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Abstract

Semiring semantics for first-order logic generalizes classical semantics by extending
the domain of truth values to an arbitrary commutative semiring K. By this means,
the evaluation of a formula on a K-interpretation provides additional information
targeting questions such as why or to what extent the formula is satisfied.
Since Boolean semantics occurs as a particular semiring choice, the question arises
as to which classical results can be extended to semiring semantics. This thesis
is concerned with the transferability of the Ehrenfeucht-Fraïssé game, which is of
central importance in classical model theory, as it provides a convenient method
to decide whether any two structures are distinguishable by a first-order formula
up to a certain quantifier rank.
We show that the direct translation of the game rules to K-interpretations does
not yield a characterization of m-equivalence under semiring semantics for any
semiring unless it is isomorphic to the Boolean semiring. In particular, we identify
full idempotence as an algebraic characterization of the class of semirings for which
the m-turn Ehrenfeucht-Fraïssé game is a sound proof method for m-equivalence.
Thus, we present two alternative notions of equivalence which are characterized by
the m-turn Ehrenfeucht-Fraïssé game on K-interpretations instead. As opposed to
the classical Ehrenfeucht-Fraïssé game, the m-turn counting game is sound with
respect to any semiring, and the cardinalities of the selectable sets can be bounded
based on the semiring properties. While not complete in general, we show that
the m-turn counting game characterizes m-equivalence with respect to the natural
semiring N. Finally, we discuss further modifications of the game rules and derive a
game which characterizes m-equivalence under semiring semantics for distributive
lattices.
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Chapter 1

Introduction

In classical first-order logic, any sentence φ is either satisfied by a structure A or
not satisfied by A, so there are only two different truth values. However, not only
the fact whether A is a model of φ might be of interest but additional practical
information concerning the evaluation of φ on A. For instance, it can be useful to
track the number of evaluation strategies for establishing A |= φ, the confidence
one has that A |= φ holds, or the cost or clearance level required for the evaluation
of φ on A. This raises the question whether the classical semantics of first-order
logic can be generalized such that additional information can be encoded via mul-
tiple truth values beyond true and false.
As an example, consider the evaluation of φ(x) = ∃y(Exy∧Eyy) on the structure
A, where the free variable x is instantiated with a and E is a binary relation
defined according to the edges.

A:

a

a1

a2

a3

[[φ(a)]]A = ( 0 ∧ 0 ) y 7→ a
∨ ( 1 ∧ 1 ) y 7→ a1
∨ ( 1 ∧ 1 ) y 7→ a2
∨ ( 1 ∧ 0 ) y 7→ a3

EyyEay

= 1

The evaluation of φ on A only depends on the truth values of the atomic properties
determined by A, which are propagated to φ using the binary functions ∨ and ∧
on {0, 1}. In this manner, the evaluation of a classical first-order formula on a
structure can be considered an algebraic computation, which suggests to extend
the domain of truth values by replacing the two-element Boolean algebra by more
complex algebraic structures.
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CHAPTER 1. INTRODUCTION

This approach was implemented in [GT17a] as semiring semantics for first-order
logic. In this generalization of classical semantics, first-order formulae are evalu-
ated on K-interpretations instead of classical structures, which map instantiated
literals such as Eaa and ¬Eaa into a commutative semiring K = (K,+, ·, 0, 1)
rather than assigning a Boolean truth value. Whereas the identity element with
regard to addition, the 0, reflects falsity, any other semiring element is intended to
represent some nuance of truth. This way, the semantics of a first-order formula is
obtained by inductively applying the semiring operations to the basic valuations
defined by the K-interpretation. Thereby, we keep track of whether information
is used alternatively, as in the case of disjunctions and existential quantifications,
which is reflected by addition, or jointly in a conjunction or universal quantifi-
cation, corresponding to multiplication. By contrast, the semantics of negation
cannot be linked to an operation inherent in the semiring, which is why semiring
semantics, as defined in [GT17a], refers to formulae in negation normal form only.
The access control semiring A = ({P,C, S, T, 0},min,max, 0, P ) constitutes a pos-
sible application semiring which can be used to track certain clearance levels re-
quired to access the information modeled by an interpretation. The linearly or-
dered semiring elements P < C < S < T < 0 can be interpreted as clearance levels
representing public, confidential, secret and top secret, whereas 0 refers to false or
inaccessible. Moving from the initial classical structure A to an A-interpretation
enables an annotation of the true atomic facts with some clearance level, for in-
stance as depicted below. We omit valuations of negated literals in the drawing,
as they do not influence the semantics of the formula φ(a) = ∃y(Eay ∧ Eyy).

a

a1

a2

a3

P
S

P

T

C
min(max( 0, 0 ), y 7→ a

max( P, T ), y 7→ a1
max( S, C ), y 7→ a2
max( P, 0 )) y 7→ a3

EyyEay

= S

Using the addition and multiplication in A, which is defined by minimum and
maximum, we can conclude that the clearance level S is required to prove that
φ(a) is satisfied by A.
Semiring semantics does not only provide the opportunity to encode practical
information in the interpretations such as clearance levels, confidence scores or
costs and to take it into account when evaluating first-order formulae. Beyond
that, the approach can also be used to gain a better understanding of why a formula
is satisfied by a classical structure. By using appropriate semirings of polynomials
or formal power series and interpreting the atomic properties which are satisfied
in some structure A by unique variables, the valuation of a sentence φ reveals
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CHAPTER 1. INTRODUCTION

which combinations of atomic properties imply that A |= φ. In this manner,
it is possible to obtain more detailed information on how the outcome of the
model checking computation is affected by the atomic facts satisfied by A. Trying
to understand the origin of the output of a process such as the model checking
problem is generally referred to as provenance analysis. The idea to use semirings
for this purpose originated in database theory with the aim of tracking why certain
tuples of a relational database satisfy a given query (see e.g. [GKT07, GT17b]).
Recently, semiring provenance was not only applied to first-order logic but to
various other logics including guarded logics, description logics as well as fixed-
point logics [DG21, BOPP20, DG19, DGNT21].
Considering semiring semantics for first-order logic as a generalization of classi-
cal semantics raises the question which classical results, for instance from model
theory, are preserved when extending the domain of truth values. As an exam-
ple, every finite classical structure can be defined up to isomorphism in FO, while
elementary equivalence of finite K-interpretations does not imply isomorphism
in general. This observation, established in [GM21], indicates that the model-
theoretic properties of semiring semantics differ significantly from those of classi-
cal semantics and strongly depend on the algebraic properties of the underlying
semiring.
In this thesis, we examine the transferability of the Ehrenfeucht-Fraïssé game, as
a proof method for m-equivalence, to K-interpretations and semiring semantics.
According to the Ehrenfeucht-Fraïssé theorem, the problem of deciding whether
two classical structures can be distinguished by a sentence of quantifier rank at
most m can be reduced to a game which is played by two players who pick elements
from the universes of the structures in question. By this means, it suffices to
compare the local atomic properties of the structures at the end of each play.
The game relies on the observation that A |= ∃xψ(x) if, and only if, there is
a witness a in the universe of A such that A |= ψ(a). This makes it possible
to localize the potential differences between two given classical structures. By
contrast, in semiring semantics the valuation of ∃xψ(x) is obtained by summing up
the valuations of the instantiated subformulae ψ(a) and can thus not be attributed
to a single element. While distinct families of summands may lead to the same
sum, different sums might be obtained even if the sets of summands coincide, as
certain summands may occur several times. This observation provides first insights
that the application of the Ehrenfeucht-Fraïssé game to K-interpretations poses
problems, as the quantifiers in semiring semantics deviate fundamentally from
Boolean quantifiers. But before examining the transferability of the Ehrenfeucht-
Fraïssé game more closely, we first introduce K-interpretations as well as semiring
semantics formally and summarize the required algebraic foundations.
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Chapter 2

Preliminaries

Prior to extending the semantics of classical first-order logic to multiple different
levels of truth providing insights into how or why a formula is satisfied, we will first
identify commutative semirings as suitable algebraic structures for generalizing
Boolean truth values. More precisely, we are aiming for algebraic structures with
two operations modeling the alternative or joint use of information, respectively.
Moreover, a distinguished element is supposed to reflect false assertions, whereas
multiple other elements are intended to model different nuances of truth.

2.1 Commutative Semirings

In order to define commutative semirings formally, we make use of the notion of
commutative monoids which are defined as sets equipped with a commutative,
associative binary operation and an identity element.

Definition 2.1. A commutative semiring is an algebraic structure K = (K,+, ·, 0, 1)
such that (K,+, 0) and (K, ·, 1) are commutative monoids with 0 6= 1,

(1) multiplication by 0 annihilates K, i.e., k · 0 = 0 for all k ∈ K and

(2) multiplication distributes over addition, i.e., (k1 + k2) · k3 = k1k3 + k2k3 for
all k1, k2, k3 ∈ K.

As all semirings considered within this thesis are commutative, we will implicitly
assume commutativity in the following and refer to commutative semirings just as
semirings for convenience.
The semiring axioms constitute reasonable assumptions for the purpose of ex-
tending the domain of truth values, which arises from considering the algebraic
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CHAPTER 2. PRELIMINARIES

contraints as logical equivalences. In this manner, commutativity of multiplica-
tion, for example, represents the condition that formulae φ ∧ ψ and ψ ∧ φ are
intended to be equivalent, while the requirement that 0 is annihilating can be
interpreted as the assumption that the conjunction with some false fact always
needs to result in a false assertion as well.
Furthermore, there are several applications which can be modeled by semirings
and provide useful practical information about the evaluation of a formula.

• Using the Boolean semiring B = ({0, 1},∨,∧, 0, 1) enables valuations by
classical truth values and results in classical semantics. Thus, semiring se-
mantics indeed generalizes Boolean semantics, which occurs as a particular
semiring.

• The access control semiring A = ({P,C, S, T, 0},min,max, 0, P ) allows as-
signments of the true atomic facts with one of the clearance levels public,
confidential, secret and top secret, where P < C < S < T < 0, and argue
about access levels required for establishing that a sentence is satisfied.

• Elements of the Viterbi semiring V = ([0, 1]R,max, ·, 0, 1) can be used to
label the atomic facts by a degree of trust and reason about confidence.

• The tropical semiring T = (R∞
+ ,min,+,∞, 0) provides the opportunity to

annotate basic facts with a cost which has to be paid for accessing them
and realize a cost analysis. It is isomorphic to V via the bijective mappings
x 7→ e−x and y 7→ − ln y.

• An alternative semiring to annotate the atomic facts with confidence scores is
given by the Łukasiewicz semiring L = ([0, 1]R,max,�, 0, 1), where k � ℓ =
max(k + ℓ − 1, 0). Its isomorphic variant D = ([0, 1]R,min,⊕, 1, 0) with
k ⊕ ℓ = min(k + ℓ, 1) can be used to reason about doubt.

• The natural semiring N = (N,+, ·, 0, 1) can, for instance, be used to track the
number of evaluation strategies proving that a certain sentence is satisfied.

There are multiple other equivalences such as φ∨φ ≡ φ or φ∨ (φ∧ψ) ≡ φ which
clearly hold in classical semantics but are not covered by the semiring axioms.
The corresponding algebraic properties ensuring that these equivalences are true
in semiring semantics as well lead to a further classification of semirings. Thus,
the more of the following properties are satisfied by a certain semiring, the more
similarly to classical semantics this semiring behaves.

6



CHAPTER 2. PRELIMINARIES

Definition 2.2. A semiring K is called

• idempotent if k + k = k for all k ∈ K,

• multiplicatively idempotent if k · k = k for all k ∈ K,

• fully idempotent if K is both idempotent and multiplicatively idempotent
and

• absorptive if k + kℓ = k for all k, ℓ ∈ K.

Since idempotence appears as a special case of absorption where ℓ = 1, every
absorptive semiring is also idempotent.
While requiring the semiring axioms can be justified by linking them to the logical
equivalences they represent, the question arises as to why we do not consider more
specific algebraic structures such as rings or fields. It turns out that the existence
of inverse elements is incompatible with the intention that all elements except for
0 model some level of truth. If some element k 6= 0 was invertible with regard
to addition by −k and two assertions were valuated with k and −k, respectively,
we would expect both facts to be true, whereas the disjunction would be valuated
k + (−k) = 0 and hence considered false. As we want any disjuction of true facts
to result in a true fact as well, we are particularly interested in semirings, where
not a single non-zero element can be inverted. The analogous can be observed for
the existence of inverse elements with regard to multiplication and conjunctions.
As we will later see, the absence of inverse elements in positive semirings ensures
the desired duality of negation.

Definition 2.3. A semiring K is called positive, if for all elements k, ℓ ∈ K

• k + ℓ = 0 implies k = 0 and ℓ = 0 and

• k · ℓ = 0 implies k = 0 or ℓ = 0.

In different contexts, it is required to compare certain semiring valuations, which
is why an order on the semiring elements needs to be associated with every semir-
ing. Order theory plays a crucial role in defining semiring semantics for fixed-point
logics [GT20, DGNT21], but finds application in semiring semantics for first-order
logic as well. While the binary semiring operations only induce finite summations
and multiplications of semiring elements, infinitary extensions are required to eval-
uate the semantics of quantifiers over infinite universes. This is mostly realized
by considering the supremum or infimum of the finite subsums or subproducts
which demands to define an order on the semiring elements. Intuitively, the order
is supposed to reflect that a certain elements is “at most as true” as some other
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element, which is why we make use of the order induced by addition, as we expect
φ to be at most as true as φ ∨ ψ and 0 to be the minimum truth level.

Definition 2.4. A semiring K is naturally ordered, if the order ≤ on K, defined
by

k ≤ ℓ if, and only if, there is some k′ with k + k′ = ℓ,

is a partial order, i.e., reflexive, transitive and antisymmetric. In this case, we
refer to ≤ as the natural order on K.

While reflexivity and transitivity is fulfilled in every semiring, this is not true for
antisymmetry. For instance, if an element k was invertible with some distinct −k,
we obtain that k ≤ −k and −k ≤ k, although k 6= −k by assumption, which
again illustrates why we do not use rings instead of semirings. The advantage of
defining the natural order based on addition instead of multiplication is given by
the monotonicity of both operations, which follows from distributivity.

Lemma 2.5. On any naturally ordered semiring K, addition and multiplication
are monotone, i.e., for all k1, k2, ℓ1, ℓ2 ∈ K with k1 ≤ ℓ1 and k2 ≤ ℓ2 it holds that
k1 + k2 ≤ ℓ1 + ℓ2 and k1 · k2 ≤ ℓ1 · ℓ2.

Proof. Since k1 ≤ ℓ1 and k2 ≤ ℓ2 by assumption, there must be elements k′1, k′2 ∈ K
with k1 + k′1 = ℓ1 and k2 + k′2 = ℓ2. It follows that

k1 + k2 ≤ (k1 + k2) + (k′1 + k′2)

= (k1 + k′1) + (k2 + k′2) = ℓ1 + ℓ2 and
k1 · k2 ≤ (k1k2) + (k1k

′
2 + k′1k2 + k′1k

′
2)

= (k1k2 + k1k
′
2) + (k′1k2 + k′1k

′
2)

= k1(k2 + k′2) + k′1(k2 + k′2)

= (k1 + k′1) · (k2 + k′2) = ℓ1 · ℓ2.

However, distributivity, as the only semiring axiom linking the natural order with
multiplication, is not sufficient for ensuring that the valuation of φ ∧ ψ is smaller
than or equal to the valuation of φ. But in several applications it is reasonable
to assume that any conjunction is at most as true as the single subformulae it
consists of. This compatibility of the natural order with multiplication is ensured
by requiring absorption, which is why absorptive semirings are of particular interest
for semiring semantics.

Lemma 2.6. Any naturally ordered semiring K is absorptive if, and only if, mul-
tiplication is decreasing in K, i.e., k · ℓ ≤ k for all k, ℓ ∈ K.

8



CHAPTER 2. PRELIMINARIES

Proof. (⇒) Suppose that K is absorptive. For any k ∈ K it holds that 1+1 ·k = 1,
thus k · ℓ ≤ ℓ+ k · ℓ = (1 + k) · ℓ = 1 · ℓ = ℓ for all ℓ ∈ K.
(⇐) If multiplication is decreasing in K, we have that k+k · ℓ = k · (1+ ℓ) ≤ k for
all k, ℓ ∈ K. Further k ≤ k+ k · ℓ is true by definition, hence the antisymmetry of
≤ yields k = k + k · ℓ and K is absorptive.

2.2 Semiring Semantics for First-Order Logic

Having established the algebraic basics, we will now give a formal definition of
semiring semantics and the corresponding interpretations the first-order formulae
are evaluated on according to [GT17a]. Given a finite relational vocabulary τ and
a non-empty universe A, we define the set of τ -literals over A as

LitA(τ) := {Rā,¬Rā : R ∈ τ and ā ∈ Aarity(R)}.

As (in)equalities are treated differently compared to the literals referring to a
relation in semiring semantics, we assume that (in)equalities are not contained in
the set of τ -literals over A. In case (in)equalities are supposed to be considered as
well, we refer to the set of literals (over A) in FO(τ) as usual. For simplicity, we
assume that equivalences such as ¬¬Rā ≡ Rā or ¬¬x = x ≡ x = x are identified
and therefore suppose that the negation of a literal (over A) is again a literal (over
A).
As for the syntax, we consider the same formulae as in classical first-order logic
and thus transfer the basic notions referring to the syntax such as quantifier rank,
which we denote as qr(φ), or negation normal form, denoted by nnf(φ), for any
formula φ ∈ FO(τ).
Unlike for Boolean semantics, the first-order formulae will not be evaluated on
classical structures A = (A, τ). A classical structure interprets the relation symbols
by determining which tuples of elements are contained in a certain relation and
which are not, so by defining some function LitA(τ) → B. We generalize this idea
by considering functions LitA(τ) → K mapping into a semiring K and therefore
demand interpretations to valuate every literal with a semiring element.

Definition 2.7. Let K be a semiring, τ a finite relational vocabulary and A a
non-empty universe. A K-interpretation is a mapping π : LitA(τ) → K.

As several examples of K-interpretations we consider later on are based on vo-
cabularies that only consist of unary relation symbols, we will denote them in the
following manner.

9
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π :

A R1 R2 . . . ¬R1 ¬R2 . . .

a π(R1a) π(R2a) . . . π(¬R1a) π(¬R2a)
... ... ... ... ... ... ...

In order to define the semantics, we inductively extend this mapping to arbitrary
formulae in FO(τ), making use of the idea that the valuations of complex formulae
arise from the valuations of the subformulae by applying the algebraic operations.
Hence, the valuations of the subformulae a certain formula consists of are supposed
to completely determine the valuation of this formula. This idea cannot directly be
transferred to negation, constituting a non-compositional operation in the semiring
setting: As soon as we consider a second level of truth next to 1, just based on
the valuation of some formula φ, it is not clear how ¬φ should be valuated if
φ is assigned 0. In order to cope with this issue, we assume that all first-order
formulae are given in negation normal form, i.e., negations only occur in front of
atomic formulae. For all remaining formulae φ, we simply assign the semantics of
nnf(φ). The fact that every first-order formula can be transferred into a formula
in negation normal form which is equivalent in classical semantics by making use
of the duality of the quantifiers and applying the De Morgan’s laws justifies this
assumption.
Definition 2.8. A K-interpretation π : LitA(τ) → K can inductively be extended
to formulae φ(x1, . . . , xn) ∈ FO(τ) in negation normal form, given a variable as-
signment β : X → A with {x1, . . . , xn} ⊆ X as follows:
Case 1 ((in)equalities). For φ(x̄) = xi1 ◦ xi2 with ◦ ∈ {=, 6=} and 1 ≤ i1, i2 ≤ n
we set

π[[xi1 = xi2 ]]
β =

{
1, β(xi1) = β(xi2)
0, β(xi1) 6= β(xi2)

and

π[[xi1 6= xi2 ]]
β =

{
0, β(xi1) = β(xi2)
1, β(xi1) 6= β(xi2)

.

Case 2 (τ -literals). If φ(x̄) ∈ {Rxi1 . . . xir ,¬Rxi1 . . . xir}, where R ∈ τ , arity(R) =
r and 1 ≤ xi1 , . . . , xir ≤ n, then

π[[Rxi1 . . . xir ]]
β = π(Rβ(xi1) . . . β(xir)) and

π[[¬Rxi1 . . . xir ]]β = π(¬Rβ(xi1) . . . β(xir)).

Case 3 (disjunction, conjunction). For φ(x̄) = ψ(x̄) ◦ ϑ(x̄), where ◦ ∈ {∨,∧}, set

π[[ψ(x̄) ∨ ϑ(x̄)]]β = π[[ψ(x̄)]]β + π[[ϑ(x̄)]]β and
π[[ψ(x̄) ∧ ϑ(x̄)]]β = π[[ψ(x̄)]]β · π[[ϑ(x̄)]]β.

10
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Case 4 (quantifiers). For φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} we define

π[[∃xψ(x̄, x)]]β =
∑
a∈A

π[[ψ(x̄, x)]]β[x/a] and

π[[∀xψ(x̄, x)]]β =
∏
a∈A

π[[ψ(x̄, x)]]β[x/a],

where the function β[x/a] maps all variables to the same element as β except for
x which is mapped to a. To simplify notation we will use π[[φ(a1, . . . , an)]] in the
following to denote π[[φ(x1, . . . , xn)]]β, where β(xi) = ai for 1 ≤ i ≤ n.

In the approach defined in [GT17a], equalities are intended to be untracked in
provenance analysis, which is why equalities are not valuated by K-interpretations.
Instead, their semantics is defined analogous to the Boolean case by assigning the
neutral elements, independent of the interpretation the equality is evaluated on.
The idea behind the semantics of the quantifiers is that they can be regarded
as a disjunction or conjunction, respectively, over all elements a of the universe
A, for which the corresponding subformula is evaluated. In case of finite A, the
semantics of quantifiers is well-defined, as the binary semiring operations can be
applied repeatedly. Thereby, associativity and commutativity of + and · justifies
not respecting a certain order of the elements in the universe and using the notation∑

a∈A and
∏

a∈A. However, we want to permit infinite K-interpretations, that is, K-
interpretations with infinite universe, as well. In this case summing or multiplying
over all elements poses a problem, as infinite sums and products are not inherent
in the semiring, so, in general, there are multiple ways to define the infinitary
operations. Analogous to the semiring axioms which determine the fundamental
behavior of finite sums and products, we formulate certain requirements on the
infinite sums and products as well, as proposed in [Mrk20].

Definition 2.9. A semiring K admits infinitary summation, if there is a summa-
tion operator Σ such that for all index sets I, J and elements (ki)i∈I ∈ KI , ℓ ∈ K

(1) Σ respects finite sums:
∑
i∈I
ki =

fin∑
i∈I
ki, if I is finite

(2) Σ is invariant under bijections:
∑
i∈I
ki =

∑
i∈I
kσ(i) for all permutations σ of I

(3) Σ is invariant under partitions:
∑
i∈I
ki =

∑
S∈P

∑
i∈S

ki for all partitions P of I

(4) Multiplication distributes over Σ: ℓ ·
∑
i∈I
ki =

∑
i∈I
ℓ · ki

11
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Analogously, K is said to admit infinitary multiplication, if there is a multiplication
operator Π such that for all index sets I, J and elements (ki)i∈I ∈ KI , ℓ ∈ K

(1) Π respects finite sums:
∏
i∈I
ki =

fin∏
i∈I
ki, if I is finite

(2) Π is invariant under bijections:
∏
i∈I
ki =

∏
i∈I
kσ(i) for all permutations σ of I

(3) Π is invariant under partitions:
∏
i∈I
ki =

∏
S∈P

∑
i∈S

ki for all partitions P of I

We overall say that K admits infinitary operations, if it admits both infinitary
summation and infinitary multiplication.

While (1) makes sure that the infinitary operations are indeed a generalization of
the addition and multiplication which are defined by the semiring, invariance under
bijections and partitions can be construed as infinitary versions of commutativity
and associativity. In the same manner as we expect multiplication to distribute
over summation as a binary function and obtain the equivalence φ ∧ ∃xψ(x) ≡
∃x(φ ∧ ψ(x)) for finite universes, property (4) ensures that this equivalence holds
in case of an infinite universe as well.
The conditions on the infinitary operations defined above cannot be realized in
every semiring. As an example, suppose that the natural semiring N admitted
infinitary summation. Then,

∑
i∈N 1 would have to be mapped to some natural

number n, but invariance under partitions requires

n =
∑
i∈N

1 = 1 +
∑

i∈N\{0}

1 = 1 +
∑
i∈N

1 = 1 + n,

which is not satisfied by any natural number n. Therefore, we only consider infinite
K-interpretations if K admits infinitary operations. Whenever this is the case we
will assume some arbitrary, but fixed infinitary operations without denoting them
explicitly. If we refer to a specific semiring, we explicitly define the considered
infinitary operations, which mostly emerge from the finite subsums or subproducts
by considering the supremum or infimum with regard to the natural order.
The definition of the basic properties of the binary semiring operations such as
idempotence, positivity or monotonicity can easily be extended to the infinitary
operations. As an example, positivity can be transferred to infinitary operations
Σ and Π by demanding for all (ki)i∈I ∈ KI and index sets I that

•
∑
i∈I
ki = 0 implies ki = 0 for all i ∈ I and

12
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•
∏
i∈I
ki = 0 implies ki = 0 for some i ∈ I.

In general, these properties do not necessarily have to hold for the infinitary
operations, if they are true in the binary case. Pertaining to positivity, this can,
for instance, be observed for the Viterbi semiring. The most straightforward way to
define the infinitary operations for V-interpretations is to consider the supremum
of the finite subsums and the infimum of the finite subproducts with respect to
the natural order, that is,

∑
i∈I

ki := sup
I′⊆I
finite

fin∑
i∈I′

ki and
∏
i∈I

ki := inf
I′⊆I
finite

fin∏
i∈I′

ki

for all families (ki)i∈I ∈ VI over index set I. As an example, for the family (ki)i∈N
of elements in V with ki = 0.5 for all i ∈ N, we observe that

∏
i∈N

0.5 = inf
I′⊆I
finite

fin∏
i∈I′

0.5 = 0,

although ki > 0 for all i ∈ N. Hence, the infinitary operations do not maintain the
positivity of the binary operations in V, which illustrates that it is not possible
in general to extrapolate from the finite to the infinitary operations as regards
properties such as positivity.
To be precise, different summation and multiplication operations are used when
evaluating the semantics of a formula on a certain K-interpretation π, depending
on whether π is finite or not. However, we will assume for convenience that
whenever we fix a K-interpretation π over a semiring with a certain property, then
this property has to be satisfied by the finite operations only, if π is finite and by
their infinitary extensions in the case of infinite π.
In order to illustrate that the classical semantics of first-order logic indeed appears
as a special case of semiring semantics, a B-interpretation πA can be associated with
each classical structure A by taking the universe A from A and setting πA(L) = 1
if, and only if, A |= L for all L ∈ LitA(τ). It can be shown that πA exhibits the
same behavior as A in the following sense.

Proposition 2.10. For any structure A = (A, τ), ā = (a1, . . . , an) ∈ An and any
formula φ(x̄) it holds that

A |= φ(ā) if, and only if, πA[[φ(ā)]] = 1.

For a converse sanity check, we associate classical structures with K-interpretations
by omitting the precise truth values and only distinguishing between zero and

13
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non-zero valuations. However, this presumes that every literal or its negation is
interpreted with 0 by the K-interpretation in question, which is not assured by the
definition of K-interpretations and hence defined explicitly.

Definition 2.11. A K-interpretation π : LitA(τ) → K is said to be model-defining,
if for each literal L ∈ LitA(τ) exactly one of π(L) and π(¬L) is assigned 0.

This requirement enables us to link classical structures to K-interpretations in the
following way. Every model-defining K-interpretation π uniquely defines a classical
model Aπ over the same universe A and vocabulary τ such that Aπ |= L if, and
only if, π(L) 6= 0 for all literals L ∈ LitA(τ). By this means, it can be shown
that positivity of the underlying semiring ensures that the duality requirement the
definition of model-defining K-interpretations establishes for literals propagates to
arbitrary formulae. More precisely, for each formula φ(x̄) exactly one of φ(x̄) and
¬φ(x̄) is valuated with 0, which corresponds to the intention that all elements
except for 0 represent a certain degree of truth.

Proposition 2.12. Let K be positive and π be a model-defining K-interpretation.
If π is infinite, additionally assume that K admits positive infinitary operations.
Then, for all formulae φ(x1, . . . , xk) and ā ∈ Ak it holds that

Aπ |= φ(ā) if, and only if, π[[φ(ā)]] 6= 0.

2.3 The Fundamental Property

A crucial observation established in [GT17a] is given by the compatibility of semir-
ing semantics with semiring homomorphisms, which map elements from one semir-
ing into another while respecting the semiring operations as well as the identity
elements as follows.

Definition 2.13. Given two semirings (K,+K, ·K, 0K, 1K) and (L,+L, ·L, 0K, 1L),
a semiring homomorphism is a function h : K → L such that

(1) h(0K) = 0L and h(1K) = 1L,

(2) h(k1 +
K k2) = h(k1) +

L h(k2) and

(3) h(k1 ·K k2) = h(k1) ·L h(k2).

14
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We say that h is compatible with the infinitary operations admitted by K, where
appropriate, if for all families (ki)i∈I ∈ KI over arbitrary index sets I it holds that

(1) h(
∑
i∈I
ki) =

∑
i∈I
h(ki) and

(2) h(
∏
i∈I
ki) =

∏
i∈I
h(ki).

On the one hand, this central property, which is referred to as the fundamental
property, simplifies the evaluation of a formula in multiple different semirings via
polynomials as explained within the subsequent section. But it also turns out to
be an essential result in the context of proving elementary equivalence.

Theorem 2.14 (Fundamental Property). Let K and L be semirings, h : K → L a
semiring homomorphism and π : LitA(τ) → K a K-interpretation. If A is infinite,
further assume that K admits infinitary operations h is compatible with. Then,
(h ◦ π) is an L-interpretation and it holds that

h(π[[φ(a1, . . . , an)]]) = (h ◦ π)[[φ(a1, . . . , an)]]

for all formulae φ(x1, . . . , xn) ∈ FO(τ) and instantiations a1, . . . , an ∈ A.

φ(x̄)

π[[φ(ā)]]

(h ◦ π)[[φ(ā)]]

π h

(h ◦ π)

Proof. Firstly, note that the only requirement on h◦π for being an L-interpretation
is that all τ -literals over A are mapped to elements from L which is clearly fulfilled.
The equation can be shown for all formulae φ(x̄) ∈ FO(τ) by induction over the
structure of φ(x̄). Thereby, we assume that φ(x̄) is given in negation normal form
and thus omit negations outside of the base cases.
Case 1 ((in)equalities). For all φ(x̄) = xi1 ◦xi2 with ◦ ∈ {=, 6=} and 1 ≤ i1, i2 ≤ n
the equality follows from the preservation of neutral elements by h as follows.

h(π[[xi1 = xi2 ]]) =

{
h(1K), ai1 = ai2
h(0K), ai1 6= ai2

}
=

{
1L, ai1 = ai2
0L, ai1 6= ai2

}
= (h ◦ π)[[xi1 = xi2 ]] and
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h(π[[xi1 6= xi2 ]]) =

{
h(0K), ai1 = ai2
h(1K), ai1 6= ai2

}
=

{
0L, ai1 = ai2
1L, ai1 6= ai2

}
= (h ◦ π)[[xi1 6= xi2 ]].

Case 2 (τ -literals). If φ(x̄) ∈ {Rxi1 . . . xir ,¬Rxi1 . . . xir} with R ∈ τ , arity(R) = r
and 1 ≤ xi1 , . . . , xir ≤ n, it holds that φ(ā) ∈ LitA(τ), thus the equality is true by
definition.
Case 3 (disjunction, conjunction). For φ(x̄) = ψ(x̄) ◦ ϑ(x̄), where ◦ ∈ {∨,∧},
applying the induction hypothesis yields that h(πA[[ψ(ā)]]) = (h ◦ πA)[[ψ(ā)]] and
h(πA[[ϑ(ā)]]) = (h ◦ πA)[[ϑ(ā)]]. This implies that

h(πA[[ψ(ā) ∨ ϑ(ā)]]) = h(πA[[ψ(ā)]] + πA[[ϑ(ā)]])

= h(πA[[ψ(ā)]]) + h(πA[[ϑ(ā)]])

= (h ◦ πA)[[ψ(ā)]] + (h ◦ πA)[[ϑ(ā)]] = (h ◦ πA)[[ψ(ā) ∨ ϑ(ā)]] and
h(πA[[ψ(ā) ∧ ϑ(ā)]]) = h(πA[[ψ(ā)]] · πA[[ϑ(ā)]])

= h(πA[[ψ(ā)]]) · h(πA[[ϑ(ā)]])
= (h ◦ πA)[[ψ(ā)]] · (h ◦ πA)[[ϑ(ā)]] = (h ◦ πA)[[ψ(ā) ∧ ϑ(ā)]].

Case 4 (quantifiers). For φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀}, the induction
hypothesis implies that h(πA[[ψ(ā, a)]]) = (h ◦ πA)[[ψ(ā, a)]] for all a ∈ A. It can be
inferred that

h(πA[[∃xψ(ā, x)]]) = h(
∑
a∈A

πA[[ψ(ā, a)]])

(∗)
=

∑
a∈A

h(πA[[ψ(ā, a)]])

=
∑
a∈A

(h ◦ πA)[[ψ(ā, a)]] = (h ◦ πA)[[∃xψ(ā, x)]] and

h(πA[[∀xψ(ā, x)]]) = h(
∏
a∈A

πA[[ψ(ā, a)]])

(∗)
=

∏
a∈A

h(πA[[ψ(ā, a)]])

=
∏
a∈A

(h ◦ πA)[[ψ(ā, a)]] = (h ◦ πA)[[∀xψ(ā, x)]]

which completes the induction.

Notice that in order to deduce the steps which are marked by (∗), the compatibility
of h with finite summation and multiplication in K, which is already implied by h
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being a semiring homomorphism, suffices if A is finite, whereas the compatibility
must be lifted to the infinitary operations in case of infinite A. The remaining
reasoning does without any assumptions on the infinitary operations, which is
why the additional premise that h is compatible with the infinitary operations can
be omitted if A is finite.

2.4 Provenance Semirings

We already observed that by means of annotating atomic facts with elements from
an appropriate application semiring, the evaluation of a formula does not only
determine whether a formula is satisfies but also how, e.g., a required access level
or cost is provided in addition.
Beyond that, semiring semantics supplies a general framework to understand why a
sentence is satisfies by a classical structure, so to conduct a provenance analysis on
the model checking problem. This can be realized by fixing a finite setX of abstract
provenance tokens and interpreting formulae by elements from an appropriate
provenance semiring consisting of polynomials which are generated by the set X.
As a starting point, we consider the semiring N[X] of multivariate polynomials
with indeterminates from X and coefficients from N and the {E}-structure A
depicted below, where E is a binary relation symbol. We transform A into an
N[X]-interpretation with X = {x1, x2, x3, x4} being the set of provenance tokens
used to label the {E}-literals over {a1, a2} satisfied by A. In the resulting N[X]-
interpretation πA, which is illustrated in the drawing, the black edges correspond
to literals Eaiaj, while the gray edges mark literals of the form ¬Eaiaj, so, for
instance, πA(¬Ea2a2) = x3. All remaining {E}-literals over {a1, a2} are valuated
with 0.

A:

a1 a2

x2

x4

x1 x3πA:

a1 a2
πA[[∃x∃y∃z(Exy ∧ (Eyy ∨ Eyz))︸ ︷︷ ︸

φ

]] = 3x21 + x1x2

The resulting valuation of the sentence φ is composed as follows. There are three
different evaluation strategies using the fact that a1 has a loop twice. One can
assign a1 to x, y as well as z and use either the subformula Eyy or Eyz to show
that A is a model of φ. Alternatively, z can be assigned with a2 instead of a1
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if Eyy is used. When using this assignment in combination with the subformula
Eyz, it suffices to make use of the edges corresponding to x1 and x2 each once.
So in general, each monomial m · xe11 · · · xekk which is contained in the resulting
valuation of a formula φ indicates that there are exactly m evaluation strategies
to determine that A |= φ which rely on the literals labeled by x1, . . . xk and use
any literal labeled with xi exactly ei times.
Moreover, due to the universality of polynomial semirings, the transformation
from A into πA also simplifies the evaluation of a formula in multiple different
K-interpretations which might relate to different semirings but share the same set
of true literals with A. Instead of evaluating the formula several times, applying
the fundamental property allows us to save computational resources by evaluating
the formula in πA and substituting the variables by the corresponding valuations
afterwards.

Proposition 2.15 (Universal Property). For each commutative semiring K, every
assignment α : X → K induces a unique homomorphism hα : N[X] → K such that
hα(x) = α(x) for all x ∈ X.

Interpreting formulae by polynomials is also interesting for conducting a reverse
provenance analysis, which is not based on a certain classical structure but aims
at understanding how a model of a certain formula has to look like. Classical
polynomials can be used to label any unnegated τ -literal over a fixed finite universe
by a unique variable such that the evaluation of a positive formula φ explains which
atomic properties have to be satisfied such that φ is satisfied. This approach can
be extended to full first-order logic by incorporating a second set of indeterminates
representing negated τ -literals. The elements of the resulting provenance semirings
are referred to as dual-indeterminate polynomials, which we will not focus on within
this thesis. Instead, we consider classical polynomial semirings such as N[X] as well
as less informative provenance semirings whose elements correspond to congruence
classes on N[X] which are induced by the semiring properties introduced earlier
in this chapter and hold the universal property for the corresponding classes of
semirings.

• The semiring B[X] is induced by the smallest congruence on N[X] such that
x + x ∼ x for all x ∈ X and has the univeral property for the class of
idempotent semirings. The polynomials in B[X] arise from those in N[X] by
dropping coefficients.

• W[X] emerges from B[X] via the congurence generated by x · x ∼ x, hence
exponents are collapsed as well. It holds the universal property for the class
of fully idempotent semirings.
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• The polynomials in S[X] only contain monomials which are maximal with
respect to the absorption order. We say that m1 absorbs m2, denoted as
m1 ≽ m2, if m2 = m · m1 for some monomial m, so if m1 has smaller
exponents than m2. S[X] is the quotient semiring of N[X] (or, equivalently,
of B[X]) regarding the congruence generated by f + fg ∼ f for f, g ∈ N[X]
and is universal for the class of absorptive semirings.

