us the time complexity.

We have already calculated |B| in the first section of this chapter, since B for the antagonistic

update game is no different than the set of possible winning statistics for the original algorithm

by Calude et al.:

We have

|B| ≤ 2(log(n)+3)·(log(m)+1)

and therefore a time complexity of

O(k · 2log(n)·log(m)+3 log(m)+log(n)) or O(k · nlog(m)+4),

i.e. quasipolynomial time, and a space complexity of

O(n · (log(n) · log(m) + 3 log(m) + log(n)) + k · log(log(n) · log(m) + 3 log(m) + log(n)).

The time bound is very similar to the bound O(knlogm−log logn+4,03) we get for the method by

Jurdziński and Lazić, but the latter might be slightly faster for very large n.

Chapter 3

Solving Streett-Rabin Games in FPT

It is known that if parity games are in FPT, then so are Streett-Rabin games (see for instance

[BSV03]). Since Calude et al. and Jurdziński and Lazić have shown that parity games are fixed

parameter tractable, it follows that so are Streett-Rabin games.

In this chapter we will modify the succinct counting method to apply it to Streett-Rabin games

in order to give FPT-algorithms for solving them. A major difference between parity games

and Streett-Rabin games is that the latter are not positionally determined, so for the succinct

counting method it does not suffice to track n+ 1 positions in a play to find a loop. Instead, we

have to track (m+ 1)!n positions, where n is the number of nodes and m the number of values,

since at each node in V0, there are at most (m + 1)! different states of the game, on which her

strategy can depend (see LAR). If we define the Streett-Rabin game with pair conditions, we

have to track (k + 2)!n positions, where k is the number of pairs (see IAR).

3.1 Succinct Counting for Streett Rabin Games with Muller

Conditions

First, we will look at Streett-Rabin games defined by a Muller condition and try to adapt the

succinct counting method to them.

Consider a Streett-Rabin game with n nodes and m colours and a winning condition given as

F0 ⊆ P({1, . . . ,m}), F1 = P({1, . . . ,m})\F0, where F0 is closed under union. Define Fmax

as the maximal set in F0 with respect to inclusion. Fmax exists, because F0 is finite, and is

uniquely defined, because F0 is closed under union.

Similarly to the succinct counting method for parity games, we are going to maintain winning

statistics for Player 0 for a single play π and then use a reachability game to determine the

winner of the Streett-Rabin game from a given starting position. The winning statistics has the

80

81

form

(b0, . . . , bdlog((m+1)!n)e+1, c1, . . . , cm, c),

where b0, . . . , bdlog((m+1)!n)e+1, c1, . . . , cm ∈ {0, 1} and c ∈ (m+ 1)!n+ 1.

We introduce the following update rules for a winning statistics that analyses a play π.

3.1.1 Update Rules: Let π now be a play of a given Streett-Rabin game G. Then updating

the winning statistics works as follows:

Initialization: (b0, . . . , bdlog((m+1)!n)e+1, c1, . . . , cm, c) = (0, . . . , 0, 0, . . . , 0, 0)

Update Rules: Let vi be the current node in the play with colour mi.

• If mi /∈ Fmax or c = (m+ 1)!n+ 1 then set

(b0, . . . , bdlog((m+1)!n)e+1, c1, . . . , cm, c) = (0, . . . , 0, 0, . . . , 0, 0),

move on to node vi+1 and follow the update rules.

• Else, if cmi = 1 then c = c+ 1 and if cmi = 0 then cmi = 1.

– If {j : cj = 1} /∈ F0 then move on to node vi+1 and follow the update rules.

– If {j : cj = 1} ∈ F0 then set the bj with the smallest index j such that bj = 0

to 1 and all bl with l < j to 0. Additionally, update all c1, . . . , ci−1, ci+1, . . . , cm

and c to 0. If bdlog((m+1)!n)e+1 = 1 we say that the winning statistics matures and

stop, else move on to node vi+1 and follow the update rules.

The idea of these winning statistics is to find sequences of positions in π in order, but not

necessarily consecutive, such that the set of values between every two nodes of the sequence

(including these nodes) is in F0. Since F0 is closed under union, it suffices to guarantee this for

any two consecutive elements of the sequence. Then we build up sequences of lengths powers of

two, until we find one which is longer than (m+ 1)!n. The bi mark the length of the sequences

we are currently tracking and the ci code which colours, i.e. which sets in F0, currently appear

in that sequence. The counter c is necessary so we can discard a set F ∈ F0 if it turns out that

it does not appear infinitely often.

3.1.2 Example: Consider the following very simple play in a Streett-Rabin game with three

nodes v1, v2, v3 with val(vi) = i for all i ∈ {1, 2, 3}:

π = v3 v2 v2 v2 v2 v2 v3 v3 v2 v2 v2 v2 v3 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 · · · .

82

The winning conditions are (F0,F1) with

F0 = {{2}, {1, 2, 3}}, F1 = P({1, 2, 3})\F0.

We have (m + 1)!n + 1 = 4! · 3 + 1 = 73. Let us see the first few updates in a table (note that

more bi are necessary for the whole algorithm, but we do not need them for the first few steps

we are going to look at):

Value b0 b1 b2 b3 b4 b5 c1 c2 c3 c

3 0 0 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 1 1 0

2 0 0 0 0 0 0 0 1 1 1

2 0 0 0 0 0 0 0 1 1 2

2 0 0 0 0 0 0 0 1 1 3

2 0 0 0 0 0 0 0 1 1 4

3 0 0 0 0 0 0 0 1 1 5

. . .