• By collapsing exponents in S[X] via the congruence generated by x·x ∼ x for
all x ∈ X we obtain the semiring PosBool[X], which is universal for the class
of fully idempotent and absorptive semirings, corresponding to distributive
lattices.

Finite addition and multiplication in the above-mentioned semirings arises from
the usual addition and multiplication of polynomials by dropping coefficients or
exponents afterwards, or only keeping the maximal monomials with regard to the
absorption order as described. By contrast, it remains to check whether suitable
infinitary operations are admitted as well. Firstly, consider N[X] and recall the
finite addition and multiplication. As the sum of polynomials p1 and p2 is obtained
by summing up the coefficients of the monomials which only differ from each other
by their coefficient, it suffices to define an infinitary summation on the coefficients
in order to obtain an infinitary addition of polynomials. However, we have already
observed that N does not admit infinitary summation, so neither does N[X]. In
order to be able to evaluate first-order formulae on interpretations which label the
τ -literals over an infinite universe by polynomials as well, we extend N[X] such that
adequate infinitary operations are admitted. For this purpose, we incorporate an
additional coefficient ∞ with n+∞ = ∞ for n ∈ N and n ·∞ = ∞ for all n ∈ N>0

and define infinitary sums as the supremum of the finite subsums. Whereas this
modification enables the definition of sums such as

∑
i∈N x appropriately, we must

additionally drop the finiteness of the polynomials and consider formal power series
in order to cope with sums such as

∑
i∈N x

i. The resulting semiring, which extends
N[X] and admits infinitary summation, is denoted as N∞[[X]]. In order to check
whether N∞[[X]] admits appropriate infinitary multiplication as well, recall that,
due to distributivity, the product of two polynomials can be calculated as

p1 · p2 =
∑
m1∈p1,
m2∈p2

m1m2,

where mi ∈ pi is supposed to denote that the monomial mi occurs in pi. Thus,
the natural generalization of finite multiplication to arbitrary families (pi)i∈I of
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polynomials is given by ∏
i∈I

pi =
∑

(mi)i∈I :
mi∈pi

∏
i∈I

mi,

which only requires to define an adequate infinitary product on monomials. In the
finite case, we simply multiply the coefficients and sum up the exponents, so it
remains to specify an infinitary multiplication on the coefficients and an infinitary
addition on the exponents. The former can, analogously to the summation of
exponents, be defined as the supremum of the finite subproducts, whereas the
latter requires to incorporate an additional exponent ∞. We denote the resulting
semiring of formal power series with coefficients and exponents in N ∪ {∞} by
N∞

∞[[X]]. Analogously, we extend the further polynomial semirings, where required,
such that infinitary operations are admitted by specifying an infinitary addition
and multiplication of coefficients and an infinitary addition of the exponents.

• The semiring B∞[[X]] extends B[X] by dropping the finiteness of polynomials
and incorporating an additional exponent ∞. The coefficients of polynomials
in B[X] are from B, which admits infinitary operations as follows. Sums are
evaluated to 1 if, and only if, one of the summands is 1 and products to 0 if,
and only if, one of the factors is 0. The summation of exponents is defined
as for N∞

∞[[X]].

• For the purpose of extending S[X], we make use of the semiring S∞[X]
which only differs from S[X] by an additional exponent ∞. Since every
antichain of monomials with respect to the absorption order is finite, infinite
sums of polynomials in S∞[X] always result in (finite) polynomials. Hence,
due to absorption, it is not necessary to move from polynomials to formal
power series in order to incorporate infinitary operations. More detailed
information on this can be found in [DGNT21].

• Both coefficients and exponents in polynomials from W[X] and PosBool[X]
can be thought of as elements from B. Since B admits infinitary operations
as described, W[X] and PosBool[X] do as well.

Consequently, we will only consider finite N[X]-, B[X]- and S[X]-interpretations
and move to the semirings N∞

∞[[X]], B∞[[X]] and S∞[X], respectively, whenever
infinite universes shall be taken into account. By contrast, we make no demands
on the universe of W[X]- and PosBool[X]-interpretations. Finally, the considered
semirings of polynomials and formal power series and the way they emerge from
each other can be summarized as follows.
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N[X]

B[X]

W[X] S[X]

PosBool[X]

drop coef.

drop exp. absorb

absorb drop exp.

N∞
∞[[X]]

B∞[[X]]

S∞[X]

add ∞ as exp. and coef.
drop finiteness

add ∞ as exp.
drop finiteness

add ∞ as exp.

Figure 2.2: A hierarchy of provenance semirings, adapted from [GT17b], and their
extensions admitting infinitary operations.

2.5 Equivalence and Isomorphism

Equivalence and isomorphism constitute the central notions examined in this the-
sis, as the classical Ehrenfeucht-Fraïssé game interlinks them with regard to stan-
dard first-order logic. So, in order to analyze the transferability to semiring se-
mantics, it remains to adjust these definitions. The most natural generalization
of elementary equivalence, as introduced in [GM21], demands that two given K-
interpretations map all formulae to the same semiring element, respectively, in-
stead of satisfying the same formulae. Just as for classical semantics, we specify
this definition by means of the quantifier rank.

Definition 2.16. Let πA : LitA(τ) → K and πB : LitB(τ) → K be K-interpretations
and ā ∈ An, b̄ ∈ Bn be tuples of elements. (πA, ā) and (πB, b̄) are

• m-equivalent, denoted by (πA, ā) ≡m (πB, b̄), if πA[[φ(ā)]] = πB[[φ(b̄)]] holds
for all φ(x1, . . . , xn) ∈ FO(τ) with qr(φ(x̄)) ≤ m.

• elementarily equivalent, denoted by (πA, ā) ≡ (πB, b̄), if (πA, ā) and (πB, b̄)
are m-equivalent for all m ∈ N.

In an analogous way, we extend the definition of isomorphisms based on the intu-
ition that isomorphic K-interpretations coincide with each other up to the naming
of their elements. In order to give a formal definition, we write Litn(τ) to denote
the set of τ -literals Rx̄ and ¬Rx̄ where R ∈ τ and x̄ is a tuple of variables from
{x1, . . . , xn} which has length arity(R).
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Definition 2.17. For K-interpretations πA : LitA(τ) → K, πB : LitB(τ) → K and
elements ā = (a1, . . . , an) ∈ An and b̄ = (b1, . . . , bn) ∈ Bn we write (πA, ā) ∼= (πB, b̄)
and refer to them as isomorphic, if there is a bijection σ : A→ B such that

(1) σ(ai) = bi for all 1 ≤ i ≤ n and

(2) πA(L(ā)) = πB(L(b̄)) for all L(x1, . . . , xn) ∈ Litn(τ),

If both conditions are fulfilled, the mapping σ is said to be an isomorphism between
(πA, ā) and (πB, b̄).

Just as for classical semantics, first-order logic with semiring semantics cannot
distinguish between isomorphic K-interpretations, which is formalized by the fol-
lowing isomorphism lemma.

Lemma 2.18 (Isomorphism Lemma). For K-interpretations πA, πB and ā ∈ An,
b̄ ∈ Bn it holds that (πA, ā) ∼= (πB, b̄) implies (πA, ā) ≡ (πB, b̄).

Proof. We show that (πA, ā) ∼= (πB, b̄) implies πA[[φ(ā)]] = πB[[φ(b̄)]] for all φ(x̄) ∈
FO(τ) with x̄ = (x1, . . . , xn), ā = (a1, . . . , an) ∈ An, and b̄ = (b1, . . . , bn) ∈ Bn by
induction over the structure of φ(x̄). As before, φ(x̄) is assumed to be available
in negation normal form.
Case 1 ((in)equalities). Since (πA, ā) ∼= (πB, b̄) by assumption, there must be a
bijection σ such that σ(ai) = bi for all 1 ≤ i ≤ n. This immediately implies
ai1 = ai2 if, and only if, bi1 = bi2 , thus πA[[φ(ā)]] = πB[[φ(b̄)]] for all φ(x̄) = xi1 ◦ xi2
with ◦ ∈ {=, 6=} and 1 ≤ i1, i2 ≤ n.
Case 2 (τ -literals). For φ(x̄) ∈ {Rxi1 . . . xir ,¬Rxi1 . . . xir}, whereR ∈ τ , arity(R) =
r and 1 ≤ xi1 , . . . , xir ≤ n, the existence of an isomorphism σ between (πA, ā) and
(πA, ā) implies that each ai can be mapped to bi such that all literals with corre-
sponding instantiations according to σ are valuated equally in πA and πB. Hence,
πA[[φ(ā)]] = πB[[φ(b̄)]] must be true.
Case 3 (disjunction, conjunction). For φ(x̄) = ψ(x̄) ◦ ϑ(x̄), where ◦ ∈ {∨,∧},
applying the induction hypothesis yields that (πA, ā) ∼= (πB, b̄) implies πA[[ψ(ā)]] =
πB[[ψ(b̄)]] and πA[[ϑ(ā)]] = πB[[ϑ(b̄)]]. Hence,

πA[[ψ(ā) ∨ ϑ(ā)]] = πA[[ψ(ā)]] + πA[[ϑ(ā)]]

= πB[[ψ(b̄)]] + πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∨ ϑ(b̄)]] and
πA[[ψ(ā) ∧ ϑ(ā)]] = πA[[ψ(ā)]] · πA[[ϑ(ā)]]

= πB[[ψ(b̄)]] · πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∧ ϑ(b̄)]]

must hold as well.
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Case 4 (quantifiers). For φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀}, let σ be an isomor-
phism between (πA, ā) and (πB, b̄). Clearly, (πA, ā, a) ∼= (πB, b̄, σ(a)) holds as well
for all a ∈ A. By induction hypothesis this implies πA[[ψ(ā, a)]] = πB[[ψ(b̄, σ(a))]]
for all a ∈ A. It can be inferred that

πA[[∃xψ(ā, x)]] =
∑
a∈A

πA[[ψ(ā, a)]]

=
∑
a∈A

πB[[ψ(b̄, σ(a))]]

(∗)
=

∑
b∈B

πB[[ψ(b̄, b)]] = πB[[∃xψ(b̄, x)]] and

πA[[∀xψ(ā, x)]] =
∏
a∈A

πA[[ψ(ā, a)]]

=
∏
a∈A

πB[[ψ(b̄, σ(a))]]

(∗)
=

∏
b∈B

πB[[ψ(b̄, b)]] = πB[[∀xψ(b̄, x)]].

Note that the steps which are marked by (∗) rely on invariance under bijections in
case A and B are infinite. Therefore, we can overall conclude that (πA, ā) ∼= (πB, b̄)
implies (πA, ā) ≡ (πB, b̄).

In classical semantics, the converse direction holds as well when considering only
finite structures, so in the Boolean case, finite structures can be defined up to
isomorphism. As shown in [GM21], this is only true for particular semirings such as
the Viterbi or natural semiring when moving from classical to semiring semantics.
Following the aforementioned definition, for any two K-interpretations which are
not equivalent, there must be a formula valuated differently in the K-interpretations,
which we refer to as separating. When fixing a separating formula the outermost
Boolean combination can be omitted, as justified by the following lemma.

Lemma 2.19. If (πA, ā) 6≡m (πB, b̄) for some m ∈ N, then there is a separating
formula φ(x̄) ∈ FO(τ) with qr(φ) ≤ m which is a literal or has the form

φ(x̄) = ∃xψ(x̄, x) or φ(x̄) = ∀xψ(x̄, x)

for some ψ(x̄, x) ∈ FO(τ).

Proof. Fix some formula ϑ(x̄) ∈ FO(τ) with quantifier rank at most m which
separates (πA, ā) from (πB, b̄). ϑ(x̄) is a positive Boolean combination of formulae
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φi(x̄) which are literals or of the form φi(x̄) = ∃xψi(x̄) or φi(x̄) = ∀xψi(x̄). We
claim that there must be some subformula φi(x̄) already separating (πA, ā) and
(πB, b̄).
Assume that ϑ(x̄) = ϑ1(x̄)◦ϑ2(x̄), where ◦ ∈ {∨,∧}. By assumption it holds that

πA[[ϑ(ā)]] = πA[[ϑ1(ā)]] ⋆ πA[[ϑ2(ā)]] 6= πB[[ϑ1(b̄)]] ⋆ πB[[ϑ2(b̄)]] = πB[[ϑ(b̄)]],

where ⋆ ∈ {+, ·} correspondingly. This implies

πA[[ϑ1(ā)]] 6= πB[[ϑ1(b̄)]] or πA[[ϑ2(ā)]] 6= πB[[ϑ2(b̄)]],

thus the claim follows by induction.

We have already established that the existence of an isomorphism provides a suf-
ficient condition for elementary equivalence. However, the isomorphism lemma
does not give actual insights about the expressive power of first-order logic with
semiring semantics, as the separability of isomorphic structures by a logical for-
malism is generally undesired. While the Ehrenfeucht-Fraïssé method provides
a crucial proof technique for m-equivalence between classical structures, it is not
(yet) available for semiring semantics, which poses the question how m-equivalence
of K-interpretations can be proven otherwise. Aiming at this question, a method
was derived in [Mrk20], which relies on the fundamental property and allows us to
reduce the problem of proving m-equivalence to another semiring by decomposing
the semiring in question by means of homomorphisms.
Definition 2.20. Given semirings K and L, a set H of homomorphisms from K
to L is called separating, if for all k, k′ ∈ K with k 6= k′ there is some h ∈ H with
h(k) 6= h(k′).

Constructing sets of homomorphisms which separate any two semiring elements is
based on the following idea. For two given K-interpretations πA and πB which are
separable by some sentence φ, we can think of the valuations k 6= k′ of φ in πA and
πB, respectively, as witnesses for the separability of πA and πB. Further, whenever
there is a homomorphism h such that h(k) 6= h(k′) and (h ◦ πA) ≡ (h ◦ πB), we
can exclude the pair (k, k′) as a candidate for witnessing πA 6≡ πB due to the
fundamental property. Consequently, a separating set H contains enough homo-
morphisms such that elementary equivalence of the K-interpretations in question
can be inferred from elementary equivalence under all homomorphisms in H.
Lemma 2.21. Let K and L be semirings and H a separating set of homomor-
phisms from K to L. Further, let πA, πB be K-interpretations, ā ∈ An and b̄ ∈ Bn

and suppose that each h ∈ H is compatible with the infinitary operations in K if
πA or πB is infinite. It holds that (h ◦ πA, ā) ≡m (h ◦ πB, b̄) for all h ∈ H if, and
only if, (πA, ā) ≡m (πB, b̄).

24



CHAPTER 2. PRELIMINARIES

Proof. (⇒) In order to show the contraposition, assume that (πA, ā) 6≡m (πB, b̄)
and let φ(x̄) be a separating formula of quantifier rank at most m. Since H is
separating, there must be some h ∈ H such that h(πA[[φ(ā)]]) 6= h(πB[[φ(b̄)]]).
Applying the fundamental property yields (h ◦ πA)[[φ(ā)]] 6= (h ◦ πB)[[φ(b̄)]]), hence
φ(x̄) separates (h◦πA, ā) and (h◦πB, b̄) and we can infer (h ◦ πA, ā) 6≡m (h ◦ πB, b̄).
(⇐) Again, we prove the contraposition and suppose that there is some h ∈ H such
that (h◦πA, ā) 6≡m (h◦πB, b̄). Let φ(x̄) be a separating formula with qr(φ(x̄)) ≤ m.
We have that h(πA[[φ(ā)]]) = (h◦πA)[[φ(ā)]] 6= (h◦πB)[[φ(b̄)]] = h(πB[[φ(b̄)]]) by the
fundamental theorem. Therefore πA[[φ(ā)]] = πB[[φ(b̄)]] cannot be true and it holds
that (πA, ā) 6≡m (πB, b̄).
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Chapter 3

Transferability of the Classical
Games

In classical model theory, games characterizing elementary equivalence in a certain
logic play a central role, as they provide a convenient method to analyze the expres-
sive power of the logical formalism, which is measured by its ability to distinguish
between structures. Most prominently, the Ehrenfeucht-Fraïssé game captures m-
equivalence in classical first-order logic. It traces back to an algebraic notion of
indistinguishability by first-order formulae proposed by Fraïssé [Fra55], which was
then reformulated in game-theoretic terminology by Ehrenfeucht [Ehr61]. The
main idea behind these kinds of games is to avoid keeping track of all formulae
that may potentially separate a given pair of structures but to consider a game on
the structures which is played by the two players Spoiler and Duplicator. Whereas
Spoiler claims that the structures can be separated, it is Duplicator’s objective to
show their indistinguishability such that equivalence can be inferred if, and only
if, Duplicator has a winning strategy in the game.
In order to simulate the use of quantifiers in a potentially separating first-order
formula, in each turn of the Ehrenfeucht-Fraïssé game, Spoiler chooses an element
in one of the structures and Duplicator has to respond with some element in the
other structure. If there is a separating formula of the form φ = ∃xψ(x) which is
satisfied by exactly one of the structures, say A, then there is some element a ∈ A
witnessing A |= φ. This element can be chosen by Spoiler, so he can challenge
Duplicator to find a duplicate in B witnessing B |= φ, which is not possible if
φ indeed is a separating formula. In this manner, drawing elements in each turn
eliminates the quantifiers which might be used in a separating formula. Thus, it
suffices to compare the structures and elements which are chosen during the play
on the atomic level. More precisely, Duplicator wins a play, if and only if, the
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selected elements constitute a local isomorphism, that is, an isomorphism between
the induced substructures.

Duplicator wins the m-turn Ehrenfeucht-Fraïssé game on A and B
if, and only if, A and B are m-equivalent.

Example 3.1. Consider the following structures over the vocabulary consisting
of a unary relation symbol P and a binary relation symbol E denoted by edges.

A: B: C:

6≡2 ≡2
a1

P

a2

a3 b1
P

b2

b3
c1

P

c2

c3

c4

The game played on A and B for two turns is won by Spoiler. He can first
choose b1 ∈ B, if Duplicator answers with a2 or a3, she loses, because b1 ∈ PB

but a2, a3 6∈ PA. Otherwise, Duplicator chooses a1 and Spoiler can continue to
pick a3 ∈ A. Duplicator would have to answer with some b ∈ B such that b 6= b1,
because a3 6= a1 and (b1, b) 6∈ EB, as (a1, a3) 6∈ EA. This is not possible, hence
Spoiler wins. Indeed, the formula φ := ∃x(Px ∧ ∀y(x = y ∨ Exy)), which has
quantifier rank 2, separates A from B.
In contrast, two turns played on B and C are won by Duplicator. Duplicator can
answer b1 with c1, any element from {b2, b3} with some arbitrary element from
{c2, c3, c4} and vice versa in the first turn. In the second turn, she can proceed
analogously but has to make sure that the equalities regarding the elements that
were chosen in the first turn are respected. Since both {b2, b3} and {c2, c3, c4}
contain at least 2 elements, this is possible and Duplicator can uphold the winning
condition for two turns.

A central observation which causes the game rules to be appropriate to capture
m-equivalence with regard to classical semantics is that structures A and B can
be separated by ∃xψ(x) or ∀xψ(x) if, and only if, there is some a ∈ A (or b ∈ B)
such that for all b ∈ B (or a ∈ A, respectively) the formula ψ(x) separates (A, a)
from (B, b). The equivalence holds in classical first-order logic, since for any
structure A, the semantics of both ∃xψ(x) and ∀xψ(x) is uniquely determined by
the existence of an element a ∈ A such that A |= φ(a) or A 6|= φ(a), respectively.
As the following counterexamples, which rely on the vocabulary τ consisting of a
single unary relation symbol R, illustrate, neither of the implications translates to
semiring semantics.
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(N,+, ·, 0, 1)

π1
A :

A R ¬R
a1 1 0

a2 1 0

a3 2 0

π1
B :

B R ¬R
b1 1 0

b2 2 0

b3 2 0

π1
A[[∃xRx]] = 4 6= 5 = π1

B[[∃xRx]]

({0, 1, 2, 3, 4},max,min, 0, 4)

π2
A :

A R ¬R
a1 1 0

a2 2 0

a3 4 0

π2
B :

B R ¬R
b1 1 0

b2 3 0

b3 4 0

π2
A[[∃xRx]] = 4 = π2

B[[∃xRx]]

π2
A[[∀xRx]] = 1 = π2

B[[∀xRx]]

The N-interpretations π1
A and π1

B can be separated by the sentence ∃xRx, even
though every valuation in π1

A with regard to R can be duplicated in π1
B and vice

versa. Thus, the number of occurrences of the valuations 1 and 2 affect the val-
uation of ∃xRx, i.e., the resulting sum in N. On the other hand, π2

A and π2
B can

neither be distinguished by ∃xRx nor by ∀xRx, although the valuations of Ra2
and Rb2 are not duplicable in the respective other interpretation. So, there can be
valuations whose occurrences neither change the resulting sum nor the product.
These observations provide first insights into the crucial differences between m-
equivalence with regard to classical and semiring semantics and suggest that a di-
rect adaptation of the Ehrenfeucht-Fraïssé game rules for capturing m-equivalence
of K-interpretations poses problems. This raises the following questions, which
will be examined within the following chapters.

(1) How can the Ehrenfeucht-Fraïssé game be transferred to K-interpretations?

(2) Does the Ehrenfeucht-Fraïssé game on K-interpretations characterize m-
equivalence in semiring semantics? In which cases does it fail and why?

(3) How does the situation change when considering common variants of the
classical Ehrenfeucht-Fraïssé game?

(4) What notion of equivalence is captured by the Ehrenfeucht-Fraïssé game on
K-interpretations?

(5) How do the game rules need to be adjusted to capture m-equivalence in
semiring semantics?

We begin by taking a closer look at questions (1) and (2), the following section is
dedicated to.
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3.1 The Ehrenfeucht-Fraïssé Game

The straightforward approach to applying the Ehrenfeucht-Fraïssé game to K-
interpretations is to make use of the same positions and to permit the same moves
as in the original game. It only remains to specify the winning condition, that is, to
define local isomorphisms on K-interpretations. Analogous to classical structures,
this can be realized by considering the induced subinterpretations.

Definition 3.2. Let πA and πB be K-interpretations and ā = (a1, . . . , an) ∈ An,
b̄ = (b1, . . . , bn) ∈ Bn. The mapping σ : {a1, . . . , an} → {b1, . . . , bn} defined by
σ : ai 7→ bi for 1 ≤ i ≤ n is a local isomorphism between πA and πB if σ is an isomor-
phism between the induced subinterpretations πA|Lit{a1,...an}(τ) and πB|Lit{b1,...bn}(τ).

Besides the m-turn Ehrenfeucht-Fraïssé game Gm, we also transfer its variant G to
K-interpretations. The game G is won by Duplicator if, and only if, she wins Gm

for all m ∈ N and thus captures elementary equivalence with regard to classical
first-order logic.

Definition 3.3. Let πA, πB be K-interpretations over relational vocabulary τ with
universes A,B such that A ∩ B = ∅. Each play of the Ehrenfeucht-Fraïssé game
Gm(πA, πB) consists of m moves. In the i-th move, Spoiler chooses some ele-
ment ai ∈ A or bi ∈ B and Duplicator answers with an element in the other
K-interpretation. Afterwards, the play is at position (a1, . . . , ai, b1, . . . , bi) and the
remaining subgame is denoted by Gm−i(πA, a1, . . . , ai, πB, b1, . . . , bi). Subsequent
to all m turns, elements a1, . . . , am ∈ A and b1, . . . , bm ∈ B have been chosen and
Duplicator wins the play if, and only if, the mapping σ : ai 7→ bi where 1 ≤ i ≤ m
is a local isomorphism between πA and πB.
In the game G(πA, πB), Spoiler chooses some m ∈ N at the beginning of each play.
Afterwards, the game Gm(πA, πB) is played.

With the game rules being adjusted to K-interpretations, we will now analyze
the transferability of the game Gm to m-equivalence under semiring semantics by
answering the following questions.

(1) Soundness: Does the existence of a winning strategy for Duplicator in the
game Gm(πA, πB) imply πA ≡m πB?

(2) Completeness: Does πA ≡m πB ensure the winning of Duplicator in the game
Gm(πA, πB)?

As a reachability game which admits finite plays only, Gm is determined, which is
why the completeness of Gm is equivalent to πA 6≡m πB if Spoiler wins Gm(πA, πB).
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Analogously, we examine the soundness and completeness of the game G as a proof
method for elementary equivalence of K-interpretations.
The fact that Boolean quantifiers do not allow counting is one of the central
properties of classical first-order logic the classical Ehrenfeucht-Fraïssé game relies
on. If structures A and B only differ in the precise number of instantiations such
that a formula ψ(x) is satisfied but both satisfy ψ(x) for some instantiation of x,
then ∃xψ(x) cannot separate A from B. Generalizing this property to semiring
semantics leads to the following requirement: If the valuation of ∃xψ(x) differs
in K-interpretations πA and πB, then this cannot be solely due to the number of
elements in A and B, respectively, such that ψ(x) evaluates to a certain semiring
element. At the beginning of this chapter, we already observed that this property
does not hold in semiring semantics, as witnessed by the N-interpretations π1

A and
π1
B. The fact that ∃xRx separates π1

A and π1
B results from the inequality of the

sums 1 + 1 + 2 6= 1 + 2 + 2. However, each summand in one of the sums can
be duplicated in the other sum, which is why no single summand can be made
responsible for the inequality of the sums. This causes Duplicator to win the game
G1(πA, πB), although there is a separating sentence of quantifier rank 1.
What we assume when transferring the moves of the Ehrenfeucht-Fraïssé game to
semiring semantics is that unequal sums or products can always be attributed to
unequal sets of summands or factors, respectively. While we observed that this is
not true in general, the following lemma illustrates that this assumption is justified
exactly for those semirings that are fully idempotent.

Lemma 3.4. Any semiring K with infinitary operations Σ and Π is fully idempo-
tent if, and only if,

(1)
∑
i∈I
ki 6=

∑
j∈J

ℓj implies {ki : i ∈ I} 6= {ℓj : j ∈ J} and

(2)
∏
i∈I
ki 6=

∏
j∈J

ℓj implies {ki : i ∈ I} 6= {ℓj : j ∈ J}

for all families (ki)i∈I and (ℓj)j∈J over arbitrary index sets I and J .

Proof. (⇐): If K with Σ and Π is not fully idempotent, then there must be some
k ∈ K and some index set I such that

∑
i∈I k 6= k or

∏
i∈I k 6= k. This immediately

implies that (1) or (2) is violated, since {k : i ∈ I} = {k}.
(⇒): Let K with Σ and Π be fully idempotent. To show (1) by contraposition, let
(ki)i∈I ∈ KI and (ℓj)j∈J ∈ KJ be given as above and suppose that {ki : i ∈ I} =
{ℓj : j ∈ J}. As addition in K is associative, Σ is invariant under partitions and
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K with Σ is idempotent, it holds that∑
i∈I

ki =
∑
k∈K

∑
i∈I :
ki=k

k =
∑

k∈{ki : i∈I}

k =
∑

k∈{ℓj : j∈J}

k =
∑
k∈K

∑
j∈J :
ℓj=k

k =
∑
j∈J

ℓj.

The equality of the products (2) can be inferred analogously.

Notice that if only finite index sets I and J are considered, the infinitary op-
erations are not required and the claim follows from the full idempotence of K.
Unlike observed for the N-interpretations π1

A and π1
B, Spoiler can always find an

instantiation in K-interpretations πA, πB such that the valuation of ψ(x) cannot
be duplicated in the respective other K-interpretation if ∃xψ(x) or ∀xψ(x) is sep-
arating and K is fully idempotent. Thus, it can be shown that full idempotence
constitutes an algebraic characterization of the class of semirings for which m-
equivalence can be inferred based on the game Gm.

Theorem 3.5. Let K be a semiring (with infinitary operations Σ and Π). The
existence of a winning strategy for Duplicator in Gm(πA, πB) implies πA ≡m πB
for all K-interpretations πA and πB and all m ∈ N if, and only if, K (with Σ and
Π) is fully idempotent.

Proof. (⇐): Suppose that K (with Σ and Π) is fully idempotent. Based on a
separating formula φ(x̄) ∈ FO(τ) with πA[[φ(ā)]] 6= πB[[φ(b̄)]] and qr(φ(x̄)) ≤ m
where ā ∈ An and b̄ ∈ Bn, we construct a winning strategy for Spoiler in the game
Gm(πA, ā, πB, b̄) by induction on the structure of φ(x̄).
Case 1. If φ(x̄) is a literal, then the mapping σ : ā 7→ b̄ cannot be a local iso-
morphism, which violates the winning condition. Thus, Spoiler wins the game
G0(πA, ā, πB, b̄).
Case 2. For φ(x̄) = ψ(x̄)◦ϑ(x̄) where ◦ ∈ {∨,∧} and qr(φ(x̄)) ≤ m, we have that

πA[[ψ(ā) ∨ ϑ(ā)]] = πA[[ψ(ā)]] + πA[[ϑ(ā)]]

6= πB[[ψ(b̄)]] + πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∨ ϑ(b̄)]] or
πA[[ψ(ā) ∧ ϑ(ā)]] = πA[[ψ(ā)]] · πA[[ϑ(ā)]]

6= πB[[ψ(b̄)]] · πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∧ ϑ(b̄)]]

by assumption, which implies πA[[ψ(ā)]] 6= πB[[ψ(b̄)]] or πA[[ϑ(ā)]] 6= πB[[ϑ(b̄)]]. It
holds that qr(ψ(x̄)) ≤ m and qr(ϑ(x̄)) ≤ m, hence Spoiler wins Gm(πA, ā, πB, b̄)
by induction hypothesis.

32



CHAPTER 3. TRANSFERABILITY OF THE CLASSICAL GAMES

Case 3. If φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} and qr(φ(x̄)) ≤ m, it holds that

πA[[∃xψ(ā, x)]] =
∑
a∈A

πA[[ψ(ā, a)]] 6=
∑
b∈B

πB[[ψ(b̄, b)]] = πB[[∃xψ(b̄, x)]] or

πA[[∀xψ(ā, x)]] =
∏
a∈A

πA[[ψ(ā, a)]] 6=
∏
b∈B

πB[[ψ(b̄, b)]] = πB[[∀xψ(b̄, x)]].

By lemma 3.4, both cases imply that

{πA[[ψ(ā, a)]] : a ∈ A} 6= {πB[[ψ(b̄, b)]] : b ∈ B}.

Spoiler wins the game Gm(πA, ā, πB, b̄) by choosing some element a ∈ A or b ∈ B
witnessing the inequality above. For all possible answers b ∈ B or a ∈ A,
respectively, it holds that πA[[ψ(ā, a)]] 6= πB[[ψ(b̄, b)]]. Applying the induction
hypothesis yields that Spoiler has a winning strategy for the remaining game
Gm−1(πA, ā, a, πB, b̄, b), as qr(ψ(x̄, x)) ≤ m− 1.
(⇒): Suppose that summation or multiplication in K is not idempotent. Then,
there is some k ∈ K and some index set i ∈ I such that∑

i∈I

k 6= k or
∏
i∈I

k 6= k.

Based on this element k, we construct K-interpretations πkA and πkB with universes
A := {ai : i ∈ I} and B := {b} as follows.

πkA :

A R ¬R
ai k 0K

ai′ k 0K

... ... ...

πkB :
B R ¬R
b k 0K

Clearly, Duplicator wins the game G1(π
k
A, π

k
B), as any possible strategy leads to

winning of Duplicator. However, it holds that

πkA[[∃xRx]] =
∑
i∈I

k 6= k = πkB[[∃xRx]] or

πkA[[∀xRx]] =
∏
i∈I

k 6= k = πkB[[∀xRx]],

which yields πkA 6≡1 π
k
B and completes the proof.
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Notice that the theorem still holds if only model-defining K-interpretations are
considered. In case there is a semiring element k 6= 0K witnessing the absence of
full idempotence, the K-interpretations πkA and πkB are model-defining and thus
constitute an appropriate counterexample. Otherwise, the counterexample can be
readily modified by substituting the valuations of the negated τ -literals over A and
B by 1K.
Concerning the question in which semirings m-equivalence is captured by the
game Gm, we can exclude all semirings which are not fully idempotent, since the
absence of full idempotence enables a restricted kind of counting, which is not
taken into account in the standard Ehrenfeucht-Fraïssé game. We have shown
that πA ≡m πB is ensured if Duplicator wins Gm(πA, πB) in any fully idempotent
semiring K, however this is not sufficient for m-equivalence of K-interpretations
to be captured by Gm. In addition, it must be possible to infer m-separability
based on the winning of Spoiler. Making use of a lemma proven in [GM21], it can
be shown that this is not possible for any fully idempotent semiring unless it is
isomorphic to B. Thus, B is, up to isomorphism, the only semiring such that Gm

characterizes m-equivalence in semiring semantics.

Lemma 3.6. Let K be a fully idempotent semiring. For any k1, k2 ∈ K, it holds
that πk1k2A ≡ πk1k2B where πk1k2A and πk1k2B are defined as follows.

πk1k2A :

A R1 R2 ¬R1 ¬R2

a1 0 k2 k1 0
a2 k1 0 0 k2
a3 k2 k1 0 0
a4 0 0 k2 k1

πk1k2B :

B R1 R2 ¬R1 ¬R2

b1 k2 0 0 k1
b2 0 k1 k2 0
b3 k1 k2 0 0
b4 0 0 k1 k2

Theorem 3.7. Let K be a semiring (with infinitary operations Σ and Π). If
πA ≡m πB is equivalent to Duplicator winning Gm(πA, πB) for all K-interpretations
πA and πB and all m ∈ N, then K (with Σ and Π) is isomorphic to B.

Proof. Let K (with Σ and Π) be a semiring such that πA ≡m πB if, and only if,
Duplicator wins Gm(πA, πB) for all K-interpretations πA and πB and all m ∈ N.
Due to theorem 3.5, K (with Σ and Π) must be fully idempotent. Suppose that
K contains at least three elements and let k1, k2 ∈ K be distinct and both non-
zero. Spoiler wins the game G1(π

k1k2
A , πk1k2B ) where πk1k2A and πk1k2B are defined as

in lemma 3.6. For instance, he can pick a1, which cannot be duplicated in πk1k2B ,
since k1 6= k2, k1 6= 0K and k2 6= 0K. But lemma 3.6 yields that πk1k2B ≡ πk1k2B ,
so, in particular, πk1k2B ≡1 π

k1k2
B . This is a contradiction to the assumption that

πA ≡m πB if, and only if, Duplicator wins Gm(πA, πB) for all K-interpretations
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πA and πB and all m ∈ N. Hence, K can only contain two elements, namely
the neutral elements 0K and 1K. The semiring axioms determine the behavior of
addition and multiplication in K almost completely as follows.

+K 0K 1K

0K 0K 1K

1K 1K ⋆

·K 0K 1K

0K 0K 0K

1K 0K 1K

Hence, only 1K +K 1K might differ from addition in B. But as K is known to be
fully idempotent, it must hold that 1K+K 1K = 1K, thus K ∼= B. If K has infinitary
operations, they must also be idempotent. Thus, because of invariance under par-
titions and the fact that finite addition and multiplication respect the isomorphism
0K 7→ 0B, 1K 7→ 1B, it follows immediately that the infinitary operations respect
the isomorphism as well.

It is noticeable that the counterexamples used to show that K is fully idempotent
and only contains two elements share certain similarities. For instance, they only
rely on unary relations and in both cases, the game G1 does not provide the desired
result. Moreover, one can always find model-defining counterexamples. Therefore,
the premise in theorem 3.7 can be refined and we can already conclude that K
must be isomorphic to B if the game G1 characterizes 1-equivalence for all model-
defining K-interpretations over a vocabulary consisting of unary relation symbols.
Whenever we can infer m-equivalence from a winning strategy for Duplicator in
Gm for all m ∈ N in a certain semiring K, concluding elementary equivalence
based on the game G is possible as well. This is because Duplicator wins G if,
and only if, she wins Gm for all m ∈ N and that elementary equivalence coincides
with m-equivalence for all m ∈ N, just like for classical semantics. Combining this
observation with theorem 3.5 yields the following corollary.

Corollary 3.8. If K is fully idempotent and Duplicator wins G(πA, πB), then
πA ≡ πB must hold.

Whether full idempotence is not just a sufficient but also a necessary condition,
as observed for the game Gm, is still open. Even though m moves are generally
not sufficient for Spoiler to win based on a separating formula of quantifier rank
m for semirings that are not fully idempotent, permitting a fixed number of moves
that might be greater that m may ensure the winning of Spoiler. For example, on
the introductory N-interpretations π1

A and π1
B, Spoiler is not able to win G1, but

adding one additional move makes Spoiler win. Further, it is not clear whether
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Duplicator winning G implies elementary equivalence for all semirings with ap-
propriate infinitary operations. We postpone these questions for now and discuss
them within the following subsections, which are dedicated to the transferability
of the games G and Gm for certain common semirings.

3.1.1 Min-Max Semirings

The classical logical connectives ∨ and ∧ can be considered as the binary operations
maximum and minimum applied to elements in {0, 1} such that 0 < 1. This
observation suggests to generalize the Boolean semiring by using maximum as
addition and minimum as multiplication, both operating on an arbitrary linearly
ordered set K with ending points.
Definition 3.9. A linearly ordered set (K,≤) with least element k0 and greatest
element k1 induces a min-max semiring K = (K,max,min, k0, k1) where max and
min refer to the underlying order.

Practically relevant min-max semiring are, for instance, F = ([0, 1]R,max,min, 0, 1)
we refer to as the fuzzy semiring. The access control semiring introduced earlier,
given by A = ({P,C, S, T, 0},min,max, 0, P ), is in fact a min-max semiring as well,
as it is induced by the inverted order on the access levels. Min-max semirings can
be considered a generalization of the Boolean semiring which is still similar to B.
Unlike other semirings, min-max semirings share algebraic properties such as full
idempotence and absorption with B and therefore maintain logical equivalences
such as φ ∧ φ ≡ φ. Further, each min-max semiring is naturally ordered by the
order it is induced by. Hence, the natural order is in fact a linear order, so any
two elements are comparable. To evaluate formulae with elements from a min-max
semiring on infinite interpretations as well, we additionally assume that any subset
K ′ ⊆ K has an infimum and supremum in K and define the infinitary operations
as the supremum of the finite subsums and the infimum of the finite subproducts,
which correspond to supremum and infimum with respect to the underlying order.
So with any family (ki)i∈I of elements from a min-max semiring K, we associate∑

i∈I

ki := sup
I′⊆I
finite

fin∑
i∈I′

ki = sup
i∈I

ki and
∏
i∈I

ki := inf
I′⊆I
finite

fin∏
i∈I′

ki = inf
i∈I

ki.

This definition ensures that on each min-max semiring, the infinitary operations
are fully idempotent as well. Hence, we can apply theorem 3.5 and the corre-
sponding corollary 3.8 to any min-max semiring K and infer that any two K-
interpretations are m-equivalent if Duplicator wins the game Gm, and that they
are elementarily equivalent in case Duplicator wins G.
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However, the standard game cannot be used as a tool to prove the existence of
a separating sentence of quantifier rank at most m, so to derive m-separability
of K-interpretations where K is a min-max semiring. Unlike Boolean quantifiers
or, correspondingly, the moves of Spoiler, quantifiers in semiring semantics cannot
pick out an arbitrary element from the universe of one of the K-interpretations, as
indicated by the introductory interpretations π2

A and π2
B.

Proposition 3.10. There is a min-max semiring K and K-interpretations πA, πB
such that Spoiler wins G1(πA, πB), while πA ≡1 πB.

Proof. Let K4 := ({0, 1, 2, 3, 4},max,min, 0, 4) be induced by the usual order on
{0, 1, 2, 3, 4} and recall the K4-interpretations π2

A and π2
B.

π2
A :

A R ¬R
a1 1 0
a2 2 0
a3 4 0

π2
B :

B R ¬R
b1 1 0
b2 3 0
b3 4 0

Spoiler wins the game G1(π
2
A, π

2
B) by picking a2 ∈ A. The valuation 2 with regard

to R cannot be duplicated in π1
B, which is why Spoiler wins any play according to

this strategy.
In order to show that π2

A and π2
B are 1-equivalent, consider for 0 ≤ k < 4 the

mapping hk : K4 → B with hk : x 7→ 0 if, and only if, x ≤ k. Each of these
functions is a homomorphism from K4 to B, because for 0 ≤ k < 4 it holds that

(1) hk(0) = 0 and hk(4) = 1,

(2) hk(x+
K4 y) = hk(max(x, y)) =

{
0, x ≤ k ∧ y ≤ k
1, x > k ∨ y > k

}
= hk(x)+

Bhk(y) and

(3) hk(x ·K4 y) = hk(min(x, y)) =

{
0, x ≤ k ∨ y ≤ k
1, x > k ∧ y > k

}
= hk(x) ·B hk(y),

where x, y ∈ K. The set H := {hk : 0 ≤ k < 4} is a separating set of homomor-
phisms, because for any x, y ∈ K with x 6= y it holds that

hmin(x,y)(x) = 0 6= 1 = hmin(x,y)(y).

For k ∈ {0, 1, 3} we have that (hk◦π2
A)

∼= (hk◦π2
B), which yields (hk◦π2

A) ≡ (hk◦π2
B)

by the isomorphism lemma. This is not true for k = 2, but Duplicator wins the
game G1(h2 ◦ π2

A, h2 ◦ π2
B) by replying bi to each ai and vice versa, except for a2,

which is answered with b1, and b2, which she counters with a3.
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h2 ◦ π2
A :

A R ¬R
a1 0 0
a2 0 0
a3 1 0

h2 ◦ π2
B :

B R ¬R
b1 0 0
b2 1 0
b3 1 0

As B is fully idempotent, we can apply theorem 3.5 and infer (h2◦π2
A) ≡1 (h2◦π2

B).
Hence, in particular, it holds that (hk ◦ π2

A) ≡1 (hk ◦ π2
B) for 0 ≤ k < 4. Following

lemma 2.21, this implies π2
A ≡1 π

2
B.

The counterexample demonstrates that in semiring semantics, quantifiers behave
in a fundamentally different way than in Boolean semantics, even though min-
max semirings are still quite similar to the Boolean semiring. Whereas in the
Boolean case quantifiers allow access to any element, in min-max semirings a
quantifier can only filter out those elements that have a maximum or minimum
valuation with regard to some property. Any valuation in between minimum and
maximum remains concealed and does not influence the valuation of any sentence
with quantifier rank 1. In this example, increasing the quantifier rank causes the
K4-interpretations π2

A and π2
B to become separable. The formula

φ := ∃x∃y(x 6= y ∧Rx ∧Ry)

allows to filter out not the minimum or maximum valuation with respect to R but
the second greatest valuation. This observation suggests that the problems arising
when applying the game to min-max semirings is due to the number of moves,
which does not suit the quantifier rank. But it turns out that the problem is more
fundamental, as there are even elementarily equivalent K-interpretations for a min-
max semiring K where every strategy of Spoiler in G is a winning strategy. From
the counterexample introduced in [GM21] to prove that elementary equivalence
does not imply isomorphism in min-max semirings, we derive that the game G
cannot be used to prove separability in min-max semirings.

Proposition 3.11. There is a min-max semiring K and K-interpretations πA, πB
such that Spoiler wins G(πA, πB) and πA ≡ πB.

Proof. We construct K3-interpretations π3
A and π3

B based on the min-max semiring
K3 := ({0, 1, 2, 3, 4},max,min, 0, 3) which relies on the usual order of the elements.

π3
A :

A R1 R2 ¬R1 ¬R2

a1 1 3 0 0
a2 2 1 0 0
a3 3 2 0 0

π3
B :

B R1 R2 ¬R1 ¬R2

b1 3 1 0 0
b2 1 2 0 0
b3 2 3 0 0
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Spoiler wins the game G(π3
A, π

3
B), for instance, he can choose m = 1 and a1 ∈ A,

as there is no element in b ∈ B such that π3
B(R1b) = 1 and π3

B(R2b) = 3.
Analogous to the previous proof, it can be shown that π3

A and π3
B are elementarily

equivalent by making use of the homomorphisms hk : K3 → B with hk : x 7→ 0 if,
and only if, x ≤ k for 0 ≤ k < 3. For each such k it holds that (hk◦π3

A)
∼= (hk◦π3

B).
Applying the isomorphism lemma yields that (hk ◦ π3

A) ≡ (hk ◦ π3
B) for 0 ≤ k < 3.

Hence, π3
A ≡ π3

B must hold.

In the game G(π3
A, π

3
B), Duplicator is able to duplicate any valuation with regard

to R1 or R2, separately, but when considering R1 and R2 simultaneously, none
of the valuations can be duplicated in the respective other structure. However,
this does not influence the valuation of any sentence. This observation suggests
that Spoiler has to reveal a literal he will challenge before Duplicator chooses her
answer in order to capture the elementary equivalence of π3

A and π3
B. But this

would cause Duplicator to win more often than desired, as a slight modification of
π3
A and π3

B illustrates.

π4
A :

A R1 R2 ¬R1 ¬R2

a1 1 3 0 0
a2 2 1 0 0
a3 3 2 0 0

π4
B :

B R1 R2 ¬R1 ¬R2

b1 3 2 0 0
b2 1 1 0 0
b3 2 3 0 0

The modified K3-interpretations π4
A and π4

B can be separated by the sentence
∀x(R1x ∨ R2x), although each valuation with regard to R1 and R2 is still indi-
vidually duplicable in the respective other interpretation. Hence, Spoiler would
rather have to be able to commit to a positive Boolean combination of literals be-
fore Duplicator chooses her answer. While this observation provides first insights
that it is not straightforward to adjust the game rules, we will discuss possible
modifications in more detail in chapter 5 and now return to the applicability of
the standard game to further semirings.

3.1.2 The Viterbi Semiring V

Besides min-max semirings, the Viterbi semiring V = ([0, 1]R,max, ·, 0, 1) con-
stitutes another absorptive application semiring, which is thus also idempotent.
By contrast, multiplicative idempotence is not fulfilled. The Viterbi semiring is
isomorphic to the tropical semiring T = (R∞

+ ,min,+,∞, 0), which will thus be
examined implicitly, as all results obtained for the Viterbi semiring can be di-
rectly transferred via the isomorphism x 7→ − ln(x). V is naturally ordered by
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the usual order on [0, 1]R, which is not just a partial order but a dense linear
order. These properties enable an axiomatization of any finite V-interpretation
up to isomorphism. Hence, the Viterbi semiring witnesses that there are indeed
semirings which are more complex than the Boolean semiring but still ensure the
separability of any two finite interpretations which differ not just by isomorphism
[GM21]. So, the question arises whether this result can be extended and a winning
strategy of Spoiler in Gm also ensures m-separability of finite V-interpretations,
or whether it can be transferred to infinite V-interpretations. In order to permit
infinite universes as well, it remains to specify the definition of the infinitary op-
erations. As before, we consider the supremum of the finite subsums as infinitary
summation and the infimum of the finite subproducts as infinitary multiplication.
Multiple of the following observations rely on invariance under partitions. Thus,
we first verify that this property is satisfied by the infinitary operations in V or,
more generally, in any semiring with analogous infinitary operations.
Lemma 3.12. Let K be a semiring with infinitary operations given by∑

i∈I

ki := sup
I′⊆I
finite

∑
i∈I′

ki and
∏
i∈I

ki := inf
I′⊆I
finite

∏
i∈I′

ki

for all families (ki)i∈I in K. Then, for each (ki)i∈I and any partition P of I, it
holds that ∑

i∈I

ki =
∑
S∈P

∑
i∈S

ki and
∏
i∈I

ki =
∏
S∈P

∏
i∈S

ki.

Proof. We only prove the claim for infinitary multiplication in K, as the reasoning
for infinitary summation is analogous. We first show that the claim is true for any
partition of cardinality 2 and generalize this to arbitrary cardinalities by induction
afterwards. Let P = {S1, S2} be a partition of I and k∞ :=

∏
i∈I ki. As finite

multiplication in K is invariant under partitions due to associativity, we have that∏
i∈S′

1

ki ·
∏
i∈S′

2

ki =
∏

i∈S′
1∪̇S′

2

ki ≥ k∞

for any finite S ′
1 ⊆ S1 and S ′

2 ⊆ S2. Hence, k∞ is a lower bound on∏
i∈S1

ki ·
∏
i∈S2

ki = inf
S′
1⊆S1

finite

∏
i∈S′

1

ki · inf
S′
2⊆S2

finite

∏
i∈S′

2

ki.

If there was some ε > 0 such that
∏

i∈S′
1
ki ·

∏
i∈S′

2
ki ≥ k∞+ ε for all finite S ′

1 ⊆ S1

and S ′
2 ⊆ S2, then for any finite I ′ ⊆ I we would have that∏

i∈I′
ki =

∏
i∈S1∩I′

ki ·
∏

i∈S2∩I′
ki ≥ k∞ + ε,
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yielding a contradiction. Hence, it must hold that k∞ =
∏

i∈S1
ki ·

∏
i∈S2

ki.
By induction, it readily follows that infinitary multiplication in K is invariant
under finite partitions P = S1∪̇ . . . ∪̇Sn. Hence, it remains to show the claim for
infinite partitions P = {Sj : j ∈ J} of I where J is some additional infinite index
set. For any finite J ′ ⊆ J , we write SJ ′ =

⋃
j∈J ′ Sj. Using invariance under finite

partitions (⋆), we can conclude that∏
j∈J

∏
i∈Sj

ki = inf
J ′⊆J
finite

∏
j∈J ′

∏
i∈Sj

ki
(⋆)
= inf

J ′⊆J
finite

∏
i∈SJ′

ki = inf
J ′⊆J
finite

inf
S′⊆SJ′

finite

∏
i∈S′

ki = inf
I′⊆I
finite

∏
i∈I′

ki =
∏
i∈I

ki.

Thus, infinitary multiplication in K is also invariant under infinite partitions.

With invariance under partitions being verified, we are ready to examine the
transferability of the games Gm and G to V-interpretations.
Completeness of Gm. Even though the absence of isomorphism implies sep-
arability for finite V-interpretations, the moves of Spoiler do not correspond to
separability by a formula of certain quantifier rank. The game Gm as a method
to show m-separability already fails at simple counterexamples relying on a single
unary relation R. Under the assumption that any negated τ -literal is valuated
with 0, it can be proven that it suffices if sum and product of the valuations of the
unnegated τ -literals coincide in order to obtain 1-equivalence, independent of the
exact valuations.

Proposition 3.13. For any V-interpretations πA, πB over vocabulary τ = {R}
consisting of a unary relation symbol such that

(1) πA(¬Ra) = πB(¬Rb) = 0 for all a ∈ A and b ∈ B,

(2) sup
a∈A

πA(Ra) = sup
b∈B

πB(Rb) and

(3)
∏
a∈A

πA(Ra) =
∏
b∈B

πB(Rb),

it must hold that πA ≡1 πB.

Proof. Let φ(x)n denote the formula φ(x) ∧ · · · ∧ φ(x)︸ ︷︷ ︸
n times

and let

Φ :={x = x, x 6= x} ∪ {Rxn : n ∈ N>0}.

We show by induction on the structure of the formula that for all quantifier-free
ψ(x), there is some ψ∗(x) ∈ Φ such that

πA[[ψ(a)]] = πA[[ψ
∗(a)]] for all a ∈ A and πB[[ψ(b)]] = πB[[ψ

∗(b)]] for all b ∈ B.
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Case 1. Each literal φ(x) is already included in Φ, except for ¬Rx. For the
remaining case ¬Rx we have that

πA(¬Ra) = 0 = πA(a 6= a) and
πB(¬Rb) = 0 = πB(b 6= b)

for all a ∈ A and b ∈ B, which completes the base case.
Case 2. Suppose that ψ(x) = ψ1(x) ◦ ψ2(x) with ◦ ∈ {∧,∨}. By induction
hypothesis, there are ψ∗

1(x), ψ
∗
2(x) ∈ Φ fulfilling the required property with regard

to ψ1(x) and ψ2(x). Depending on ψ∗
1(x) and ψ∗

2(x), the formulae (ψ1 ∨ ψ2)
∗(x)

and (ψ1 ∧ ψ2)
∗(x) can be chosen according to the following table.

ψ∗
1(x) ψ∗

2(x) (ψ1 ∨ ψ2)
∗(x) (ψ1 ∧ ψ2)

∗(x)

x = x ψ∗
2(x) x = x ψ∗

2(x)
x 6= x ψ∗

2(x) ψ∗
2(x) x 6= x

Rxn Rxm Rxmin(n,m) Rxn+m

The entries ψ∗
2(x) in the first two lines are supposed to reflect that any formula in

Φ can be inserted, so, for instance, (x = x ∧ ψ2(x))
∗ = ψ∗

2(x) for any quantifier-
free formula ψ2(x). For all remaining cases which are not included in the table,
we simply set (ψ1 ◦ ψ2)

∗(x) = (ψ2 ◦ ψ1)
∗(x) where ◦ ∈ {∨,∧}. The choice of

ψ∗(x) in case ψ∗
1(x) or ψ∗

2(x) is an (in)equality relies on the semiring equalities
1 ·k = max(0, k) = k, max(1, k) = 1 and 0 ·k = 0, which hold for all k ∈ [0, 1]R. In
addition, we have that kn · km = kn+m and max(kn, km) = kmin(n,m) for k ∈ [0, 1]R
justifying the choice of ψ∗(x) if ψ∗

1(x) = Rxn and ψ∗
2(x) = Rxm.

If there is a sentence of quantifier rank 1 which separates πA and πB, then there
must be a separating sentence of the form Qxψ(x) with Q ∈ {∃, ∀} due to lemma
2.19 and the fact that every literal contains at least one variable, which must be
quantified in a sentence. But this implies that πA and πB can be separated by
some formula Qxψ∗(x) where ψ∗(x) ∈ Φ. This yields a contradiction, since

πA[[∃x(x = x)]] = πA[[∀x(x = x)]] = 1 = πB[[∀x(x = x)]] = πB[[∃x(x = x)]] and
πA[[∃x(x 6= x)]] = πA[[∀x(x 6= x)]] = 0 = πB[[∀x(x 6= x)]] = πB[[∃x(x 6= x)]].

Further, it holds that k ≤ ℓ if, and only if, kn ≤ ℓn for all k, ℓ ∈ [0, 1]R and all
n ∈ N>0. Therefore, we can infer for each such n that

sup
a∈A

πA(Ra)
n =

(
sup
a∈A

πA(Ra)
)n

=
(
sup
b∈B

πB(Rb)
)n

= sup
b∈B

πB(Rb)
n.
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Analogously, it must hold due to invariance under partitions of infinitary multi-
plication in V that∏

a∈A

πA(Ra)
n =

(∏
a∈A

πA(Ra)
)n

=
(∏
b∈B

πB(Rb)
)n

=
∏
b∈B

πB(Rb)
n.

Hence, we can conclude that

πA[[∃x(Rxn)]] = sup
a∈A

πA(Ra)
n = sup

b∈B
πB(Ra)

n = πB[[∃x(Rxn)]] and

πA[[∀x(Rxn)]] =
∏
a∈A

πA(Ra)
n =

∏
b∈B

πB(Ra)
n = πB[[∀x(Rxn)]],

so a separating formula of quantifier rank 1 cannot exist, i.e., πA ≡1 πB.

Making use of this proposition, it is easy to construct a counterexample illustrating
that m-separability cannot be inferred from Gm.

π5
A :

A R ¬R
a1 1 0
a2 0.5 0
a3 0.5 0

π5
B :

B R ¬R
b1 1 0
b2 0.25 0

Since for all a ∈ A and b ∈ B it holds that

π5
A(¬Ra) = 0 = π5

B(¬Rb),
sup
a∈A

π5
A(Ra) = 1 = sup

b∈B
π5
B(Rb) and∏

a∈A

π5
A(Ra) = 0.25 =

∏
b∈B

π5
B(Rb),

we can conclude π5
A ≡1 π

5
B. However, Spoiler clearly wins G1(π

5
A, π

5
B), e.g., by

choosing a2 ∈ A, which cannot be duplicated in π5
B.

Proposition 3.14. There are finite V-interpretations πA and πB such that Spoiler
wins G1(πA, πB) and πA ≡1 πB.

Note that if the vocabulary consists of multiple unary relation symbols, it does
not suffice to demand the requirements in proposition 3.13 for each of the relations
separately in order to deduce 1-equivalence. This is because sentences of quantifier
rank 1 also allow multiplication over the maximum valuation of certain τ -literals
over the same instantiation or filtering out the maximum product. As an example,
consider the following V-interpretations.

43



CHAPTER 3. TRANSFERABILITY OF THE CLASSICAL GAMES

π6
A :

A R1 R2 ¬R1 ¬R2

a1 1 0.5 0 0
a2 0.5 1 0 0
a3 0.5 0.5 0 0

π6
B :

B R1 R2 ¬R1 ¬R2

b1 1 1 1 0
b2 0.25 0.25 0 0

For i ∈ {1, 2} we still have that

sup
a∈A

π6
A(Ria) = 1 = sup

b∈B
π6
B(Rib) and

∏
a∈A

π6
A(Ria) = 0.25 =

∏
b∈B

π6
B(Rib),

while all negated τ -literals over A and B are valuated with 0. However, the V-
interpretations are not 1-equivalent, e.g.,

π6
A[[∀x(R1x ∨R2x)]] = 0.5 6= 0.25 = π6

B[[∀x(R1x ∨R2x)]] and
π6
A[[∃x(R1x ∧R2x)]] = 0.5 6= 1 = π6

B[[∃x(R1x ∧R2x)]].

Hence, proposition 3.13 does not provide a general characterization of 1-equivalence
for V-interpretations. Nevertheless, it establishes a sufficient condition for 1-
equivalence for V-interpretations over vocabularies consisting of a single unary
relation symbol, which illustrates that 1-separability cannot be inferred from a
winning strategy for Spoiler in G1.
Completeness of G. Even though the result stating that non-isomorphic finite
V-interpretations can always be separated could not be generalized regarding m-
separability and the game Gm, it has immediate consequences for the game G if
only finite V-interpretations are considered. If Spoiler wins the game G(πA, πB),
then πA and πB cannot be isomorphic, as Spoiler can pick all elements in the
universe of one of the structures. Thus, the finite V-interpretations actually have
to be separable by some sentence.

Proposition 3.15. Given finite V-interpretations πA and πB, it must hold that
πA 6≡ πB if Spoiler has a winning strategy for G(πA, πB).

As an example, the V-interpretations π5
A and π5

B, which are 1-equivalent, although
Spoiler wins G1, must be separable by a sentence with larger quantifier rank. Sim-
ilar to the K4-interpretations in the previous section, π5

A and π5
B can be separated

by φ := ∃x∃y(x 6= y ∧ Rx ∧ Ry), which is evaluated by the product of the two
largest distinct valuations with respect to R. In this manner, we obtain that

π5
A[[φ]] = 1 · 0.5 = 0.5 6= 0.25 = π5

B[[φ]].

Whether proposition 3.15 can be generalized to infinite V-interpretations, is still
open. Therefore, we examine next the question of whether separability can be
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inferred from the winning of Spoiler in G for V-interpretations of arbitrary cardi-
nality, and answer it in the negative. In particular, we show that a single unary
relation R suffices to create a counterexample, that is, V-interpretations we refer
to as π7

A and π7
B. In the same manner as we constructed a sentence φ separating

the V-interpretations π5
A and π5

B, it is possible to construct sentences of quantifier
rank n which are evaluated by the product of the n largest valuations with regard
to R, as shown in [Mrk20]. Hence, to obtain elementarily equivalent π7

A and π7
B,

infinitely many elements are contained in both A and B, each of which is valuated
with 1 with respect to R. In order to ensure the winning of Spoiler, we add further
elements to both A and B resulting in distinct valuations in π7

A and π7
B which are

smaller than 1. By incorporating the same valuation infinitely often, we make sure
that product over all valuations with regard to R will be 0 in both π7

A and π7
B.

π7
A :

A R ¬R
a1 0.1 0
a2 1 0
a3 0.1 0
a4 1 0
... ... ...

π7
B :

B R ¬R
b1 0.01 0
b2 1 0
b3 0.01 0
b4 1 0
... ... ...

Clearly, Spoiler wins the game G(π7
A, π

7
B). In fact, he already wins G1(π

7
A, π

7
B), for

instance, by choosing a1 ∈ A. To prove that π7
A and π7

B constitute an appropriate
counterexample, it thus suffices to show the elementary equivalence of the V-
interpretations. For this purpose, we will make use of a generalized version of the
isomorphism lemma which does not relate to the equality of valuations but to the
natural order.

Definition 3.16. Given a naturally ordered semiring K, let πA and πB be K-
interpretations with elements ā = (a1, . . . , an) ∈ An and b̄ = (b1, . . . , bn) ∈ Bn. We
say that (πA, ā) is ≤-isomorphic to (πB, b̄) if there is a bijection σ : A→ B with

(1) σ(ai) = bi for all 1 ≤ i ≤ n and

(2) πA(L(ā)) ≤ πB(L(b̄)) for all L(x̄) ∈ Litn(τ).

If both conditions are satisfied, we refer to the mapping σ as an ≤-isomorphism
from (πA, ā) to (πB, b̄).

Lemma 3.17. Let K be naturally ordered, πA and πB be K-interpretations and
ā = (a1, . . . , an) ∈ An, b̄ = (b1, . . . , bn) ∈ Bn. If πA or πB is infinite, further
assume that the infinitary operations are monotone. If (πA, ā) and (πB, b̄) are ≤-
isomorphic, then it holds that πA[[φ(ā)]] ≤ πB[[φ(b̄)]] for all formulae φ(x̄) ∈ FO(τ).
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Proof. We prove the claim for all ā = (a1, . . . , an) ∈ An, b̄ = (b1, . . . , bn) ∈ Bn and
φ(x̄) ∈ FO(τ) by induction on the structure of φ(x̄).
Case 1. Since (πA, ā) is ≤-isomorphic to (πB, b̄) by assumption, there must be a
bijection σ : A → B with σ(ai) = bi for all 1 ≤ i ≤ n. This immediately implies
ai = aj if, and only if, bi = bj, thus πA[[φ(ā)]] = πB[[φ(b̄)]] for all φ(x̄) = xi ◦ xj
with ◦ ∈ {=, 6=} and 1 ≤ i, j ≤ n.
Case 2. If φ(x̄) ∈ {Rxi1 . . . xir ,¬Rxi1 . . . xir} with R ∈ τ , arity(R) = r and
1 ≤ xi1 , . . . , xir ≤ n, it immediately follows from the existence of a ≤-isomorphism
from (πA, ā) to (πB, b̄) that πA[[φ(ā)]] ≤ πB[[φ(b̄)]].
Case 3. For φ(x̄) = ψ(x̄) ◦ϑ(x̄) where ◦ ∈ {∨,∧}, applying the induction hypoth-
esis yields that πA[[ψ(ā)]] ≤ πB[[ψ(b̄)]] and πA[[ϑ(ā)]] ≤ πB[[ϑ(b̄)]]. Following lemma
2.5, addition and multiplication are monotone in K, since K is naturally ordered
by assumption. Thus,

πA[[ψ(ā) ∨ ϑ(ā)]] = πA[[ψ(ā)]] + πA[[ϑ(ā)]]

≤ πB[[ψ(b̄)]] + πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∨ ϑ(b̄)]] and
πA[[ψ(ā) ∧ ϑ(ā)]] = πA[[ψ(ā)]] · πA[[ϑ(ā)]]

≤ πB[[ψ(b̄)]] · πB[[ϑ(b̄)]] = πB[[ψ(b̄) ∧ ϑ(b̄)]]

must hold as well.
Case 4. For φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀}, let σ be a ≤-isomorphism from
(πA, ā) to (πB, b̄). By induction hypothesis, πA[[ψ(ā, a)]] ≤ πB[[ψ(b̄, σ(a))]] for all
a ∈ A. As the finite operations are monotone on any naturally ordered semiring
and the infinitary operations are monotone by assumption, it can be inferred that

πA[[∃xψ(ā, x)]] =
∑
a∈A

πA[[ψ(ā, a)]]

≤
∑
a∈A

πB[[ψ(b̄, σ(a))]]

=
∑
b∈B

πB[[ψ(b̄, b)]] = πB[[∃xψ(b̄, x)]] and

πA[[∀xψ(ā, x)]] =
∏
a∈A

πA[[ψ(ā, a)]]

≤
∏
a∈A

πB[[ψ(b̄, σ(a))]]

=
∏
b∈B

πB[[ψ(b̄, b)]] = πB[[∀xψ(b̄, x)]].

Hence, it suffices to prove that the infinitary operations in V are monotone in
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order to apply the modified isomorphism lemma to the infinite V-interpretations
π7
A and π7

B.

Lemma 3.18. Let K be a naturally ordered semiring with infinitary operations
defined as ∑

i∈I

ki := sup
I′⊆I
finite

∑
i∈I′

ki and
∏
i∈I

ki := inf
I′⊆I
finite

∏
i∈I′

ki

for all families (ki)i∈I in K. Then, the infinitary operations in K must be monotone.

Proof. Given any two families (ki)i∈I and (ℓi)i∈I of elements in K, we have that

∑
i∈I

(ki + ℓi) = sup
I′⊆I
finite

∑
i∈I′

ki + ℓi
(∗)
≥ sup

I′⊆I
finite

∑
i∈I′

ki =
∑
i∈I

ki and

∏
i∈I

(ki + ℓi) = inf
I′⊆I
finite

∏
i∈I′

ki + ℓi
(∗)
≥ inf

I′⊆I
finite

∏
i∈I′

ki =
∏
i∈I

ki.

The steps which are marked by (∗) follow from the monotonicity of the finite
operations in K.

Hence, the infinitary operations in V must be monotone and the modified isomor-
phism lemma can be applied to infinite V-interpretations in order to prove the
elementary equivalence of π7

A and π7
B.

Theorem 3.19. There are V-interpretations πA, πB such that Spoiler winsG1(πA, πB)
and πA ≡ πB.

Proof. Recall the V-interpretations π7
A and π7

B. The universes of π7
A and π7

B consist
of elements ai and bi where i ∈ N>0. The valuations are defined by π7

A(Rai) =
π7
B(Rbi) = 1 if i is even, while π7

A(Rai) = 0.1 and π7
B(Rbi) = 0.01 for any odd i.

π7
A :

A R ¬R
a1 0.1 0
a2 1 0
a3 0.1 0
a4 1 0
... ... ...

π7
B :

B R ¬R
b1 0.01 0
b2 1 0
b3 0.01 0
b4 1 0
... ... ...
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In order to prove π7
A ≡ π7

B, we first show that for all formulae φ(x̄) ∈ FO({R}),
ā = (ai1 , . . . , ain) ∈ An and b̄ = (bj1 , . . . , bjn) ∈ Bn with iℓ and jℓ even for 1 ≤ ℓ ≤
n, it holds that

{π7
A[[φ(ā)]], π

7
B[[φ(b̄)]]} ⊆ {0, 1}.

The claim can be shown by induction on the structure of φ(x̄). We only prove
the claim for π7

A, as the exact same reasoning can be transferred to π7
B. Fix some

ā = (ai1 , . . . , ain) ∈ An such that iℓ is even, i.e., π7
A(Raiℓ) = 1 for 1 ≤ ℓ ≤ n.

Case 1. For all literals φ(x̄), the claim follows immediately from the definition of
π7
A, as

π7
A[[aiℓ = aiℓ ]] = π7

A[[aiℓ 6= ai′ℓ ]] = π7
A(Raiℓ) = 1 and

π7
A[[aiℓ 6= aiℓ ]] = π7

A[[aiℓ = ai′ℓ ]] = π7
A(¬Raiℓ) = 0

for all 1 ≤ ℓ < ℓ′ ≤ n, which implies the base case.
Case 2. If φ(x̄) = ψ(x̄) ◦ ϑ(x̄) where ◦ ∈ {∨,∧}, we can apply the induction
hypothesis to both ψ(x̄) and ϑ(x̄), which yields

{π7
A[[ψ(ā)]], π

7
A[[ϑ(ā)]]} ⊆ {0, 1},

and infer that

π7
A[[ψ(ā) ∨ ϑ(ā)]] = max(π7

A[[ψ(ā)]], π
7
A[[ϑ(ā)]]) ∈ {0, 1} and

π7
A[[ψ(ā) ∧ ϑ(ā)]] = π7

A[[ψ(ā)]] · π7
A[[ϑ(ā)]] ∈ {0, 1}.

Case 3. If φ(x̄) = ∃xψ(x̄, x), applying the induction hypothesis to ψ(x̄, x) implies
that for all a ∈ A with π7

A(Ra) = 1, it holds that π7
A[[ψ(ā, a)]] ∈ {0, 1}. If there is

some a ∈ A such that π7
A[[ψ(ā, a)]] = 1, it immediately follows that

π7
A[[φ(ā)]] = sup

a∈A
π7
A[[ψ(ā, a)]] = 1.

Hence, it remains to show the claim for the case π7
A[[ψ(ā, a)]] = 0 for all a ∈ A

with π7
A(Ra) = 1. Fix some a ∈ A with πA(Ra) = 1 such that a 6∈ {ai1 , . . . , aiℓ}.

For each a′ ∈ A with πA(Ra) = 0.1 it holds that (πA, ā, a
′) is ≤-isomorphic to

(πA, ā, a). Using lemma 3.17, we can conclude that π7
A[[ψ(ā, a

′)]] ≤ π7
A[[ψ(ā, a)]] = 0

and hence

π7
A[[φ(ā)]] = max

a∈A
π7
A[[ψ(ā, a)]] = 0.

Case 4. If φ(x̄) = ∀xψ(x̄, x), then for all a ∈ A with π7
A(Ra) = 1 it holds that

π7
A[[ψ(ā, a)]] ∈ {0, 1} by induction hypothesis. If there is some a ∈ A such that
π7
A[[ψ(ā, a)]] = 0, it immediately follows that

π7
A[[φ(ā)]] =

∏
a∈A

π7
A[[ψ(ā, a)]] = 0.
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Therefore it remains to show the claim for the case π7
A[[ψ(ā, a)]] = 1 for all a ∈ A

with π7
A(Ra) = 1. We observe that for all a, a′ ∈ A with a 6= aiℓ and a′ 6= aiℓ

for 1 ≤ ℓ ≤ n as well as π7
A(Ra) = π7

A(Ra
′) it holds that (π7

A, ā, a)
∼= (π7

A, ā, a
′).

Hence, if there was some a ∈ A with π7
A(Ra) = 0.1 such that π7

A[[ψ(ā, a)]] = k for
some k ∈ [0, 1)R, then π7

A[[ψ(ā, a)]] = k would hold for all a ∈ A with π7
A(Ra) = 0.1,

which implies
π7
A[[φ(ā)]] =

∏
a∈A

π7
A[[ψ(ā, a)]] = 0.

Otherwise, we have that π7
A[[ψ(ā, a)]] = 1 for all a ∈ A, thus π7

A[[φ(ā)]] = 1, which
completes the induction.
In particular, we showed that {π7

A[[φ]], π
7
B[[φ]]} ⊆ {0, 1} holds for all sentences

φ ∈ FO({R}). The mapping h : V → V defined by k 7→ k2 is an endomorphism
which is compatible with the infinitary operations, because

(1) h(0) = 02 = 0 and h(1) = 12 = 1,

(2) h(max(k, ℓ)) = max(k, ℓ)2 = max(k2, ℓ2) = max(h(k), h(ℓ)),

(3) h(k · ℓ) = (k · ℓ)2 = k2 · ℓ2,

(4) (
∑
i∈I
ki)

2 = (sup
i∈I

ki)
2 = sup

i∈I
k2i =

∑
i∈I
k2i and

(5) (
∏
i∈I
ki)

2 =
∏
i∈I
k2i .

Note that (4) is due to the fact that k ≤ ℓ if, and only if, k2 ≤ ℓ2 for all k, ℓ ∈ V
and (5) follows from partition invariance of infinitary multiplication in V. Towards
a contradiction, suppose there was a sentence φ separating π7

A and π7
B. Using the

claim above, it would either hold that π7
A[[φ]] = 0 and π7

B[[φ]] = 1, or that π7
A[[φ]] = 1

and π7
B[[φ]] = 0. Due to the fundamental property, this would imply

h ◦ π7
A[[φ]] = h(π7

A[[φ]]) = 02 = 0 6= 1 = π7
B[[φ]] or

h ◦ π7
A[[φ]] = h(π7

A[[φ]]) = 12 = 1 6= 0 = π7
B[[φ]].

But it holds that (h ◦ π7
A)

∼= π7
B, which yields a contradiction. Hence, it must hold

that π7
A ≡ π7

B.

Notice that the elementary equivalence of π7
A and π7

B also shows that elementary
equivalence does not imply isomorphism for infinite V-interpretations, not even if
the vocabulary consists of a single unary relation symbol.
Soundness of Gm and G. After analyzing in what cases the (m-)separability
of V-interpretations can be inferred if Spoiler wins the game Gm or G, we will now
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move on to the transferability of the games as a method to show m-equivalence
and elementary equivalence. Unlike min-max semirings, the Viterbi semiring is not
multiplicatively idempotent, which is why m-equivalence cannot be inferred from a
winning strategy for Duplicator in Gm. Due to the absence of multiplicative idem-
potence, Spoiler might not be able to prove in m turns that he knows a separating
formula of quantifier rank m. However, it might be sufficient to permit a fixed
larger number of turns, so it is still possible that elementary equivalence is implied
by a winning strategy of Duplicator in the game G. For finite V-interpretations this
implication is clearly true, as the winning of Duplicator already implies isomor-
phism in this case. According to the isomorphism lemma, this ensures elementary
equivalence of the V-interpretations. Certainly, this reasoning cannot be trans-
ferred to infinite V-interpretations. Therefore, the remainder of this section will
be concerned with the question of whether elementary equivalence is implied by
the winning of Duplicator in the game G on infinite V-interpretations.
First, we discuss in general how a winning strategy for Spoiler in the game G
could be constructed based on a separating formula and derive what problems
occur thereby. For any semiring K where the infinitary operations are defined via
the supremum or infimum of the finite subsum and subproducts, as it is the case
for V, it holds that ∑

i∈I

k =
∑
j∈J

k and
∏
i∈I

k =
∏
j∈J

k

for all infinite index sets I,J and k ∈ K. With invariance under partitions, this
yields for all families (ki)i∈I and (ℓj)j∈J such that

|{i ∈ I : ki = k}| = |{j ∈ J : ℓj = k}| or
|{i ∈ I : ki = k}| ≥ ω and |{j ∈ J : ℓj = k}| ≥ ω

for all k ∈ K, it has to hold that∑
i∈I

ki =
∑
j∈J

ℓj and
∏
i∈I

ki =
∏
j∈J

ℓj.

Note that in the Viterbi semiring, the equality of the sums is already implied by
the equality of sets of summands due to idempotence. But the implication above
follows from the definition of the infinitary operations only and thus holds in
any semiring with analogous infinitary operations. The contraposition yields that
for any formula φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} separating K-interpretations
(πA, ā) and (πB, b̄), there is some k ∈ K and a natural number n ∈ N such that

|{a ∈ A : πA[[ψ(ā, a)]] = k}| = n and |{b ∈ B : πB[[ψ(b̄, b)]] = k}| > n or
|{a ∈ A : πA[[ψ(ā, a)]] = k}| > n and |{b ∈ B : πB[[ψ(b̄, b)]] = k}| = n.
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Hence, Spoiler can make sure that, after finitely many steps, some pair (ai, bi)
has been chosen such that πA[[ψ(ā, ai)]] 6= πB[[ψ(b̄, bi)]], i.e., any quantifier can be
eliminated within finitely many turns. For sentences φ = Q1xψ(x), the number
of moves needed to eliminate the outermost quantifier and ensure the existence
of a pair (ai, bi) with πA[[ψ(ai)]] 6= πB[[ψ(bi)]] within any reachable position only
depends on πA, πB and φ, whereas this is not sufficient for nested quantifiers.
Suppose, for example, that ψ(x) has the form ψ(x) = Q2yϑ(x, y). Spoiler has a
strategy to pick finitely many elements such that the resulting position contains at
least one pair (aj, bj) with πA[[ϑ(ai, aj)]] 6= πB[[ϑ(bi, bj)]]. Which elements have to
be chosen by Spoiler and thus, the number of required elements to eliminate the
inner quantifier may vary for different instantiations of the free variable x, that is,
for different answers of Duplicator in the first turn. In order to construct a winning
strategy for Spoiler in the game G, there must be a maximum number of elements
Spoiler needs to pick in order to prove the separability of the K-interpretations.
But in the case of infinite universes, infinitely many different answers of Duplicator
are possible. Hence, the number of turns required to eliminate a nested quantifier
might be unbounded with respect to the instantiations of the variables referring
to an outer quantifier.
This observation can be formulated in terms of the generalization Gα of the
Ehrenfeucht-Fraïssé game to arbitrary ordinals α, which extends the classical game
according to the following rule. If α is a limit ordinal, then Spoiler chooses an arbi-
trary ordinal β < α and the play proceeds according to Gβ. Otherwise, α = β +1
is a successor ordinal, the players draw elements as in the original game and con-
tinue with the game Gβ. For each semiring with infinitary operations defined via
supremum or infimum as described, Spoiler has a winning strategy for the game
Gω·m if there is a separating formula of quantifier rank m. In particular, in any
of these semirings, 1-equivalence can be inferred from a winning strategy for Du-
plicator in the game Gω = G. Whether a winning strategy for Duplicator in G
suffices to ensure m-equivalence for larger m remains to be shown.
The Viterbi semiring illustrates that the potential unboundedness of the number
of required turns actually poses a problem and causes the winning of Duplicator in
G not to imply elementary equivalence in general. In order to prove this claim, we
construct separable V-interpretations on which Duplicator wins the game G. We
have already seen that it is not possible to construct a counterexample which can
be separated with quantifier rank 1, which is why we construct V-interpretations
over τ = {E} where E is a binary relation symbol. The construction relies on
the observation that if only m turns remain in the game G, then the node am
depicted in the subsequent figure is an appropriate duplicate of the node bω. More
precisely, for any sequence L = (ℓi)i≥1 of elements in V, Duplicator wins the game
Gm(π

L,m
A , πL,ωB ).
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πL,mA :

am

am1,1

am2,1 am2,2

amm,1 amm,m

amm+1,1 amm+1,m

...