2 0 0 0 0 0 0 0 1 1 73

0 0 0 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0 0 1 0

2 0 1 0 0 0 0 0 0 1 0

2 1 1 0 0 0 0 0 0 1 0

2 0 0 1 0 0 0 0 0 1 0

2 1 0 1 0 0 0 0 0 1 0

2 0 1 1 0 0 0 0 0 1 0

2 1 1 1 0 0 0 0 0 1 0

2 0 0 0 1 0 0 0 0 1 0

2 1 0 0 1 0 0 0 0 1 0

2 0 1 0 1 0 0 0 0 1 0

2 1 1 0 1 0 0 0 0 1 0

2 0 0 1 1 0 0 0 0 1 0

. . .

Note that at first, the algorithm tries to track occurrences of all elements in the set {1, 2, 3},
but since 1 never appears, it has to discard this set after the counter c reaches its maximum.

Then it switches over to tracking the occurrences of elements in the set {2} successfully.

3.1.3 Theorem: Let π be played according to a positional winning strategy for Player 1 and

according to a winning strategy using LAR for Player 0. Player 0’s winning statistics matures

if and only if Player 0 wins π.

83

Proof. We first show that if Player 0’s winning statistics matures then Player 0 wins π. To prove

this, we claim as for the winning statistics for parity games that for each bi = 1 there is a sequence

(a1, . . . , a2i) of length i, beginning after those of the bj = 1, j > i, end, of nodes of π in order,

but not necessarily consecutive, such that for each section vk = al, vk+1, . . . , vk+j−1, vk+j = al+1

of π we have {val(vk), . . . , val(vk+j)} ∈ F0. It follows from the closure under union that for any

ai, aj , i < j, the set of values occurring between ai and aj , including those of ai and aj , is in F0.

The claim is true because we can choose as ak those nodes of the play, at which {cj : cj = 1} ∈ F0.

This means that the set of values occurring since the last aj is in F0. Additionally, for any bj

there are exactly 2j such nodes from the last point where all bi, i < j, were 0 to the point where

bj is set to 1.

If the winning statistics matures, then bdlog((m+1)!n)e+1 = 1. It follows that there is a sequence

(a1, . . . , a2dlog((m+1)!n)e+1) with the properties described above. Thus, there have to be ai, aj ,

i < j, such that ai and aj denote the same node and if ai ∈ V0 then the LAR at ai is the same

as at aj . It follows, that there is a loop in π, infinitely repeating the sequence of nodes between

(including) ai and aj . Thus, Player 0 wins π by our considerations above.

Now assume that Player 0 wins π. Let {mi1 , . . . ,mik} ∈ F0 be the set of values occurring

infinitely often in π. Then there is a node vj in π such that for any l ≥ j, val(vl) ∈ {mi1 , . . . ,mik}
and all values mi1 , . . . ,mik occur infinitely often after vj .

Case 1: (c1, . . . , cm) = (0, . . . , 0) or {j : cj = 1} ⊆ {mi1 , . . . ,mik} at vj .

In this case the winning statistics will collect only values from the set {mi1 , . . . ,mik} and

thus only update the values ci1 , . . . , cik . First, we note that the case c = (m + 1)!n + 1

will never occur, since if it did, it would mean that there is a loop containing not all the

values {mi1 , . . . ,mik} in π which is a contradiction to the assumption. Thus the rules

for the winning statistics keep updating ci1 , . . . , cik until {j : cj = 1} ⊆ {mi1 , . . . ,mik} is

in F0 and the bi are updated positively, meaning that the number of updates minimally

necessary to achieve bdlog((m+1)!n)e+1 = 1 has shrunk by one. This will happen at some

point, because in the worst case, we can update the ci1 , . . . , cik until they are all 1, which

is possible, since c will never turn (m+ 1)!n+ 1.

Let vj′ be the node of π at which this update happens. Then again we are in a case where

for any l ≥ j′, val(vl) ∈ {mi1 , . . . ,mik}, all values mi1 , . . . ,mik occur infinitely often after

vj′ and {j : cj = 1} ⊆ {mi1 , . . . ,mik}. Thus, the considerations above apply again and

again and therefore we will reach a point, where bdlog((m+1)!n)e+1 is updated to 1.

Case 2: {mj : cj = 1} * {mi1 , . . . ,mik} at vj .

Let {i : ci = 1} = {mj1 , . . . ,mjl}. In this case there are two possibilities. The first is, that

there is an a ≥ 0 such that {mj1 , . . . ,mjl}∪ {val(vj), . . . , val(vj+a)} ∈ F0. Without loss of

generality, assume that a is minimal such that this is the case. In this case, c = (m+1)!n+1

will not occur before or at vj+a, because otherwise there would be a loop in π missing at

least one of the values in {mi1 , . . . ,mik}, which is a contradiction. Thus, at vj+a the rules

for the winning statistics update the bi positively (in the sense described above). At the

84

node vj+a we are in a situation, where for any i ≥ j+a, val(vi) ∈ {mi1 , . . . ,mik}, all values

mi1 , . . . ,mik occur infinitely often after vj+a and {j : cj = 1} ⊆ {mi1 , . . . ,mik}. Thus, we

can apply the consideration of Case 1 and arrive at a point, where bdlog((m+1)!n)e+1 is

updated to 1.

So let us assume that there is no a ≥ 0 such that {mj1 , . . . ,mjl}∪{val(vj), . . . , val(vj+a)} ∈
F0. In this case, the winning statistics will reach a point where

{i : ci = 1} = {mj1 , . . . ,mjl} ∪ {mi1 , . . . ,mik}.