... ...

. . .
. . .

. . .

ℓ1

ℓ2

ℓm

ℓm+1

πL,ωB :

bω

bω1,1

bω2,1 bω2,2

bωm,1 bωm,m

bωm+1,1 bωm+1,m+1

...

...

. . .

. . .

. . .

. . .

ℓ1

ℓ2

ℓm

ℓm+1

Besides the node am, the universe A contains elements ami,j for all i, j ∈ N>0 such
that j ≤ min(i,m), whereas B consists of bω and elements bmi,j for all i, j ∈ N>0

with j ≤ i. The gray boxes are supposed to illustrate that πL,mA (Eamami,j) = ℓi and
πL,ωB (Ebωbωi,j) = ℓi for all j. All remaining unnegated {E}-literals over A and B

are valuated with 0, while their negations are assigned 1. Hence, πL,mA and πL,ωB

can be regarded as trees with root am and bω, correspondingly.
For every i ≥ 1, there are exactly as many outgoing edges from am which are
valuated with ℓi as there are from bω, or there are at least m outgoing edges
valuated with ℓi from both am and bω. Hence, we can partition A and B into
sets {Ai : i ∈ N} and {Bi : i ∈ N} such that A0 = {am} and B0 = {bω}, while
Ai = {ami,j : j ≤ min(i,m)} and Bi = {bωi,j : j ≤ i} for i ≥ 1 and obtain that
|Ai| = |Bi|, or both |Ai| ≥ m and |Bi| ≥ m for each i ∈ N. Duplicator wins the
game Gm(π

L,m
A , πL,ωB ) by answering each a ∈ Ai with some arbitrary b ∈ Bi and vice

versa such that equalities with regard to the previous choices are respected. This
is possible for m turns and the resulting position must induce a local isomorphism.
However, for an appropriate sequence L = (ℓi)i≥1 of edge labels, πL,mA and πL,ωB

can be separated with a formula of quantifier rank 2. To prove this, we define
values ℓi ∈ V such that different valuations are obtained when multiplying over
all outgoing edges from am compared to the product of edges valuations from bω.
In this way, we aim to construct distinct V-interpretations which are “sufficiently
similar” but can still be separated.

Lemma 3.20. There is a family (ℓi)i≥1 of elements in V such that

0 <
∏
i∈N>0

ℓii <
∏
i∈N>0

ℓ
min(i,m)
i

for all m ∈ N>0.
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Proof. We prove the claim for (ℓi)i≥1 where ℓi := exp
(
− 1

2i·i

)
. Note that for each

x ∈ [−1/2, 0]R, we have that exp(x) ∈ [0, 1]R. Hence, (ℓi)i≥1 is a family of elements
in V. Using the fact that

∏V
i∈I exp(ℓi) = exp(

∑R
i∈I(ℓi)) for all (ℓi)i∈I such that

exp(ℓi) ∈ V and the convergence of the geometrical series we obtain that∏
i∈N>0

ℓii =
∏
i∈N>0

exp
(
− 1

2i · i

)i
=

∏
i∈N>0

exp
(
− 1

2i

)

= exp
( R∑
i∈N>0

(
− 1

2i

))

= exp
(
−
( R∑
i∈N

1

2i

)
+ 1

)
= exp(−1) > 0.

Further, for all m ∈ N>0 it holds that∏
i∈N>0

ℓii︸ ︷︷ ︸
>0

=
∏
i∈N>0

ℓ
min(i,m)
i ·

∏
i∈N>0 :
i>m

ℓi−mi

︸ ︷︷ ︸
<1

<
∏
i∈N>0

ℓ
min(i,m)
i ,

which implies the claim.

Consequently, there is a sequence L such that πLA and πLB can be separated by
φ = ∃xψ(x) with ψ(x) = ∀y(x = y ∨ Exy), as

πL,mA [[φ]] = πL,mA [[ψ(am)]] =
∏
i∈N>0

ℓ
min(i,m)
i 6=

∏
i∈N>0

ℓii = πL,ωB [[ψ(bω)]] = πL,ωB [[φ]].

So, for arbitrarily large m ∈ N>0, there are 2-separable V-interpretations πL,mA and
πL,ωB such that Duplicator wins Gm(π

L,m
A , πL,ωB ). Based on πL,mA and πL,ωB , we aim

to construct V-interpretations πLA and πLB which preserve the separability but on
which Duplicator wins G. In order to account for any possible number of turns, πLA
contains all πL,mA as disjoint subgraphs. Since distinct nodes an and am cannot be
duplicated with the same node bω, the V-interpretation πLB does not only contain
πL,ωB as a subgraph, but we additionally include a copy of each πL,mA . In order to
be able to multiply over all outgoing edges of the root nodes without obtaining
0, we add certain additional edges such that πLA(Eaman) = πLA(Ea

mani,j) = 1 for
n 6= m, and the analogous for πLB.
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πLA:

a3

... ... ...

a2
... ...

a1 ...

πLB:

b3

... ... ...

......

b2
... ...

bω

... ... ... . . .

b1 ...

The definition of πLA and πLB ensures that Duplicator wins G, but the sentence
∃xψ(x) with ψ(x) = ∀y(x = y ∨ Exy), which separates each πL,mA and πL,ωB , does
not lead to distinct valuations in πLA and πLB. Due to lemma 3.20, we obtain for all
m ∈ N>0 that

πA[[ψ(a
m)]] = πB[[ψ(b

m)]] =
∏
i∈N>0

ℓ
min(i,m)
i >

∏
i∈N>0

ℓii = πB[[ψ(b
ω)]].

Hence, the additional node bω in πLB does not affect the valuation of ∃xψ(x), which
is why we make a further modification in order to obtain the final counterexample.
Recall the property which ensures the winning of Duplicator in Gm(π

L,m
A , πL,ωB ).

The crucial observation was that for each i ≥ 1, there are equally many edges
labeled with ℓi from am and bω, or at least m from both am and bω. We defined
πLA and πLB such that from each am and bm, there are exactly m edges which are
labeled with ℓm. Adding more such edges by incorporating additional nodes amm,m+j

and bmm,m+j would not violate this property. Hence, under the assumption that the
additional nodes preserve the remaining structure of πLA and πLB, Duplicator still
wins the game G on the resulting V-interpretations. By adding sufficiently many
such edges, we can ensure that the product over all outgoing edges from am is
smaller than exp(−1) and decreases for growing m ∈ N>0. This causes the node
bω to determine the valuation of ∃xψ(x) such that the resulting V-interpretations
can be separated from each other. Making use of these ideas and observations, we
are ready to formally construct the counterexample.
Theorem 3.21. There are V-interpretations πA and πB such that Duplicator wins
G(πA, πB) and πA 6≡2 πB.
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Proof. Let (ℓi)i≥1 be defined by ℓi := exp( 1
2ii
) and let ℓi∞ denote

∏
i∈N>0

ℓ
min(i,m)
i

for each i ≥ 1. We inductively define a function f : N>0 → N>0 as follows. Let
f(1) be the smallest number such that

ℓ1∞ · ℓf(1)1 < exp(−1).

For any i > 1, we define f(i) as the minimum number yielding

ℓi∞ · ℓf(i)i ≤ ℓi−1
∞ · ℓf(i−1)

i−1 .

Since 0 < ℓi < 1 for all i ≥ 1, f is well-defined. Hence, we obtain a chain
ℓ1∞ · ℓf(1)1 ≥ ℓ2∞ · ℓf(2)2 ≥ . . . which is strictly upper bounded by exp(−1). Based
on f and (ℓi)i≥1, we construct V-interpretations πL,fA and πL,fB over the vocabulary
τ = {E} consisting of a binary relation symbol. The universes A and B contain
the following elements.

A = {am : m ∈ N>0} ∪ {ami,j : m ∈ N>0, j ≤ min(i,m)} ∪ {amm,m+j : j ≤ f(m)}
B = {bm : m ∈ N>0} ∪ {bmi,j : m ∈ N>0, j ≤ min(i,m)} ∪ {bmm,m+j : j ≤ f(m)}

∪ {bω} ∪ {bωij : j ≤ i}

The valuations in πL,fA and πL,fB are defined according to the following rules, which
apply to all m,n, i, j ∈ N>0 with m 6= n such that the respective nodes are
contained in A or B.

• πL,fA (Eamami,j) = πL,fB (Ebmbmi,j) = πL,fB (Ebωbωi,j) = ℓi

• πL,fA (Eamani,j) = πL,fB (Ebmbni,j) = πL,fB (Ebωbmi,j) = πL,fB (Ebmbωi,j) = 1

• πL,fA (Eaman) = πL,fB (Ebmbn) = πL,fB (Ebωbm) = πL,fB (Ebmbω) = 1

Further, the negations of the τ -literals over A and B defined above are valuated
with 0. All remaining unnegated τ -literals over A and B are valuated with 0 and
their negations with 1.
Using invariance under partitions of infinitary multiplication, we obtain the fol-
lowing valuations of the formula ψ(x) = ∀y(x = y ∨ Exy).

• πL,fA [[ψ(ami,j)]] = πL,fB [[ψ(bmi,j)]] = πL,fB [[ψ(bωi,j)]] = 0

• πL,fA [[ψ(am)]] = πL,fB [[ψ(bm)]] =
( ∏
i∈N>0

ℓ
min(i,m)
i

)
· ℓf(m)
m = ℓm∞ · ℓf(m)

m

• πL,fB [[ψ(bω)]] =
∏

i∈N>0

ℓii = exp(−1)
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Since we constructed f such that ℓ1∞ · ℓf(1)1 ≥ ℓ2∞ · ℓf(2)2 ≥ . . . is strictly upper
bounded by exp(−1), this implies

πL,fA [[∃xψ(x)]] = ℓ1∞ · ℓf(1)1 < exp(−1) = πL,fB [[∃xψ(x)]],

hence πL,fA 6≡2 π
L,f
B .

In order to construct a winning strategy for Duplicator in the game G(πL,fA , πL,fB ),
let PA := {Ani : n ∈ N>0, i ∈ N} and PB := {Bn

i : n ∈ N>0 ∪ {ω}, i ∈ N} be
partitions of A and B such that An0 = {an} and Ani for i ≥ 1 contains all elements
anij in A. Analogously, Bn

0 = {bn} and Bn
i consists of all elements bnij where

n ∈ N>0 ∪ {ω}. Based on the number of turns m Spoiler chooses in the game
G(πL,fA , πL,fB ), we define a bijection gm : PA → PB as follows.

gm(A
n
i ) :=


Bn
i , n < m

Bω
i , n = m

Bn−1
i , n > m

Duplicator wins the game Gm(π
L,f
A , πL,fB ) by answering any element in Ani with

an arbitrary element in gm(A
n
i ) and every element in Bn

i with any element in
g−1
m (Bn

i ), merely making sure that (in)equalities with regard to the elements that
have already been chosen are respected. This is possible, because for each Ani we
have that |Ani | = |gm(Ani )| or that |Ani | ≥ m and |gm(Ani )| ≥ m.

3.1.3 The Łukasiewicz semiring L

The Łukasiewicz semiring L = ([0, 1]R,max,�, 0, 1) relies on the same set of ele-
ments and uses the same addition as the Viterbi semiring and is thus also idem-
potent and naturally ordered by the usual order on [0, 1]R. Multiplication in L
is defined by k � ℓ = max(k + ℓ − 1, 0), hence L is not multiplicatively idempo-
tent but absorptive. As multiplication decreases elements, we define the infinitary
operations analogous to V. While it immediately follows from theorem 3.5 that
m-equivalence of L-interpretations does not follow from the game Gm in general,
we obtain the same result for the game G and elementary equivalence. In order
to prove this, we make use of the isomorphic variant D = ([0, 1]R,min,⊕, 1, 0) of
L where k ⊕ ℓ = min(a + b, 1) and construct a counterexample which relies on
the same construction as the counterexample for V but uses a different sequence
(ℓi)i≥1.

Proposition 3.22. There are D-interpretations πA and πB such that πA 6≡2 πB,
while Duplicator wins the game G(πA, πB)
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Proof. For each i ≥ 1, let ℓi := 1
2i+1·i . With respect to the usual addition and

multiplication on R, we obtain that∑
i∈N>0

i · ℓi =
∑
i∈N>0

i · 1

2i+1i

=
∑
i∈N>0

1

2i+1

=
(∑
i∈N

1

2i+1

)
− 1

20
− 1

21

= 2− 1− 1

2
=

1

2
.

Further, we can conclude for all m ∈ N>0 that∑
i∈N>0

i · ℓi =
∑
i∈N>0

min(i,m) · ℓi +
∑

i∈N>0 :
i>m

(m− i) · ℓi

︸ ︷︷ ︸
>0

>
∑
i∈N>0

min(i,m) · ℓi.

Hence, every finite subsum of
∑

i∈N>0
i·ℓi and

∑
i∈N>0

min(i,m)·ℓi for eachm ∈ N>0

is upper bounded by 0.5 and thus leads to the same result as multiplication in D,
as 1 is not exceeded. Note that the natural order in D is inverted compared to
the usual order on [0, 1]R, because addition is defined by minimum. Hence, the
infimum over a set of elements in D coincides with the supremum in R and we can
infer that

0.5 =
D∏

i∈N>0

ℓii >
D∏

i∈N>0

ℓ
min(i,m)
i =: ℓm∞,

where the exponents refer to the repeated application of multiplication in D, which
corresponds to addition in R.
Based on the sequence (ℓi)i≥1, we inductively define a function f : N>0 → N>0.
Let f(1) be minimal such that ℓ1∞ ·D ℓf(1)1 > 0.5 and f(i) be the smallest number
such that

ℓi∞ ·D ℓf(i)i ≥ ℓi−1
∞ ·D ℓf(i−1)

i−1

for i ≥ 1. The function f is well-defined, since ℓi > 0 for all i ≥ 1. Hence, we
obtain a non-decreasing sequence ℓ1∞ ·D ℓf(1)1 ≤ ℓ2∞ ·D ℓf(2)2 ≤ . . . which is strictly
lower bounded by 0.5.
We construct D-interpretations πL,fA and πL,fB analogous to the V-interpretations
in the proof of theorem 3.21. It holds that πL,fA 6≡2 π

L,f
B , since

πL,fA [[∃x∀y(x = y ∨ Exy)]] = ℓ1∞ ·D ℓf(1)1 > 0.5 = πL,fB [[∃x∀y(x = y ∨ Exy)]].
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But Duplicator wins the game G(πL,fA , πL,fB ) as described in 3.21.

Despite the similarities of the Łukasiewicz semiring and the Viterbi semiring,
elementary equivalence of finite L-interpretations does not imply isomorphism,
as it is the case for V. This is mainly due to the fact that, in contrast to V,
L does not admit cancellation. In the counterexample given in [GM21], Spoiler
already wins the game G1, which illustrates that neither G1 nor G is appropriate
for proving m-equivalence or elementary equivalence of L-interpretations, even if
they are finite.

Proposition 3.23. There are finite L-interpretations πA and πB such that Spoiler
wins G1(πA, πB) and πA ≡ πB.

It is noticeable that neither of the implications concerning the games Gm and G
for capturing m-equivalence and elementary equivalence applies to the semirings
V and L. This is connected to the property that both V and L are idempotent but
not multiplicatively idempotent. On the one hand, multiple occurrences of certain
valuations affect the semantics of a universally quantified formula which causes
Duplicator to win more often than desired. But at the same time, idempotence
decreases the expressive power of the logic such that distinct valuations may lead
to the winning of Spoiler, although they do not affect the valuation of any formula.

3.1.4 The Semiring N∞

Unlike the semirings considered previously, the semiring N∞ = (N∪{∞},+, ·, 0, 1)
is not idempotent. It extends the natural semiring N by the element ∞, ensuring
that infinitary operations are admitted. The operations on the additional element
are defined by n+∞ = ∞ for all n ∈ N∞ and n·∞ = ∞ for all n ∈ N∞\{0}. Due to
the absence of absorption, multiplication is not decreasing. In fact, multiplication
is increasing on N∞ \ {0}, which is why we consider the supremum both of the
finite subsums and subproducts as infinitary operations.
In the previous sections, we showed that the winning of Duplicator in G ensures el-
ementary equivalence for min-max semirings, which are fully idempotent, whereas
this is not true for V and L. This observation suggests that full idempotence might
not only characterize the class of semirings for which m-equivalence is implied by
Duplicator winning Gm but also the semirings in which elementary equivalence
follows from G. However, the semiring N∞ illustrates that, although neither of
the operations is idempotent, yet a winning strategy for Duplicator in G is suf-
ficient for proving elementary equivalence. Hence, in the case of N∞, applying
the Ehrenfeucht-Fraïssé game to show equivalence fails at the relation between

58



CHAPTER 3. TRANSFERABILITY OF THE CLASSICAL GAMES

the number of turns and the quantifier rank only. This is mainly based on two
observations. First, there is only one element corresponding to infinity, so a sep-
arating formula must always evaluate to a natural number in at least one of the
N∞-interpretations. Moreover, if a sum evaluates to a natural number k, then
there can be at most k non-zero summands. Analogously, if we consider a product
evaluating to k > 0, then there are at most k factors other than 1. This makes it
possible for Spoiler to eliminate each quantifier in a separating formula by drawing
at most k elements if the separating formula evaluates to a number smaller than k
in at least one of the interpretations. So, in order to inductively construct Spoiler’s
winning strategy, we make use of an invariant stating that one of the valuations
of the separating formula is kept small. Due to the fact that both addition and
multiplication are increasing on N∞ \ {0}, this invariant can be propagated to the
separating subformulae.

Theorem 3.24. Let πA and πB be N∞-interpretations, ā = (a1, . . . , an) ∈ An,
b̄ = (b1, . . . , bn) ∈ Bn and k ∈ N>0. If there is a separating formula φ(x̄)
with qr(φ(x̄)) ≤ m such that πA[[φ(ā)]] < k or πB[[φ(b̄)]] < k, then Spoiler wins
Gk·m(πA, ā, πB, b̄).

Proof. We show the claim by induction on the structure of φ(x̄) for all ā, b̄ and k
at the same time.
Case 1. In case φ(x̄) is a literal, it follows immediately that σ : ai 7→ bi cannot be
a local isomorphism and Spoiler wins the game G0(πA, ā, πB, b̄).
Case 2. If φ(x̄) = φ1(x̄) ∨ φ2(x̄) with qr(φ(x̄)) ≤ m, assume w.l.o.g. that
πA[[φ(ā)]] < k. Since addition is increasing in N∞, it must hold that πA[[φ1(ā)]] < k
and πA[[φ2(ā)]] < k. Moreover, πA[[φ(ā)]] 6= πB[[φ(b̄)]] implies πA[[φi(ā)]] 6= πB[[φi(b̄)]]
for some i ∈ {1, 2}. Applying the induction hypothesis to φi(x̄) yields that Spoiler
wins Gkm(πA, ā, πB, b̄).
Case 3. If φ(x̄) = φ1(x̄) ∧ φ2(x̄) such that qr(φ(x̄)) ≤ m, assume again that
πA[[φ(ā)]] < k. If πA[[φ1(ā)]] < k and πA[[φ2(ā)]] < k, the reasoning from case 2
can be transferred. Otherwise, πA[[φi(ā)]] = 0 must hold for some i ∈ {1, 2}. Since
φ(x̄) separates (πA, ā) and (πB, b̄) by assumption, we have that πB[[φi(b̄)]] 6= 0.
Hence, φi(x̄) is separating as well and the induction hypothesis can be applied, so
Spoiler wins Gkm(πA, ā, πB, b̄).
Case 4. For φ(x̄) = ∃xψ(x̄, x) such that qr(φ(x̄)) ≤ m, suppose w.l.o.g. that
πA[[φ(ā)]] < πB[[φ(b̄)]] and let A′ := {a ∈ A : πA[[ψ(ā, a)]] > 0}. It holds that
|A′| < k, since πA[[φ(ā)]] < k by assumption. In the game Gkm(πA, ā, πB, b̄),
Spoiler successively draws all elements a ∈ A′. If Duplicator manages to find for
each a ∈ A′ a unique duplicate b ∈ B such that πA[[ψ(ā, a)]] = πB[[ψ(b̄, b)]], then
there must be an (|A′| + 1)-th element in b ∈ B with πB[[ψ(b̄, b)]] > 0, because
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πA[[φ(ā)]] < πB[[φ(b̄)]]. Hence, if Duplicator was able to duplicate all previous
choices, Spoiler additionally chooses such b ∈ B afterwards. In both cases, the
strategy results in a position (a1, . . . , an+ℓ, b1, . . . bn+ℓ) where ℓ ≤ k such that there
is some 1 ≤ i ≤ ℓ with πA[[ψ(ā, an+i)]] 6= πB[[ψ(b̄, bn+i)]]. Since πA[[φ(ā)]] < k
by assumption, it holds that πA[[ψ(ā, a)]] < k for all a ∈ A and the induction
hypothesis can be applied to ψ(x̄, x) with instantiations (ā, an+i) and (b̄, bn+i). We
obtain that Spoiler wins the game Gk(m−1)(πA, ā, an+i, πB, b̄, bn+i). As ℓ ≤ k, this
implies that Spoiler also wins the remaining subgame.
Case 5. If φ(x̄) = ∀xψ(x̄, x) such that qr(φ(x̄)) ≤ m, again suppose that
πA[[φ(ā)]] < πB[[φ(b̄)]]. If πA[[φ(ā)]] 6= 0, the reasoning is analogous to case 4,
since multiplication is increasing on N∞ \ {0}. The only difference is that the set
A′ := {a ∈ A : πA[[ψ(ā, a)]] > 1} has to be considered. Otherwise, there must be
some a ∈ A such that πA[[ψ(ā, a)]] = 0, whereas πB[[ψ(b̄, b)]] 6= 0 for all b ∈ B, as
πB[[φ(b̄)]] > 0. In the game Gkm(πA, ā, πB, b̄), Spoiler picks this element a ∈ A such
that ψ(x̄, x) is valuated with 0 in πA. For any possible answer b ∈ B, the formula
ψ(x̄, x) separates (πA, ā, a) from (πB, b̄, b) and πA[[ψ(ā, a)]] = 0 < k. Applying
the induction hypothesis yields that Spoiler wins the game Gk(m−1)(πA, ā, πB, b̄).
As Spoiler only picked one element in his strategy for Gkm(πA, ā, πB, b̄), at least
k(m− 1) moves are left and he wins the remaining subgame as well.

Consequently, the number of turns required to eliminate the quantifiers within a
separating sentence φ can be bounded by some k ∈ N. Note that the bound k
depends on φ and the N∞-interpretations the game is played on, i.e., there is no k ∈
N such that for all N∞-interpretations πA and πB, Duplicator winning Gkm(πA, πB)
implies πA ≡m πB. For instance, we can associate with each k ∈ N>0 the N∞-
interpretations πkA and πk+1

B over τ = ∅ with universes A = {ai : i ∈ N, i < k} and
B = {bi : i ∈ N, i < k + 1}. Then, Duplicator clearly wins Gk(π

k
A, π

k+1
B ) for each

k ∈ N>0 despite 1-separability, as πkA[[∃x(x = x)]] = k 6= k + 1 = πk+1
B [[∃x(x = x)]].

Yet, we can conclude that full idempotence is a sufficient but not a necessary
condition for the existence of a winning strategy for Duplicator in G implying
elementary equivalence.

Corollary 3.25. If Duplicator wins the game G(πA, πB) on N∞-interpretations
πA and πB, then πA and πB must be elementarily equivalent.

On the other hand, it can be shown that semiring semantics lacks the ability to
distinguish between infinite N∞-interpretations, even if they do not share a single
valuation greater than 1. For proving this claim, we make use of the semiring N≤2

which coincides with N∞ but is cut off at 2. In order to argue via the fundamental
property, we apply the following lemma to prove that N≤2 is a semiring.
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Lemma 3.26. Let K = (K,+K, ·K, 0K, 1K) and L = (L,+L, ·L, 0L, 1L) be algebraic
structures and h : K → L a surjective homomorphism between K and L. If K is a
commutative semiring and 0L 6= 1L, then L must also be a commutative semiring.

Proof. Let ℓ1, ℓ2, ℓ3 ∈ L and k1, k2, k3 ∈ K arbitrary such that h(ki) = ℓi for
i ∈ {1, 2, 3}. (L,+L, 0L) is a commutative monoid, because

(1) (ℓ1 +L ℓ2) +
L ℓ3 = (h(k1) +

L h(k2)) +
L h(k3) = h((k1 +K k2) +

K k3) =
h(k1 +

K (k2 +
K k3)) = h(k1) +

L (h(k2) +
L h(k3)) = ℓ1 +

L (ℓ2 +
L ℓ3),

(2) ℓ1 +
L ℓ2 = h(k1) +

L h(k2) = h(k1 +
K k2) = h(k2 +

K k1) = h(k2) +
L h(k1) =

ℓ2 +
L ℓ1,

(3) ℓ1 +
L 0L = h(k1) +

L h(0K) = h(k1 +
K 0K) = h(k1) = ℓ1.

The same reasoning can be transferred to (L, ·L, 1L), which has to be a commu-
tative monoid as well. Moreover, 0L must be annihilating and ·L distributes over
+L, as

(1) ℓ1 ·L 0L = h(k1) ·L h(0K) = h(k1 ·K 0K) = h(0K) = 0L and

(2) ℓ1 ·L (ℓ2 +
L ℓ3) = h(k1) ·L (h(k2) +

L h(k3)) = h(k1 ·K (k2 +
K k3)) = h(k1k2 +

K

k1k3) = h(k1)h(k2) +
L h(k2)h(k3) = ℓ1ℓ2 +

L ℓ1ℓ3.

Hence, L must be a commutative semiring as well.

Lemma 3.27. The algebraic structure N≤2 = ({0, 1, 2},+N≤2 , ·N≤2 , 0, 1) with op-
erations defined by a +N≤2 b = min(a +N∞

b, 2) and a ·N≤2 b = min(a ·N∞
b, 2) is a

commutative semiring.

Proof. The mapping h : N∞ → N≤2 defined by h : n 7→ min(n, 2) is a homomor-
phism, because h(0) = min(0, 2) = 0, h(1) = min(1, 2) = 1 and

h(n ⋆N
∞
m) = min(n ⋆N

∞
m, 2)

= min(min(n, 2) ⋆N
∞
min(m, 2), 2) = h(n) ⋆N≤2 h(m)

for ⋆ ∈ {+, ·}. Since N∞ is a commutative semiring, h is surjective and the neutral
elements do not coincide in N≤2, we can apply lemma 3.26 and infer that N≤2 is a
commutative semiring.

The infinitary operations we associate with N≤2 are, analogous to those in N∞,
defined by the supremum of the finite subsums and subproducts. This definition
causes the homomorphism h from N∞ to N≤2 to be compatible with the infinitary
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operations and enables the application of the fundamental property to infinite N∞-
interpretations and h. A crucial property of N∞ we can make use of in order to
derive a method for proving elementary equivalence of infinite N∞-interpretations
is that infinite sums and products in N∞ always evaluate to ∞ if infinitely many
summands/factors are greater than 1. This allows us to collapse the precise val-
uations > 1 in N∞-interpretations πA and πB by making sure that if a valuation
πA[[ψ(a)]] > 1 or πB[[ψ(b)]] > 1 occurs, then πA[[ψ(a

′)]] > 1 and πB[[ψ(b
′)]] > 1

applies to infinitely many a′ ∈ A and b′ ∈ B.

Proposition 3.28. Let πA and πB be N∞-interpretations and h : N∞ → N≥2 with
n 7→ min(n, 2). If the universes of πA and πB can be partitioned into infinite sets
{Ai : i ∈ I} and {Bi : i ∈ I} such that for each i ∈ I

(h ◦ πA, a) ≡ (h ◦ πA, a′) ≡ (h ◦ πB, b) ≡ (h ◦ πB, b′)

for all a, a′ ∈ Ai and b, b′ ∈ Bi, then it must hold that πA ≡ πB.

Proof. Let πA, πB and partitions {Ai : i ∈ I} and {Bi : i ∈ I} be given as above.
Applying the fundamental property yields for each i ∈ I that

(1) πA[[ψ(a)]] = 0 ⇔ πA[[ψ(a
′)]] = 0 ⇔ πB[[ψ(b)]] = 0 ⇔ πB[[ψ(b

′)]] = 0,

(2) πA[[ψ(a)]] = 1 ⇔ πA[[ψ(a
′)]] = 1 ⇔ πB[[ψ(b)]] = 1 ⇔ πB[[ψ(b

′)]] = 1 and

(3) πA[[ψ(a)]] ≥ 2 ⇔ πA[[ψ(a
′)]] ≥ 2 ⇔ πB[[ψ(b)]] ≥ 2 ⇔ πB[[ψ(b

′)]] ≥ 2

for all formulae ψ(x) ∈ FO(τ) and all a, a′ ∈ Ai and b, b′ ∈ Bi. This implies for
each i ∈ I and all formulae ψ(x) that∑

a∈Ai

πA[[ψ(a)]] =
∑
b∈Bi

πB[[ψ(b)]] and
∏
a∈Ai

πA[[ψ(a)]] =
∏
b∈Bi

πB[[ψ(b)]],

since each Ai and Bi is infinite. Due to invariance under partitions, this implies
πA[[φ]] = πB[[φ]] for all sentences φ = Qxψ(x) with Q ∈ {∃, ∀}. If πA and πB were
not elementarily equivalent, they would be separable by a sentence of this form
due to lemma 2.19 and the fact that each literal contains a variable, which must
be quantified in a sentence. Hence, it must hold that πA ≡ πB.

We apply this method in order to show that N∞-interpretations can be ele-
mentarily equivalent, although Spoiler wins the game G, or even G1. For in-
stance, we can fix arbitrary infinite N∞-interpretations πA and πB over τ = {R}
where R is a unary relation symbol such that πA(Ra) ≥ 2, πB(Rb) ≥ 2 and
πA(¬Ra) = πB(¬Rb) = 0 for all a ∈ A and b ∈ B. This ensures

(h ◦ πA, a) ∼= (h ◦ πA, a′) ∼= (h ◦ πB, b) ∼= (h ◦ πB, b′)
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for all a, a′ ∈ A and b, b′ ∈ B. By the isomorphism lemma, we can apply proposi-
tion 3.28 without partitioning A and B into smaller sets. We obtain that πA ≡ πB,
independent of whether πA and πB share even a single valuation with regard to R.

Corollary 3.29. There are N∞-interpretations πA and πB such that Spoiler wins
G1(πA, πB) and πA ≡ πB.

3.1.5 Polynomial Semirings

Finally, we analyze the applicability of the games Gm and G to interpretations
which label the atomic facts with polynomials. More precisely, we examine the
semirings PosBool[X],W[X], B[X] as well as S[X] for finite sets X of variables and
postpone the semiring N[X] to a detailed discussion within the subsequent section.
Recall that only PosBool[X] and W[X] admit infinitary operations. Hence, we only
consider finite B[X]- and S[X]-interpretations and take into account the extended
semirings B∞[[X]] and S∞[X], which admit infinitary operations, if the finiteness
of the interpretations affects the transferability of the games.
Crucial for the applicability of the game Gm as a method to prove m-equivalence
is that PosBool[X] is the only considered polynomial semiring which is fully idem-
potent. While the absence of multiplicative idempotence in both B[X] and S[X]
readily follows from inequalities such as x2 6= x, it seems counterintuitive for the
semiring W[X], which emerges from B[X] through collapsing exponents. As an
example, we obtain (x+ y) · (x+ y) = x+ xy + y 6= x+ y in W[X], which proves
that multiplicative idempotence is not fulfilled. Hence, m-equivalence is implied
by Duplicator winning Gm for PosBool[X]-interpretations only, which also yields
that elementary equivalence of PosBool[X]-interpretations follows from the game
G. As observed for the semiring N∞ in the previous section, full idempotence
is not necessary for elementary equivalence to be implied by Duplicator winning
the game G. Therefore, this implication remains to be analyzed for the other
polynomial semirings.
In this context, W[X] is of particular interest, as the semiring differs in the ap-
plicability of the game G for proving elementary equivalence from the semirings
discussed previously. Even though W[X] is not fully idempotent, W[X] is idem-
potent and fulfills a weakened form of multiplicative idempotence. As an example,
we observe for the polynomial x+ y that (x+ y)3 = x+ xy + y = (x+ y)2, which
implies (x + y)2 = (x + y)2+n for all n ∈ N. This observation can be generalized
to arbitrary polynomials in W[X] as follows.

Lemma 3.30. For any polynomial p ∈ W[X], it holds that
∏

i∈I p =
∏

j∈J p for
all index sets I, J with |I| ≥ |X| and |J | ≥ |X|.
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Proof. Due to distributivity and the definition of infinitary multiplication in W[X],
we can write

∏
i∈I p for each p ∈ W[X] and each set I as∏

i∈I

p =
∑

(mi)i∈I :
mi∈p

∏
i∈I

mi.

Since a monomial in W[X] is a subset of X and multiplication of monomials
corresponds to their union, we obtain for all I such that |I| ≥ X∏

i∈I

p =
∑
p′⊆p :
|p′|≤|I|

∏
m∈p′

m =
∑
p′⊆p :
|p′|≤|X|

∏
m∈p′

m,

which implies the claim.

Recall that for fully idempotent semirings, it is possible to construct a winning
strategy for Spoiler based on a separating formula, as unequal sums and products
can always be attributed to unequal sets of summands or factors. Since W[X] is
not multiplicatively idempotent, it does not hold for all families (pi)i∈I and (qj)j∈J
of polynomials in W[X] that {pi : i ∈ I} = {qj : j ∈ J} implies

∏
i∈I pi =

∏
j∈J qj.

Hence, a universal quantifier in a separating formula cannot be eliminated within
a single turn. However, lemma 3.30 enables the formulation of a weakened form
of this implication, which ensures that Spoiler has a strategy to eliminate any
universal quantifier in at most |X| turns.

Corollary 3.31. Let (pi)i∈I and (qj)j∈J be families of polynomials in W[X] where
X is a finite variable set. It must hold that

∏
i∈I pi =

∏
j∈J qj if for all p ∈ W[X]

|{i ∈ I : pi = p}| = |{j ∈ J : qj = p}| or
|{i ∈ I : pi = p}| ≥ |X| and |{j ∈ J : qj = p}| ≥ |X|.

Note that we made a similar observation for any semiring in which the infinitary
operations emerge from the finite operations by considering the supremum or infi-
mum. Due to the fact that different infinite cardinalities are not distinguished by
this definition of the infinitary operations, in any such semiring sums and prod-
ucts must coincide if they share the same finite subfamilies of summands/factors.
Although this allows Spoiler to eliminate each quantifier in a separating formula
via finitely many turns, this property does not suffice in general for ensuring ele-
mentary equivalence if Duplicator wins G, as we proved for the semirings V and
L. But in the case of W[X], we can further bound the number of required turns by
|X|. Intuitively, we derived that semirings with appropriate infinitary operations
do not admit “counting beyond ω”, whereas W[X], in particular, does not even
enable “counting further than |X|”.
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Theorem 3.32. Let πA and πB be W[X]-interpretations where X is a finite set
of variables. Further, let ā = (a1, . . . , an) ∈ An and b̄ = (b1, . . . , bn) ∈ Bn. If
(πA, ā) 6≡m (πB, b̄), then Spoiler wins the game G|X|·m(πA, ā, πB, b̄).

Proof. The claim can be shown by induction on the structure of φ(x̄). We only
consider the case φ(x̄) = ∀xψ(x̄, x) explicitly, as the remaining cases are anal-
ogous to the proof of theorem 3.5. Since φ(x̄) separates (πA, ā) from (πB, b̄) by
assumption, it holds that∏

a∈A

πA[[ψ(ā, a)]] 6=
∏
b∈B

πB[[ψ(b̄, b)]].

With 3.31, this implies that there is some ℓ ≤ |X| and elements an+1, . . . , an+ℓ ∈ A
(or bn+1, . . . , bn+ℓ ∈ B) such that for all bn+1, . . . , bn+ℓ ∈ B (or an+1, . . . , an+ℓ ∈ A,
respectively) it holds that πA[[ψ(ā, an+i)]] 6= πB[[ψ(b̄, bn+i)]] for some 1 ≤ i ≤ ℓ. In
the game G|X|·m(πA, ā, πB, b̄) where m = qr(φ(x̄)), Spoiler can pick such ℓ elements
in any order. Independent of Duplicator’s answers, the induction hypothesis can
be applied to the formula ψ(x̄, x) and instantiations (ā, an+i) and (b̄, bn+i). Hence,
Spoiler wins G|X|(m−1)(πA, ā, an+i, πB, b̄, bn+i). Since ℓ ≤ |X|, Spoiler wins the
remaining subgame in particular.

Corollary 3.33. If Duplicator wins the game G(πA, πB) on W[X]-interpretations,
then it holds that πA ≡ πB.

Note that the number of turns Spoiler chooses in his winning strategy only depends
on the number of variables and the quantifier rank of the separating formula. In
particular, it does not depend on the W[X]-interpretations the game is played on,
unlike observed for the semiring N∞.
If only finite interpretations are considered, it immediately follows from the iso-
morphism lemma that elementary equivalence is implied by the winning of Du-
plicator in the game G. Hence, we next examine whether this implication can
be lifted to the semirings B∞[[X]] and S∞[X], which extend B[X] and S[X] and
admit infinitary operations. Since the polynomials in B∞[[X]] and S∞[X] contain
exponents, infinitely many polynomials can be generated by a single polynomial in
the underlying monoids (B∞[[X]], ·, 1) and (S∞[X], ·, 1). Hence, the proof for W[X]
cannot be transferred to B∞[[X]] and S∞[X]. In fact, we can find a counterexample
in B∞[[X]].

Proposition 3.34. There are B∞[[{x}]]-interpretations πA and πB such that Du-
plicator wins G(πA, πB) and πA 6≡2 πB.
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Proof. We construct B∞[[{x}]]-interpretations π8
A and π8

B over vocabulary τ = {E}
where E is a binary relation symbol. The universes consist of elements

A = {an : n ∈ N>0} ∪ {ani : n, i ∈ N>0, n ≥ i} and
B = {bn : n ∈ N>0} ∪ {bni : n, i ∈ N>0, n ≥ i} ∪ {bω} ∪ {bωi : i ∈ N>0}.

Further, the valuations of the {E}-literals over A and B are defined according to
the following rules. Let m,n, i ∈ N>0 such that the following nodes are contained
in A or B, respectively.

• π8
A(Ea

nani ) = π8
B(Eb

nbni ) = x and π8
B(Eb

ωbωi ) = x

• π8
A(Ea

nam) = π8
B(Eb

nbm) = 1 and π8
B(Eb

ωbn) = π8
B(Eb

nbω) = 1

• π8
A(Ea

nami ) = π8
B(Eb

nbmi ) = 1 if n 6= m and π8
B(Eb

ωbni ) = π8
B(Eb

nbωi ) = 1

The corresponding negated {E}-literals over A and B are valuated with 0. All
remaining unnegated {E}-literals over A and B are valuated with 0 and their
negations with 1.

π8
A: π8

B:a1 a11

a2
a21
a22

a3

a31

a32

a33...

x

x

x

x

x
x

b1 b11

b2
b21
b22

b3

b31

b32

b33...

x

x

x

x

x
x

...

bω

bω1

bω2

bω3

x

x
x

It holds that π8
A 6≡2 π

8
B, because

πA[[∃x∀yExy]] = x+ x2 + x3 + . . . 6= x+ x2 + x3 + · · ·+ x∞ = πB[[∃x∀yExy]].

In order to show that Duplicator wins the game G(π8
A, π

8
B), we construct a partition

PA = {An1 , An2 : n ∈ N>0} of A and PB = {Bn
1 , B

n
2 : n ∈ N>0 ∪{ω}} of B. Each An1

and Bn
1 is a singleton consisting of the node an or bn, respectively. Analogously,

Bω
1 := {bω}, while the sets An2 and Bn

2 contain all nodes ani and bni and Bω
2 consists

of all bωi . For each m ∈ N>0, we define a bijective mapping gm : PA → PB by

gm(A
n
i ) :=


Bn
i , n < m

Bω
i , n = m

Bn−1
i , n > m

.
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Duplicator wins the game G(π8
A, π

8
B) as follows. Let m be the number of turns

Spoiler chooses. Whenever Spoiler draws an element a ∈ Anj , she answers with
some b ∈ gm(A

n
j ). Analogously, each b ∈ Bn

j is answered with some a ∈ g−1
m (Bn

j ).
Thereby, Duplicator only has to make sure that equalities with regard to the
previously chosen elements are respected. Since |Anj | = |gm(Anj )|, or both |Anj | ≥ m
and |gm(Anj )| ≥ m for each Anj ∈ PA, this can be realized for m turns and any
resulting position must induce a local isomorphism.

Hence, moving from polynomials to formal power series enables the construction of
separable B∞[[X]]-interpretations on which Duplicator wins the game G, even if X
only contains a single variable. It is noticeable that the counterexample also applies
to N∞

∞[[X]]. In the semiring S∞[X] however, the monomial x1 would absorb all other
monomials in the valuations of ∃x∀xExy, so it is not possible to construct an
analogous counterexample for S∞[X]. Similar to our observations with respect to
N∞, it can be shown that a winning strategy for Duplicator in G implies elementary
equivalence of S∞[X]-interpretations, while the number of required moves depends
on the S∞[X]-interpretations in question. Since S∞[X] is idempotent, Spoiler can
eliminate any existential quantifier within a separating formula in a single turn.
This does not hold for universal quantifiers, but we can make use of a similar
invariant as in the proof for N∞. Recall that the multiplication in S∞[X] is defined
as ∏

i∈I

pi =
∑

(mi)i∈I :
mi∈pi

∏
i∈I

mi,

where mi ∈ pi is supposed to indicate that the monomial mi occurs in pi. In par-
ticular, this implies that mi is maximal with respect to the absorption order com-
pared to the remaining monomials in pi. Suppose that the valuation πA[[∀xψ(x)]]
for some formula ψ(x) contains the monomial xny∞ where n ∈ N. Then, for each
a ∈ A there must be a monomial ma in πA[[ψ(a)]] such that xny∞ =

∏
a∈Ama.

From the exponent n of x we can conclude that there are at most n elements
a ∈ A such that ma assigns x a non-zero exponent. Thus, Spoiler can eliminate
the universal quantifier in at most n + 1 turns, similar to his winning strategy
for N∞-interpretations. This is why we incorporate an invariant in the induction
which states that a monomial must be contained in the valuations of the separat-
ing formula whose exponents remain small. Moreover, we need to make sure that
we fix a monomial with minimal exponents, analogous to the requirement that
Spoiler draws elements in the N∞-interpretation with the smaller valuation of the
separating formula in the proof of theorem 3.24. In order to formalize this, we
write m ≽Y m

′ for monomials m,m′ in S∞[X] and Y ⊆ X if m(y) ≤ m′(y) for all
y ∈ Y where m(y) and m′(y) denote the exponent of the variable y in m and m′.
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Theorem 3.35. Fix some k ∈ N>0. Let πA and πB be S∞[X]-interpretations with
elements ā = (a1, . . . , an) ∈ An and b̄ = (b1, . . . , bn) ∈ Bn. Further, let φ(x̄) be a
formula with πA[[φ(ā)]] =: pA 6= pB := πB[[φ(b̄)]] such that pA = 0 or pB = 0, or
such that there is a monomial m contained in one of pA and pB and a non-empty
set Y ⊆ {x ∈ X : m(x) 6= ∞} satisfying

(1)
∑
y∈Y

m(y) < k and

(2) m′ 6≽Y m for all monomials m′ contained in the other polynomial.

Then, Spoiler has a winning strategy for the game Gk·m(πA, ā, πB, b̄) where m is
the quantifier rank of φ(x̄).

Proof. We show the claim by induction on the structure of φ(x̄).
Case 1. If φ(x̄) is a literal, it follows from the fact that φ(x̄) is separating that
the current position does not induce a local isomorphism. Thus, Spoiler wins the
game G0(πA, ā, πB, b̄).
Case 2. Suppose that φ(x̄) = φ1(x̄) ∨ φ2(x̄) with qr(φ(x̄)) = m. If either
πA[[φ(ā)]] or πB[[φ(b̄)]] is empty, say πA[[φ(ā)]] = 0, then we can conclude that
πA[[φ1(ā)]] = πA[[φ2(ā)]] = 0, whereas πB[[φi(b̄)]] 6= 0 for some i ∈ {1, 2}. As
φi(x̄) separates (πA, ā) from (πB, b̄) and is valuated with 0 by one of the inter-
pretations, the induction hypothesis can be applied and we obtain that Spoiler
wins Gkm(πA, ā, πB, b̄). Otherwise, there must be a monomial m and a set Y of
variables satisfying conditions (1) and (2). Assume w.l.o.g. that m ∈ πA[[φ(ā)]].
Then, m must be contained in πA[[φi(ā)]] for some i ∈ {1, 2}. Any monomial m′

in πB[[φi(b̄)]] must either be part of πB[[φ(b̄)]] or be absorbed by some monomial
m′′ in πB[[φ(b̄)]]. Since m′′ 6≽Y m by assumption and m′′ ≽ m′, both cases yield
m′ 6≽Y m. In particular, this yields m 6∈ πB[[φi(b̄)]], so φi(x̄) separates (πA, ā) from
(πB, b̄). Hence, the induction hypothesis can be applied to φi(x̄) with m and Y
fulfilling (1) and (2) and we obtain that Spoiler wins the game Gkm(πA, ā, πB, b̄).
Case 3. Suppose that φ(x̄) = φ1(x̄)∧φ2(x̄) with qr(φ(x̄)) = m. If either πA[[φ(ā)]]
or πB[[φ(b̄)]] is empty, say πA[[φ(ā)]] = 0, then it must hold that πA[[φi(ā)]] = 0
for some i ∈ {1, 2}, whereas πB[[φi(b̄)]] 6= 0. Hence, the induction hypothesis can
be applied to φi(x̄) and we obtain that Spoiler wins the game Gkm(πA, ā, πB, b̄).
Otherwise, there must be a monomial m and a set Y of variables satisfying the
conditions above. Assume w.l.o.g. that m ∈ πA[[φ(ā)]]. Then, there is some
m1 ∈ πA[[φ1(ā)]] and m2 ∈ πA[[φ2(ā)]] such that m = m1 ·m2. Since multiplication
of monomials is defined by summation of their exponents, property (1) with regard
to Y is clearly fulfilled by both m1 and m2. Suppose there were m′

1 ∈ πB[[φ1(b̄)]]
and m′

2 ∈ πB[[φ2(b̄)]] with m′
1 ≽Y m1 and m′

2 ≽Y m2. Then, m′
1 ·m′

2 ≽Y m1 ·m2,
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so there would be some m′ ∈ πB[[φ(b̄)]] such that m′ ≽Y m, which violates (2).
Hence, for at least one i ∈ {1, 2} it must hold that m′

i 6≽Y mi for all m′
i ∈ πB[[φi(b̄)]],

which already implies that φi(x̄) is separating. Hence, we can apply the induction
hypothesis to φi(x̄) and mi with Y and infer that Spoiler wins Gkm(πA, ā, πB, b̄).
Case 4. Let φ(x̄) = ∃xψ(x̄, x), where qr(φ(x̄)) = m. In case one of πA[[φ(ā)]]
and πB[[φ(b̄)]]) is equal to 0, suppose w.l.o.g. that πB[[φ(b̄)]] 6= 0. This implies
πB[[ψ(b̄, b)]] 6= 0 for some b ∈ B, Spoiler can pick in the game Gkm(πA, ā, πB, b̄).
For all possible answers a ∈ A it must hold that πA[[ψ(ā, a)]] = 0, which is why
the induction hypothesis can be applied to ψ(x̄, x) and the updated position. We
obtain that Spoiler wins Gk(m−1)(πA, ā, a, πB, b̄, b), so in particular, he wins the
remaining subgame Gkm−1(πA, ā, a, πB, b̄, b), since km − 1 ≥ k(m − 1). If both
πA[[φ(ā)]] and πB[[φ(b̄)]] are non-zero, let m and Y be given as in the previous
cases and assume again that m ∈ πA[[φ(ā)]]. Then, there must be some a ∈ A
such that m ∈ πA[[ψ(ā, a)]]. Spoiler can choose this element a ∈ A in the game
Gkm(πA, ā, πB, b̄). If there were some b ∈ B and m′ ∈ πB[[ψ(b̄, b)]] with m′ ≽Y m,
then m′ ∈ πB[[φ(b̄)]] or m′′ ∈ πB[[φ(b̄)]] for some m′′ ≽ m′ must hold. Both cases
contradict condition (2), hence for any possible answer b ∈ B the polynomials
πA[[ψ(ā, a)]] and πB[[ψ(b̄, b)]] have to fulfill condition (1) and (2) with respect to m
and Y , which is why the induction hypothesis can be applied. Spoiler wins the
game Gk(m−1)(πA, ā, a, πB, b̄, b) and, in particular, the remaining subgame.
Case 5. For φ(x̄) = ∀xψ(x̄, x) with qr(φ(x̄)) = m, the case πA[[φ(ā)]] = 0 or
πB[[φ(b̄)]] = 0 is analogous to the previous cases. Hence, let m and Y be witnesses
for condition (1) and (2) and assume that m ∈ πA[[φ(ā)]]. For any a ∈ A, there
must be some ma ∈ πA[[ψ(ā, a)]] such that m =

∏
a∈Ama. Since we assume that∑

y∈Y m(y) < k, there are less than k elements an+1, . . . , an+ℓ ∈ A such that
man+i(y) 6= 0 for some y ∈ Y . Clearly, it holds that

∑
y∈Y man+i(y) < k for all

y ∈ Y and 1 ≤ i ≤ ℓ. In the game Gkm(πA, ā, πB, b̄), Spoiler successively picks
all these elements an+1, . . . , an+ℓ in any order. Let bn+1, . . . , bn+ℓ be Duplicator’s
answers. If there is some 1 ≤ i ≤ ℓ such that for all mbn+i ∈ πB[[ψ(b̄, bn+i)]]
it holds that mbn+i 6≽Y man+i , then the induction hypothesis can be applied to
ψ(x̄, x) and the tuples (ā, an+i) and (b̄, bn+i). We can infer that Spoiler wins
the game Gk(m−1)(πA, ā, an+i, πB, b̄, bn+i) and thus also the remaining subgame,
as ℓ < k. Otherwise, for each 1 ≤ i ≤ ℓ there is some mbn+i ∈ πB[[ψ(b̄, bn+i)]]
such that mbn+i ≽Y man+i . Towards a contradiction, suppose that for each b ∈
B \ {bn+1, . . . , bn+ℓ} there is some mb ∈ πB[[ψ(b̄, b)]] such that mb(y) = 0 for each
y ∈ Y . Then, the monomial m′ =

∏
1≤i≤nmbn+i ·

∏
b∈B\{bn+1,...,bn+ℓ}mb would be

contained in πB[[φ(b̄)]] or absorbed by some monomial included in πB[[φ(b̄)]]. Both
cases violate (2), because m′ ≽Y m. Hence, Spoiler can pick some bn+ℓ+1 such
that for all mbn+ℓ+1

∈ πB[[ψ(b̄, bn+ℓ+1)]] there is some y ∈ Y with mbn+ℓ+1
(y) > 0.
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But for all answers an+ℓ+1 ∈ A \ {an+1, . . . , an+ℓ} we have that man+ℓ+1
(y) = 0

for all y ∈ Y . This is why we can apply the induction hypothesis to ψ(x̄, x) with
instantiations (ā, an+ℓ+1) and (b̄, bn+ℓ+1), as mn+ℓ+1 fulfills (1) and (2) with regard
to Y , and conclude that Spoiler wins the game Gk(m−1)(πA, ā, an+ℓ+1, πB, b̄, bn+ℓ+1),
so the remaining subgame as well, since k(m− 1) ≤ km− ℓ− 1.

It remains to show that the invariant we used to construct the winning strategy
for Spoiler is fulfilled by any sentence φ separating S∞[X]-interpretations πA and
πB.

Lemma 3.36. For any two non-empty distinct polynomials p, q ∈ S∞[X], there is
a monomial m contained in p or q and a non-empty set Y ⊆ {x ∈ X : m(x) 6= ∞}
such that m′ 6≽Y m for all monomials m′ the other polynomial consists of.

Proof. Since p 6= q by assumption, there must be a monomial m which is contained
in one of p and q such that m 6≽ m′ for all monomials m′ in the other polynomial.
Both p and q are non-empty, hence m must assign an exponent n 6= ∞ to some
variable, as the monomial which assigns ∞ to each variable is absorbed by any
monomial. Hence, we can choose Y as the set of variables m assigns an exponent
other than ∞. In this case, m′ 6≽ m implies m′ 6≽Y m for all m′ contained in the
polynomial m is not part of.

Corollary 3.37. Given S∞[X]-interpretations πA and πB, it holds that πA ≡ πB
if Duplicator wins the game G(πA, πB).

Summing up, we derived that PosBool[X] is the only considered polynomial semir-
ing for which Duplicator winning Gm implies m-equivalence, while elementary
equivalence follows from the game G for PosBool[X], W[X] and S∞[X].
As for inferring separability of polynomial interpretations using G or Gm, we
refer to the counterexamples provided in [GM21] which illustrate that elementary
equivalence does not imply isomorphism of finite interpretations in these semirings.
We obtain that neither Gm nor G can be used to show the existence of a separating
sentence for any of the considered polynomial semirings.

Proposition 3.38. For any K ∈ {PosBool[X],W[X],B[X], S[X]} there are finite
K-interpretations πA and πB such that Spoiler wins G1(πA, πB) and πA ≡ πB.

3.2 Bijection and Counting Game

A major observation we derived in the analysis of the standard Ehrenfeucht-Fraïssé
game on K-interpretations is that for k ∈ K, the number of elements a ∈ A
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such that πA[[ψ(a)]] = k can affect both πA[[∃xψ(x)]] and πA[[∀xψ(x)]]. In this
manner, a single quantifier can reflect the number of elements that lead to a certain
semiring valuation, whereas in classical FO, counting can only be accomplished by
nesting quantifiers. This observation gives rise to examining the transferability of
variants of the Ehrenfeucht-Fraïssé game capturing logics which include a counting
mechanism. A well-known variant, the k-pebble bijection game, goes back to Hella
[Hel92] and provides a game-theoretic characterization of elementary equivalence
in Ck, the k-variable fragment of FO with counting quantifiers, on finite structures.
When applying the variant to K-interpretations, we slightly modify the game rules
and do not make use of the notion of pebbles. Instead, we fix the number of moves
at the beginning, as we classify the first-order formulae by their quantifier rank
instead of their width.
Definition 3.39. In the game BGm(πA, πB) on K-interpretations πA and πB, each
play comprises m turns. After the i-th round, some position (a1, . . . , ai, b1, . . . , bi)
is reached and the play proceeds according to BGm−i(πA, a1, . . . , ai, πB, b1, . . . , bi)
as follows: Duplicator has to provide a bijection h : A → B. If such a bijection
does not exist, i.e. |A| 6= |B|, Spoiler wins immediately. Otherwise, Spoiler chooses
some a ∈ A and the pair (a, h(a)) is added to the current position. Duplicator
wins the play if, and only if, the resulting position (a1, . . . , am, b1, . . . , bm) induces
a local isomorphism between πA and πB.

Soundness of BGm. Recall the N-interpretations π1
A and π1

B, on which Spoiler
loses G1 despite separability by ∃xRx. Spoiler has a winning strategy for the game
BG1, as for any bijection h : A→ B, it must hold that {h(a1), h(a2)}∩{b2, b3} 6= ∅.
Hence, Spoiler is able to pick some a ∈ A such that π1

A(Ra) = 1 6= 2 = π1
B(Rh(a)),

which causes him to win BG1(π
1
A, π

1
B).

π1
A :

A R ¬R
a1 1 0
a2 1 0
a3 2 0

h :
→
↛
→

π1
B :

B R ¬R
b1 1 0
b2 2 0
b3 2 0

In this way, the game BGm reflects that the precise number of elements leading to
a certain semiring valuation may ensure the separability by a first-order sentence
in semiring semantics. This allows us to drop the requirement of full idempotence,
which is necessary for the soundness ofGm, and to inferm-equivalence if Duplicator
has a winning strategy for the game BGm for arbitrary semirings K.
Theorem 3.40. Given any semiring K and K-interpretations πA, πB with elements
ā ∈ An and b̄ ∈ Bn, it must hold that (πA, ā) ≡m (πB, b̄) if Duplicator wins the
game BGm(πA, ā, πB, b̄).

71



CHAPTER 3. TRANSFERABILITY OF THE CLASSICAL GAMES

Proof. Let φ(x̄) ∈ FO(τ) be a formula of quantifier rank m with x̄ = (x1, . . . , xn)
such that πA[[φ(ā)]] 6= πB[[φ(b̄)]] for some ā ∈ An and b̄ ∈ Bn. We show by induction
on the structure of φ(x̄) that Spoiler wins the game BGm(πA, ā, πB, b̄).
Case 1. If φ(x̄) is a literal, the current position cannot induce a local isomorphism.
Consequently, Spoiler wins the game BG0(πA, ā, πB, b̄).
Case 2. For φ(x̄) = ψ(x̄) ◦ ϑ(x̄) with ◦ ∈ {∨,∧} and qr(φ(x̄)) = m, we
can infer that one of ψ(x̄) and ϑ(x̄) must already separate (πA, ā) from (πB, b̄).
Thus, it follows immediately from the induction hypothesis that Spoiler wins
BGm(πA, ā, πB, b̄).
Case 3. Let φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀} and qr(φ(x̄)) = m. Towards a
contradiction, suppose there was a bijection h : A→ B such that

πA[[ψ(ā, a)]] = πB[[ψ(b̄, h(a))]]

for all a ∈ A. With invariance under bijections of (infinitary) addition and multi-
plication in K, this would immediately imply∑

a∈A

πA[[ψ(ā, a)]] =
∑
a∈A

πB[[ψ(b̄, h(a))]] =
∑
b∈B

πB[[ψ(b̄, b)]] and∏
a∈A

πA[[ψ(ā, a)]] =
∏
a∈A

πB[[ψ(b̄, h(a))]] =
∏
b∈B

πB[[ψ(b̄, b)]],

contradicting the assumption that φ(x̄) separates (πA, ā) from (πB, b̄). So for any
bijection h Duplicator provides in BGm(πA, ā, πB, b̄), Spoiler can pick some a ∈ A
such that πA[[ψ(ā, a)]] 6= πB[[ψ(b̄, h(a))]]. Thus, the induction hypothesis can be
applied to ψ(x̄, x) and the updated position (ā, a, b̄, h(a)) and we can infer that
Spoiler wins the remaining subgame BGm−1(πA, ā, a, πB, b̄, h(a)).

Completeness of BGm. In section 3.1, we derived that in none of the exam-
ined semirings, a winning strategy for Spoiler in Gm suffices in general to deduce
m-separability. Since moving from Gm to BGm facilitates Spoiler to win, the coun-
terexamples can be transferred and we can conclude that BGm is not appropriate
as a proof method for m-separability, either.
Moreover, when applying BGm instead of Gm to K-interpretations, we are still
encountering issues related to counting but they are shifted to the converse im-
plication, i.e., they affect the completeness instead of the soundness of the game.
The game BGm ensures that Spoiler wins the game played on (πA, ā, πB, b̄) in case
there exists some k ∈ K and a formula ψ(x̄, x) of quantifier rank m− 1 such that
a different number of elements in A and B lead to a valuation of ψ(x̄, x) with
k in (πA, ā) and (πB, b̄), respectively. Thus, the game presumes m-separability
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whenever such k and ψ(x̄, x) exist, which is not appropriate for a multitude of
semirings, in particular if full idempotence is satisfied. As an example, regard the
valuations in the N-interpretations π1

A and π1
B as elements from the min-max semir-

ing K2 := ({0, 1, 2},max,min, 0, 2) induced by the usual order on {0, 1, 2}. Due
to full idempotence, we can apply the game G1 and infer 1-equivalence. However,
Duplicator does not win the game BG1.

Proposition 3.41. For any fully idempotent K and any m ∈ N>0, there are
m-equivalent K-interpretations πA and πB such that Spoiler wins BG1(πA, πB).

Proof. Let πmA and πm+1
B be K-interpretations over the empty vocabulary with

universes A and B such that |A| = m and |B| = m + 1. Clearly, Duplicator wins
the game Gm(π

m
A , π

m+1
B ). Since K is fully idempotent by assumption, this implies

πA ≡m πB. However, Spoiler wins the game BG1(πA, πB), as there is no bijection
from A to B.

An observation to be noted is that whether the existence of k and ψ(x̄, x) with
|{a ∈ A : πA[[ψ(ā, a)]] = k}| 6= |{b ∈ B : πB[[ψ(b̄, b)]] = k}| ensures m-separability of
(πA, ā) and (πB, b̄) does not only depend on the semiring but also on the element k
as well as on the precise number of elements leading to a valuation of ψ(x̄, x) with
k in (πA, ā) and (πB, b̄). In the Viterbi semiring, for instance, multiple occurrences
of the valuations 0 and 1 might not lead to separation compared to any other
valuation in between.

π9
A :

A R ¬R
a1 1 0
a2 1 0
a3 0.5 0

≡1 π9
B :

B R ¬R
b1 1 0
b2 0.5 0

6≡1 π9
C :

C R ¬R
c1 1 0
c2 0.5 0
c3 0.5 0

While π9
A ≡1 π9

B follows from the sufficient criterion for 1-equivalence of V-
interpretations relying on a single unary relation symbol, which we derived in
proposition 3.13, π9

B and π9
C are separable by ∀xRx. For any element k in the

Viterbi semiring, we either obtain k2 = k or kn 6= k for any k ∈ V, i.e., each ele-
ment either behaves like in a fully idempotent semiring, or it never generates the
same element via distinct exponent. By contrast, we observed, for example, for
the polynomial semiring W[X] that p|X|+n = p|X| is true for each n ∈ N, although
multiplicative idempotence is not fulfilled. As we showed that a winning strategy
for Duplicator in G|X|·m implies m-equivalence, we can observe in the subsequent
example, where X = {x, y}, that the precise number of occurrences of semiring
valuations might be crucial for m-equivalence.
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π10
A :

A R ¬R
a1 x+ y 0

6≡1 π
10
B :

B R ¬R
b1 x+ y 0
b2 x+ y 0

≡1 π
10
C :

C R ¬R
c1 x+ y 0
c2 x+ y 0
c3 x+ y 0

Intuitively, the classical Ehrenfeucht-Fraïssé game relies on the assumption that
counting cannot be realized at all in the logic to be captured. On the contrary,
we assume when applying the bijection game to K-interpretations that counting
semiring valuations is possible to the full extent. However, neither of the assump-
tions is justified for first-order logic with semiring semantics, as different semirings
might exhibit more complex behaviors in between, which constitutes a main dif-
ficulty in search of a game-theoretic characterization. For instance, only certain
semiring elements might admit counting, or counting might only be realizable up
to a certain bound, as illustrated by the previous examples.
In order to partially account for this observation, the winning condition of the
bijection game can be extenuated by incorporating a bound up to which the con-
sidered semiring admits counting. We formalize the existence of such a bound
by introducing the notion of κ-idempotence for cardinal numbers κ, which can be
considered a weakened form of full idempotence.

Definition 3.42. A semiring K is said to be κ-idempotent where κ ∈ Cn is a
cardinal number if for each k ∈ K it holds that∑

i∈I

k =
∑
j∈J

k and
∏
i∈I

k =
∏
j∈J

k

for all index sets I, J such that |I| ≥ κ and |J | ≥ κ.

As an example, each semiring with infinitary operations emerging from the finite
operations by applying supremum or infimum is ω-idempotent. Further, we have
shown in section 3.1.5 that W[X] is |X|-idempotent in order to prove that a winning
strategy for Duplicator in G|X|·m implies m-equivalence and thus that elementary
equivalence is ensured if Duplicator wins G. Yet, we can derive a more general
result relying on κ-idempotence, so a game which Duplicator wins more often than
BGm or Gκm but which still ensures m-equivalence. To this end, we adjust the
counting game introduced in [IL90] by Immerman and Lander, which also captures
the logic Ck on finite classical structures.

Definition 3.43. Let κ ∈ Cn be a cardinal number. After the i-th of m turns
in the game CGκ

m(πA, πB), the play is at position (a1, . . . , ai, b1, . . . , bi). In the re-
maining subgame, which is denoted as CGκ

m−i(πA, a1, . . . , ai, πB, b1, . . . , bi), Spoiler
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chooses a set X ⊆ A or X ⊆ B such that |X| ≤ κ and Duplicator has to react
with a subset Y of the other universe such that |X| = |Y |. Afterwards, Spoiler
picks some y ∈ Y , Duplicator must answer with some element x ∈ X and the
pair (x, y) is added to the current position. The play is won by Duplicator if, and
only if, the resulting position (a1, . . . , am, b1, . . . , bm) induces a local isomorphism
between πA and πB.

Note that the game CG1
m coincides with the classical Ehrenfeucht-Fraïssé game

Gm. As a generalization of our previous result stating that a winning strategy for
Duplicator in Gm ensures m-equivalence for fully idempotent, i.e., 1-idempotent
semirings, m-equivalence in κ-idempotent semirings follows from CGκ

m.

Theorem 3.44. Let K be a κ-idempotent semiring and πA, πB be K-interpretations.
If Duplicator has a winning strategy for CGκ

m(πA, πB), then it must hold that
πA ≡m πB.

Proof. We prove by induction on φ(x̄) ∈ FO(τ) that πA[[φ(ā)]] 6= πB[[φ(b̄)]] implies
that Spoiler wins the game CGκ

m(πA, ā, πB, b̄) where m = qr(φ(x̄)) for each ā ∈ An

and b̄ ∈ Bn. We only consider the case φ(x̄) = Qxψ(x̄, x) with Q ∈ {∃, ∀}, as the
remaining cases coincide with those in 3.40. As φ(x̄) is separating, it holds that∑

a∈A

πA[[ψ(ā, a)]] 6=
∑
b∈B

πB[[ψ(b̄, b)]] or∏
a∈A

πA[[ψ(ā, a)]] 6=
∏
b∈B

πB[[ψ(b̄, b)]].

Due to invariance under partitions and κ-idempotence, there must be some k ∈ K
such that

| {a ∈ A : πA[[ψ(ā, a)]] = k}︸ ︷︷ ︸
=:Akψ,ā

| 6= | {b ∈ B : πB[[ψ(b̄, b)]] = k}︸ ︷︷ ︸
=:Bk

ψ,b̄

|,

where |Akψ,ā| < κ or |Bk
ψ,b̄

| < κ. Assume w.l.o.g. that |Akψ,ā| < |Bk
ψ,b̄

|. Spoiler
has the following winning strategy for the game CGκ

m(πA, ā, πB, b̄). First, he
chooses some B′ ⊆ Bk

ψ,b̄
with |B′| = |Akψ,ā| + 1 ≤ κ. For any possible answer

A′ ⊆ A of Duplicator, there must be some a ∈ A′ such that πA[[ψ(ā, a)]] 6= k,
since |A′| = |B′| > |Akψ,ā|. Spoiler picks this element a. Independent of Dupli-
cator’s response b ∈ Bk

ψ,b̄
, it holds that πA[[ψ(ā, a)]] 6= k = πB[[ψ(b̄, b)]]. Hence,

the K-interpretations with updated position can be separated by ψ(x̄, x) and the
induction hypothesis can be applied. Consequently, Spoiler wins the remaining
subgame CGκ

m−1(πA, ā, a, πB, b̄, b).
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It is noticeable that in the constructed winning strategy for CGω
m Spoiler only

chooses finite sets, so m-equivalence of ω-idempotent semirings is already ensured
if Duplicator has a strategy to win each play in CGω

m where Spoiler only chooses
finite sets.
The games CGκ

m can indeed be considered an extenuated version of BGm, as the
m-turn bijection game is equivalent to the m-turn counting game CGm without
restrictions on the cardinalities of the sets to be chosen, like the original versions
of the k-pebble bijection and counting game on classical structures.

Theorem 3.45. Let πA and πB be K-interpretations. From any position (ā, b̄), Du-
plicator wins the gameBGm(πA, ā, πB, b̄) if, and only if, she wins CGm(πA, ā, πB, b̄).

Proof. By induction on m ∈ N, we prove the claim for all positions given by ā ∈ An

and b̄ ∈ Bn. For m = 0 the claim is clearly true, as the games BGm and CGm use
the same winning condition.
If Duplicator has a winning strategy for BGm(πA, ā, πB, b̄), there is a bijection
h : A → B such that Duplicator wins BGm−1(πA, ā, a, πB, b̄, h(a)) for all a ∈ A.
Based on h, Duplicator can win CGm(πA, ā, πB, b̄) as follows. If Spoiler chooses
some set X ⊆ A, she answers with h(X) and h−1(y) where y ∈ h(X) is the
element Spoiler picks afterwards. Otherwise, X ⊆ B and Duplicator can react
with h−1(X) and pick h(y) after Spoiler chooses y ∈ h−1(X). In both cases, the
subsequent position is given by (ā, a, b̄, h(a)) for some a ∈ A. As Duplicator has
a winning strategy for the game BGm−1(πA, ā, a, πB, b̄, h(a)), she also wins the
remaining subgame CGm−1(πA, ā, a, πB, b̄, h(a)) by induction hypothesis.
Assume now that Duplicator wins CGm(πA, ā, πB, b̄). Let ∼ be the smallest rela-
tion on A∪̇B such that x ∼ y if Duplicator wins CGm−1(πX , x̄, x, πY , ȳ, y), where
(πX , x̄), (πY , ȳ) ∈ {(πA, ā), (πB, b̄)}. It can be easily verified that ∼ is an equiva-
lence relation. Towards a contradiction, suppose there was an equivalence class Z
such that |Z∩A| 6= |Z∩B|, w.l.o.g. let |Z∩A| < |Z∩B|. Then, Spoiler would win
CGm(πA, ā, πB, b̄) by choosing Z∩B. For any possible response A′ ⊆ A of Duplica-
tor, there is some a ∈ A′ with a 6∈ Z∩A, which Spoiler can pick afterwards. Hence,
for any equivalence class Z with respect to ∼, it holds that |Z ∩ A| = |Z ∩ B|.
In the game BGm(πA, ā, πB, b̄), Duplicator can provide the combination of arbi-
trary bijections hZ : Z ∩A→ Z ∩B. For any updated position (ā, a, b̄, b), it must
hold that a ∼ b, hence Duplicator wins the game CGm−1(πA, ā, a, πB, b̄, b) and, by
induction hypothesis, BGm−1(πA, ā, a, πB, b̄, b) as well.

As opposed to the previous semirings, for which we observed that first-order
logic with semiring semantics is not expressive enough to separate any two K-
interpretations on which Spoiler wins BGm, the bijection game constitutes a char-
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acterization of m-equivalence with regard to the natural semiring N and the poly-
nomial semiring N[X], as we will prove in the following.

3.2.1 The Semirings N and N[X]

The natural semiring (N,+, ·, 0, 1) does not admit infinitary operations, which
is why we restrict the following analysis to finite interpretations. In order to
show that m-equivalence of finite N-interpretations is captured by the game BGm

or, equivalently, CGm, we aim to construct characteristic sentences which en-
sure the winning of Duplicator in BGm. To this end, we apply a combinatorial
lemma, which was proven in [GM21] for the purpose of constructing character-
istic sentences capturing elementary equivalence of N-interpretations. Instead of
applying the lemma to prove the existence of an isomorphism between two given
N-interpretations, we will use it to derive bijections which ensure the winning of
Duplicator in BGm.

Lemma 3.46. For each ℓ, d ∈ N, there is some e ∈ N such that for all tuples
(r1, . . . rℓ′), (s1, . . . , sℓ′) ∈ Nℓ′ with ℓ′ < ℓ and ri, si < d for 1 ≤ i ≤ ℓ′

ℓ′∑
i=1

rei =
ℓ′∑
i=1

sei

implies that there is a permutation σ ∈ Sℓ′ such that ri = sσ(i) for all 1 ≤ i ≤ ℓ′.

The lemma is central for the construction of characteristic sentences, as it allows
us to infer the equality of the individual summands based on the equality of two
sums. Recall that one of the main reasons why we cannot construct a separating
sentence based on a winning strategy for Spoiler in general is that even though
there is some element a ∈ A resulting in the valuation πA[[φ(a)]] with regard to
some formula φ(x) which cannot be duplicated by any b ∈ B, this might not be
reflected by the valuations of ∃xφ(x) and ∀xφ(x) in πA and πB. Applying the
lemma above allows us to conclude that a formula φ(x) leads to exactly the same
valuations in πA and πB for different instantiations of x, if |A| = |B| and πA and
πB agree on the sentence

∃xφ(x)e = ∃xφ(x) ∧ · · · ∧ φ(x)︸ ︷︷ ︸
e times

,

where e is chosen large enough, depending on πA, πB and φ(x).
Crucial for the application of the lemma is that the length of the tuples as well
as the entries themselves are bounded. Hence, we associate with each m,n ∈ N
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multiple characteristic formulae χmc̄ (x̄) of quantifier rank m with x̄ = (x1, . . . , xn)
which depend on a pair of constants c̄ = (c1, c2) ∈ N2 and apply only to certain
N-interpretations which are bounded by c̄. More precisely, we will show that
πA[[χ

m
c̄ (x̄)]] = πB[[χ

m
c̄ (b̄)]] implies that Duplicator wins BGm(πA, ā, πB, b̄) if πA and

πB only include valuations smaller than c1 and if their universes are of cardinality
less than c2. Each χmc̄ (x̄) contains the subformula ϑmc̄ (x̄), which is supposed to
ensure the winning of Duplicator in BGm in the case |A| = |B|. Accordingly, ϑ0

c̄(x̄)
shall characterize the winning condition of the bijection game. To implement this,
we fix an enumeration L1(x̄), . . . , Lk(x̄) of the τ -literals in Litn(τ) and make use
of the idea from [GM21], that is, we represent the valuations of the τ -literals as
digits in a number system. Choosing the radix large enough ensures that the single
valuations coincide in πA and πB.

ϑ0
c̄(x̄) :=

∨
1≤i≤k

(Li(x̄) ∨ · · · ∨ Li(x̄))︸ ︷︷ ︸
ci−1
1 times

Based on ϑm−1
c̄ (x̄, x), we define ϑmc̄ (x̄) such that πA[[ϑmc̄ (ā)]] = πB[[ϑ

m
c̄ (b̄)]] ensures

that (πA[[ϑ
m−1
c̄ (ā, a)]])a∈A\{a1,...,an} and (πB[[ϑ

m−1
c̄ (b̄, b)]])b∈B\{b1,...,bn} only differ by

some permutation according to lemma 3.46. Let

ϑmc̄ (x̄) := ∃x((
∧

1≤i≤n

x 6= xi ∧ ϑm−1
c̄ (x̄, x))em−1),

where em−1 is chosen according to lemma 3.46 with respect to ℓ := max(c2, 4) and
dm−1 which is inductively defined by d0 := ck+1

1 and di+1 := c2 · deii for i > 0.
Note that this definition ensures that dm > πA[[ϑ

m
c̄ (ā)]] and dm > πB[[ϑ

m
c̄ (b̄)]] for all

m ∈ N.
In order to drop the assumption |A| = |B| the formulae ϑmc̄ (x̄) rely on, since lemma
3.46 presumes tuples of the same length, we additionally encode in χmc̄ (x̄) that the
universes must be of the same cardinality. Having defined the sequence (em)m∈N
of exponents with respect to tuples of length smaller than max(c2, 4) allows us to
reuse them for this purpose.