(c = (m+ 1)!n+ 1 cannot occur before this occurs for the first time, for the same reason

as above.) From that point on, at each value mi ∈ {mi1 , . . . ,mik}, we have that ci = 1

already. Thus, c is increased by one. It follows that c will reach (m+ 1)!n+ 1 eventually,

say at vj′ , and after following the update rule for this case, we are at a point, where for

any l ≥ j′, val(vl) ∈ {mi1 , . . . ,mik}, all values mi1 , . . . ,mik occur infinitely often after vj′

and {j : cj = 1} ⊆ {mi1 , . . . ,mik}. Thus, again, we can apply our considerations from case

one and arrive at a point, where bdlog((m+1)!n)e+1 is updated to 1.

As with parity games, we can now define a reachability game

3.1.4 Definition: Given a Streett-Rabin game G we define the reachability game G̃ in the

following way: The nodes are of the form (a, b̃) with

• a a node of the Streett-Rabin game and

• b̃ the winning statistics for Player 0.

The starting node is (s, (0, . . . , 0)) with s the starting node of the Streett-Rabin game.

Player 0 can move from (a, b̃) to (a′, b̃′) if a ∈ V0, if she can move from a to a′ in the Streett-

Rabin game and this causes her winning statistics to update from b̃ to b̃′. Player 1 can move

from (a, b̃) to (a′, b̃′) if a ∈ V1, if he can move from a to a′ in the Streett-Rabin game and this

causes Player 0’s winning statistics to update from b̃ to b̃′.

Player 0 is declared the winner of a play π̃ in the reachability game, if a node with a matured

winning statistics is reached.

The correctness follows the same way as it did for parity games.

3.1.5 Theorem: Player 0 wins the Streett-Rabin game G if and only if she wins the reachability

game G̃ defined above.

Let us now take a look at the complexity of the algorithm. The reachability game can be solved

in time O(|Q| ·n), where Q is the set of nodes in the reachability game, since this is the maximal

85

number of edges (and a higher number than nodes) it can have. Hence, we need to calculate

|Q|:
Let v = (a, b̃) be a node of the reachability game, where b̃ = (b0, . . . , bdlog((m+1)!n)e+1, c1, . . . , cm, c).

There are n possible values for a, if we number the nodes from 1 to n. Additionally, there are two

possible values for each of the b0, . . . , bdlog((m+1)!n)e+1 and each of the c1, . . . , cm and (m+1)!n+1

possible values for c. Hence

|Q| ≤ n · 2dlog((m+1)!n)e+2 · 2m · ((m+ 1)!n+ 1)

It follows that the complexity of solving the reachability game is in O(n4 · (2m+ 2)!), which is

in FPT.

86

3.2 Succinct Counting for Pair Conditions

Now we consider a Streett-Rabin game given with the pair condition (Gi, Fi)1≤i≤k with Gi, Fi ⊆
{1, . . . ,m} for all i ≤ k. The additional difficulty in defining a winning statistics in this scenario,

compared to the above one, is that the pairs (Gi, Fi) do not tell us exactly what the set of values

appearing infinitely often should look like. Therefore, the winning statistics will be defined in

a different way. The first difference is that we are tracking the winning statistics for Player 1.

Secondly, part of the winning statistics will be a permutation, allowing us to circle through the

pairs.

The winning statistics has the form

(b0, . . . , bdlog((k+2)!n)e+1, b, c1, . . . , ck, c),

where

• b0, . . . , bdlog((k+2)!n)e+1 ∈ {0, 1},

• b ∈ {0, . . . , k},

• c1, . . . , ck ∈ {1, . . . , k},

• c ∈ {0, . . . , (k + 2)!n+ 1}.

Consider the following update rules.

3.2.1 Update Rules: Let π be a play of a Streett-Rabin game G with winning condition

(Gi, Fi)1≤i≤k. Then updating the winning statistics works as follows:

Initialization: (b0, . . . , bdlog((k+2)!n)e+1) = (0, . . . , 0), b = 0, (c1, . . . , ck) = (1, . . . , k), c = 0.

Update Rules: Let vi be the current node in the play with value mi.

Case 1: There exists bj > 0, b = l and mi ∈ Gl\(Fl ∪
⋃
a≤k : ca<cl(Ga\Fa)).

• Set the ba with the smallest index such that ba = 0 to 1 and all bj with j < a to

0.

• Set c = 0.

• If bdlog((k+2)!n)e+1 > 0 we say that the winning statistics matures and stop, oth-

erwise move on to vi+1.

Case 2: There exists bj > 0, b = l and mi ∈ Fl\
⋃
a≤k : ca≤cl(Ga\Fa).

• Set all ba to 0 and b to 0.

• Set c = 0.

• Let cl = x. Set cl = k and cy = cy − 1 for all y > x.

• Move on to vi+1.

87

Case 3: bj = 0 for all j.

• Let l be the smallest index such that mi ∈ Gl\Fl. If this does not exist, go to

vi+1, otherwise set b0 = 1, b = l and go to vi+1.

Case 4: There exists bj > 0, b = l and mi ∈ Ga\Fa for some ca < cl.

• Set bx = 0 for all x > 0 and b0 = 1, b = a.

• Set c = 0.

• Move on to vi+1.

Case 5: There exists bj > 0, b = l and mi /∈ Gl ∪ Fl ∪
⋃
a≤k : ca<cl(Ga\Fa)) or (bj = 0 for

all j and mi /∈ Ga\Fa for all a ∈ {1, . . . , k}).