χ0
c̄(x̄) := ϑ0

c̄(x̄)

χmc̄ (x̄) := (∃x(x = x) ∨ ∃x(x = x) ∨ ϑmc̄ (x̄))em

Theorem 3.47. Let c1, c2,m ∈ N. For all (finite) N-interpretations πA, πB and
ā ∈ An, b̄ ∈ Bn such that max img(πA)∪ img(πB) < c1 and |A| < c2, |B| < c2, the
following are equivalent:

(1) Duplicator wins BGm(πA, ā, πB, b̄)
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(2) πA[[χ
m
c̄ (ā)]] = πB[[χ

m
c̄ (b̄)]]

(3) (πA, ā) ≡m (πB, b̄)

Proof. By theorem 3.40, it holds that (1) ⇒ (3). Since qr(χmc̄ (x̄)) = m by defini-
tion, we can immediately infer implication (3) ⇒ (2). It remains to show (2) ⇒ (1),
which we prove by induction on m for all tuples ā ∈ An and b̄ ∈ Bn simultaneously.
To this end, let πA, πB and c̄ = (c1, c2) be given as above.
Case 1 (m = 0). As πA(Li(ā)) < c1 and πB(Li(b̄)) < c1 for all 1 ≤ i ≤ k by
assumption, πA[[χ0

c̄(ā)]] = πB[[χ
0
c̄(b̄)]] implies that πA(Li(ā)) = πB(Li(b̄)) for all

1 ≤ i ≤ k. Thus, the tuples ā and b̄ induce a local isomorphism between πA and
πB, which is why Duplicator wins the game BG0(πA, ā, πB, b̄).
Case 2 (m > 0). By definition of dm, it holds that dm ≥ c2 > max(|A|, |B|) =
max(πA[[∃x(x = x)]], πB[[∃x(x = x)]]). Further, we constructed dm such that
dm > max(πA[[ϑ

m
c̄ (ā)]], πB[[ϑ

m
c̄ (b̄)]]). Since em has been chosen with respect to ℓ =

max(c2, 4) > 3 and dm, we can apply lemma 3.46 and conclude that the triples

(πA[[∃x(x = x)]], πA[[∃x(x = x)]], πA[[ϑ
m
c̄ (ā)]]) and

(πB[[∃x(x = x)]], πB[[∃x(x = x)]], πB[[ϑ
m
c̄ (b̄)]])

only differ by some permutation σ. Suppose that σ is not the identity mapping.
Then we would have that πA[[∃x(x = x)]] = πB[[∃x(x = x)]] = πB[[ϑ

m
c̄ (b̄)]] and

πA[[ϑ
m
c̄ (ā)]] = πB[[∃x(x = x)]], which also implies that the tuples have to coincide.

Hence, we can conclude that πA[[∃x(x = x)]] = πB[[∃x(x = x)]], which is equivalent
to |A| = |B|, and πA[[ϑ

m
c̄ (ā)]] = πB[[ϑ

m
c̄ (b̄)]]. By definition, the latter implies that∑

a∈A\{a1,...,an}

πA[[ϑ
m−1
c̄ (ā, a)]]em−1 =

∑
b∈B\{b1,...,bn}

πB[[ϑ
m−1
c̄ (b̄, b)]]em−1 .

Since ℓ > |A| − n = |B| − n and dm−1 > max(πA[[ϑ
m−1
c̄ (ā, a)]], πB[[ϑ

m−1
c̄ (b̄, b)]]) for

all a ∈ A\{a1, . . . , an} and b ∈ B \{b1, . . . , bn}, by lemma 3.46 there is a bijection
h : A\{a1, . . . , an} → B\{b1, . . . , bn} such that πA[[ϑm−1

c̄ (ā, a)]] = πB[[ϑ
m−1
c̄ (b̄, h(a))]]

for all a ∈ A \ {a1, . . . , an}. With |A| = |B| this implies πA[[χ
m−1
c̄ (ā, a)]] =

πB[[χ
m−1
c̄ (b̄, h(a))]] for all a ∈ A \ {a1, . . . , an}. Duplicator can win the game

BGm(πA, ā, πB, b̄) as follows: She provides the bijection h′ which extends h to
the domain A by h′(ai) = bi for all 1 ≤ i ≤ n. W.l.o.g. we can assume that Spoiler
picks some a ∈ A\{a1, . . . , an}, because if he wins BGm(πA, ā, πB, b̄), then he must
have a winning strategy where he only chooses distinct elements in case the bijec-
tions Duplicator provides respect the previous choices, as ensured by h′. We obtain
for the updated position (ā, a, b̄, h(a)) that πA[[χm−1

c̄ (ā, a)]] = πB[[χ
m−1
c̄ (b̄, h(a))]]

must hold. By induction hypothesis, Duplicator has a strategy to win the remain-
ing subgame BGm−1(πA, ā, πB, h(a)).
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Corollary 3.48. Let πA, πB be (finite) N-interpretations. If Spoiler wins the game
Gm(πA, πB), then πA 6≡m πB. If he wins G(πA, πB), it holds that πA 6≡ πB.

Hence, we can infer that m-equivalence between N-interpretations is character-
ized by the m-turn bijection game. Furthermore, we can use this result in order to
show that m-equivalence with regard to the polynomial semiring N[X] is captured
by BGm as well. Since N[X] does not admit infinitary operations either for the
same reasons we observed for N, we consider finite N[X]-interpretations only. Due
to the universal property of N[X], each variable assignment α : X → N can be
uniquely extended to a homomorphism from N[X] to N. Hence, if we transform
given N[X]-interpretations πA and πB into N-interpretations using such a homo-
morphism and show that the resulting N-interpretations can be separated with
some formula of quantifier rank m, then this formula must separate πA from πB
as well according to the fundamental property. In order to show the separability
of the N-interpretations, we can use the bijection game. However, in general we
cannot infer that Spoiler wins BGm(h ◦ πA, h ◦ πB) if he wins BGm(πA, πB), as his
winning strategy might rely on some equality which is not preserved by h. Hence,
h needs to be injective on img(πA)∪img(πB), in order to draw this conclusion. The
following lemma illustrates that we can always find a suitable variable assignment
which ensures injectivity of the associated homomorphism on the image of both
πA and πB. A proof of the lemma can be found in [GM21].

Lemma 3.49. Let N[X](c, e) ⊆ N[X] denote the set of polynomials with coeffi-
cients less than c and exponents smaller than e. There is a variable assignment
α : X → N inducing a homomorphism h : N[X] → N whose restriction h|N[X](c,e) is
a bijection from N[X](c, e) to {0, . . . , ce|X| − 1}.

Theorem 3.50. Let c, e, c2,m ∈ N. For all (finite) N[X]-interpretations πA, πB
and ā ∈ An, b̄ ∈ Bn such that img(πA) ∪ img(πB) ⊆ N[X](c, e) and |A| < c2,
|B| < c2, the following are equivalent:

(1) Duplicator wins BGm(πA, ā, πB, b̄)

(2) πA[[χ
m
(c1,c2)

(ā)]] = πB[[χ
m
(c1,c2)

(b̄)]] where c1 := ce
|X|

(3) (πA, ā) ≡m (πB, b̄)

Proof. Following the same reasoning as in 3.47, it suffices to prove (2) ⇒ (1).
Let h : N[X] → N be a homomorphism according to lemma 3.49. Due to the
fundamental property, (2) implies (h ◦ πA)[[χmc̄ (ā)]] = (h ◦ πB)[[χmc̄ (b̄)]]. Further, it
must hold that max img(h ◦ πA) ∪ img(h ◦ πA) < c1, because of the assumption
img(πA) ∪ img(πB) ⊆ N[X](c, e) and lemma 3.49. By theorem 3.47, this implies
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that Duplicator has a winning strategy for BGm(h ◦ πA, ā, h ◦ πB, b̄). The strategy
ensures that any reachable position (ā, an+1, . . . , an+m, b̄, bn+1, . . . , bn+m) induces a
local isomorphism between πA and πB, i.e., for each L(x̄) ∈ Litn+m(τ) it holds
that h ◦ πA(L(a1, . . . , an+m)) = h ◦ πB(L(b1, . . . , bn+m))). Due to injectivity of
h|N[X](c,e), we can derive πA(L(a1, . . . , an+m)) = πB(L(b1, . . . , bn+m)) for all L(x̄) ∈
Litn+m(τ). Hence, the strategy must also be winning for Duplicator in the game
BGm(πA, ā, πB, b̄).

Note that the results we obtain for the semirings N and N[X], which presuppose
finiteness of the universes, cannot be lifted to infinite interpretations by substitut-
ing the semirings with N∞ and N∞

∞[[X]]. In section 3.1.4, we have shown that there
are elementarily equivalent N∞-interpretations, in which the additional element ∞
does not even occur, such that Spoiler wins the game G1. As the counterexample
can also be construed as a pair of N∞

∞[[X]]-interpretations, we additionally obtain
for N∞

∞[[X]] that first-order logic with semiring semantics is not expressive enough
such that m-separability follows from BGm, or even from Gm.

3.3 Overview

As the previous sections illustrate, the expressive power of first-order logic with
semiring semantics and thus, the transferability of the classical Ehrenfeucht-Fraïssé
games to K-interpretations, varies significantly with the considered semiring. There-
fore, we will give a brief summary of the main observations concerning the appli-
cability of the game Gm and its variants.

D wins BGm

D wins Gm

S wins Gm

≡m 6≡m

empty iff K
fully idempotent

non-empty if K 6∼= B
fully idempotent; other-
wise empty (e.g. N) or non-
empty (e.g. V)

{(πA, πB) : πA, πB K-interpretations}

Figure 3.15: Partition of the set of pairs of K-interpretations for a fixed semiring K
based on m-equivalence and the outcome of the m-turn Ehrenfeucht-Fraïssé game
Gm, and the relationship of the bijection game BGm to the resulting classes.
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Generally, we have shown that the game Gm does not capture m-equivalence of
K-interpretations in any semiring K which actually constitutes a generalization of
classical semantics, so which is not isomorphic to B. Subsequently, we analyzed
more precisely for which semirings Gm serves as a proof method for m-equivalence,
and in what cases m-separability follows from Gm. Concerning the soundness
of Gm, we have seen that Duplicator winning Gm implies m-equivalence exactly
for those semirings which are fully idempotent. The implications with respect
to the individual semirings we derived based on this result are highlighted in
blue in Figure 3.16. With regard to the soundness of the game G, we identified
full idempotence as a sufficient but not necessary condition. Depending on the
algebraic properties of the underlying semiring, we observed different behaviors
with respect to the applicability of G for proving elementary equivalence, based
on which the examined semirings can be classified as follows.

(1) Full idempotence is satisfied. A winning strategy for Duplicator in Gm im-
plies m-equivalence. Examples are given by the class of min-max semirings
or the polynomial semiring PosBool[X].

(2) The semiring is n-idempotent for some n ∈ N, i.e.,
∑

i∈I k =
∑

j∈J k and∏
i∈I k =

∏
j∈J k for each k ∈ K and all index sets I, J with |I|, |J | ≥ n. A

winning strategy for Duplicator in Gn·m implies m-equivalence. In particular,
a winning strategy for Duplicator in G implies elementary equivalence. For
instance, the semiring W[X] is |X|-idempotent.

(3) Depending on the K-interpretations πA and πB in question and a separating
sentence φ, there is some n ∈ N such that Spoiler can prove the separability
of πA and πB by φ by picking at most n elements. A winning strategy
for Duplicator in G implies elementary equivalence. As an example, the
semirings N∞ and S∞[X] fall into this class.

(4) A winning strategy for Duplicator in G does not imply elementary equiva-
lence in general. This applies, for instance, to the semirings V,L as well as
B∞[[X]] and N∞

∞[[X]].

Compared to the classical Ehrenfeucht-Fraïssé game Gm, the bijection game BGm

impedes the winning of Duplicator such that m-equivalence is implied for any
semiring K, independent of full idempotence ( 3). Based on the formulation as
the counting game, we generalized this observation by limiting the cardinality of
the sets to be chosen by κ in κ-idempotent semirings, which do not admit counting
beyond κ.
For most of the commonly used semirings, one can construct finite interpretations
which are elementarily equivalent but non-isomorphic, which already implies that
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neither Gm nor G is complete ( 7). In fact, there are counterexamples where
Spoiler already wins the game G1 despite elementary equivalence. By contrast,
finite V- as well as N- or N[X]-interpretations can be defined up to isomorphism.
For the Viterbi semiring, we observed that a winning strategy for Spoiler in Gm

does not suffice to deduce m-equivalence nevertheless, as the number of moves
Spoiler needs to distinguish the V-interpretations might not match the quantifier
rank required to separate them. Yet, finite V-interpretations must be separable
if Spoiler wins the game G, while this property cannot be lifted to infinite V-
interpretations. As opposed to V, we finally proved for both N and N[X] that FO
with semiring semantics is expressive enough such that m-equivalence is captured
by the m-turn bijection game. However, this property cannot be generalized to
infinite interpretations by substituting the semirings with N∞ and N∞

∞[[X]], which
admit infinitary operations as opposed to N and N[X].
Based on these observations, the applicability of the games Gm, G and BGm to
K-interpretations for common semirings K can be summarized by the subsequent
tables, where the gray cells are supposed to indicate that the implication follows
from the finiteness of the K-interpretations.

min-max V / T L / D N N∞

D wins Gm ⇒≡m 3 7 7 7 7

D wins G ⇒≡ 3 7 7 3 3

D wins BGm ⇒≡m 3 3 3 3 3

S wins Gm ⇒6≡m 7 7 7 3 7

S wins G ⇒6≡ 7 7 7 3 7

S wins BGm ⇒6≡m 7 7 7 3 7

PosBool[X] W[X] S[X] S∞[X] B[X] B∞[[X]] N[X] N∞
∞[[X]]

D wins Gm ⇒≡m 3 7 7 7 7 7 7 7

D wins G ⇒≡ 3 3 3 3 3 7 3 7

D wins BGm ⇒≡m 3 3 3 3 3 3 3 3

S wins Gm ⇒6≡m 7 7 7 7 7 7 3 7

S wins G ⇒6≡ 7 7 7 7 7 7 3 7

S wins BGm ⇒6≡m 7 7 7 7 7 7 3 7

Figure 3.16: Transferability of the classical Ehrenfeucht-Fraïssé games Gm and
G and the bijection game BGm to semiring semantics with regard to common
application semirings (above) and polynomial semirings (below).
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A final observation to be noted is that the direct adaptation of the classical
Ehrenfeucht-Fraïssé game, or variants such as the bijection game, lacks the in-
corporation of the algebraic operations inherent in the semiring. The winning
condition only takes into account equalities of semiring elements and the moves do
not reflect algebraic properties of the semirings other than their cardinality, either.
However, the properties of addition and multiplication, in particular full idempo-
tence, strongly influence the expressive power of first-order logic with semiring
semantics. For instance, we have seen that, pertaining to separability, it might
be crucial whether valuations are regarded as natural numbers or elements from
a min-max semiring. To formalize this observation, it can be shown that Gm, as
well as BGm, is invariant under any injective mapping into another semiring.

Proposition 3.51. Let πA, πB be K-interpretations and f : K → L map into a
semiring L such that f|K′ where K ′ := img(πA) ∪ img(πB) is injective. For the
L-interpretations π′

A := f ◦ πA, π′
B := f ◦ πB and each m ∈ N, Duplicator wins

Gm(πA, πB) if, and only if, she wins Gm(π
′
A, π

′
B) and Duplicator wins BGm(πA, πB)

if, and only if, she wins BGm(π
′
A, π

′
B).

Proof. Since the set of possible plays in Gm and BGm only depends on the uni-
verses of the K-interpretations the game is played on, Gm(πA, πB) and Gm(π

′
A, π

′
B)

as well as BGm(πA, πB) and BGm(π
′
A, π

′
B) admit the same plays. In order to

show that each play is won by the same player in the two games, respectively,
it suffices to prove that each position (ā, b̄), where ā = (a1, . . . , am) ∈ Am and
b̄ = (b1, . . . , bm) ∈ Bm, induces a local isomorphism between πA and πB if, and
only if, it induces a local isomorphism between π′

A and π′
B. By definition, (ā, b̄) in-

duces a local isomorphism between πA and πB if, and only if, πA(L(ā)) = πB(L(b̄))
for all L ∈ Litm(τ). Due to injectivity of the function f|K′ , this is equivalent to
π′
A(L(ā)) = f ◦ π(L(ā)) = f ◦ π′

B(L(b̄)) = π′
B(L(ā)) for all L ∈ Litm(τ), that is,

(ā, b̄) inducing a local isomorphism between π′
A and π′

B.

What we actually aim at in order to find an appropriate game characterizing
m-equivalence with regard to semiring semantics, is invariance under injective
homomorphisms instead of arbitrary injective mappings. This is because we obtain
with the fundamental property for any sentence φ ∈ FO(τ) that

πA[[φ]] = πB[[φ]] if, and only if, (h ◦ πA)[[φ]] = (h ◦ πB)[[φ]]

where h is an injective homomorphism, which implies πA ≡m πB if, and only if,
(h ◦ πA) ≡m (h ◦ πB). By contrast, the equivalence does not apply to arbitrary
injective mappings, as presumed by the games Gm and BGm.
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Chapter 4

Deviating from the Notion of
Equivalence

The previous chapter illustrated that the direct translation of the Ehrenfeucht-
Fraïssé game to K-interpretations is generally not appropriate to characterize
the natural definition of m-equivalence under semiring semantics. Thus, the
question arises as to what notion of equivalence is actually characterized by the
Ehrenfeucht-Fraïssé game when applying it to K-interpretations. In order to
examine this question and gain a better understanding on how the game be-
haves on K-interpretations, we will consider two alternative notions of equiva-
lence. First, we will analyze whether the game Gm on K-interpretations captures
m-equivalence with respect to classical FO when associating classical structures to
the K-interpretations by incorporating the semiring within the vocabulary. As a
second approach, we define an equivalence term based on a logic which is evaluated
on two-sorted structures with a second universe for the semiring elements.

4.1 Copying Relation Symbols

In order to formalize on which K-interpretations Duplicator wins the game Gm,
an alternative notion of m-equivalence between K-interpretations which resembles
classical first-order equivalence but still takes into account semiring valuations is
sought. One way to implement this is to associate a classical structure A over
an extended vocabulary τK which consists of multiple “copies” of the original
relation symbols in τ with each K-interpretation πA. In this manner, a valuation
πA(Rā) = k can be encoded in A by adding the tuple ā to the relation (Rk)

A, so
instead of a single relation symbol R the vocabulary τK needs to contain relation
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symbols Rk for every semiring element k ∈ K. Note that in this context A |= ¬Rkā
does not reflect that πA(¬Rā) = k but πA(Rā) 6= k. This is why additional relation
symbols Rk are included in τK for the purpose of modeling the negated τ -literals’
valuations.

Definition 4.1. A K-interpretation πA : LitA(τ) → K induces the τK-structure
A = (A, τK) where τK := {Rk, Rk : R ∈ τ, k ∈ K} such that A |= Rkā if, and only
if, πA(Rā) = k and A |= Rkā if, and only if, πA(¬Rā) = k for R ∈ τ and k ∈ K.

A central difference betweenm-equivalence of K-interpretations andm-equivalence
of their induced τK-structures is caused by the direct access to the semiring el-
ements in the logic. Recall, for instance, the introductory K4-interpretations π2

A

and π2
B where K4 is a min-max semiring.

π2
A :

A R ¬R
a1 1 0
a2 2 0
a3 4 0

π2
B :

B R ¬R
b1 1 0
b2 3 0
b3 4 0

We observed previously that, although the valuation π2
A(Ra2) cannot be dupli-

cated with some b ∈ B, neither ∃xRx nor ∀xRx separates π2
A from π2

B and that
the K4-interpretations are in fact 1-equivalent. While this counterexample demon-
strates that FO(τ) with semiring semantics is not as expressive as presumed by the
moves of Spoiler, it does not apply to the τK4-structures A2 and B2 they induce,
which can be separated by ∃xR2x.
It is noticeable that the induced τK-structures do not reflect the semiring opera-
tions at all, but neither does the Ehrenfeucht-Fraïssé game on K-interpretations, as
we observed in the previous chapter. Another crucial observation indicating that
the game Gm(πA, πB) might actually capture m-equivalence between the induced
τK-structures, instead of m-equivalence between the K-interpretations themselves,
is that the encoding of the semiring valuations preserves local isomorphisms.

Proposition 4.2. For any two K-interpretations πA, πB which induce the τK-
structures A,B and elements a1, . . . , an ∈ A and b1, . . . , bn ∈ B, the mapping σ
defined by σ : ai 7→ bi for 1 ≤ i ≤ n is a local isomorphism between πA and πB if,
and only if, σ is a local isomorphism between A and B.

Despite this observation, it is not clear yet in what cases the Ehrenfeucht-Fraïssé
theorem can be applied to the induced τK-structures, as the extended vocabulary
τK becomes infinite if the underlying semiring K is, although we presume finiteness
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of the vocabulary τ the K-interpretations refer to. However, m-equivalence of the
induced τK-structures can be derived from Gm if Duplicator wins, independent of
the cardinalities of universes and semiring.

Theorem 4.3. Given any two K-interpretations πA and πB inducing the τK-
structures A and B, it must hold that A ≡m B if Duplicator wins the game
Gm(πA, πB).

Proof. Based on elements ā ∈ An, b̄ ∈ Bn and a formula φ(x̄) ∈ FO(τK) with
x̄ = (x1, . . . , xn) separating (A, ā) from (B, b̄), we construct a winning strategy for
Spoiler in the game Gm(πA, ā, πB, b̄) where qr(φ(x̄)) = m by induction over the
structure of φ(x̄).
Case 1. If φ(x̄) is a literal in FO(τK), it follows immediately that the mapping
σ induced by ā and b̄ cannot be a local isomorphism between A and B. By
proposition 4.2, σ cannot be a local isomorphism between πA and πB, either.
Hence, the winning condition is violated and Spoiler wins G0(πA, ā, πB, b̄).
Case 2. If φ(x̄) = ψ(x̄) ◦ ϑ(x̄), where ◦ ∈ {∨,∧} and qr(φ(x̄)) = m, (A, ā) and
(B, b̄) must be separable by ψ(x̄) or ϑ(x̄). Since qr(ψ(x̄)) ≤ m and qr(ϑ(x̄)) ≤ m,
applying the induction hypothesis yields that Spoiler wins Gm′(πA, ā, πB, b̄) for
some m′ ≤ m, hence he wins the game Gm(πA, ā, πB, b̄) as well.
Case 3. If φ(x̄) = ¬ψ(x̄) with qr(φ(x̄)) = m, we can infer that ψ(x̄) separates
(A, ā) from (B, b̄) as well and apply the induction hypothesis, which yields that
Spoiler wins Gm(πA, ā, πB, b̄).
Case 4. Let φ(x̄) = ∃xψ(x̄, x), where qr(φ(x̄)) = m and assume w.l.o.g. that
A |= ∃xψ(ā, x). Spoiler can pick some a ∈ A such that A |= ψ(ā, a). Since
φ(x̄) is separating by assumption, it must hold that B 6|= ψ(b̄, b) for all possible
answers b ∈ B of Duplicator. We have that qr(ψ(x̄)) = m−1, so it follows from the
induction hypothesis that Spoiler wins the remaining game Gm−1(πA, ā, a, πB, b̄, b).
Because of the logical equivalence ∀xψ(x̄, x) ≡ ¬∃x¬ψ(x̄, x) in FO(τK) with clas-
sical semantics, the case φ(x̄) = ∀xψ(x̄, x) can be omitted.

By contrast, the cardinality of the vocabulary impacts the completeness Gm. How-
ever, when constructing characteristic sentences, we can make use of the fact that
we do not consider arbitrary classical structures but only those that are induced
by K-interpretations. For any relation symbol R ∈ τ which is part of the vocabu-
lary of some K-interpretation πA and any tuple ā of elements, there is exactly one
k ∈ K such that A |= Rkā, whereas A 6|= Rℓā for all ℓ 6= k. Hence, if the universe
of πA is finite, then only finitely many relations Rk ∈ τK are non-empty, even
though τK might be infinite. Therefore, it suffices if one of the universes or the
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semiring is finite in order to infer m-separability of A and B based on a winning
strategy of Spoiler in Gm(πA, πB).

Theorem 4.4. If A, B or K is finite, then a winning strategy for Spoiler in
Gm(πA, πB) implies A 6≡m B where A and B are the τK-structures induced by πA
and πB.

Proof. By symmetry, we can assume that A or K is finite. By induction on m ∈ N,
we construct a characteristic formula χmπA,ā(x1, . . . , xn) ∈ FO(τK) of quantifier rank
m for any ā = (a1, . . . , an) ∈ An such that B |= χmπA,ā(b̄) ensures for each b̄ ∈ Bn

that Duplicator has a winning strategy for Gm(πA, ā, πB, b̄). In order to prove the
finiteness of χmπA,ā(x1, . . . , xn) we additionally show that for finite K, there are only
finitely many different formulae χmπA,ā(x1, . . . , xn) for varying ā of fixed length n.
Let Lit+n (τ) denote the set of unnegated and Lit−n (τ) the set of negated τ -literals
with variables from {x1, . . . , xn}. For m = 0 and x̄ = (x1, . . . , xn) let

χ0
πA,ā

(x̄) := φ=
ā (x̄)∧

∧
{Rkxi1 . . . xir |Rxi1 . . . xir ∈ Lit+n (τ), πA(Rai1 . . . air) = k}∧∧
{Rkxi1 . . . xir |¬Rxi1 . . . xir ∈ Lit−n (τ), πA(¬Rai1 . . . air) = k},

with φ=
ā (x̄) defining the equalities between the components of ā according to

φ=
ā (x̄) :=

∧
1≤i<j≤n :
ai=aj

xi = xj ∧
∧

1≤i<j≤n :
ai ̸=aj

xi 6= xj.

As the sets Lit+n (τ) and Lit−n (τ) are finite, the conjunctions are built over finite
sets, hence χ0

πA,ā
(x̄) is well-defined. Further, this ensures that there are only finitely

many distinct formulae χ0
πA,ā

(x̄) for varying ā ∈ An if K is finite. It readily follows
from the definition of χ0

πA,ā
(x̄) that B |= χ0

πA,ā
(b̄) implies that the mapping σ

induced by ā and b̄ is a bijection and that it holds that πA(L(ā)) = πB(L(b̄)) for
all L(x̄) ∈ Litn(τ). Hence, σ must be a local isomorphism between πA and πB and
Duplicator wins G0(πA, ā, πB, b̄). We inductively define χm+1

πA,ā(x̄) as

χm+1
πA,ā

(x̄) :=
∧
a∈A

∃x χmπA,ā,a(x̄, x) ∧ ∀x
∨
a∈A

χmπA,ā,a(x̄, x).

In case A is finite, conjunction and disjunction refer only to finitely many elements,
which ensures the finiteness of the formula. Otherwise, K must be finite by as-
sumption. The set {χmπA,ā,a(x̄, x) : a ∈ A} ⊆ {χmπA,ā,a(x̄, x) : (ā, a) ∈ An+1} is finite
by induction hypothesis, which ensures the finiteness of the formula χm+1

πA,ā(x̄) and
of the set {χm+1

πA,ā(x̄) : ā ∈ An}. To prove the correctness of the formula, suppose
that B |= χm+1

πA,ā(b̄). By construction of χm+1
πA,ā(x̄) this implies that
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(1) for all a ∈ A there is some b ∈ B such that B |= χmπA,ā,a(b̄, b) and

(2) for all b ∈ B there is some a ∈ A such that B |= χmπA,ā,a(b̄, b).

From applying the induction hypothesis it follows that

(1) for all a ∈ A there is some b ∈ B such that Duplicator wins the game
Gm(πA, ā, a, πB, b̄, b) and

(2) for all b ∈ B there is some a ∈ A such that Duplicator wins the game
Gm(πA, ā, a, πB, b̄, b),

which is equivalent to Duplicator winning Gm+1(πA, ā, πB, b̄).

In general, the characteristic formulae χmπA,ā(x̄) we just constructed are not well-
defined if both A and K are infinite. However, it remains to verify whether the
finiteness of one of universes or the semiring is indeed a necessary condition for
A 6≡m B to be implied by Spoiler winning Gm(πA, πB). For general classical
structures A and B over infinite vocabulary which do not have to be induced by
K-interpretations, not even G1 can be used to show that A 6≡1 B. As an example,
consider classical structures A and B over vocabulary {Ri : i ∈ N} consisting of
unary relation symbols, where the universes are defined by A = {ai : i ∈ N} and
B = {bi : i ∈ N} ∪ {b}. The relation symbols are interpreted according to the
following rule: A |= Riaj if, and only if, i = j and, analogously, B |= Ribj if, and
only if, i = j. For the additional element b ∈ B it holds that B 6|= Rib for all i ∈ N.
Clearly, Spoiler wins G1(A,B) by picking b ∈ B, which cannot be duplicated in
A. However, it holds that A ≡ B because A ↾ τ0 ∼= B ↾ τ0 for every finite τ0 ⊆ τ .
Certainly, we are only interested in those classical structures which are induced
by K-interpretations, which changes the situation. As the atomic properties of
each element in πA and πB are determined by finitely many relations in τK , the
existence of a separating sentence is ensured if Spoiler wins in the case m = 1.

Proposition 4.5. For any two K-interpretations πA and πB, it must hold that
A 6≡1 B if Spoiler has a winning strategy for G1(πA, πB), even if A, B and K are
infinite.

Proof. Fix a winning strategy of Spoiler in G1(πA, πB) and assume w.l.o.g. that he
chooses an element a ∈ A. Based on this element, consider the sentence ∃xχ0

πA,a
(x)

where χ0
πA,a

(x) is defined according to the proof of theorem 4.4. The finiteness of
χ0
πA,a

(x) is ensured, independent of the cardinality of A,B and K, as Lit1(τ) is
finite. Since Spoiler wins G1(πA, πB) by picking a ∈ A, for every b ∈ B it must hold
that πA(Ra . . . a) 6= πB(Rb . . . b) or πA(¬Ra . . . a) 6= πB(¬Rb . . . b) for some R ∈ τ .
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This implies that B 6|= χ0
πA,a

(b) for all b ∈ B. Hence, the sentence ∃xχ0
πA,a

(x)
separates A from B.

Note that the method in the previous proof cannot be transferred to quantifier
rank 2, as infinitely many different answers of Duplicator in the first turn would
have to be taken into account. Indeed, for quantifier ranks larger than 1, the
existence of a separating sentence is not ensured if Spoiler wins the game Gm in
the case of A, B and K being infinite.

Proposition 4.6. There are K-interpretations πA and πB, where A, B and K are
infinite and Spoiler wins G2(πA, πB) while A ≡ B.

Proof. We construct N∞-interpretations π11
A , π

11
B over the vocabulary τ = {E}

consisting of a single binary relation symbol. The universes are given by

A := {an : n ∈ N>0} ∪ {ani : n, i ∈ N>0, i ≤ n}
B := {bn : n ∈ N>0} ∪ {bni : n, i ∈ N>0, i ≤ n} ∪ {bω} ∪ {bωi : i ∈ N>0}

and the valuations satisfy π11
A (Eanani ) = π11

B (Ebnbni ) = i for all an, ani ∈ A and
bn, bni ∈ B. The corresponding negated {E}-literals over A and B are mapped to
0, while the remaining positive {E}-literals over A and B are valuated with 0 and
their negations with 1.

π11
A : π11

B :a1 a11

a2
a21
a22

a3

a31

a32

a33...

1

1

2

1

2
3

b1 b11

b2
b21
b22

b3

b31

b32

b33...

1

1

2

1

2
3

...

bω

bω1

bω2

bω3

1

2
3

Spoiler has the following winning strategy for the game G2(π
11
A , π

11
B ). First, he

chooses bω. If Duplicator answers with an for some n ∈ N>0, then Spoiler picks
bωn+1 in the second round. For any possible answer a ∈ A of Duplicator, it holds
that π11

A (Eana) < n + 1 = π11
B (Ebωbωn+1), so Spoiler wins. Otherwise, Duplicator

answered with some ani ∈ A in the first turn. In this case, Spoiler picks bω1 , which
results in π11

A (Eani a) = 0 6= 1 = π11
B (Ebωbω1 ) for each possible answer a ∈ A in the

second turn.
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Let A11 and B11 be the τN∞-structures induced by π11
A and π11

B . In order to prove
that A11 ≡ B11, it suffices to show that Duplicator has a winning strategy for
G(A11 ↾ τ0,B11 ↾ τ0) for any finite τ0 ⊆ τN

∞ .
Let τ0 ⊆ τN

∞ and k ∈ N be maximal such that Ek ∈ τ0. Based on k, we define
partitions

Pk
A :={An : n ∈ N>0} ∪ {Ani : n, i ∈ N>0, i ≤ min(n, k + 1)} and

Pk
B :={Bn : n ∈ N>0} ∪ {Bn

i : n, i ∈ N>0, i ≤ min(n, k + 1)}
∪{Bω} ∪ {Bω

i : i ∈ N, i ≤ k + 1}

of A and B according to An = {an}, Ani = {ani } if i ≤ min(n, k) as well as
Ank+1 = {ank+i : i ∈ N>0, k + i ≤ n} for each n ∈ N>0 with k < n. The sets
Bn and Bn

i are defined analogously, while Bω = {bω}, Bω
i = {bωi } if i ≤ k and

Bω
k+1 = {bωk+i : i ∈ N>0}. Depending on the number m of moves Spoiler picks in

the first step, we construct a bijection fm,k : Pk
A → Pk

B according to

fm,k(A
n) =


Bn, n < m+ k
Bω, n = m+ k
Bn−1, n > m+ k

and fm,k(A
n
i ) =


Bn
i , n < m+ k

Bω
i , n = m+ k

Bn−1
i , n > m+ k

,

which ensures |A′| = |fm,k(A′)|, or both |A′| ≥ m and |fm,k(A′)| ≥ m for all
A′ ∈ Pk

A. Hence, in the game Gm(A
11 ↾ τ0,B

11 ↾ τ0), Duplicator is able to
duplicate each a ∈ A′ with an arbitrary b ∈ fm,k(A

′) and each b ∈ B′ with some
a ∈ f−1

m,k(B
′) by making sure that equalities are maintained.

Summing up, the game Gm played on K-interpretations πA and πB characterizes
m-equivalence between the induced τK-structures A and B in case at least one
of the universes or the underlying semiring is finite. If both universes as well as
the semiring is infinite, a winning strategy for Duplicator in Gm(πA, πB) implies
A ≡m B, whereas the converse implication in general only applies to quantifier
rank 1.

4.1.1 Application to the Counting Game

We can derive from the previous result that m-equivalence of K-interpretations
πA and πB is, in general, not implied by m-equivalence between the induced τK-
structures A and B, although the translation into A and B allows direct access
to the semiring elements. For instance, we can infer concerning the introduc-
tory N-interpretations π1

A, π
1
B that the τN-structures A1 and B1 they induce are

1-equivalent, as Duplicator wins G1(π
1
A, π

1
B), even though π1

A 6≡1 π
1
B. Our intu-

ition is that the additional expressive power semiring semantics provides comprises
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counting of certain semiring valuations. Hence, we now aim to formalize that the
additional expressive power does not exceed counting. To this end, we apply the m-
turn counting game and make use of the induced τK-structures in order to establish
a reference to a logic including a counting mechanism. In its original formulation,
the k-pebble counting game captures the k-variable fragment of FO with counting
quantifiers on finite structures. Thus, we will verify that m-equivalence of the τK-
structures A and B in FO with counting quantifiers, which we refer to as FOC, is
ensured if Duplicator wins the game CGm(πA, πB) on finite K-interpretations πA,
πB, as introduced in section 3.2. Further, we will examine whether the finiteness
of the K-interpretations is actually required in this context. Having proven that
a winning strategy for Duplicator in CGm(πA, πB) yields πA ≡m πB, we can then
infer that πA ≡m πB is implied by m-equivalence of A and B with regard to FOC.

Definition 4.7. The syntax and semantics of the logic FOC(τ) coincides with
FO(τ), except for the formula building rule

• ∃xφ(x̄, x) ∈ FO(τ) if φ(x̄, x) ∈ FO(τ),

which is replaced by

• ∃≥ixφ(x̄, x) ∈ FOC(τ) if φ(x̄, x) ∈ FOC(τ) for each i ∈ N.

Accordingly, we write (A, τ) |= ∃≥ixφ(ā, a) if, and only if, there are distinct ele-
ments a1, . . . , ai ∈ A such that (A, τ) |= φ(ā, aj) for all 1 ≤ j ≤ i.

For i ∈ N we denote the fragment of FOC(τ) which only contains quantifiers ∃≥i′

with i′ ≤ i as FOCi(τ). Note that as only finite formulae are permitted, elemen-
tary equivalence with regard to FOC(τ) coincides with elementary equivalence in
FO(τ), since each formula ∃≥ixφ(x̄, x) can be translated into a logically equivalent
first-order formula by nesting quantifiers. However, FOC(τ) enables us to express
properties while using less nested quantifiers, hence when considering formulae
of fixed quantifier rank more structures can be distinguished in FOC(τ) than in
FO(τ).

As mentioned before, our goal is to prove that A ≡FOC(τK)
m B implies that Du-

plicator wins CGm(πA, πB) where A and B are the τK-structures induced by
πA and πB. More precisely, we will show for each j ∈ N that Duplicator wins
CGj

m(πA, ā, πB, b̄) on finite K-interpretations πA, πB if (A, ā) ≡FOCj(τ
K)

m (B, b̄) for
the induced τK-structures A,B. In particular, this implies that Duplicator wins
CGm(πA, ā, πB, b̄) if (A, ā) ≡FOC(τK)

m (B, b̄), because on finite K-interpretations,
Duplicator wins CGm if, and only if, she wins CGj

m for all j ∈ N. Since only
finitely many valuations occur in πA and πB in case the universes are finite, it does
not have to be assumed that the semiring is finite. Even though the vocabulary
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τK becomes infinite if the underlying semiring is, it suffices to take into account
a finite subset τK′ ⊆ τK which is induced by the semiring elements that actually
occur in the K-interpretations of interest, as the following lemma illustrates.