• Set c = c+ 1.

• If c = (k + 2)!n+ 1 set ba = 0 for all a, b = 0 and c = 0. Let cl = x. Set cl = k

and cy = cy − 1 for all y > x.

• Move on to vi+1.

The idea is the following: Again we look for sequences of positions in π, in order but not

necessarily consecutive. This time, we want that each value of a node in the sequence is in

a fixed Gi and there is no value occurring in π between the first and the last element of the

sequence which is in Fi. Then we add up sequences of lengths powers of two.

The bi mark the lengths of the sequences currently tracked and b marks the pair currently

considered. The counter c again makes sure we can discard a pair (Gi, Fi) if we realise, that no

value in Gi will occur infinitely often. The permutation (c1, . . . , ck) allows us to rotate through

the pairs once we have discarded one pair, so that on the one hand, we get to consider each

pair and on the other hand, we do not discard a pair for good, if a value in Fi occurs only in an

initial sequence of π.

3.2.2 Example: Consider the same play as in the previous example, again in a Streett-Rabin

game with three nodes v1, v2, v3 with val(vi) = i for all i ∈ {1, 2, 3}:

π = v3 v2 v2 v2 v2 v2 v3 v3 v2 v2 v2 v2 v3 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 v2 · · · .

The winning conditions this time are (({1, 3}, {2}), ({2, 3}, {1})). Let us see the first few updates

in a table (note that more bi are necessary for the whole algorithm, but we do not need them

for the first few steps we are going to look at):

88

Value b0 b1 b2 b3 b4 b5 b c1 c2 c

3 1 0 0 0 0 0 1 1 2 0

2 0 0 0 0 0 0 0 2 1 0

2 1 0 0 0 0 0 2 2 1 0

2 0 1 0 0 0 0 2 2 1 0

2 1 1 0 0 0 0 2 2 1 0

2 0 0 1 0 0 0 2 2 1 0

3 1 0 1 0 0 0 2 2 1 0

3 0 1 1 0 0 0 2 2 1 0

2 1 1 1 0 0 0 2 2 1 0

2 0 0 0 1 0 0 2 2 1 0

2 1 0 0 1 0 0 2 2 1 0

2 0 1 0 1 0 0 2 2 1 0

3 1 1 0 1 0 0 2 2 1 0

2 0 0 1 1 0 0 2 2 1 0

2 1 0 1 1 0 0 2 2 1 0

2 0 1 1 1 0 0 2 2 1 0

2 1 1 1 1 0 0 2 2 1 0

2 0 0 0 0 1 0 2 2 1 0

. . .

The algorithm starts by considering the pair ({1, 3}, {2}) but in the second step the value 2

occurs. Then the permutation is changed so that the second pair is prioritised over the first one

and we can start building up favourable sequences.

3.2.3 Theorem: Let π be a play of a Streett-Rabin game G with winning condition (Gi, Fi)1≤i≤k

played with a positional winning strategy for Player 1 and a winning strategy using IAR for

Player 0. Then Player 1’s winning statistics matures if and only if Player 1 wins π.

Proof. We show first that if the winnings statistics matures, then Player 1 wins the Streett-

Rabin game. We note that b is only set to 0 when all bi are, so let b = l. We claim that

whenever bi = 1 for some i, there is a sequence (a1, . . . , a2i) of length i, beginning after those of

the bj = 1, j > i, end, of nodes of π in order, but not necessarily consecutive such that for each

section vx = al, vx+1, . . . , vx+j−1, vx+j = al+1 of π we have {val(vx), . . . , val(vx+j)}∩Gl 6= ∅ and

{val(vx), . . . , val(vx+j)} ∩ Fl = ∅.
The claim is true because we can choose as ax those nodes of the play at which the value mi

is in Gl\(Fl ∪
⋃
a≤k : ca<cl(Ga\Fa)). This means that the set of values occurring since the last

aj (or the value of ax, if x = 0) has a nonempty intersection with Gl and an empty intersection

with Fl. The first is true because val(ax) ∈ Gl and the latter because otherwise Case 2 or 4

would have occurred before ax. Additionally, for any bj there are exactly 2j such nodes from

89

the last point where all bi, i < j, where 0 to the point where bj is set to 1.

If bdlog((k+2)!n)e+1 = 1, b = l, there is a sequence (a1, . . . , a2dlog((k+2)!n)e+1) such that for each

section vx = al, vx+1, . . . , vx+j−1, vx+j = al+1 of π we have {val(vx), . . . , val(vx+j)}∩Gl 6= ∅ and

{val(vx), . . . , val(vx+j)} ∩ Fl = ∅. Since Player 1 is following a positional winning strategy and

Player 0 a strategy with a memory of (k+2)! possible configurations, there is a loop in π forever

repeating the sequence of nodes between some ax and aj . This means that the set of values that

occur between ax and aj , including theirs, is the set of values occurring infinitely often and it

has nonempty intersection with Gl and empty intersection with Fl. Thus, by definition of the

pair condition as winning condition, Player 1 wins π.

Now we show that if Player 1 wins π, the winning statistics matures. If Player 1 wins π, there

exist l ∈ {1, . . . , k}, vj ∈ π with val(vj) ∈ Gl such that all values occurring after vj , including

val(vj), occur infinitely often and no values from Fl occur after vj in π.

Case a): b = l or b = 0 at vj .