Lemma 4.8. Let πA and πB be K-interpretations with induced τK-structures A
and B. For the vocabulary τK

′ induced by K ′ := img(πA) ∪ img(πB) and each
j ∈ N, ā ∈ An and b̄ ∈ Bn it holds that

(A, ā) ≡FOCj(τ
K)

m (B, b̄) if, and only if, (A ↾ τK′
, ā) ≡FOCj(τ

K′
)

m (B ↾ τK′
, b̄).

Proof. Clearly, (A, ā) ≡FOCj(τ
K)

m (B, b̄) implies (A ↾ τK′
, ā) ≡FOCj(τ

K′
)

m (B ↾ τK′
, b̄),

as τK′ ⊆ τK . To prove the converse implication, we associate a formula φ∗(x̄)
of FOCj(τ

K′
) with each φ(x̄) ∈ FOCj(τ

K) such that A |= φ∗(ā) if, and only if,
A |= φ(ā) and, analogously, B |= φ∗(b̄) if, and only if, B |= φ(b̄) for all tuples
ā and b̄ of elements in A and B. For each R ∈ τK \ τK′ , let φ∗(x̄) := xi1 6= xi1
if φ(x̄) = Rxi1 . . . xir . For all remaining atoms φ(x̄) we set φ∗(x̄) := φ(x̄) and
inductively construct φ∗(x̄) for complex formulae φ(x̄) via (¬ψ)∗(x̄) := ¬ψ∗(x̄),
(ψ ◦ ϑ)∗(x̄) := ψ∗(x̄) ◦ ϑ∗(x̄) for ◦ ∈ {∨,∧} and (Qxψ(x̄, x))∗(x̄) := Qxψ∗(x̄, x)
where Q ∈ {∀} ∪ {∃≥i : i ∈ N}. The correctness of the constructed formula φ∗(x̄)
readily follows by induction due to the fact that RA = RB = ∅ for all R ∈ τK \τK′ .
Hence, we obtain that φ(x̄) separates (A, ā) from (B, b̄) if, and only if, φ∗(x̄) is
separating with regard to (A ↾ τK′

, ā) and (B ↾ τK′
, b̄).

Theorem 4.9. Let πA and πB be finite K-interpretations inducing the τK-structures
A and B. Given any j,m ∈ N and tuples ā ∈ An, b̄ ∈ Bn, Duplicator wins
CGj

m(πA, ā, πB, b̄) if (A, ā) ≡FOCj(τ
K)

m (B, b̄).

Proof. We prove the claim by induction on m ∈ N. For the base case m = 0

suppose that (A, ā) ≡FOCj(τ
K)

0 (B, b̄). This immediately implies that ā and b̄
induce a local isomorphism between A and B and thus also between πA and πB,
which causes Duplicator to win CGj

0(πA, ā, πB, b̄).
Assume that the claim is true for some arbitrary, fixed m ∈ N. As πA and
πB are finite by assumption, the set K ′ := img(πA) ∪ img(πB) must be finite as
well. Suppose that (A, ā) ≡FOCj(τ

K)
m+1 (B, b̄), which implies (A′, ā) ≡FOCj(τ

K′
)

m+1 (B′, b̄)
where A′ and B′ are the τK′-reducts of A and B. Let X be the set Spoiler chooses
in the first move of the game CGj

m+1(πA, ā, πB, b̄). W.l.o.g suppose that X ⊆ A
and let X1, . . . , Xℓ be the coarsest partition of X such that for all a, a′ ∈ Xi it
holds that (A′, ā, a) ≡m (A′, ā, a′). For 1 ≤ i ≤ ℓ let Φm,j

i ⊆ FOCj(τ
K′
) be the set

of formulae φ(x̄, x) of quantifier rank at most m such that (A′, ā, a) |= φ(x̄, x) for
all a ∈ Xi. Since τK′ is finite and relational, there are only finitely many formulae
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in Φm,j
i up to logical equivalence. We fix a maximal subset Ψm,j

i ⊆ Φm,j
i which

does not contain any two logically equivalent formulae. By definition we obtain

A′ |= ∃≥|Xi|x
∧

ψ∈Ψm,ji

ψ(ā, x).

As |Xi| ≤ j for each 1 ≤ i ≤ ℓ and (A′, ā) ≡FOCj(τ
K′

)
m+1 (B, b̄), this implies

B′ |= ∃≥|Xi|x
∧

ψ∈Ψm,ji

ψ(b̄, x).

Hence, there must be b1, . . . b|Xi| ∈ B such that B′ |= ψ(b̄, bk) for all ψ(x̄, x) ∈ Ψm,j
i

and 1 ≤ k ≤ |Xi|. For Yi := {b1 . . . b|Xi|} we obtain (A′, ā, a) ≡FOCj(τ
K′

)
m (B′, b̄, b)

for all a ∈ Xi and b ∈ Yi. To win CGj
m+1(πA, ā, πB, b̄), Duplicator can respond

Y :=
⋃

1≤i≤ℓ Yi to X. It holds that |X| = |Y |, because for i 6= i′ we must have that
Yi∩Yi′ = ∅. The element b ∈ Y Spoiler chooses afterwards must be in some set Yi
and Duplicator can answer with some arbitrary a ∈ Xi. For the updated position
(ā, a, b̄, b) it holds that (A′, ā, a) ≡FOCj(τ

K′
)

m (B′, b̄, b). By lemma 4.8, this implies
(A, ā, a) ≡FOCj(τ

K)
m (B, b̄, b) such that the application of the induction hypothesis

yields that Duplicator wins the remaining subgame CGj
m(πA, ā, a, πB, b̄, b).

The fact that for finite K-interpretations (A, ā) ≡FOCj(τ
K)

m (B, b̄) implies that Du-
plicator wins CGj

m(πA, ā, πB, b̄) suggests that (A, ā) ≡FOC(τK)
m (B, b̄) might ensure

the winning of Duplicator in CGω
m(πA, ā, πB, b̄) for infinite K-interpretations as

well. However, this is not true due to the finiteness of the formulae in FOC(τK),
which can be observed in the following counterexample.
Example 4.10. Consider the B-interpretations π12

A and π12
A which can be derived

from the previously considered N∞-interpretations π11
A and π11

B by applying the
mapping f : N → B with n 7→ 1 if, and only if, n > 0.

π12
A : π12

B :a1 a11

a2
a21
a22

a3

a31

a32

a33...

1

1

1

1

1
1

b1 b11

b2
b21
b22

b3

b31

b32

b33...

1

1

1

1

1
1

...

bω

bω1

bω2

bω3

1

1
1
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Spoiler wins the game CGω
2 (π

12
A , π

12
B ) as follows. First, he picks the set {bω}. If

Duplicator answers with some {ani }, he chooses {bω1 } in the second turn. As there
is no vertex a ∈ A such that πA(Eani a) = 1, Spoiler wins. Hence, Duplicator
must answer with some set {an} in the first round. But then, Spoiler can pick
the set {bω1 , . . . , bωn+1} afterwards. As there are only n distinct nodes a ∈ A such
that πA(Eana) = 1, Duplicator cannot find a suitable answer and loses the play
in this case as well. However, for the induced τB-structures A12 and B12 we have
that A12 ≡FOC(τB) B12, because Duplicator wins the game G(A12,B12) by playing
analogously to the strategy for the B∞[[X]]-interpretations π8

A and π8
B described in

the proof of proposition 3.34.

Yet, we can derive the desired upper bound on the expressive power of first-order
logic with semiring semantics for finite K-interpretations, as a winning strategy
for Duplicator in CGm(πA, πB) ensures πA ≡m πB for any two K-interpretations
πA and πB. It illustrates that the additional expressive power semiring semantics
provides in contrast to classical FO on the induced τK-structures does not exceed
counting. As for j-idempotent semirings πA ≡m πB is implied by Duplicator
winning CGj

m(πA, πB), we can further conclude that j-idempotent semirings do
not admit counting beyond j.

Corollary 4.11. Given any two finite K-interpretations πA and πB inducing the
τK-structures A and B, it holds that πA ≡FO(τ)

m πB if A ≡FOC(τK)
m B. If K is

j-idempotent for some j ∈ N, then πA ≡FO(τ)
m πB is implied by A ≡FOCj(τ

K)
m B.

A final observation to be noted is that the converse implication of theorem 4.9 can
be easily proven by induction, which provides further insights into m-equivalence
of N-interpretations, as CGm captures m-equivalence of (finite) N-interpretations.

Proposition 4.12. Given any two (finite) N-interpretations πA and πB with
induced τN-structures A and B, it holds that A ≡FOC(τK)

m B if, and only if,
πA ≡FO(τ)

m πB.

In particular, this result is interesting in the context of canonical counting inter-
pretations, which were introduced in [GT17a]. With each finite τ -structure A, one
can associate an N-interpretation π#A, the canonical counting interpretation for
A, with the same universe A and vocabulary τ such that for L ∈ LitA(τ) it holds
that π#A(L) = 1 if A |= L and π#A(L) = 0 otherwise. In [GT17a], it was shown
that for each sentence φ ∈ FO(τ), the valuation π#A[[φ]] provides the number of
proof trees witnessing A |= φ. Note that the τN-structure induced by π#A(L) does
not coincide with A, as it relies on an extended vocabulary. However, it can be
easily shown that the τN-structures induced by some canonical counting interpre-
tations π#A and π#B are m-equivalent in FOC(τ), if and only if, the underlying
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τ -structures satisfy A ≡FOC(τ)
m B. Hence, proposition 4.12 yields, in particular,

that for any two finite τ -structures A, B, it holds that A ≡FOC(τ)
m B if, and only

if, π#A ≡FO(τ)
m π#B where π#A and π#B are the canonical counting interpretations

for A and B.

4.2 Two-sorted structures

Within the previous section, we observed that associating a classical structure over
an extended vocabulary with each K-interpretation yields a notion of equivalence
which is captured by the Ehrenfeucht-Fraïssé game on K-interpretations, provided
that one of the universes or the semiring is finite. However, it is noticeable that
only little information about the semiring is taken into account when translating
a K-interpretation into a τK-structure. In fact, it is only the cardinality of the
semiring K which actually affects the resulting classical structure, whereas the
operations are not taken into account in any way. This raises the question whether
the expressive power is increased if additional information about the semiring such
as the natural order or the operations are accessible in the logic. Further, it is not
clear whether the incorporation of such relations and function may substitute the
direct access to the semiring elements in the logic such that the resulting notion of
equivalence is still captured by the Ehrenfeucht-Fraïssé game on K-interpretations.
In order to examine this question, we deviate from regarding classical structures
and make use of two-sorted structures, which are based on the notion of metafinite
structures introduced in [GG98] and provide a more flexible framework to incorpo-
rate a second sort of elements with a separate vocabulary. A metafinite structure
D = (A,R,W ) consists of two individual structures A and R which are interlinked
by a set W of weight functions mapping tuples of elements in the primary structure
A into the secondary structure R. Thereby, the primary structure A is assumed
to be finite, as the consideration of metafinite structures aims at generalizing the
methods from finite model theory. As derived in the previous chapter, we may
omit the requirement that the universes must be finite in our context in case the
semiring is, which is why we do not demand the finiteness of the primary structure
a priori. Moreover, we do not incorporate a separate vocabulary in the primary
structure but model the interpretation of the literals using weight functions which
map into the secondary structure, the semiring. The functions and relations of the
secondary structure can be used to incorporate, for instance, the natural order,
the operations, or semiring elements as constants.

Definition 4.13. A K-interpretation πA : LitA(τU) → K with a structure (K, τS)
induces the two-sorted structure DA = (A, (K, τS), {wR, w¬R : R ∈ τU}) where the
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weight functions wR, w¬R : A
arity(R) → K are defined by wR(ā) = πA(Rā) and

w¬R(ā) = πA(¬Rā) for all ā ∈ Aarity(R).

In order to incorporate the secondary structure as well as the weight functions
into first-order logic, we distinguish two different kinds of terms, which we refer
to as U-terms and S-terms. As their notation suggests, they are evaluated with
elements of the universe or of the semiring, respectively.

Definition 4.14. The set of U -terms and S-terms with respect to the vocabularies
τU and τS is inductively defined according to the following rules.

(1) Each variable is a U-term.

(2) If t1U , . . . , tnU are U -terms and R is an n-ary relation symbol in τU , then
wR(t

1
U , . . . , t

n
U) and w¬R(t

1
U , . . . , t

n
U) are S-terms.

(3) If t1S, . . . , tnS are S-terms and f is an n-ary function symbol in τS, then
f(t1S, . . . , t

n
S) is an S-term as well. In particular, each constant in τS is an

S-term.

Based on the two sorts of terms, we define the set FO(τU , τS) of formulae in two-
sorted FO as the smallest set closed under rules (1)− (3).

(1) If t1 and t2 are U -terms or S-terms, then t1 = t2 is a formula in FO(τU , τS).

(2) If t1S, . . . , tnS are S-terms and R is an n-ary relation symbol in τS, then
Rt1S, . . . , t

n
S is in FO(τU , τS).

(3) For each φ, ψ ∈ FO(τU , τS), the formulae ¬φ, φ∧ψ and φ∨ψ as well as ∃xφ
and ∀xφ, where x is a variable, are contained in FO(τU , τS).

The formulae in FO(τU , τS) are interpreted by a two-sorted structure D with a
suitable variable assignment β : X → A. The semantics of U -terms is determined
by β according to [[x]](D,β) := β(x) ∈ A, while the semantics of S-terms is defined
inductively by

[[wL(t
1
U , . . . , t

n
U)]]

(D,β) := wL([[t
1
U ]]

(D,β), . . . , [[tnU ]]
(D,β)) and

[[f(t1S, . . . , t
n
S)]]

(D,β) := f([[t1S]]
(D,β), . . . , [[tnS]]

(D,β))

where L ∈ {R,¬R : R ∈ τU} and f ∈ τS. The semantics of the formulae in
FO(τU , τS) follows from the semantics of U - and S-terms, analogous to classical FO.
As before, we use the notation D |= φ(a1, . . . , an) to denote (D, β) |= φ(x1, . . . , xn)
with β(xi) = ai for 1 ≤ i ≤ n.
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Note that the quantifiers are restricted to range over elements of the primary struc-
ture’s universe only. We now aim to analyze the expressive power of FO(τU , τS) on
two-sorted structures induced by K-interpretations and a fixed secondary structure
(K, τS). Hence, the two-sorted structures we examine only interpret the weight
functions but not the relation and function symbols in τS. The basic definitions
such as quantifier rank, m-equivalence and elementary equivalence in FO(τU , τS)
are analogous to classical first-order logic.
First of all, it is noticeable that moving from K-interpretations to two-sorted struc-
tures allows the separation of structures, although the underlying K-interpretations
are elementarily equivalent. Consider for instance the secondary structure (K,≤),
where ≤ is interpreted by the order induced by addition in K, and recall the
K3-interpretations π3

A and π3
B with K3 being a min-max semiring.

π3
A :

A R1 R2 ¬R1 ¬R2

a1 1 3 0 0
a2 2 1 0 0
a3 3 2 0 0

π3
B :

B R1 R2 ¬R1 ¬R2

b1 3 1 0 0
b2 1 2 0 0
b3 2 3 0 0

In spite of elementary equivalence of π3
A and π3

B, the associated two-sorted struc-
tures D3

A and D3
B with secondary part ({0, 1, 2, 3},≤) can be separated. For the

sentence

φ := ∃x∃y(x 6= y ∧ wR2(x) ≤ wR1(x) ∧ wR2(y) ≤ wR1(y))

we obtain D3
A |= φ, whereas D3

B 6|= φ, as the transformation from π3
A into π3

B does
not respect the natural order.
Hence, the question arises as to what functions and relations need to be contained
in the secondary structure (K, τS) such that the resulting equivalence term is
captured by the game Gm on K-interpretations. Using the subsequent lemma, it
can be shown that it does not suffice if addition and multiplication, the neutral
elements as well as the natural order is available in the secondary structure in
order to separate all two-sorted structures induced by K-interpretations on which
Spoiler wins the Ehrenfeucht-Fraïssé game.

Lemma 4.15. Let π be a K-interpretation and K ′ be the closure of img(π)∪{0, 1}
under addition and multiplication. Further, let h : K → K be an endomorphism
such that h|K′ is injective and respects the order induced by addition, i.e., k ≤ ℓ if,
and only if, h(k) ≤ h(ℓ) for all k, ℓ ∈ K ′. For each ā ∈ An, it holds that (D, ā) ≡
(D′, ā) where D and D′ are the two-sorted structures associated with π and π′ =
h ◦ π with secondary part (K,+, ·, 0, 1,≤) corresponding to the components of K
and the order induced by addition.
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Proof. Let ā ∈ An. Since h is an endomorphism, it follows by induction that
[[t(ā)]]D

′
= h([[t(ā)]]D) for all S-terms t(x̄). For equalities of U -terms φ(x̄) = xi = xj

it clearly holds that D |= φ(ā) if, and only if, D′ |= φ(ā), as the free variables
are instantiated with ā in both cases. If φ(x̄) = t1 ◦ t2 for S-terms t1, t2 and
◦ ∈ {=,≤} it holds that [[ti(ā)]]

D ∈ K ′ where i ∈ {1, 2}. Due to injectivity of h|K′

and the compatibility with ≤ this implies D |= φ(ā) if, and only if, D′ |= φ(ā).
For complex formulae φ(x̄) which are built according to formula building rule
(3), the equivalence follows by induction. Hence, we can conclude that (D, ā) ≡
(D′, ā).

We can apply this condition to the two-sorted structures D2
A and D2

B associ-
ated with the introductory K4-interpretations π2

A and π2
B and the secondary part

({0, 1, 2, 3, 4},+, ·, 0, 4,≤).

π2
A :

A R ¬R
a1 1 0
a2 2 0
a3 4 0

π2
B :

B R ¬R
b1 1 0
b2 3 0
b3 4 0

It holds that π2
B = h ◦ h2A where h : K4 → K4 with h : x 7→ x for x ∈ {0, 1, 3, 4}

and h : 2 7→ 3. Since h respects the underlying linear order and preserves the
neutral elements, h is an endomorphism. Moreover, h|K′ where K ′ := {0, 1, 2, 4} is
injective. Hence, with lemma 4.15 we can conclude that D2

A ≡ D2
B. Note that as

opposed to D2
A and D2

B, π2
A and π2

B can be separated with a sentence of quantifier
rank 2, so in this case the outcome of the game G corresponds to elementary
equivalence in semiring semantics rather than to elementary equivalence of the
associated two-sorted structures.

Proposition 4.16. There are K-interpretations πA and πB such that Spoiler wins
G1(πA, πB) and DA ≡ DB for the two-sorted structures associated with πA and πB
with secondary part (K,+, ·, 0, 1,≤) consisting of the components of K and the
natural order.

This observation gives rise to including the semiring elements as constants in
the secondary structure in order to increase the expressive power of two-sorted
FO. In this manner, two-sorted FO resembles classical FO on the induced τK-
structures, however it comes with formulae of the form wR1(x̄) = wR2(x̄), which
are not available in FO(τK). Even if the secondary structure contains additional
functions and relations enabling formulae such as wR1(x̄) + wR2(x̄) ≤ wR3(x̄), the
expressive power is not increased and likewise captured by the game Gm on the
underlying K-interpretations if one of the universes or the semiring is finite.
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Theorem 4.17. Let πA, πB be K-interpretations such that A,B or K is finite.
The following are equivalent for each m ∈ N.

(1) Duplicator wins Gm(πA, πB)

(2) DA ≡m DB where DA and DB are the two-sorted structures induced by πA
and πB with secondary part (K, {ck : k ∈ K}) interpreting each ck by k

(3) D′
A ≡m D′

B for all two-sorted structures D′
A,D

′
B associated with πA and

πB and secondary part (K, τS) such that {ck : k ∈ K} ⊆ τS with each ck
interpreted by k

Proof. Clearly, it holds that (3) ⇒ (2). By symmetry, we can assume that A or
K is finite. We show (2) ⇒ (1) by constructing a characteristic sentence χmπA,ā for
each m ∈ N and ā ∈ An. For x̄ = (x1, . . . , xn) let

χ0
πA,ā

(x̄) := φ=
ā (x̄) ∧

∧
{wL(xi1 . . . xir) = cπA(Lai1 ...air )|Lxi1 . . . xir ∈ Litn(τ)},

where φ=
ā (x̄) describes the equalities and inequalities of the components of ā as

in the proof of theorem 4.4. If K is finite, then the set {χ0
πA,ā

(x̄) : ā ∈ An} must
also be finite, as there are only finitely many literals in Litn(τ). By induction, this
ensures that χm+1

πA,ā(x̄) given by

χm+1
πA,ā

(x̄) :=
∧
a∈A

∃x χmπA,ā,a(x̄, x) ∧ ∀x
∨
a∈A

χmπA,ā,a(x̄, x)

is finite and thus a formula of FO(τU , τS). Analogous to the reasoning in 4.4, it
follows by induction that Duplicator wins Gm(πA, ā, πB, b̄) if DB |= χmπA,ā(b̄) for
some b̄ ∈ Bn.
It remains to prove (1) ⇒ (3). Let φ(x̄) ∈ FO(τS, τU) with {ck : k ∈ K} ⊆ τS be a
formula of quantifier rank m separating (D′

A, ā) and (D′
B, b̄) for some ā ∈ An and

b̄ ∈ Bn. It can be shown by induction on the structure of φ(x̄) that Spoiler has a
winning strategy for Gm(πA, ā, πB, b̄).
Case 1. If φ(x̄) = xi = xj corresponds to an equality of U -terms, there cannot be
a bijection mapping ā to b̄. Hence, the current position does not induce a local
isomorphism from πA to πB and Spoiler wins G0(πA, ā, πB, b̄).
Case 2. If φ(x̄) = t1S(x̄) = t2S(x̄) or φ(x̄) = Rt1S(x̄) . . . t

n
S(x̄) where each tiS(x̄) is an

S-term, then there must be an S-term tiS(x̄) such that [[tiS(ā)]]
D′
A 6= [[tiS(b̄)]]

D′
B . As

the descent to proper subterms is well-founded, there must be an S-term wL(x̄)
such that [[wL(ā)]]

D′
A 6= [[wL(b̄)]]

D′
B . Consequently, ā and b̄ do not correspond to a

local isomorphism between πA and πB and Spoiler wins G0(πA, ā, πB, b̄).
All remaining cases can be transferred from the proof of theorem 4.3.
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Chapter 5

Modifications of the Game Rules

After examining to what extent the Ehrenfeucht-Fraïssé game as well as its vari-
ants, the bijection and counting game, can be generalized towards semiring seman-
tics and what notion of equivalence is actually captured by the Ehrenfeucht-Fraïssé
game on K-interpretations, we will now discuss certain modifications of the game
rules in order to account for the problems observed previously. First, we will quan-
tify to what extent the individual semiring elements admit counting and discuss an
approach to incorporate the measure into the game rules. Afterwards, we derive
a game relying on homomorphisms into the Boolean semiring which characterizes
m-equivalence of K-interpretations for distributive lattices.

5.1 Counting in Semirings

In [GG98], Grädel and Gurevich propose a variant of the Ehrenfeucht-Fraïssé game
for metafinite structures with a fixed secondary part. It captures a calculus of terms
which are evaluated by elements of the secondary structure, similar as first-order
formulae are evaluated with semiring elements in semiring semantics. Despite the
similarities, every multiset operation on the secondary universe is accessible in the
term calculus which makes it very expressive and does not capture the essence of
semiring semantics, where two fixed operations, whose algebraic properties may
vary, determine the semantics of the formulae.
In particular, the multiset operations allow counting to the full extent. While
this assumption is justified for semiring semantics with respect to complex semir-
ings such as N or N[X], the ability to count is not exhausted in various other
semirings. As we have seen earlier, the influence the number of a ∈ A such that
πA[[ψ(ā, x)]] = k has on the semantics of ∃xψ(x̄, x) and ∀xψ(x̄, x) may vary for
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different k ∈ K. In section 3.2, we formalized this observation using the notion of
κ-idempotence, which allows us to restrict the cardinalities of the sets chosen in
the counting game. However, κ does not refer to individual semiring elements but
describes the semiring as a whole. Hence, the question arises whether a measure of
idempotence can be derived for the single semiring elements such that occurrences
of 1 in the V-interpretations π9

A, π9
B and π9

C , for instance, are treated differently
compared to the occurrences of 0.5.

π9
A :

A R ¬R
a1 1 0
a2 1 0
a3 0.5 0

≡1 π9
B :

B R ¬R
b1 1 0
b2 0.5 0

6≡1 π9
C :

C R ¬R
c1 1 0
c2 0.5 0
c3 0.5 0

In order to implement this, we will modify the game on metafinite structures
introduced in [GG98]. To this end, we quantify to what extent a semiring element
can influence sums and products by the number of occurrences by making use of
the following lemma, which applies to naturally ordered and square comparable
semirings K, where k ≤ k2 or k2 ≤ k for all k ∈ K. To simplify notation, we write
n ∗ k for n ∈ N and k ∈ K in order to denote

∑
1≤i≤n k.

Lemma 5.1. Let K be a naturally ordered and square comparable. For each
n0,m0 ∈ N with n0 < m0 such that n0 ∗ k = m0 ∗ k, it holds that n0 ∗ k = m ∗ k
for all m ≥ n0. Analogously, kn0 = km0 implies kn0 = km or all m ≥ n0.

Proof. Let n0 < m0 ∈ N such that n0 ∗ k = m0 ∗ k. This immediately implies that
n0 ∗ k = (n0 + i(m0 − n0)) ∗ k for all i ∈ N. Since n0 < m0 by assumption, for any
m ∈ N with m > n0, it holds that

n0 ∗ k ≤ m ∗ k ≤ (n0 +m(m0 − n0)) ∗ k = n0 ∗ k.

Analogously, for n0 < m0 ∈ N with kn0 = km0 we can conclude for all i ∈ N that
kn0 = kn0+i(m0−n0). By assumption, it must hold that k ≤ k2 or k2 ≤ k, so we
have that kn ≤ km for all n ≤ m or kn ≤ km for all n ≥ m. This implies for all
m ≥ n0 that

kn0 ≤ km ≤ kn0+m(m0−n0) = kn0 or
kn0 = kn0+m(m0−n0) ≤ km ≤ kn0 .

In both cases we obtain that kn0 = km due to antisymmetry of the natural order,
which proves the claim.
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Definition 5.2. Let K be a naturally ordered and square comparable. We asso-
ciate with each k ∈ K the unique cardinal number i(k) ≤ ω such that

(1) i(k) = ω if m ∗ k 6= n ∗ k or km 6= kn for all m,n ∈ N>0

(2) i(k) ∗ k = n ∗ k and ki(k) = kn for all n ∈ N>0 with n ≥ i(k),

(3) i(k) ∗ k 6= n ∗ k or ki(k) 6= kn for all n ∈ N>0 with n < i(k)

As an example, we obtain for the Viterbi semiring i(1) = 1 and i(0.5) = ω, whereas
i(x + y) = 2 in W[{x, y}]. Based on the derived measure i(k), we construct the
game CG′

m(πA, πB) for K-interpretations πA and πB where K is naturally ordered,
square comparable and ω-idempotent as follows.

Definition 5.3. In each play of CG′
m(πA, ā, πB, b̄) where ā = (a1, . . . , an) ∈ An

and b̄ = (b1, . . . , bn) ∈ Bn, the following steps are repeated m times.

(1) Spoiler chooses a function f : X → K where X ∈ {A,B}.

(2) Duplicator answers with a function g : Y → K where Y is the universe
Spoiler did not choose such that |f−1(k)| = |g−1(k)|, or |f−1(k)| ≥ i(k) and
|g−1(k)| ≥ i(k) for each k ∈ K.

(3) Spoiler chooses some element y ∈ Y .

(4) Duplicator answers with an element x ∈ X such that f(x) = g(y) and the
pair (x, y) is added to the current position.

Duplicator wins the play, if, and only if, the resulting position, which we denote
as (a1, . . . , an+m, b1, . . . , bn+m), corresponds to a local isomorphism from πA to πB.

Theorem 5.4. If Duplicator wins the game CG′
m(πA, ā, πB, b̄) on K-interpretations

πA, πB with K being naturally ordered, square comparable and ω-idempotent, it
holds that (πA, ā) ≡m (πB, b̄).

Proof. We construct a winning strategy for Spoiler in the game CG′
m(πA, ā, πB, b̄)

where ā ∈ An and b̄ ∈ Bn based on a formula φ(x̄) which separates (πA, ā) from
(πB, b̄). Thereby, we only consider the case φ(x̄) = Qxψ(x̄, x) where Q ∈ {∃, ∀},
since all remaining cases are analogous to the proof of theorem 3.40. As φ(x̄) is
assumed to be separating, it holds that∑

a∈A

πA[[ψ(ā, a)]] 6=
∑
b∈B

πB[[ψ(b̄, b)]] or∏
a∈A

πA[[ψ(ā, a)]] 6=
∏
b∈B

πB[[ψ(b̄, b)]].
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In both cases Spoiler can choose the mapping f : A→ K defined by a 7→ πA[[ψ(ā, a)]].
Towards a contradiction, assume that Duplicator answers with g : B → K where
b 7→ πB[[ψ(b̄, b)]] for all b ∈ B. According to the game rules, this would imply for
each k ∈ K that

(1) |{a ∈ A : πA[[ψ(ā, a)]] = k}| = |{b ∈ B : πB[[ψ(b̄, b)]] = k}| or

(2) |{a ∈ A : πA[[ψ(ā, a)]] = k}| ≥ i(k) and |{b ∈ B : πB[[ψ(b̄, b)]] = k}| ≥ i(k).

But due to the definition of i(k) and ω-idempotence, this would yield∑
a∈A

πA[[ψ(ā, a)]] =
∑
b∈B

πB[[ψ(b̄, b)]] and∏
a∈A

πA[[ψ(ā, a)]] =
∏
b∈B

πB[[ψ(b̄, b)]],

which constitutes a contradiction. Hence, there must be some b ∈ B such that
g(b) 6= πB[[ψ(b̄, b)]]. Spoiler picks this element b and Duplicator has to respond
with some a ∈ A such that f(a) = πA[[ψ(ā, a)]] = g(b), so for the resulting position
(ā, a, b̄, b) we have that πA[[ψ(ā, a)]] 6= πB[[ψ(b̄, b)]]. From applying the induction
hypothesis we can infer that Spoiler wins CG′

m−1(πA, ā, a, πB, b̄, b).

Although the game CG′
m constitutes a sound proof method for m-equivalence, its

weakness is that the game rules do not ensure that the mapping Spoiler chooses
refers to valid valuation of some formula. In the game CG′

1(π
9
A, π

9
B), for instance,

he can choose the mapping f : a 7→ 0.5 for each a ∈ A such Duplicator has to
provide a unique duplicate in B to each element in A. For simple examples such
as CG′

1(π
9
A, π

9
B) this can be circumvented by demanding that the mapping Spoiler

provides must correspond to the valuations of some literal. However, this is not
sufficient for multiple turns and K-interpretations with several relations of higher
arity.
Proposition 5.5. If K is infinite or i(k) = ω for some k ∈ K, then the game
CG′

m(πA, πB) is equivalent to CGω
m(πA, πB).

In case K is finite and i(k) is a natural number for each k ∈ K, the game
CG′

m(πA, πB) facilitates the winning of Duplicator compared to CGω
m(πA, πB).

More precisely, it can be shown that Duplicator wins CG′
m(πA, πB) not more fre-

quently than CGi(K)−1
m (πA, πB) and not less frequently than she wins CGi(K)

m (πA, πB)
where i(K) :=

∑
k∈K i(k).

Theorem 5.6. Let K be finite and i(k) < ω for all k ∈ K. If Duplicator
wins CG′

m(πA, ā, πB, b̄), she also wins CGi(K)−1
m (πA, ā, πB, b̄). If Duplicator wins

CG
i(K)
m (πA, ā, πB, b̄), she has a strategy to win CG′

m(πA, ā, πB, b̄) as well.
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Proof. We prove the claim by induction on m ∈ N. The case m = 0 follows
immediately from that fact the the games CG′

m and CGκ rely on the same winning
condition.
Suppose that Duplicator has a strategy to win CG′

m(πA, ā, πB, b̄) for some m > 0.
Let X ′ ⊆ X be the set Spoiler chooses in CGi(K)−1

m (πA, ā, πB, b̄). Since |X ′| < i(K)
and i(0) = 1, there must be a function f : X → K such that f(x) = 0 if, and
only if, x ∈ X \ X ′ and |f−1(k)| ≤ i(k) for each k ∈ K \ {0}. Let g be the
function Duplicator responds to f in her winning strategy for CG′

m(πA, ā, πB, b̄).
To win CG

i(K)−1
m (πA, ā, πB, b̄), Duplicator answers Y ′ = Y \ g−1(0). Let y ∈ Y ′

be the element Spoiler chooses afterwards. Duplicator answers with her response
to y in her winning strategy for CG′

m(πA, ā, πB, b̄) which must be in X ′ by con-
struction of f . As the resulting position is reachable in CG′

m(πA, ā, πB, b̄) if Du-
plicator plays according to her winning strategy, she wins remaining subgame of
CG

i(K)−1
m (πA, ā, πB, b̄) by induction.

Assume now that Duplicator wins CGi(K)
m (πA, ā, πB, b̄) and let f : X → K be

the mapping Spoiler chooses in CG′
m(πA, ā, πB, b̄). Let ∼ be the equivalence re-

lation on A∪̇B such that x ∼ y if, and only if, Duplicator wins each play of
CG

i(K)
m−1(πX , x̄, x, πY , ȳ, y) where (πX , x̄), (πY , ȳ) ∈ {(πA, ā), (πB, b̄)}. Let Z be an

equivalence class with respect to ∼. It must hold that |Z ∩ A| = |Z ∩ B| or
both |Z ∩ A| ≥ i(K) and |Z ∩ B| ≥ i(K), because otherwise Spoiler would win
CG

i(K)
m (πA, ā, πB, b̄). Based on Z, we construct the mapping gZ : Z ∩ Y → K

as follows. If |Z ∩ A| = |Z ∩ B|, let gZ be an arbitrary mapping such that
|f−1(k) ∩ Z| = |g−1

Z (k)| for each k ∈ K. Otherwise, let Z ′
X be a maximal subset

of Z ∩ X such that |f−1(k) ∩ Z ′
X | ≤ i(k) for each k. By definition, it must hold

that |Z ′
X | ≤ i(K), hence there must be some Z ′

Y ⊆ Z ∩ Y with |Z ′
X | = |Z ′

Y |. Since
|Z ∩X| ≥ i(K), there must be some ℓ ∈ f(X ∩ Z) such that |f−1(ℓ)| ≥ i(ℓ). We
choose gZ as an arbitrary mapping such that |f−1(k) ∩ Z ′

X | = |g−1
Z (k) ∩ Z ′

Y | for
each k ∈ K and gZ(y) = ℓ for all y ∈ Z ∩Y \Z ′

Y . In CG′
m(πA, ā, πB, b̄), Duplicator

can provide the combination g of all mappings gZ . By construction of each gZ , for
each y ∈ Y , there is some x ∈ X with f(x) = g(y) and x ∼ y. Hence, Duplicator
wins the remaining subgame by induction.

There are simple counterexamples which illustrate that CG′
m is neither equiv-

alent to CGi(K)−1 nor to CGi(K). However, theorem 5.6 can be used to assess
the completeness of CG′

m as a proof method for m-equivalence. As the finite-
ness of K and i(k) < ω for each k ∈ K imply that K must be κ-idempotent
where κ = max{i(k) : k ∈ K}, m-equivalence is already ensured if Duplicator wins
CGκ

m(πA, πB), as we proved in section 3.2. With κ ≤ i(K)− 1, the theorem above
illustrates that incorporating the individual measures i(k) into the game as de-
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scribed by CG′
m does not lead to a proof method for m-equivalence which is more

general than CGκ
m. Thus, we will now discuss a second approach to modifying the

rules of the classical Ehrenfeucht-Fraïssé game.

5.2 Reduction to B via Homomorphisms

As several examples within chapter 3 illustrate, the fundamental property turns out
to be central for proving m-equivalence of K-interpretations. In particular, using
the notion of separating sets of homomorphisms introduced in [GM21] enables
us to reduce the problem of deciding whether to given K-interpretations are m-
equivalent to another semiring L. Recall that a set H of homomorphisms from
K to L is separating if for any two elements k, k′ ∈ K, there is some h ∈ H
such that h(k) 6= h(k′). Due to the fundamental property, m-equivalence of K-
interpretations corresponds to m-equivalence under any of these homomorphisms.
In this manner, separating sets of homomorphisms allow reasoning in a simpler
semiring, in particular, in the Boolean semiring. The fact that B corresponds to
standard semantics gives rise to apply the standard Ehrenfeucht-Fraïssé game to
prove or disprove m-equivalence of the resulting B-interpretations. Hence, for the
class of semirings K for which there is a separating set of homomorphisms to B,
we might be able to derive a homomorphism game capturing m-equivalence of
K-interpretations as follows.

(1) Spoiler chooses a homomorphism h ∈ H from a separating set H of homo-
morphisms mapping K to B.

(2) The players proceed with the game Gm(h◦πA, h◦πB) played on the resulting
B-interpretations h ◦ πA and h ◦ πB.

In order to prove the correctness of the game, it suffices to show that the game
Gm(h◦πA, h◦πB) indeed characterizes h◦πA ≡m h◦πB. Invoking theorem 3.5, we
can immediately infer that a winning strategy of Duplicator in Gm(h ◦ πA, h ◦ πB)
assures h◦πA ≡m h◦πB, since B is fully idempotent. However, it not ensured that
the resulting B-interpretations h◦πA and h◦πB are model-defining, even if the K-
interpretations in question are assumed to be model-defining, which marks a crucial
difference to classical semantics. Consider, for instance, K2-interpretations π13

A and
π13
B where K2 = ({0, 1, 2},max,min, 0, 2) is a min-max semiring. The universes of
π13
A and π13

B are given by A := {ai : i ∈ N} and B := {bi : i ∈ N} ∪ {b′0}. Further,
the semiring valuations are defined according to the following tables, which are
supposed to indicate for i > 0 and j ∈ {1, 2} that πA(Rjai) = πB(Rjbi) = 1 if i is
odd and πA(Rjai) = πB(Rjbi) = 2 if i is even, while all negated τ -literals over A
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and B are valuated with 0.