Let {Gi1 , . . . , Gix} be the set of first elements in the pair condition such that after vj there

are nodes vj1 , . . . , vjx in Gi1 , . . . , Gix , respectively, in π. Let us first assume, that cl is

minimal among the ci1 , . . . , cix . Note that b = 0 implies bi = 0 for all i and therefore at vj ,

the update in Case 3 will be triggered, which leads to b = l. Under the assumption, cases

2 and 4 for updating the winning statistics will never occur after vj . Additionally, c will

never be (k + 2)!n + 1, since every occurrence of val(vj) after vj sets c to 0 by triggering

the update in Case 1 and if c = (k+ 2)!n+ 1 were to be the case, then the update in Case

5 would have to have been triggered (k + 2)!n+ 1 times without an occurrence of val(vj),

which means there is a loop without val(vj) in it, a contradiction.

Thus, Case 1 will be applied at every node after vj with value val(vj), without the bi being

all set to 0 in between. Hence, at some point bdlog((k+2)!n)e+1 will be set to 1.

Now assume that there is l 6= a ∈ {i1, . . . , ix} such that ca < cl. Let vj′ be the first

node after (including) vj such that val(vj′) ∈ Gij′ and cij′ < cl. Then the update in Case

4 will be triggered. If no value in Fij′ occurs after vj′ , then we can just replace vj in

our considerations with vj′ . (We might have to repeat such a replacement a few times,

whenever Case 4 is triggered, but since {1, . . . , k} is finite, eventually the assumption in

the previous consideration will be the case.) So let us assume that val(vi′) ∈ Fij′ for some

vi′ occurring after vj′ . If a node with a value in Ga occurs, such that ca < cij′ , just repeat

the considerations in this paragraph for that node. So without loss of generality (since

{1, . . . , k} is finite and the order is only changed in cases 2 and 5), assume that this does

not occur until the first node vi′ with val(vi′) ∈ Fij′ is reached. Note that c = (k+ 2)!n+ 1

cannot occur before this, since otherwise there would be a loop without val(vi′) after vj′ .

Now at vi′ , the update in Case 2 is triggered. This means that the bi, b and c are set to

zero and ij′ is moved to the last spot in the ordering by setting cij′ to k, while the order

within the other k − 1 indices of pairs stays the same. At some point after this, another

node with value val(vj) will occur, putting us back at the beginning of Case a) or b) by

90

replacing vj with that node, but this time, l is at least one spot lower in the ordering than

before. Hence, the considerations in this paragraph are only applied finitely many times.

Case b): b = a at vj and ca > cl

Here, Case 4 for the updates applies and b will be updated to l. The considerations of

Case a) then apply in the same way as described above.

Case c): b = a at vj and ca < cl

Assume first that there is a node vi after vj in π such that val(vi) ∈ Fa. If c reaches

(k + 2)!n + 1 before the first such node is reached the updates in Case 5 are triggered,

meaning that the bi, b and c are set to 0 and ca is set to k, while the order within the other ci

stays the same. Then the update rules move through the nodes, according to Case 5, until

Case 3 applies for the first time at some node vi′ . c will not reach k!kn+1 until then, since

otherwise there would be a loop after vi not containing val(vj), to which Case 3 applies, a

contradiction. Let a′ be the index with the smallest ca′ such that val(vi′) ∈ Ga′\Fa′ . If the

set of values occurring after vi′ has nonempty intersection with Ga′ and empty intersection

with Fa′ , we can apply the considerations of Case a) with vj = vi′ . Otherwise, val(vj) will

be reached under the conditions of Case a), b) or c) only with the value of cl being lowered

by at least one in comparison to the previous application of the considerations in these

cases. Hence, we will have to repeat these considerations only a finite amount of times

until we can apply the first paragraph of Case a).

Again we define a reachability game.

3.2.4 Definition: Given a Streett-Rabin game G we define the reachability game G̃ in the

following way: The nodes are of the form (a, b̃) with

• a a node of the Streett-Rabin game and

• b̃ the winning statistics for Player 1.

The starting node is (s, (0, . . . , 0, 1, . . . , k, 0)) with s the starting node of the Streett-Rabin game.

Player 0 can move from (a, b̃) to (a′, b̃′) if a ∈ V0, if she can move from a to a′ in the Streett-

Rabin game and this causes Player 1’s winning statistics to update from b̃ to b̃′. Player 1 can

move from (a, b̃) to (a′, b̃′) if a ∈ V1, if he can move from a to a′ in the Streett-Rabin game and

this causes his winning statistics to update from b̃ to b̃′.

Player 1 is declared the winner of a play π̃ in the reachability game, if a node with a matured

winning statistics is reached.

3.2.5 Theorem: Player 1 wins the Streett-Rabin game G if and only if he wins the reachability

game G̃ defined above.

91

The reachability game can be solved in time O(|Q| · n), where Q is the set of nodes in the

reachability game, since this is the maximal number of edges (and a higher number than nodes)

it can have. Hence, we need to calculate |Q|:
Let v = (a, b̃) be a node of the reachability game, where b̃ = (b0, . . . , bdlog((k+2)!n)e+1, b, c1, . . . , ck, c).

There are n possible values for a, if we number the nodes from 1 to n. Additionally, there are

two possible values for each of the b0, . . . , bdlog((k+2)!n)e+1, k possible values for b and each of the

c1, . . . , ck and (k + 2)!n+ 1 possible values for c. Hence

|Q| ≤ n · 2dlog((k+2)!n)e+2 · kk+1 · ((k + 2)!n+ 1)

It follows that the complexity of solving the reachability game is in O(n4 · (3k)!), which is in

FPT.

Chapter 4

Applications to the Modal

µ-Calculus

In this chapter we will apply the quasipolynomial time algorithms from Chapter 2 to model

checking games of the modal µ-calculus. These games are parity games, as we have seen, and we

can use some properties of the game graphs to our advantage, namely that only at positions with

modal operators we have more than two outgoing edges. Before we begin, we modify the model

checking game slightly by adding for each node of the form (Pi, w) an edge ((Pi, w), (Pi, w)) and

change the value of (Pi, w) to the largest even value occurring, if w ∈ Pi, and to the largest odd

value occurring, otherwise. This guarantees that all plays are infinite and obviously does not

change the winner of the model checking game.

4.1 Solving the Model Checking Game with Succinct Counting

We start by applying the succinct counting methods to a model checking game.

Let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure and let nK = |W | be the number of worlds.

Let ψ ∈ Lµ be a formula with alternation depth m and with k modal operators 〈a〉 or [a] for

some a ∈ A. Then in the model checking game G a node (φ,w) with φ a subformula of ψ and

w ∈ W has at most nK successors if it is of the form φ = 〈a〉φ′ or φ = [a]φ′ and at most two

successors otherwise. This allows us to make the following complexity considerations.

4.1.1 Lemma: Let K and ψ be as described above, nψ the length of ψ and G the model checking

game. Denote by G′ = (Q,E) the reachability game for the Succinct Counting method for the

parity game G. Then

|Q| ≤ 2dlog(nK·nψ)e+(log(nK·nψ)+3)·(log(m)+1) ≤ 24nK · nψ ·m3 · (nKnψ)log(m)+1

≤ 24 · nlog(m)+2
K · nlog(m)+5

ψ .

Proof. This follows from the proof of Theorem 2.1.18 and the fact that G has at most nK · nψ

93

nodes and m different values, where m ≤ nψ.

4.1.2 Theorem: Let K and ψ be as described above, nψ the length of ψ and G the model check-

ing game. Again, k denotes the number modal operators in ψ, i.e. the number of subformula of

the form φ = 〈a〉φ′ or φ = [a]φ′. The model checking game can be decided in time

O(n
log(m)+2
K · nlog(m)+4

ψ · (k + nψ)).

Proof. Denote by G′ = (Q,E) the reachability game for the succinct counting method for the

parity game G. The reachability game can be solved in time O(|Q| + |E|). Since each node

has an outgoing edge, it can be solved in time O(|E|). Since the winning statistics consists of

dlog(nK ·nψ)e+2 ≤ log(nK ·nψ)+3 numbers represented by dlog(m)e ≤ log(m)+1 bits we have

dlog(k)e+ (log(nK · nψ) + 3) · (log(m) + 1)

bits to represent the nodes of the form ((〈a〉φ,w), b) or (([a]φ,w), b). Thus there are at most

2dlog(k)e+(log(nK·nψ)+3)·(log(m)+1) ≤ 24k ·m3 · (nKnψ)log(m)+1 ≤ 24k · nlog(m)+1
K · nlog(m)+4

ψ

nodes of this form in Q. Thus the number of edges is

|E| ≤ (24k · nlog(m)+1
K · nlog(m)+4

ψ) · nK + 2(|Q| − 24k · nlog(m)+1
K · nlog(m)+4

ψ)

≤ (24k · nlog(m)+1
K · nlog(m)+4

ψ) · nK + 2(24 · nlog(m)+2
K · nlog(m)+5

ψ − 24k · nlog(m)+1
K · nlog(m)+4

ψ)

= (24k · nlog(m)+1
K · nlog(m)+4

ψ) · (nK − 2) + 25 · nlog(m)+2
K · nlog(m)+5

ψ

≤ 25k · nlog(m)+2
K · nlog(m)+4

ψ + 25 · nlog(m)+2
K · nlog(m)+5

ψ

= 25 · nlog(m)+2
K · nlog(m)+4

ψ · (k + nψ).

It follows that the complexity of solving G′ and therefore of solving G is in

O(n
log(m)+2
K · nlog(m)+4

ψ · (k + nψ)).

94

4.2 Solving the Model Checking Game with Succinct Progress

Measures

Using succinct progress measure, we can give an algorithm for solving model checking games for

the modal µ-calculus by making the algorithm for solving parity games more precise.

Recall the algorithm SuccinctProgressMeasureLifting:

Initialise µ : V → B>dlogne,dm/2e, v 7→ (0, . . . , 0, ε, . . . , ε)

while µ @ Lift(µ, v) for some v ∈ V do µ := Lift(µ, v).

The algorithm does not specify, which v ∈ V to choose for each lifting operation. We will devise a

protocol which v ∈ V to use in order to obtain an algorithm for solving the model checking game.

As in the previous section let K = (W, (Ea)a∈A, (Pi)i∈I) be a Kripke structure and let nK = |W |
be the number of worlds. Let v ∈ W and let ψ ∈ Lµ be a formula with alternation depth m

and with k modal operators 〈a〉 or [a] for some a ∈ A. Let G = (V, V0, V1, E, val) be the model

checking game for K, v and ψ as defined in Definition 1.6.14 in Chapter 1.

Again, we modify the model checking game slightly by adding for each node of the form (Pi, w)

an edge ((Pi, w), (Pi, w)) and change the value of (Pi, w) to the largest even value occurring if

w ∈ Pi, and to the largest odd value occurring otherwise.