π13
A :

A R1 R2 ¬R1 ¬R2

a0 2 1 0 0
a1 1 1 0 0
a2 2 2 0 0
a3 1 1 0 0
a4 2 2 0 0
... ... ... ... ...

π13
B :

B R1 R2 ¬R1 ¬R2

b0 1 1 0 0
b′0 2 2 0 0
b1 1 1 0 0
b2 2 2 0 0
b3 1 1 0 0
... ... ... ... ...

We have already seen that the set H := {hk : 0 < k ≤ 2} of homomorphisms
hk : K2 → B with hk : ℓ 7→ 1 if, and only if, k ≤ ℓ is separating. For k = 2, we
obtain the following B-interpretations.

h2 ◦ π13
A :

A R1 R2 ¬R1 ¬R2

a0 1 0 0 0
a1 0 0 0 0
a2 1 1 0 0
a3 0 0 0 0
a4 1 1 0 0
... ... ... ... ...

h2 ◦ π13
B :

B R1 R2 ¬R1 ¬R2

b0 0 0 0 0
b′0 1 1 0 0
b1 0 0 0 0
b2 1 1 0 0
b3 0 0 0 0
... ... ... ... ...

Clearly, h2 ◦ π13
A and h2 ◦ π13

B are not model-defining, although π13
A and π13

B are.
Since the element a0 in h2 ◦ π13

A cannot be duplicated in h2 ◦ π13
B , Spoiler wins

the game G1(h2 ◦ π13
A , h2 ◦ π13

B ), so we would expect that (h2 ◦ π13
A ) 6≡1 (h2 ◦ π13

B ).
However, the B-interpretations cannot be separated by ∃x(R1x ∧ ¬R2x), as all
negated τ -literals over A and B are valuated with 0. In fact, it can be shown
that h2 ◦ π13

A and h2 ◦ π13
B are even elementarily equivalent, which illustrates that

the classical Ehrenfeucht-Fraïssé does not capture m-equivalence or elementary
equivalence of B-interpretations which are not model-defining.

Proposition 5.7. The B-interpretations π14
A := h2 ◦ π13

A and π14
B := h2 ◦ π13

B are
elementarily equivalent.

Proof. We show that for each i1, . . . , in ∈ N and formula φ(x1, . . . , xn), it holds
that

π14
B [[φ(b̄)]] ≤ π14

A [[φ(ā)]] ≤ π14
B [[φ(b̄′)]],
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where ā = (ai1 , . . . , ain), b̄ = (bi1 , . . . , bin) and b̄′ ∈ Bn coincides with b̄ up to
occurrences of b0 which are substituted by b′0. The claim can be shown by induction
on the structure of φ(x̄) for all n ∈ N and i1, . . . , in ∈ N simultaneously.
Case 1. If φ(x̄) is an (in)equality, it holds that π14

B [[φ(b̄)]] = π14
A [[φ(ā)]] = π14

B [[φ(b̄′)]],
as all (in)equalities are preserved when translating ā into b̄ or b̄′, which rely on the
same indices i1, . . . , in.
Case 2. For τ -literals φ(x̄), the claim follows immediately from the definition of
π14
A and π14

B .
Case 3. Let φ(x̄) = ψ(x̄)∨ϑ(x̄) and suppose that π14

A [[φ(ā)]] = 0. It suffices to show
that π14

B [[φ(b̄)]] = 0 in this case, as π14
A [[φ(ā)]] ≤ π14

B [[φ(b̄′)]] is clearly satisfied. We
have that π14

A [[ψ(ā)]] = π14
A [[ϑ(ā)]] = 0, implying π14

B [[ψ(b̄)]] = π14
B [[ϑ(b̄)]] = 0 by induc-

tion hypothesis. Hence, π14
B [[φ(b̄)]] = 0 and we obtain π14

B [[φ(b̄)]] ≤ π14
A [[φ(ā)]]. Oth-

erwise, it must hold that π14
A [[φ(ā)]] = 1, yielding π14

A [[ψ(ā)]] = 1 or π14
A [[ϑ(ā)]] = 1.

Applying the induction hypothesis yields π14
B [[ψ(b̄′)]] = 1 or π14

B [[ϑ(b̄′)]] = 1. Hence,
π14
B [[φ(b̄′)]] = 1 and we obtain π14

A [[φ(ā)]] ≤ π14
B [[φ(b̄′)]], while π14

B [[φ(b̄)]] ≤ π14
A [[φ(ā)]]

follows immediately from π14
A [[φ(ā)]] = 1.

Case 4. Suppose that φ(x̄) = ∃xψ(x̄, x) and π14
A [[φ(ā)]] = 0. Then, it must hold

that π14
A [[ψ(ā, a)]] = 0 for all a ∈ A, which implies π14

B [[ψ(b̄, b)]] = 0 for all b ∈ B\{b′0}
by induction hypothesis. Fix some b ∈ B which is not contained in b̄ such that
π14
B (R1b) = π14

B (R2b) = 0. It holds that (π14
B , b̄, b

′
0)

∼= (π14
B , b̄, b), so applying the

isomorphism lemma yields π14
B [[ψ(b̄, b′0)]] = 0. We overall obtain π14

B [[φ(b̄)]] = 0, so
π14
B [[φ(b̄)]] ≤ π14

A [[φ(ā)]]. In case π14
A [[φ(ā)]] = 1, there must be some ai ∈ A such that

π14
A [[ψ(ā, ai)]] = 1. It follows from the induction hypothesis that π14

B [[ψ(b̄′, bi)]] = 1
if i > 0 and π14

B [[ψ(b̄′, b′0)]] = 1 in the case i = 0. Thus, it holds that π14
B [[φ(b̄′)]] = 1,

which yields π14
A [[φ(ā)]] ≤ π14

B [[φ(b̄′)]].
We omit the cases φ(x̄) = ψ(x̄)∧ϑ(x̄) and φ(x̄) = ∀xψ(x̄, x), as they are analogous
to case 3 and 4. In particular, the inequality implies that π14

B [[φ]] ≤ π14
A [[φ]] ≤ π14

B [[φ]]
for all sentences φ, hence we obtain π14

A ≡ π14
B .

The problems arising when applying the game Gm to B-interpretations which are
not model-defining are not limited to infinite universes. It is easy to construct finite
counterexamples based on the elementary equivalence of π14

A and π14
B by considering

certain subinterpretations. For each m ∈ N>0, let π14,m
A and π14,m

B be the subin-
terpretations of π14

A and π14
B induced by the sets {ai : 0 ≤ i ≤ 2m} and {bi : 1 ≤

i ≤ 2m}. Clearly, Duplicator wins both Gm(π
14,m
A , π14

A ) and Gm(π
14,m
B , π14

B ). Using
π14
A ≡ π14

B , so in particular π14
A ≡m π14

B , we can conclude that π14,m
A ≡m π14,m

B

by transitivity of m-equivalence. Still, Spoiler wins the game G1(π
14,m
A , π14,m

B ) by
drawing a0 from A.
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π14
A ≡ π14

B

≡1 ≡1

π14,1
A : ≡1 π14,1

B :

A R1 R2 ¬R1 ¬R2

a0 1 0 0 0
a1 0 0 0 0
a2 1 1 0 0

B R1 R2 ¬R1 ¬R2

b1 0 0 0 0
b2 1 1 0 0

Theorem 5.8. There are B-interpretations πA and πB (which are not model-
defining) such that Spoiler wins G1(πA, πB) and πA ≡ πB. Further, for each
m ∈ N>0, there are finite m-equivalent B-interpretations πmA and πmB such that
Spoiler wins G1(π

m
A , π

m
B ).

Returning to the initial K2-interpretations π13
A and π13

B , we can conclude that
π13
A ≡ π13

B , as we just proved that h2 ◦ π13
B ≡ h2 ◦ π13

B and h1 ◦ π13
B ≡ h1 ◦ π13

B

follows from h1 ◦π13
B

∼= h1 ◦π13
B . Yet, Spoiler wins the homomorphism game on π13

A

and π13
B with respect to the separating homomorphism set {h1, h2} by choosing

h1 and a0 ∈ A afterwards. The analogous with regard to m-equivalence can be
observed for the K2-interpretations π13,m

A and π13,m
B which arise from π13

A and π13
B

in the same way as π14,m
A and π14,m

B are derived from π14
A and π14

B . Hence, we can
conclude that the homomorphism game, as described before, neither characterizes
m-equivalence, nor elementary equivalence of K2-interpretations.
In order to construct an appropriate game based on a separating set of homomor-
phisms to B, we need to adjust the classical Ehrenfeucht-Fraïssé game such that
it can be applied to arbitrary B-interpretations which are not necessarily model-
defining. Note that omitting the requirement that the considered B-interpretations
are model-defining affects the expressive power of FO, since the only negation that
can be expressed refers to inequalities of elements. As opposed to equalities, the
valuation πA(¬Rā) does not contain any information about πA(Rā), hence ¬R can
be considered as an additional, independent relation symbol. In order to account
for the restricted negation, we adjust the game Gm as follows.

Definition 5.9. Let πA and πB be B-interpretations. In the game G′
m(πA, πB)

Spoiler first chooses one of the B-interpretations π ∈ {πA, πB}. Accordingly, the
remaining subgame is denoted as G′

m(πA, πB) if π = πA and as G′
m(πA, πB) in case

π = πB. In each of m turns in total, Spoiler chooses a ∈ A or b ∈ B and Duplicator
has to respond with some element in the other structure. Hence, each play ends
in some position (π, ā, b̄) where ā ∈ Am and b̄ ∈ Bm. Duplicator wins the play if,
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and only if, for each L(x̄) ∈ Litm(τ)

πA(L(ā)) ≤ πB(L(b̄)) if π = πA and
πB(L(b̄)) ≤ πA(L(ā)) if π = πB.

In accordance with the original gameGm, we denote the subgame ofG′
m after the i-

th step as G′
m−i(πA, a1, . . . , ai, πB, b1, . . . , bi) or G′

m−i(πA, a1, . . . , ai, πB, b1, . . . , bi),
depending on the initial choice of the K-interpretation. Despite the fact that it is
easier for Duplicator to win G′

m(πA, πB) instead of the classical game Gm(πA, πB),
it can be shown that a winning strategy in G′

m still ensures m-equivalence.
Proposition 5.10. Let πA, πB be B-interpretations and ā ∈ An, b̄ ∈ Bn be tuples
of elements. If there is a formula φ(x̄) ∈ FO(τ) with qr(φ(x̄)) = m such that
πA[[φ(ā)]] > πB[[φ(b̄)]], then Spoiler wins G′

m(πA, ā, πB, b̄).

Proof. We prove the claim by induction on the structure of φ(x̄).
Case 1. If φ(x̄) is a literal, then πA[[φ(ā)]] > πB[[φ(b̄)]] violates the winning condi-
tion. Hence, Spoiler wins G′

0(πA, ā, πB, b̄).
Case 2. If φ(x̄) = ψ(x̄) ∨ ϑ(x̄) with qr(φ(x̄)) = m, then πA[[φ(ā)]] > πB[[φ(b̄)]]
implies that πA[[ψ(ā)]] = 1 or πA[[ϑ(ā)]] = 1, whereas πB[[ψ(b̄)]] = πB[[ϑ(b̄)]] = 0.
Hence, it must hold that πA[[ψ(ā)]] > πB[[ψ(b̄)]] or πA[[ϑ(ā)]] > πB[[ϑ(b̄)]]. Applying
the induction hypothesis yields that Spoiler wins the game G′

m(πA, ā, πB, b̄).
Case 3. For φ(x̄) = ∃xψ(x̄, x) with qr(φ(x̄)) = m it follows from the assump-
tion πA[[φ(ā)]] > πB[[φ(b̄)]] that πA[[ψ(ā, a)]] = 1 for some a ∈ A. In the game
G′
m(πA, ā, πB, b̄), Spoiler can pick this element a ∈ A. For any possible answer

b ∈ B, it must hold that πB[[ψ(b̄, b)]] = 0, as πB[[φ(b̄)]] = 0 by assumption. Hence,
with the induction hypothesis we obtain that Spoiler wins the remaining subgame
G′
m−1(πA, ā, a, πB, b̄, b).

The cases φ(x̄) = ψ(x̄) ∧ ϑ(x̄) as well as φ(x̄) = ∀xψ(x̄, x) are omitted, as the
reasoning is analogous to cases 2 and 3.

To prove the converse implication, we inductively construct characteristic formu-
lae χmπA,ā(x1, . . . , xn), analogously to the proof of the classical Ehrenfeucht-Fraïssé
theorem. As opposed to the construction for classical structures, we do not incor-
porate literals of the form ¬Rx̄ into χ0

πA,ā
(x1, . . . , xn) if πA(Rā) = 0 but only take

into account the τ -literals which are valuated with 1 by (πA, ā). Recall that φ=
ā (x̄)

describes the equalities and inequalities of the elements in ā.

χ0
πA,ā

(x1, . . . , xn) := φ=
ā (x̄) ∧

∧
{L(x̄) ∈ Litn(τ)|πA(L(ā)) = 1}

χm+1
πA,ā

(x1, . . . , xn) :=
∧
a∈A

∃x χmπA,ā,a(x̄, x) ∧ ∀x
∨
a∈A

χmπA,ā,a(x̄, x)
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Theorem 5.11. For any two B-interpretations πA and πB with elements ā ∈ An

and Bn and any m ∈ N, the following are equivalent:

(1) Duplicator wins G′
m(πA, ā, πB, b̄)

(2) πB[[χ
m
πA,ā

(b̄)]] = 1

(3) πA[[φ(ā)]] ≤ πB[[φ(b̄)]] for all φ(x̄) ∈ FO(τ) with qr(φ(x̄)) ≤ m

Proof. We have already proven implication (1) ⇒ (3) by contraposition. It follows
from the definition of χmπA,ā(x̄) that πA[[χmπA,ā(ā)]] = 1, hence we can conclude that
(3) ⇒ (2) holds as well. Consequently, it remains to show (2) ⇒ (1), which we
prove by induction on m ∈ N. If πB[[χ0

πA,ā
(b1, . . . , bn)]] = 1, then the winning

condition for π = πA must be fulfilled, so Duplicator wins G′
0(πA, ā, πB, b̄). If

πB[[χ
m+1
πA,ā(b1, . . . , bn)]] = 1, then for each a ∈ A, there must be some b ∈ B such

that πB[[χmπA,ā,a(b1, . . . , bn, b)]] = 1 and for each b ∈ B, there must be some a ∈ A
such that πB[[χmπA,ā,a(b1, . . . , bn, b)]] = 1. It follows by induction that in both cases
Duplicator wins the remaining subgame G′

m(πA, ā, a, πB, b̄, b).

Clearly, the above theorem implies thatm-equivalence of any two B-interpretations
πA and πB is characterized by G′

m(πA, πB), regardless of whether πA and πB are
model-defining. With the classical Ehrenfeucht-Fraïssé game on B-interpretations
being adapted, we return to the game we aim to derive based on a separating
set of homomorphisms H into B. Based on the idea that Spoiler first chooses
a homomorphism and the game G′

m is played on the resulting B-interpretations
afterwards, we construct the homomorphism game HGm as follows.
Definition 5.12. Let πA and πB be K-interpretations and H be a separating
set of homomorphisms from K to B. In the game HGm(H, πA, πB), Spoiler first
chooses π ∈ {πA, πB} and a homomorphism h ∈ H. Thereupon, Spoiler chooses
a ∈ A or b ∈ B and Duplicator has to respond with some element in the other
structure, which is repeated m times. Duplicator wins a play resulting in the
position (π, h, a1, . . . , am, b1, . . . , bm) if, and only if, for each L(x̄) ∈ Litn(τ),

h(πA(L(ā))) ≤ h(πB(L(b̄))) if π = πA and
h(πB(L(b̄))) ≤ h(πA(L(ā))) if π = πB.

As a direct consequence of theorem 5.11 and the fact that Duplicator wins the
game HGm(H, πA, πB) if, and only if, she wins G′

m(h ◦ πA, h ◦ πB) for all h ∈ H,
the correctness of the homomorphism game can be derived as follows.
Theorem 5.13. Let K be a semiring with a separating set H of homomorphisms
h : K → B. Given any two K-interpretations πA and πB with elements ā ∈ An and
Bn and any m ∈ N, the following are equivalent:

111



CHAPTER 5. MODIFICATIONS OF THE GAME RULES

(1) Duplicator wins HGm(H, πA, ā, πB, b̄)

(2) h(πB[[χ
m
h◦πA,ā(b̄)]]) = h(πA[[χ

m
h◦πB ,b̄

(ā)]]) = 1 for each h ∈ H

(3) (πA, ā) ≡m (πB, b̄)

Having established a game which capturesm-equivalence in any semiring for which
there is a separating set of homomorphisms mapping to B, the question arises to
which semirings this condition applies. So far, we have only seen how a separating
homomorphism set with respect to B can be constructed for min-max semirings.
Further, the formulation of the game HGm is rather abstract, as Spoiler draws a
homomorphism we do not know much about yet. If we were able to construct the
separating homomorphism set systematically, it could directly be embedded into
the game rules.
Certainly, there are semirings K containing distinct elements which cannot be sep-
arated by a homomorphism mapping K to B. For instance, for any homomorphism
h : K → B and k, ℓ ∈ K, it holds that

h(k ·K k) = h(k) ∧ h(k) = h(k) and
h(k +K kℓ) = h(k) ∨ (h(k) ∧ k(ℓ)) = h(k),

following from multiplicative idempotence and absorption in B. Hence, we can
conclude that each semiring for which there is a separating set of homomorphisms
to B must be multiplicatively idempotent and absorptive. It can easily be verified
that the class of multiplicatively idempotent and absorptive semirings corresponds
to distributive lattices with least element 0 and greatest element 1.
In the following, we present an explicit construction of a separating set of homo-
morphisms to the Boolean semiring, which is motivated by Birkhoff’s representa-
tion theorem [Bir37] and applies to finite distributive lattices. By incorporating
this set directly into the rules of HGm, we obtain a more intuitive formulation of
the game.

5.2.1 Application to Finite Distributive Lattices

For the remainder of this section, let K = (K,+, ·, 0, 1) be a finite distributive
lattice and suppose that the associated infinitary operations are also fully idempo-
tent. The homomorphisms hk : K → B we construct depend on a certain semiring
element k ∈ K. In order to ensure the compatibility of hk with addition in K, the
element k must be indecomposable with respect to addition in the following sense.
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Definition 5.14. A non-zero element k ∈ K is said to be +-indecomposable if for
all ℓ1, ℓ2 ∈ K with ℓ1 6= k and ℓ2 6= k it holds that ℓ1 + ℓ2 6= k. We denote the set
of non-zero +-indecomposable of elements in K as idc(K).

In a min-max semiring, for instance, every non-zero element is +-indecomposable.
By contrast, the +-indecomposable elements in PosBool[X] correspond to the
monomials.

Proposition 5.15. For each k ∈ idc(K), the mapping hk : K → B defined by

hk(ℓ) =

{
1, k + ℓ = ℓ
0, otherwise .

is a homomorphism from K into B.

Proof. Let k ∈ idc(K) be non-zero and +-indecomposable.

(1) Since k + 0 = k 6= 0, it holds that hk(0) = 0. Further, we have that
k + 1 = 1 · k + 1 = 1 due to absorption, hence hk(1) = 1.

(2) In order to prove that hk(ℓ1 + ℓ2) = hk(ℓ1) + hk(ℓ2) for all ℓ1, ℓ2 ∈ K, it
remains to show that k + (ℓ1 + ℓ2) = ℓ1 + ℓ2 is equivalent to k + ℓ1 = ℓ1 or
k+ ℓ2 = ℓ2. If k+(ℓ1+ ℓ2) = ℓ1+ ℓ2, then with absorption and distributivity
kℓ1 + kℓ2 = k(ℓ1 + ℓ2) = k(k + ℓ1 + ℓ2) = k + k(ℓ1 + ℓ2) = k. Since k is
+-indecomposable by assumption, this implies kℓ1 = k or kℓ2 = k. Suppose
w.l.o.g. that kℓ1 = k which yields ℓ1 = ℓ1 + kℓ1 = ℓ1 + k. For the converse
implication, assume that k+ℓ1 = ℓ1 or k+ℓ2 = ℓ2. Clearly, both implications
immediately yield k + (ℓ1 + ℓ2) = ℓ1 + ℓ2.

(3) To derive hk(ℓ1 · ℓ2) = hk(ℓ1) · hk(ℓ2), it has to be shown that k+ ℓ1ℓ2 = ℓ1ℓ2
is equivalent to k + ℓ1 = ℓ1 and k + ℓ2 = ℓ2. If k + ℓ1ℓ2 = ℓ1ℓ2, we can infer
that k + ℓ1 = k + (ℓ1 + ℓ1ℓ2) = (k + ℓ1ℓ2) + ℓ1 = ℓ1ℓ2 + ℓ1 = ℓ1 and the
analogous for ℓ2. For the converse, suppose that k+ ℓ1 = ℓ1 and k+ ℓ2 = ℓ2.
Then, ℓ1ℓ2 = (k + ℓ1)(k + ℓ2) = k + (ℓ1 · ℓ2) follows by distributivity.

(4) Pertaining to the compatibility of hk with the infinitary operations in K, note
that for each (ℓi)i∈I we have that

∑
i∈I ℓi =

∑
ℓ∈L ℓ and

∏
i∈I ℓi =

∏
ℓ∈L ℓ

where L := {ℓi : i ∈ I} by full idempotence of the infinitary operations.
Since K is finite, L must be finite as well. Consequently, the compatibility
of hk with the infinitary operations in K follows readily from (2) and (3) by
induction.

Although we only consider the mappings hk for +-indecomposable k to ensure
that hk is a homomorphism, any two elements in K can be separated by some hk.
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Proposition 5.16. The set Hidc := {hk : k ∈ idc(K)} is a separating set of homo-
morphisms from K to B.

Proof. For ℓ ∈ K let Sℓ = {k ∈ K ∈ idc(K) : k + ℓ = ℓ}. Due to idempo-
tence, we have that ℓ +

∑
k∈Sℓ k = ℓ. Full idempotence of K ensures that K

is naturally ordered, so the natural order is in particular antisymmetric. As K
is finite, this implies that the natural order is well-founded, hence there must
be a tuple ℓ1, . . . , ℓn ∈ idc(K) with ℓ1 + · · · + ℓn = ℓ. With idempotence, this
implies ℓ + ℓi = ℓ, which yields ℓi ∈ Sℓ for each 1 ≤ i ≤ n. Hence, we
have that ℓ +

∑
k∈Sℓ k =

∑
1≤i≤n ℓi +

∑
k∈Sℓ k =

∑
k∈Sℓ k. Overall, we obtain

ℓ = ℓ+
∑

k∈Sℓ k =
∑

k∈Sℓ k.
Let ℓ1, ℓ2 ∈ K with ℓ1 6= ℓ2. Since ℓ1 =

∑
k∈Sℓ1

k and ℓ2 =
∑

k∈Sℓ2
k, it must

hold that Sℓ1 6= Sℓ2 . Let k be a witness for the inequality and assume w.l.o.g that
k ∈ Sℓ1 . By definition of Sℓ1 , it holds that k + ℓ1 = ℓ1, hence hk(ℓ1) = 1. By
contrast, k 6∈ Sℓ2 yields k + ℓ2 6= ℓ2 ans thus hk(ℓ2) = 0.

As we derived an explicit construction of a separating set of homomorphisms to
B which applies to any finite distributive lattice, we can reformulate the homo-
morphism game as HGfin

m (πA, πB) corresponding to HGm(Hidc, πA, πB) for finite
distributive lattices as follows.

Definition 5.17. At the beginning of each play in HGfin
m (πA, πB), Spoiler chooses

π ∈ {πA, πB} and some k ∈ idc(K). In the i-th ofm rounds in total, Spoiler chooses
some ai ∈ A or bi ∈ B and Duplicator has to respond with an element ai or bi
in the other structure. The pair (ai, bi) is added to the current position such that
at the end of each play some position (π, k, a1, . . . , am, b1, . . . , bm) is reached. The
corresponding play is won by Duplicator, if and only if, for each L(x̄) ∈ Litm(τ),

πA(L(ā)) + k = πA(L(ā)) implies πB(L(b̄)) + k = πB(L(b̄)) if π = πA and
πB(L(b̄)) + k = πB(L(b̄)) implies πA(L(ā)) + k = πA(L(ā)) if π = πB.

The direct construction of the separating homomorphism set also allows an explicit
formulation of the characteristic formulae χm,kπA,ā(x̄) for each k ∈ idc(K) correspond-
ing to the B-interpretations hk ◦ πA.

χ0,k
πA,ā(x1, . . . , xn) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ)|πA(L(ā)) + k = πA(L(ā))}

χm+1,k
πA,ā (x1, . . . , xn) :=

∧
a∈A

∃x χm,kπA,ā,a(x̄, x) ∧ ∀x
∨
a∈A

χm,kπA,ā,a(x̄, x)

In terms of the set Hidc = {hk : k ∈ idc(K)}, the correctness of the game HGfin
m

for finite distributive lattices can be stated as follows.
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Theorem 5.18. Let πA, πB be K-interpretations with elements ā ∈ An and b̄ ∈ Bn

where K is a finite distributive lattice with idempotent infinitary operations. For
each m ∈ N, the following are equivalent.

(1) Duplicator wins HGfin
m (πA, ā, πB, b̄).

(2) For each k ∈ idc(K), it holds that πB[[χm,kπA,ā(b̄)]] + k = πB[[χ
m,k
πA,ā(b̄)]] and

πA[[χ
m,k

πB ,b̄
(ā)]] + k = πA[[χ

m,k

πB ,b̄
(ā)]].

(3) (πA, ā) ≡m (πB, b̄)

Note that for min-max semirings, the constructed separating homomorphism
set coincides with the homomorphisms we considered previously, since k + ℓ =
max(k, ℓ) = ℓ is equivalent to k ≤ ℓ in a min-max semiring. For PosBool[X],
the set {hk : k ∈ idc(PosBool[X])} corresponds to the homomorphisms induced
by variable assignments X → {0, 1}. This is because every m ∈ idc(PosBool[X])
must be a monomial and m + p = p is equivalent to m being absorbed by some
monomial in p. Hence, the variable assignment which assigns 1 to all variables
in m and 0 to all remaining variables satisfies exactly the polynomials such that
m+ p = p.

5.2.2 Transferability to Infinite Distributive Lattices

In the case of min-max semirings, the construction of the separating homomor-
phism set also applies to infinite semirings. However, it can be shown that the
constructed set Hidc does not suffice to separate infinite distributive lattices in
general. As an example, consider the algebraic structure K = (N,+K, ·K, 0, 1) with
a +K b = gcd(a, b) if a 6= 0 or b 6= 0, while 0 +K 0 = 0 and a ·K b = lcm(a, b)
for a, b ∈ N. It is straightforward to verify that K is a distributive lattice. For
each a ∈ N, it holds that gcd(2a, 3a) = a, so for a 6= 0 there are distinct b and
c such that a = b +K c. By contrast, gcd(a, b) 6= 0 for all a, b ∈ N \ {0}, hence
idc(K) = {0}. The function h0 maps each a ∈ N \ {0} to 1, because gcd(a, 0) = a
for all a ∈ N \ {0}. Hence, h0 does not separate 1 and 2, for instance, and the set
{h0} is not a separating set of homomorphisms.
Nevertheless, a separating set of homomorphisms to B can also be constructed in
the infinite case, resulting in a slightly more involved formulation of the homo-
morphism game. For the remainder of this section, let K be a distributive lattice
with infinitary summation defined by the supremum of the finite subsums and,
analogously, infinitary multiplication by the infimum of the finite subproducts.
Instead of the +-indecomposable elements which are sufficient to separate finite
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distributive lattices, the construction for infinite distributive lattices relies on the
prime ideals in K.

Definition 5.19. Let K be a distributive lattice. A non-empty proper subset P
of K is said to be a prime ideal if

(1) k ∈ P and ℓ ∈ P imply k + ℓ ∈ P ,

(2) k ∈ P and ℓ ∈ K imply k · ℓ ∈ P and

(3) k · ℓ ∈ P implies k ∈ P or ℓ ∈ P .

We denote the set of prime ideals in K by Ip(K).

In order to derive a separating set of homomorphisms from the prime ideals in
K, it remains to show that there are sufficiently many prime ideals such that any
two elements in K can be separated. Stone, in [Sto38], proved that for each pair
of distinct elements k, ℓ ∈ K, there is a prime ideal which contains one of k and ℓ
but not both. While this observation is crucial to Stone’s representation theorem
for distributive lattices, we will use it to construct a set of homomorphisms from
K to B and prove that it is separating.

Lemma 5.20 ([Sto38]). The mapping f : K → P(Ip(K)) defined according to
f : k 7→ {P ∈ Ip(K) : k 6∈ P} is injective and it holds for each k, ℓ ∈ K that

(1) f(k + ℓ) = f(k) ∪ f(ℓ) and

(2) f(k · ℓ) = f(k) ∩ f(ℓ).

Proposition 5.21. The set Hp := {hP : P ∈ IP (K)} of mappings hP : K → B
with hP : k 7→ 0 if, and only if, k ∈ P is a separating set of homomorphisms.

Proof. Let P ∈ IP (K). We first verify that hP is a homomorphism from K to B.
By definition, it holds that P 6= ∅ which, with property (2) of prime ideals,
implies that 0 ∈ P . Hence, it holds that hP (0) = 0. If 1 ∈ P , we would have that
P = K due to property (2) of prime ideals, which yields a contradiction. Hence, it
must hold that 1 6∈ P , so hP (1) = 1, which proves the preservation of the neutral
elements by hP .
In order to verify the compatibility of hP with addition and multiplication, it
remains to show for each k, ℓ ∈ K that k + ℓ 6∈ P if, and only if, k 6∈ P or ℓ 6∈ P
and that k · ℓ 6∈ P is equivalent to k 6∈ P and ℓ 6∈ P . Both equivalences follow
immediately from property (1) and (2) of lemma 5.20.

116



CHAPTER 5. MODIFICATIONS OF THE GAME RULES

Property (1) in 5.20 also implies that k ≤ ℓ if, and only if, f(k) ⊆ f(ℓ) where ≤
refers to the natural order (∗). Hence, we can conclude that

f
(∑
i∈I

ki

)
= f

(
sup
I′⊆I
finite

∑
i∈I′

ki

)
(∗)
= sup

I′⊆I
finite

f
(∑
i∈I′

ki

)
(1)
= sup

I′⊆I
finite

⋃
i∈I′

f(ki) =
⋃
i∈I

f(ki)

for each family (ki)i∈I of elements in K. The equality implies that
∑

i∈I ki 6∈ P
if, and only if, ki 6∈ P for some i ∈ I, i.e., hP respects infinitary summation in
K. The compatibility with infinitary multiplication can be inferred analogously.
Hence, Hp is a set of homomorphisms.
Since the mapping f is injective, for any two distinct k, ℓ ∈ K, there must be
a prime ideal P containing exactly one k and ℓ. By definition, it holds that
hP (k) 6= hP (ℓ). Thus, the set Hp is separating for K.

Since we have already shown that each semiring K for which there is a separating
set of homomorphisms h : K → B must be multiplicatively idempotent and absorp-
tive, proposition 5.21 illustrates that a separating set of homomorphisms h : K → B
exists exactly for distributive lattices K, provided that the infinitary operations are
defined by the supremum or infimum of the finite subsums or subproducts. Based
on the separating set Hp of homomorphisms, we can derive the following formu-
lation of the homomorphism game HGinf

m which applies to distributive lattices of
arbitrary cardinality with appropriate infinitary operations.

Definition 5.22. In each play ofHGinf
m (πA, πB), Spoiler first chooses π ∈ {πA, πB}

and some prime ideal P ∈ Ip(K). Afterwards, Spoiler chooses some a ∈ A
or b ∈ B and Duplicator has to respond with an element a or b in the other
structure, which is repeated m times. Thus, each play results in a position
(π, P, a1, . . . , am, b1, . . . , bm) and is won by Duplicator, if and only if, for each
L(x̄) ∈ Litm(τ),

πB(L(b̄)) ∈ P implies πA(L(ā)) ∈ P if π = πA and
πA(L(ā)) ∈ P implies πB(L(b̄)) ∈ P if π = πB.

For each prime ideal P ∈ Ip(K), we can construct formulae χm,PπA,ā(x1, . . . , xn)
according to

χ0,P
πA,ā(x1, . . . , xn) := φ=

ā (x̄) ∧
∧

{L(x̄) ∈ Litn(τ)|πA(L(ā)) 6∈ P} and

χm+1,P
πA,ā (x1, . . . , xn) :=

∧
a∈A

∃x χm,PπA,ā,a(x̄, x) ∧ ∀x
∨
a∈A

χm,PπA,ā,a(x̄, x),

which characterize m-equivalence of K-interpretations in distributive lattices as
follows.
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Theorem 5.23. Let K be a distributive lattice with infinitary operations de-
fined via supremum and infimum of the finite operations. Given any two K-
interpretations πA, πB, elements ā ∈ An, b̄ ∈ Bn and m ∈ N, the following
are equivalent:

(1) Duplicator wins HGinf
m (πA, ā, πB, b̄).

(2) For each P ∈ IP (K), it holds that {πB[[χm,PπA,ā(b̄)]], πA[[χ
m,P

πB ,b̄
(ā)]]} ∩ P = ∅.

(3) (πA, ā) ≡m (πB, b̄)
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Conclusion

In this thesis, we have examined the applicability of the classical Ehrenfeucht-
Fraïssé game as a proof method for m-equivalence of K-interpretations and dis-
cussed certain modifications of the game rules. As a first main result, we derived
that the m-turn Ehrenfeucht-Fraïssé game does not capture m-equivalence under
semiring semantics in any semiring which is not isomorphic to the Boolean semir-
ing. As illustrated by the following N- and K4-interpretations, this is due to the
fact that semiring semantics admits counting of certain valuations in semirings
which are not fully idempotent and, on the other hand, that the semiring elements
are not accessible in the first-order formulae.

(N,+, ·, 0, 1)

A R ¬R
a1 1 0

a2 1 0

a3 2 0

6≡1

B R ¬R
b1 1 0

b2 2 0

b3 2 0

Duplicator wins G1

({0, 1, 2, 3, 4},max,min, 0, 4)

A R ¬R
a1 1 0

a2 2 0

a3 4 0

≡1

B R ¬R
b1 1 0

b2 3 0

b3 4 0

Spoiler wins G1

While full idempotence characterizes the class of semirings such that Gm is a
sound proof method for m-equivalence, we have shown that the algebraic property
is not necessary for elementary equivalence to be implied by Duplicator winning
the game G. In order to account for counterexamples the soundness of Gm fails
at, such as the N-interpretations above, we also applied the m-turn bijection game
and, equivalently, the m-turn counting game to K-interpretations, which allow us
to drop the requirement of full idempotence and infer m-equivalence based on a
winning strategy for Duplicator in any semiring. However, the game rules aim at
logics that enable counting to the full extent, which is appropriate for complex
semirings such as N or N[X] but does not apply to a multitude of semirings, as
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arises from the W[{x, y}]-interpretations below. Partially, we were able to account
for different semirings by bounding the cardinality of the sets to be chosen in the
counting game.

A R ¬R
a1 x+ y 0

6≡1

B R ¬R
b1 x+ y 0
b2 x+ y 0

≡1

C R ¬R
c1 x+ y 0
c2 x+ y 0
c3 x+ y 0

We have shown that both the classical Ehrenfeucht-Fraïssé game and the bijection
game on K-interpretations are invariant under any injective mapping into another
semiring, which illustrates that the game rules do not take into account the semir-
ing operations in any way. Further, this arises from our observation that the notion
of equivalence the game Gm on K-interpretations characterizes can be expressed in
terms of the induced classical τK-structures, which only depend on the cardinality
of the underlying semiring but not on the operations. However, the varying alge-
braic properties of the semiring are crucial for the expressive power of first-order
logic with semiring semantics and their incorporation into the game rules consti-
tutes the main difficulty in search of a general game-theoretic characterization of
m-equivalence between K-interpretations.
Therefore, we restricted our analysis in section 5.2 to distributive lattices. We
have seen that full idempotence as well as absorption enables the construction
of sufficiently many homomorphisms into the Boolean semiring such that m-
equivalence between two given K-interpretations reduces to m-equivalence of B-
interpretations. Thus, we adapted the classical Ehrenfeucht-Fraïssé game to B-
interpretations which are not necessarily model-defining and finally derived the
homomorphism game, which captures m-equivalence of K-interpretations in any
distributive lattice.
It remains open for future research to define further games which characterize m-
equivalence for other, in particular, more general classes of semirings. Separating
sets of homomorphisms into the Boolean semiring only exist for distributive lat-
tices, which is why the homomorphism game cannot be directly extended to further
semirings. However, depending of the K-interpretations in question, it may not be
necessary to separate each pair of semiring elements but only those that actually
correspond to the valuation of a formula in the given K-interpretations. Thus, a
generalization of the game might be obtained by first excluding certain pairs of
semiring elements and afterwards proceeding with the homomorphism game with
a set of homomorphisms which separates the remaining pairs. Based on this idea,
we proved m-equivalence of multiple K-interpretations in chapter 3.1 in order to
validate counterexamples for the completeness of Gm.
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Leaving the natural definition ofm-equivalence with respect to semiring semantics,
it is still open whether there is a logic which does not contain all semiring elements
or a set of generators, whose expressive power is captured by the game Gm on K-
interpretations. Two-sorted structures with varying relations and functions in the
secondary structure, as introduced in section 4.2, may serve as a starting point for
further analysis. Beyond that, we might also investigate the effect of dropping the
requirement that quantifiers only range over elements of the primary universe. For
instance, we could include a second sort of quantifiers ranging over the semiring
elements and analyze the expressive power of the resulting logic.
Another follow-up question, concerning the applicability of the standard games,
is which further semirings, besides N and N[X], are expressive enough such that
m-equivalence is captured by the m-turn bijection game and whether we can char-
acterize them algebraically.
Beyond that, we should also work on negative results. In chapter 3, we analyzed
several semirings that differed significantly in the applicability of the standard
Ehrenfeucht-Fraïssé games, which gives rise to the intuition that there might not
be a feasible game which characterizes m-equivalence for each semiring K. In order
to verify this intuition, it remains to specify which games we consider feasible and
to derive invariants from that, which would also have to apply to the notion of
m-equivalence to be captured.
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