4.2.1 Algorithm:

Initialize µ : V → B>dlogne,dm/2e, (φ,w) 7→ (0, . . . , 0, ε, . . . , ε);

while µ @ Lift(µ, (φ,w)) for some (φ,w) ∈ V do

while µ @ Lift(µ, (φ′, w)) for some (φ′, w) ∈ V and φ′ not of the form φ′ =< a > φ′′ or φ′ = [a]φ′′

do µ := Lift(µ, (φ′, w));

µ := Lift(µ, (φ,w));

If µ(ψ, v) 6= >, return true;

Else return false;

This means that we lift only nodes (φ′, w) ∈ V with φ′ not of the form φ′ = 〈a〉φ′′ or φ′ = [a]φ′′

until this lifting does not change anything anymore. Only then, we lift a node of the form 〈a〉φ′′

or [a]φ′′, for which the lifting makes a difference. Then again we lift all liftable nodes (φ′, w) ∈ V
with φ′ not of the form φ′ = 〈a〉φ′′ or φ′ = [a]φ′′ and so on.

If φ is not of the form φ′ = 〈a〉φ′′ or φ′ = [a]φ′′, all edges from (φ,w) in E are edges to nodes of

the form (φ′, w). Thus in most of the updates it suffices to look at the values for the formula at

a fixed world w. Only at nodes (φ,w) ∈ V with φ of the form φ = 〈a〉φ′ or φ = [a]φ′ we have

successors of the form (φ′, z), where (w, z) ∈ Ea. In this case we have to consider values of φ′

at different worlds, but within those worlds the values of the subformulas are already lifted as

far as possible.

95

Note that this algorithm does not change the complexity of the original algorithm, but it gives

us a nice systematic approach to model checking games, which allows us to consider only the

formula for most lifting operations. Let us illustrate this with an example. For the sake of easier

understanding, we will use the method from [Jur00], not applying succinct tree coding, in the

example. The algorithm works exactly the same with the succinct tree coding.

4.2.2 Example: Consider the formula ψ = νX.µY. � ((P ∧ X) ∨ Y) over the simple Kripke

structure K = ({a, b, c}, E, P} with one agent, P = {a} and E defined by the diagram below:

c

a

P

b

Note that only (X,w) for w ∈ {a, b, c} and (P, a) have value 2 and all other nodes of the model

checking game have value 1. We illustrate the algorithm in a table. The subformulas of ψ can

be uniquely identified with the point in ψ where they begin (including paranthesis). Instead of

writing all nodes (φ,w) next to one another, we will label the top of the table with the formula,

indicating where a subformula begins, and rotate through the w ∈ W in the rows of the table.

For the later steps we will do a few steps at a time to save rows.

In the first step we update µ(Y, a), because (�((P ∧X)∨Y), a) is the only successor of (Y, a) and

val(Y, a) = 1 is odd, so Prog(µ((Y, a), �((P ∧X) ∨ Y), a)) = 01 >val(X,a) 00. In the second step,

we take the minimum of Prog(µ, ((P ∧X)∨Y, a), (P ∧X, a)) and Prog(µ, ((P ∧X)∨Y, a), (Y, a)),

because ((P ∧X) ∨ Y, a) ∈ V0. In the third step we update µ((P ∧X, a), a), which is in V1 and

therefore we take the maximum of Prog(µ, (P ∧ X, a), (P, a)) and Prog(µ, (P ∧ X, a), (X, a)),

which is 02. In the fourth and fifth step we update µ(ψ, a) and µ(µY. � ((P ∧X) ∨ Y), a).

That is all we can update for now, without considering the modal operators, so we change the

node in the Kripke structure and update there without considering the modal operators as far

as we can. Note, that we can update µ(P, b) and µ(P, c) to >, because we have to update them

again and again until we reach the top element.

After the seventh line of the table there are no more possible updates without considering the

modal operators, so that is what we do: we update µ(�((P ∧X) ∨ Y), a), µ(�((P ∧X) ∨ Y), b)

and µ(�((P ∧X)∨Y), c) and then update again as far as possible without considering the modal

operator and so on until in the end no more update is possible. Since (ψ, a), (ψ, b) and (ψ, c)

never reach >, ψ holds on all w ∈W .

96

1 1 1 1 1 2 1

w ∈W νX. µY. � ((P ∧ X) ∨ Y)

a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1

a 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 1

a 0 0 0 1 0 0 0 2 0 1 0 0 0 0 0 1

a 0 2 0 1 0 0 0 2 0 1 0 0 0 0 0 1

b 0 2 0 1 0 0 0 3 > > 0 0 0 1

c 0 2 0 1 0 0 0 3 > > 0 0 0 1

a 0 6 0 5 0 4 0 2 0 1 0 0 0 0 0 5

b 0 6 0 5 0 4 0 6 > > 0 0 0 5

c 0 5 0 4 0 3 0 5 > > 0 0 0 4

a 0 9 0 8 0 7 0 2 0 1 0 0 0 0 0 8

b 0 8 0 7 0 6 0 8 > > 0 0 0 7

c 0 5 0 4 0 3 0 5 > > 0 0 0 4

a 0 11 0 10 0 9 0 2 0 1 0 0 0 0 0 10

b 0 8 0 7 0 6 0 8 > > 0 0 0 7

c 0 5 0 4 0 3 0 5 > > 0 0 0 4

4.2.3 Theorem: The algorithm described above is correct.

Proof. This follows immediately from the correctness of the algorithm SuccinctProgressMea-

sureLifting.

Conclusion

In this thesis we have gotten to know two methods for solving parity games in quasipolynomial

time. The development of these methods by Calude et al. and Jurdziński and Lazić has been a

major breakthrough in the study of parity games, but a lot of research is still to be done. For

instance we still do not know whether parity games can indeed be solved in polynomial time or

whether quasipolynomial time is as good as it gets.

This thesis has given a few examples of how the two methods can be used in other areas to find

more efficient algorithms than where known before parity games where shown to be decidable in

quasipolynomial time. In the third chapter, we have seen algorithms for solving Streett-Rabin

games in FPT, both for Muller conditions and for pair conditions. One improvement to these

algorithms could be to try and construct a lifting algorithm based on an antagonistic update

game, like Fearnley et al. did for parity games, as presented in Section 2.3. Additionally,

Piterman and Pnueli presented the concept of Rabin rankings and Streett rankings in 2006

[PP06]. Both rankings result in lifting algorithms for Streett-Rabin games, very similar to the

lifting algorithm using progress measures for parity games presented by Jurdziński in [Jur00].

Adaptation of their lifting algorithms for Streett-Rabin games to include succinct tree coding

could yield interesting results.

We have also seen that we can apply succinct counting as well as succinct progress measures

to the model checking games of the modal µ-calculus. Whereas in theory, this still leaves us

with quasipolynomial time complexity, in practice most instances of such model checking games

will have a very small alternation depth in comparison to the size n ≤ |W | · |ψ| of the game

graph, where |ψ| is the length of the formula. And we have seen both for the method by Calude

et al. and for the method by Jurdziński and Lazić, that if m, which here is the alternation

depth, is at most log(n), then the game can be decided in polynomial time. Therefore for most

relevant instances of model checking games for Lµ, the algorithms considered in Chapter 4 run

in polynomial time.

Bibliography

[BSV03] H. Björklund, S. Sandberg, S. Vorobyov, On fixed-parameter complexity of infinite

games, The Nordic Workshop on References 733 Programming Theory (NWPT03),

Åbo Akademi University, Turku, Finland, pp. 6264, 2003, Åbo Akademi, Department

of Computer Science, 2003. 530

[BLV96] N. Buhrke, H. Lescow, J. Vöge, Strategy construction in infinite games with Streett

and Rabin chain winning conditions, Tools and Algorithms for the Construction and

Analysis of Systems, TACAS 1996. Lecture Notes in Computer Science, vol 1055.

Springer Verlag, 1996.

[Cal17] C. S. Calude, S. Jain, B. Khoussainov, W. Li, F. Stephan. 2017. Deciding Parity

Games in Quasipolynomial Time, Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing (STOC 2017), ACM, pp. 252-263, 2017

[CKS81] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, Journal of the ACM

28(1), pp. 114-133, 1981.

[Fea17] J. Fearnley, S. Jain, S. Schewe, F. Stephan, D. Wojtczak, An ordered approach to

solving parity games in quasi polynomial time and quasi linear space, March 2017.

arXiv/1703.01296v1.

[Grä16] E. Grädel, Logic and Games, WS 2015/2016, Lecture Notes, Mathematische Grund-

lagen der Informatik, RWTH Aachen, 2016.

[Hor05] F. Horn, Streett games on finite graphs, Proc. 2nd Workshop on Games in Design and

Verification, 2005.

[HR97] L. A. Hemaspaandra, J. Rothe, Unambiguous Computation: Boolean Hierarchies and

Sparse Turing-Complete Sets, SIAM J. Comput. 26(3), pp. 634653, 1997

[Jur98] M. Jurdziński, Deciding the winner in parity games is in UP∩co-UP, Information

Processing Letters 68(3), pp. 119-124, 1998.

[Jur00] M. Jurdziński, Small Progress Measures for Solving Parity Games, STACS 2000,

LNCS 1770, pp. 290-301, Springer Verlag, 2000.

99

[JL17] M. Jurdziński, R. Lazić, Succinct progress measures for solving parity games, 2017

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), vol. 00,

pp. 1-9, 2017.

[KI16] I. Khaliq, G. Imran, Reachability games revisited, Second Interna- tional Conference

on Advances and Trends in Software Engineering, SOFTENG 2016, 21-25 February

2016, Lisbon, Portugal, Proceedings, International Academy, Research and Industry

Association (IARIA), pp. 129-133, 2016.

[Küs02] R. Küster, Memoryless Determinacy of Parity Games, Automata, Logics and Infinite

Games, LNCS 2500, pp. 95-106, Springer Verlag, 2002.

[Mar75] D. A. Martin, Borel determinancy, Anals of Mathematics 102, pp. 363-371, 1975.

[PP06] N. Piterman, A. Pnueli, Faster solution of Rabin and Streett games, Proc. 21st Sym-

posium on Logic in Computer Science, pp. 275284, IEEE, IEEE press, 2006.

[Sch07] S. Schewe, Solving parity games in big steps, FSTTCS 2007: Foundations of Software

Technology and Theoretical Computer Science, Lecture Notes in Computer Science,

vol 4855. Springer Verlag.

[Tar55] A. Tarski, A lattice-theoretical fixpoint theorem and its application, Pacific Journal of

Mathematics 5, pp. 285309, 1955.

[Zap02] J. Zappe, Modal µ.Calculus and Alternating Tree Automata, Automata, Logics and

Infinite Games, LNCS 2500, pp. 95-106, Springer Verlag, 2002.

[Zie98] W. Zielonka, Infinite games on finitely coloured graphs with applications to automata

on infinite trees, Theoretical Computer Science 200, pp. 135-183, 1998.

